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Root of unity quantum cluster
algebras

Fully Azumaya loci

Poisson orders

1. Introduction
1.1. Setting

Cluster Algebras were defined by Fomin and Zelevinsky [13] in 2001, and since then
have played a prominent role in many areas of mathematics and mathematical physics.
There are two main classes of algebras in this theory. The algebras in these classes
are defined from an integer matrix B (called exchange matriz) of size N x ex where
N is a positive integer and ex C [1, N] is a set of mutable (exchangeable) variables.
Furthermore, one partitions

[1, N]\ex = inv Ll ninv.

The two subsets inv and ninv will index the inverted and non-inverted frozen variables.
It is important to allow this degree of flexibility because many key examples in Lie theory
require that not all frozen variables are inverted.

(1) The upper cluster algebra U(B,inv) is defined as the intersection

U(B,inv) = ﬂ Cl(z})*", 2l k € ex Uinv, i € ninv],
(x',B")~(%,B)
where the intersection ranges over all seeds (X' := (1, ...,2), B’) in the mutation

class of the initial seed (X = (#1,...,2n), B). Gekhtman, Shapiro and Vainshtein
proved in [19] that, if the exchange matrix B is compatible with a skew-symmetric
integer matrix A of size N x N (cf. (2.6)), then U(B, inv) admits a canonical Poisson
structure. The cluster variables in each seed are in log-canonical form, meaning that

{z}, 23} = Apaial,  Vk,i€[1,N]

for some skew-symmetric integer matrix (\};) depending on the seed.

(2) Let £1/2 € C be a primitive (-th root of unity for a positive integer ¢. The root of
unity upper quantum cluster algebra U, (M., B ,inv) is a non-commutative algebra,
defined in a similar way to U(é ,inv), by intersecting mixed quantum tori/quantum
affine spaces

UE(ME,E,inV) = ﬂ Te(M])>,
(Mévé/)N(Mmé)
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where M/ are root of unity toric frames, see Sect. 3.1. Each such algebra has a
canonical central subalgebra CUE(ME,E,inV) obtained by intersecting the mixed
Laurent polynomial rings in the ¢-th powers of the generators of M.. Under mild
assumptions on £,

CU. (M., B,inv) = U(B, inv), (1.1)
see Sect. 3.1.

There is a canonical action of the torus

T(B) = ((C X )dim Ker B

on both algebras U(E, inv) and U, (M., E, inv) by algebra automorphisms. In the first

case, T'(B) acts by Poisson automorphisms. In the second case, it preserves the central
subalgebra CU. (M., B, inv) and the isomorphism (1.1) intertwines the two actions.

1.2. Results on the Poisson geometric side

The affine Poisson variety corresponding to the GSV Poisson structure
Y(E) := MaxSpec U(é7 inv)

is of much interest in Lie theory and integrable systems (we suppress the dependance
of Y(E) on inv for brevity). However, little is known about its global geometry. One
only knows that the cluster tori inside Y (B) are regular Poisson [19]. This is a local
result because the symplectic leaves inside each cluster torus never entirely belong to the
cluster torus. So, general Hamiltonian flows on Y(E) leave each cluster torus after some
time.

In Lie theory and combinatorics, one knows [22] that each Schubert cell X7 in the full
flag variety G/B of a complex simple Lie group G, equipped with the standard Poisson
structure, has a dense torus orbit of symplectic leaves which equals the complement of
the Richardson divisor [28] of X2 . The latter equals the union of the closures in X2 of
the open Richardson varieties R,, s, for ¢ ranging over the support of the Weyl group
element, see Sect. 7.1.

Remarkably, such a fact holds for the spectrum of every upper cluster algebra
U(B, inv) with the GSV Poisson structure, without any assumptions on U(B, inv) ex-
cept for finite generation which is needed to be even able to talk about symplectic leaves.

This is the topic of our first main result on the global description of the T'(B)-orbit of
the symplectic leaves S of (Y(B), n) of maximal dimension,

T(B)-S.
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Theorem A. Assume that U(f?7 inv) is a finitely generated upper cluster algebra for which
the exchange matriz B admits a compatible skew-symmetric integer matriz. Then the

affine Poisson variety (Y(E),ﬂ) has a Zariski open T(B)-orbit of symplectic leaves,
which equals

Y(B)e\ ] V),

i€Eninv

where Y (B)™8 is the nonsingular part of Y (B).

The theorem is proved by using sections of the anticanonical bundle of Y(E )'°8 coming
from the GSV Poisson structure = and the action of T(E)7 coupled with normality of
Y(B).

At this point it might be tempting to conjecture that a much stronger result than
Theorem A holds, namely that there are finitely many T(E)—orbits of symplectic leaves
of Y(B) (or Y (B)**8). However, that is not correct. For large classes of Belavin-Drinfeld
Poisson structures [9, Sect. 3.2] on GL,(C), Gekhtman, Shapiro and Vainshtein proved
[20,21] that the coordinate ring C[GL,] admits upper cluster algebra structures with
compatible Poisson structures given by the ones in the list. Their symplectic leaves were
classified in [37], where it was proved that they are classified by Weyl group datum and
twisted conjugacy classes of reductive groups. Because of the last bit of data, in general,
those Poisson structures have infinitely many torus orbits of symplectic leaves.

1.3. Results on the quantum side

It was proved in [27, Theorem B] that, if the C-algebra U, (M., B, inv) is finitely gener-
ated, then it is a finitely generated module over CU. (M, E, inv) and CU. (M., §7 inv) &
U(E ,inv) is a finitely generated commutative C-algebra. The root of unity upper quan-
tum cluster algebras Ug(ME,E,inv) form a vast family of algebras that includes as
special cases many important classes of quantum algebras at roots of unity arising in Lie
theory and topology. A fundamental open problem for them is to classify their irreducible
representations. By [4, Theorem I11.1.6] all of their representations are finite dimensional
of dimension less than or equal to the PI degree of U.(M,, B, inv). In this generality,
the problem of classifying the irreducible representations of U (M, B ,inv) is extremely
difficult. The first step towards its resolution is to classify the representations of maximal
dimension. For this, Brown and Gordon defined [5, Sect. 1.3] the fully Azumaya locus of
a finitely generated prime algebra R with respect to a central subalgebra Z such that
R is a finitely generated Z-module. This locus is a Zariski open subset of MaxSpec Z
consisting of those maximal ideals m of Z such that all irreducible representations of R
annihilated by m have maximal dimension (equal to the PI degree of R), see Sect. 2.1
for details.
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Our second main result gives an explicit description of the fully Azumaya locus of
the root of unity upper quantum cluster algebras U. (M, B,inv) with respect to their
central subalgebras CU. (M., B,inv) = U(B,inv):

Theorem B. Assume that U, (M., E, inv) is a finitely generated strict root of unity upper

1/2

quantum cluster algebra such that the order of €'/° is odd and coprime to the diagonal

entries of the skew-symmetrizing matriz D for the principal part of the exchange matriz
B and

A.(M., B,inv) = U.(M., B, inv). (1.2)
Then the fully Azumaya locus A of U (M, E, inv) with respect to the central subalgebra
CU.(M., B, inv) = U(B, inv)
satisfies

Y(By\ |J vE)CACY(B)\ | V),

i€Eninv 1€Enc

where nc denotes the set of those non-inverted frozen variables M (e;) that are not in the
center on U. (M., B,inv).

The assumption that UE(ME,E,inV) is a finitely C-algebra is needed to be even
able to define the fully Azumaya locus. The strictness assumption on UE(ME,E,inV)
means that B admits a skew-symmetric integer matrix which is compatible with B over
Z and not just over Z/¢, which is what is needed to define root of unity quantum
cluster algebras in general. This assumption ensures that there is an associated upper
quantum cluster algebra U, (Mg, B ,inv) in the sense of Berenstein and Zelevinsky [2].
The assumption (1.2) is needed to ensure that U.(M., B,inv) is a specialization of
U, (M, B, inv). This in turn is used to construct a Poisson order structure on the pair
(U.(M., B,inv), CU. (M., B,inv)) in the sense of Brown and Gordon [5] to be able
to link Poisson geometry to representation theory. A property of the form A = U was
established in numerous situations on the classical and quantum levels [8,23-26,30,31,35].
Undoubtably, these methods will be extended in the future to show that the assumption
(1.2) is satisfied in broad generality.

In [6] the fully Azumaya loci of all quantum function algebras of complex simple Lie
groups G at roots of unity were determined. In [16] a second proof of the Bonahon—Wang
unicity conjecture [3] was given, stating that the Azumaya loci of the skein algebras of
oriented surfaces at roots of unity contain the smooth parts of the spectra of their centers
(this was first proved in [15]). Both [6,16] relied on Poisson orders. The result of [6] is
that the fully Azumaya locus inside G is the open double Bruhat cell (a torus orbit of
symplectic leaves), while the proofs of [16] relied on an argument that in that situation,
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the smooth part in question is a single symplectic leaf. Our Theorems A and B prove that
such phenomena hold in much wider generality in the world of cluster algebras, rather
than quantum groups or skein algebras. The zero loci of frozen variables and singular
part of Y (B) were exactly the points that were thrown out in [6] and [16].

1.4. Organization of the paper and notation

The paper is organized as follows. Section 2 provides background on Azumaya loci,
Poisson orders, cluster algebras, compatible Poisson structures and quantum cluster
algebras. Section 3 contains background on root of unity quantum cluster algebras and
results on torus actions on them and the related Poisson cluster algebras. Section 4
proves Theorem A. Section 5 construct Poisson orders on root of unity quantum cluster
algebras. Section 6 proves Theorem B. Section 7 discusses the motivation for the main
theorem from the stand point of Richardson varieties, the special case of the theorems
on acyclic cluster algebras, and a Kronecker type example.

The following notation will be used throughout the paper. The standard basis of Z
will be denoted by

€1,...,EN.

The dot product on Z~ will be denoted by s - v. The transpose of a matrix B will be
denoted by BT.

For a complex affine algebraic variety Y, its singular part will be denoted by Y*ing
and its smooth part by Y€, Given a regular function f € C[Y], we will denote by V()
the zero locus of f.

Acknowledgments. We are grateful to the referee for many suggestions which helped us
to improve the exposition.

2. Preliminaries on Poisson orders and cluster algebras

In this section we gather background material on Poisson orders and cluster algebras
that will be used in the paper.

2.1. Poisson orders

We follow Brown and Gordon [7]. Let R be a C-algebra and Z be a central subalgebra
of R.

Definition 2.1. [7] The pair (R, Z) is called a Poisson order if R is a finitely generated
Z-module satisfying the following conditions:

(i) Z has the structure of a Poisson algebra with bracket {-,-};
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(ii) There exists a C-linear map 0 : Z — Derc(R) such that 9,|z = {z,—} for all
z € Z.

By assumption (ii), the Poisson structure is uniquely determined from the linear map
0. Because of this we will denote Poisson orders as triples (R, Z, 9).

Restriction of Poisson orders: For a Poisson order (R, Z,0), if C' is a Poisson subal-
gebra of Z with respect to the underlying Poisson structure, then (R, C,d|¢) is also a
Poisson order.

Poisson orders from specialization: The following is a well known fact for obtaining
Poisson order structures from specialization, see e.g. [7, Sect. 2.2]:

Lemma 2.2. Assume that R and S are C-algebras and n : S — R is a surjective C-
algebra homomorphism with kernel (h) = hS for a regular central element h € S. Choose
a C-linear map

t: Z(R)— S

such that nov = idz(gy. If R is a finitely generated Z(R)-module, then the pair (R, Z(R))
admits a Poisson order structure with 9, : Z(R) — Derc(R) given by

8.(r) == ”(M) Vz € Z(R),r € R, (2.1)

where T is any preimage of r under 1. Its underlying Poisson structure is given by

(21, 20} = n(L(Zl)L(ZQ) ; L(zz)b(z1))7 V1, € Z(R).

This Poisson structure is independent on the choice of C-linear section v : Z(R) — S.

In (2.1), u(2)7 — 71(2) € (h) because z € Z(R) and 7 is an algebra homomorphism.
The right hand side of (2.1) is independent on the choice of preimage 7 by a similar
argument.

Recall that an affine Poisson variety is an affine variety X whose coordinate ring is
equipped with a Poisson algebra structure. Its singular part X*"& is automatically an
affine Poisson variety as well [34, Corollary 2.4]. The symplectic leaves of a complex
affine Poisson variety X are defined recursively as the symplectic leaves of the smooth
complex manifold X*® together with the symplectic leaves of the lower dimensional
Poisson variety X®ine,

Theorem 2.3. (Brown-Gordon) [7] Assume that (R, Z) is a complex Poisson order and
m, m’ € MaxSpec Z lie in the same symplectic leaf. Then we have the isomorphism of
finite dimensional complex algebras

R/mR = R/w'R.
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The theorem proved in [7] has a stronger conclusion using Poisson cores, but we will
not need that fact in this paper.

For the rest of this subsection we assume that

(*) R is a finitely generated prime C-algebra, which is a finitely generated Z-module
over a central subalgebra Z.

By the Artin—Tate Lemma (see e.g. [4, Sect. 1.13.4]), Z is a finitely generated C-
algebra. The primeness assumption on R implies that Z(R), and thus also Z, are integral
domains. Hence, MaxSpec Z(R) and MaxSpec Z are irreducible affine varieties.

Recall that m € MaxSpec Z(R) is in the Azumaya locus of R if Ry, is an Azumaya
algebra over Z,,. This is equivalent to saying that R has an irreducible module, annihi-
lated by m, of maximal dimension among the irreducible R-modules (which equals the
PI degree of R); such a representation is automatically unique (see [4, Theorem III.1.6]).

We have the canonical map

MaxSpec Z(R) — MaxSpec Z, (2.2)
induced by the inclusion Z C Z(R).

Definition 2.4. A point m € MaxSpec Z is said to be in the fully Azumaya locus of R
with respect to Z if all of its preimages are in the Azumaya locus of R, see [5, Sect. 1.3].
In other words, one requires that all irreducible modules of R/mR have dimensions equal
to the PI degree of R.

The map (2.2) is closed by [4, Lemma III.1.5]. This and the fact that the Azumaya
locus of R is open, and hence dense in MaxSpec Z(R), imply

Lemma 2.5. In the above setting, the fully Azumaya locus of R with respect to Z is an
open and hence dense subset of MaxSpec Z.

This fact is stated in [4, Proposition I11.4.10] under a Hopf algebra assumption on R
and Z, but this assumption is not used in its proof.
Finally, we have the following corollary of Theorem 2.3:

Corollary 2.6. Assume that R is a finitely generated C-algebra and (R,Z) is a com-
plex Poisson order. Then the fully Azumaya locus of R with respect to Z is a union of
symplectic leaves of MaxSpec Z.

Proof. If m,m’ € MaxSpec Z lie in the same symplectic leaf of MaxSpec Z, then R/mR &
R/m'R by Theorem 2.3. In particular, if all irreducible representations of the algebra
R/mR have dimensions equal to the PI degree of R, then the same holds for the algebra
R/m'R. O
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2.2. Cluster algebras of geometric type

We follow Berenstein, Fomin and Zelevinsky [13,1] with the exception that all algebras
are defined over C instead of Z. Let N be a positive integer, ex C [1, N] and F be a
purely transcendental field extension of C of transcendence degree N. We say that a pair
(%, E) is a seed if

(i) X ={x1,...,zy} is a transcendence basis of F over C;

(ii) B € Mpyxex(Z) and its ex x ex submatrix B, called the principal part of B, is
skew-symmetrizable for some matrix D = diag(d;, j € ex) with diagonal entries
dj €Z,.

The elements z; € F are called cluster variables. A matrix B satisfying the condition in
(ii) is called an exchange matriz. For each k € ex, the mutation of B in the direction of
k is the matrix p(B), where
~ —bij ifi:kOI‘j:k
p(B) = (byy) = o lbes bie [bis
7 bij + 4‘17"”(””?”“'[”“" otherwise.

For a choice of sign, s = £, define the matrices Es € My(Z) and Fs € Mex(Z) to be

dij if j#£k dij ifi £k
Es = (ej5)=4 —1 ifi=j=k Fs:=(fij)=¢-1 ifi=j=k
max (0, —sby) ifi#£j=k, max(0, sby;) i j#i=kF.

Then we also have uk(é) — E,BF, for both s = +
The mutation of a seed (X, B) in the direction of k € ex is defined to be ux(X, B) :=
(X', pi(B)) where

X' ={z,}ux\{zx} and zpz} = H bt 4 H x; (2.3)

bix>0 bik<0

The pair ux (X, B) is also a seed, the principal part of u(B) equals pi(B), and i (B) is
skew-symmetrizable with respect to the same matrix D that skew-symmetrizes B.
Mutation is an involution. Two seeds are mutation equivalent, (X', §/) ~ (x",B"), if
one can be obtained from the other by a finite sequence of mutations. Any seed which
is mutation-equivalent to (X, B) contains z; for i € [1, N]\ex and we call these, frozen
variables.
Fix a decomposition of the set of frozen variables into a disjoint union of two sets:

[1, N]\ex = inv L ninv.
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The set inv will index the set of those frozen variables that will be inverted. The set
ninv will index the non-inverted frozen variables.

The cluster algebra A(E, inv) is defined to be the C-subalgebra of F generated by
the cluster variables in all the seeds (X', B') ~ (X, B) together with {z;'|i € inv}. For

a seed (X', B ) ~ (X, E) denote the Laurent polynomial ring
LX) =C(z})* 51 <k < N
and its mixed polynomial/Laurent polynomial subring
L(X)> = C[(x})*, 2}k € ex U inv,i € ninv]. (2.4)
The upper cluster algebra U(E ,inv) is the intersection

UBinv)= (] £LE)s. (2.5)

(X',B')~(%,B)

By the Laurent phenomenon [14], we have A(B,inv) C U(B, inv).
We will need the algebra (2.5) in the special case when all frozen variables are inverted:

U(B):=U(B,[1,N\ex) = [)| L&)
(%/,B")~(X,B)

It is easy to verify that the latter is obtained as a localization:

U(B) = U(E,inv)[xi—l;i € ninv].
2.8. Quantum cluster algebras

We follow Berenstein and Zelevinsky [2] with the exception that we allow for an
arbitrary subset of frozen quantum cluster variables not to be inverted and we work over
the algebra

A;/Q = (C[qil/Z]

instead of Z[q*1/?].

By abuse of notation, we will identify a skew-symmetric bilinear form A : Z¥ x ZVN —
Z with the skew-symmetric integer matrix with entries A(e;, e;). Recall that eq, ..., en
denotes the standard basis of Z%.

The based quantum torus T,(A) associated with A is the A}/ ®_algebra with the A(l/ 2
basis {z/ | f € ZN } and multiplication given by zf29 = ¢M/9)/24/+9 where f,g € ZV.

A toric frame M, for a division C(q'/?)-algebra F, is a map M, : ZV — F, for
which there exists an Aé/ 2—adgebra embedding ¢ : T,(A) — F, for some skew-symmetric
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matrix A € My(Z), such that ¢(z/) = M,(f) for all f € Z" and F, ~ Fract (¢(T4(A))).
Denote by Ay, the skew-symmetric matrix (bilinear form) of a toric frame M, defined
by

Mq(f)Mq(g) = qA(f’g)/qu(f +9)» Vf,g € z~.

For a torus frame M,, the image of ¢ in F, will be denoted by T,(M,); its basis is
{My(f) | fe Z™N}. We have the isomorphism of quantum tori 74(M,) ~ To(Aas,).

Let B € Mpxex(Z) be an exchange matrix and A = (Aij) € Mn(Z) be a skew-
symmetric matrix. The pair (A, E) is called compatible if

N
Zbkjkkizfsijdjv Vk € [I,N],j € ex
k=1

for a collection of positive integers (d;,j € ex). In terms of the diagonal matrix D :=
diag(d;,j € ex), this condition is written as

BTA =D, (2.6)

where 0 denotes the zero matrix of size ex x ([1, N]\ex). If (A, B) is a compatible pair,
then B has full rank and its principal part B is skew-symmetrized by D.
For each k € ex, the mutation of a compatible pair (A, B) in the direction of k is

(A, B) = (N, B), (2.7)

where B’ = E,BF, as in Sect. 2.2 and A’ := EJAE,, s = +. The pair (A, B) is
compatible with respect to the same diagonal matrix D and is independent on the choice
of sign s.

A quantum seed is a pair (Mg, E), consisting of a toric frame M, of 7, and an exchange
matrix B such that (An,, B B) is compatible. We call M, q.(€5), j € [1,N], cluster variables
of the seed, among which the frozen ones are those indexed by [ N]\ex. Denote b*
be the k-th column of B. The mutation of a quantum seed (M, B) in the direction of
k € ex is

~ ~ M, ~
Nk(Mqu) = (/ik(Mq)nuk(B)) = (pbkyquEsaEsBFS)

for any choice of sign s, where pyr , = plj)v,c[qs is the unique automorphism of F; such that

My(ex) + My(ex + sb*) if j =k

pb’“,s(Mq(ej)) = {Mq(ej) lf] 7& k.

The skew-symmetric matrix associated to the toric frame i (M) is Ay, (ar,) = pe(Anr,)-
The mutation process is involutive.
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The quantum cluster algebra Ay(M,, f?, inv) is the A;/Q—subalgebra of F, generated
by all cluster variables of quantum seeds (M, B') ~ (M, B) and by the inverted frozen
variables {M,(e;)™! | j € inv}. The corresponding upper quantum cluster algebra is
given by the intersection

U‘I(Mibéainv) = m 7:1(M<;)2
(M}, B")~(Mqy,B)

of the mized quantum tori
To(M))> == AY? (M (er)*', M(e;) | k € ex Uinv,i € ninv) C T,(M}).

Here, the term mixed refers to the fact that these algebras are mixtures of quantum tori
and quantum affine spaces. We have the quantum Laurent phenomenon:

A,(M,, B,inv) C U,(M,, B, inv), (2.8)

proved in [2] for inv = [1, N]\ex and [23] in general.

The exchange graphs of the upper cluster algebra U(E7 inv) and the upper quantum
cluster algebra U, (Mg, B ,inv) are the labelled graphs with vertices corresponding to the
seeds that are mutation-equivalent to (X, E) and (Mg, E), respectively, and edges given
by seed mutation, labelled by the corresponding mutation number. (The exchange graph
does not depend on the set inv of inverted frozen variables.)

Theorem 2.7. (Berenstein—Zelevinsky) [2, Theorem 6.1] There exists a unique isomor-
phism of labelled graphs, between the exchange graphs of U(B,inv) and U,(M,, B, inv)
that sends the vertex corresponding to the seed (X, B) to that of the seed (Mg, B).

2.4. Poisson structures on cluster algebras

We follow Gekhtman, Shapiro and Vainshtein [19]. Consider an upper cluster algebra
U(B, inv) for which there exists a skew-symmetric matrix A € My (Z) such that (A, B) is
a compatible pair. This is equivalent to saying that there exists a quantum cluster algebra
with a seed with exchange matrix B. For such a seed (M, E), the skew-symmetric matrix
of the toric frame M, equals A.

In this setting, for every seed (X', B') ~ (X, B), there exists a skew symmetric matrix

A ) satisfying the following two conditions:

(%/,B’

(i) the pair (A(i/ g,),g’) is compatible and
(ii) for all k € ex,

Hi (A(i/7§/)7 B,) = (A(Mk(i/)vﬂk(é/)y Mk;(B/))

where the left hand side uses mutation of compatible pairs, see (2.7).
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For a seed (X', B') ~ (X, B), we choose a sequence of mutations such that
By - Pk (iag) = (i’,g’),

Applying the sequence of mutations to the compatible pair (A, E) gives that
Ky - - Kk (A7§) = (A/,E/)

for a skew-symmetric matrix A’ € My (Z). The exchange graph isomorphism from The-
orem 2.7 implies that the matrix A’ is independent on the choice of mutation sequence
[y - - Pk - We set A g, py = A’. Tt is clear that conditions (i)-(ii) are satisfied.

For each seed (X', B') ~ (X, B), the mixed polynomial /Laurent polynomial ring £(X’)
has a Poisson algebra structure such that

{zk, 23} = Az 5oy (e, e)apai, Yk, i € [1,N]. (2.9)

All algebras L£(X’) have a common field of fractions F, so all Poisson brackets (2.9)
automatically extend to Poisson field structures on F. Those extensions coincide and,
hence, the intersection (2.5), U(E, inv), inherits a Poisson algebra structure, called the
Gekhtman-Shapiro-Vainshtein (GSV) Poisson algebra structure of U(B, inv).

3. Root of unity quantum cluster algebras and torus automorphisms

In this section we gather background material on root of unity quantum cluster alge-
bras from [33,27] and prove auxiliary properties that will be used in the next sections.
In particular, we describe certain torus actions on these algebras, which will play a key
role in the paper.

3.1. Root of unity quantum cluster algebras

1/2

Let ¢ be a positive integer and /¢ € C be a primitive /-th root of unity. Denote

Z/0:=17/(Z.

In this paper we will work over C, while the construction in [33] was carried out over
Z[/?]. We start with a skew-symmetric bilinear form Q : Z¥ x ZN — 7 /¢ and identify
it with the skew-symmetric matrix (Q(e;, e;)));—; € My(Z/f). The associated root of
unity based quantum torus is

To(Q) := Spanc{zf | f € ZVY, where zfx9 = 29/ 2pfF9 i g e 7V, (3.1)
A root of unity toric frame M. of a division algebra F. over C is a map

M.:ZN - F.
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for which there exists an C-algebra embedding ¢ : T:(2) — F. for a skew-symmetric
matrix Q € My(Z/f) with the properties that ¢(zf) = M.(f) for all f € ZV and
Fe =~ Fract (7.(2)). Denote by Q7. the skew-symmetric matrix (bilinear form) with
values in Z /¢ of the root of unity toric frame M., given by

Me(f)Ms(g) = EQ(f’g)/2M5<f +9), Vfg¢€ N
The mixed quantum tori for the root of unity setting are given by
To(M.)s := C(M.(ex)*', M.(e;) | k € exUinv,i € ninv) C TZ(M.). (3.2)

A pair (9, B ), consisting of a skew-symmetric matrix Q € My (Z/f) and an exchange
matrix B € Mpyxex(Z), is said to be £-compatible if there exists a diagonal matrix
D := diag(dj,j € ex) with d; € Z such that the principal part B of B is skew-
symmetrized by D and

Here and below, for an integer matrix C', C' denotes its reduction modulo .

The mutation in direction k € ex of an f-compatible pair is defined to be g (Q, B) :=
(FZQES, ESEFS) for s = £, and as in the quantum case; it is independent of the choice of
sign s. Further, the pair ug(€, B) is also £-compatible with respect to the same diagonal
matrix D.

A pair (M., E) is called a root of unity quantum seed if (Qpy., E) is an /-compatible
pair. The mutation in direction k € ex of a root of unity quantum seed is similar to that
in the quantum seed case, (M, E) = (p%fsMEES,ESEFS), where pyr = pév,ffs is the
unique automorphism of F, given by

M(ex) + M. (ep + sb*) ifj=k

Me (M. (e;)) =
Pbk’s( =(e5)) {Mg(ej) it £k
The skew-symmetric matrix associated to pup(M:) is Q,, (ary = pr(Q2ns.). Moreover,
mutation of root of unity quantum seeds does not depend on the choice of sign and is an
involution. Two seeds are called mutation equivalent, (M!,B') ~ (M!,B"), if one can
be obtained from the other by a finite sequence of mutations.

The root of unity quantum cluster algebra AE(ME,E,inV) is defined to be the C-
subalgebra of F. generated by all cluster variables of the seeds (M{, B') ~ (M., B) and
by M_(e;)~! for i € inv. The corresponding root of unity upper quantum cluster algebra
is defined as the intersection

U.(M., B,inv) := N Te (M)
(M{,B")~(M¢,B)
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We have A, (M., B,inv) C U.(M., B, inv) by [33, Theorem 3.10].
For every root of unity toric frame M. of . and 1 <i < N,

M. (e;)" € Z(F.).
Consider the central subalgebra
Lo(@) = C[@)*451 < k < N € Z(T(®)) (3.3)
and the mixed polynomial/Laurent polynomial central subalgebras

L(Q)s == C[(x%)*, (z°)%k € exUinv,i € ninv] C Z(T()>), (3.4)
Lo (M)s := C[M.(ex)**, M.(e;)%k € exUinv,i € ninv] C Z(TZ(M))s). (3.5)

Denote the central subalgebra

CU.(M., B,inv) := N L. (M))s C Z(U.(M., B,inv)). (3.6)
(Mglaé/)’\‘(Mavg)

The exchange graph of the root of unity upper quantum cluster algebra U. (M., B ,inv)
is the labelled graph with vertices corresponding to the root of unity quantum seeds that
are mutation-equivalent to (M., E) and edges given by seed mutations, labelled by the
corresponding mutation number. (The exchange graph is independent of the set inv.)

Theorem 3.1. Assume that £ is an odd positive integer that is coprime to the diagonal

entries of the skew-symmetrizing matriz D for the principal part of the exchange matriz
B. Then the following hold:

(i) [33, Theorem 4.8] There exists a unique isomorphism of labelled graphs, between
the exchange graphs of U(E,inv) and UE(ME,E,inv) that sends the vertex corre-
sponding to the seed (X, B) to that of the seed (M., B).

(ii) /33, Proposition 4.4] For all seeds (M., B') ~ (M., B) and k € ex,

M (er) (meM(er) = ] ML(en))" + ] (M .,

b}, >0 b}, <0

which is precisely the mutation formula for the seeds of U(E, inv).
(iii) /27, Proposition 8.9] We have an isomorphism of C-algebras

CU.(M., B, inv) ~ U(B, inv), (3.7)

which is uniquely determined by sending M!(ex)’ — x},, where the seed (M., B')
corresponds to the seed (X', B") under the graph isomorphism in part ().
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(iv) [27, Theorem B] U.(M., B, inv) is a Cayley-Hamilton algebra of degree N over
its central subalgebra CU. (M., B ,inv) in the sense of Procesi [10, Deﬁmtzon 4.2].
U. (ME,B inv) is finitely generated C-algebra if and only if U, (ME,B inv) is a
finitely generated CU. (M, B, inv)-module and U(E, inv) is a finitely generated C -
algebra.

We will need the root of unity upper quantum cluster algebra in the special case when
all frozen variables are inverted:

Uc(M.,B) :=U.(M.,B,[I,N\ex) = (]  T(M)).
(%',B")~(X,B)

It is easy to verify that it is a localization of the ones for other choices of inv:
U.(M., B) = U.(M., B,inv)[M(e;)"';i € ninv].

The above treatment can be viewed as defining quantum cluster A-varieties at roots
of unity. Quantum cluster X-varieties at roots of unity were defined and studied by Fock
and Goncharov in [12], who obtain analogous algebraic results to Theorem 3.1(ii)-(iii)
under the stronger assumption that the order of the root of unity is coprime to the
entries of the exchange matrices of all seeds of the algebra. However, they only consider
varieties up to birational isomorphism and therefore do not consider such phenomena as
singularities.

3.2. Strict root of unity quantum cluster algebras

Definition 3.2. [33, Sect. 5] We say that a root of unity quantum seed (M, E) is strict
if there exists a skew-symmetric integer matrix A € My (Z) such that

(i) Q M. = A and
(ii) (A, B) is a compatible pair, see Sect. 2.3.

The corresponding root of unity upper quantum cluster algebra U, (M, B ,inv) will be
also called strict.

Proposition 3.3. Assume that UE(Ma,E,inv) s a strict root of unity upper quantum
cluster algebra such that ¢ is an odd positive integer that is coprime to the diagonal
entries of the skew-symmetrizing matriz D for the principal part of the exchange matriz
B. Then for every seed (M., B") ~ (M, B) there exists a unique skew-symmetric integer
matriz A(ME’,B') € Mn(Z), such that A(M;,E') = A', the matriz from Definition 3.2, and

(i) the pair (A(M;,EI)’EI) s compatible and A(M;,E/) = Qs
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(ii) for all k € ex,

HE (A(Mé’ély B/) = (A(Hk(Mé,él)y Mk;(BI)),
where the left hand side uses mutation of compatible pairs, defined in (2.7).

For the proof of the proposition we will need the surjective C-algebra homomorphism
e t Tg(My)> — Te(Me)>, (3.8)
given by
g% M2, Mq(ek)il — Mg(ek)jﬂ7 M,(e;) — M.(e;),Vk € ex Uinv,i € ninv.
Its kernel is

ker ke = (¢ — V)T, (M), (3.9)

see [33, Lemma 5.5].

Proof of Proposition 3.3. For a given seed (M!, B') ~ (M., B) consider a sequence of
mutations jig, ...y, such that

Mk, /J'kJ(Mé‘vé) = (Mé7B/) (310)
Applying this sequence of mutations to the compatible pair (A, B) gives that
My Mk](A7§) = (A/7§/) (311)

for a skew-symmetric matrix A’ € My (Z). The two exchange graph isomorphisms from
Theorems 2.7 and 3.1(i) imply that the matrix A’ is independent on the choice of muta-
tion sequence fig, . ..k, satisfying (3.10). Define

A(M;,fé') = A

Since the mutations of a compatible pair are compatible pairs (see Sect. 2.3),
(A(M;,E')’B/) is a compatible pair. By [33, Theorem 5.7], k. restricts to a surjective

C-algebra homomorphism Aq(Mq,g,inv) — AE(ME,E,inV) that sends cluster vari-
ables to cluster variables and commutes with mutation. The toric frame M, of F is
such that Ay, = A. The existence of such a homomorphism implies that

M. (e;) M. (e) = eV )20 (e; + €r), Vi k € [1,N].

Hence,
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A

(M2, By = Sy

Finally, property (ii) in the statement of the proposition follows at once from the defini-
tion (3.11) of A (e, By O

3.3. Torus action on U, (M., B, inv)

Denote by Ker(BT) the null space of BT in ZV. Let v = (1y,...,vy) € Ker(BT).
For each k € ex, we define the vector puy(v) = (v1,...,V5—1,V, Vk+1, - - ., VN ), Where

vy = [y —

Recall that b* denotes the k-th column of B and f - g the dot product on Z~.
By [19, Lemma 2.3],

veKer(BT) = ux(v)eKer(up(B)T), Vk € ex. (3.12)

For v ¢ Ker(ET), we have the C*-action on the root of unity mixed quantum torus
Te(Mc, B)>, given by

ou(t) - M(f) ==t M(f), Vfez". (3.13)

It induces C *-action on the skew field of fractions F. of T (M., E) Analogously to the
proof of [19, Lemma 2.3] one verifies that

ou(t) - e (Me)(f) = 0 e (M)(f), Vf € 2. (3.14)

By recursively applying (3.1 ), we obtain that this action preserves the root of unity
mixed quantum tori 7z (M, )> associated to all seeds (M, B’) ~ (M., B), and thus,
the action preserves U, (M., B,inv). This proves the first part of the following lemma:

Lemma 3.4.
(i) For everyv € Ker(ET), there is a C* -action @, on the root of unity upper quantum
cluster algebra U, (M., B,inv), given by (3.13). For every seed (M., B') ~ (M., B)
and k € [1, N],
ou(t) - Mi(exr) = t*M(ex) (3.15)
for some a € Z depending on the seed and k.

(i) The action ¢, preserves CU.(M., B,inv). Under the isomorphism (3.7), it corre-
sponds to the C*-action v, on U(B,inv) uniquely determined from
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Uy (t) - xp, = t" e g . Yk e [1,N].
For every seed (i’,é’) ~ (i,é) and k € [1, N],
Uy (t) - ) =t}

for some a € Z.
(ili) For every v,n € Ker(B"), the C-actions ¢, and @y commute.

The second and third parts of the lemma follow from (3.15) and the concrete form of
the isomorphism (3.7) from Theorem 3.1(iii). Up to the ¢-th power the C-action v, on
U(B,inv) is the one constructed in [19, Lemma 2.3].

Definition 3.5. For an exchange matrix B, define the nullity
n(B) := dim Ker(B ")

and the complex torus

Ker(BT) is a free abelian group of rank n(B). Fix a basis
(v, .o BN (3.16)

of it. Parts (i) and (iii) Lemma 3.4 imply that we have a T'(B)-action on U, (M., B, inv),
given by

L,O(t1, cee 7tn(]§)) Y =P (tl) e 'SDVn(E)(tn(B)) Y,

for t; € C and y € U.(M,, B, inv). For every seed (M!,B') ~ (M., B) and k € [1, N],

there exists a character 6 : T(B) — C* such that
o(t) - M (e) = 0(t)M.(ex), Vt e T(B). (3.17)

For different choices of a basis {1, ...,™} of Ker(BT), the actions ¢ differ from each
other by an automorphism of T'(B).

Part (ii) of Lemma 3.4 implies that the action ¢ preserves CU. (M., B, inv). Under
the isomorphism (3.7), it corresponds to the T(E)-action 1 on U(E, inv) given by

w(tla v ,tn(ﬁ)) “Y = %/1 (tl) o 'wun(ﬁ) (tn(ﬁ)) 'Y,

for t; € C and y € U(é,inv). For every seed (i’,é’) ~ (i,é) and k € [1, N], there
exists a character 6 : T(B) — C* such that
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W(t) - ), = 0(t")a),, Vvt e T(B). (3.18)

By the results in [19], the GSV Poisson algebra structure on U(B, inv) is invariant under

the action v of T(E) The action 1 is defined for every upper cluster algebra U(E, inv).
Finally, we note that the T(E)—aotion 1 on U(E ,inv) is defined for any upper cluster

algebra, without the need of existence of root of unity quantization U, (M,, E, inv)

4. Poisson side: the open torus orbit of symplectic leaves

In this section we prove our first main result proving that the GSV Poisson structure
on every finitely generated upper cluster algebra always has a Zariski open torus orbit
of symplectic leaves and explicitly describe this set.

4.1. Statement of main theorem

Throughout this section, we will assume that U(E ,inv) is a finitely generated, upper
cluster algebra for which there exists a skew-symmetric matrix A € My (Z) such that
(A, B) is a compatible pair. The GSV Poisson algebra structure {.,.} on U(B, inv) (see
Sect. 2.4) gives rise to a Poisson structure 7 on the affine variety

Y (B) := MaxSpec U(B, inv).
This variety is in general singular. It is normal because each mixed polynomial/Laurent
polynomial ring £(X’)> is integrally closed, and thus the upper cluster algebra U(B, inv),

given by the intersection (2.5), is integrally closed too.
Denote the product of non-inverted frozen variables

z:= [] =ecCy(B) (4.1)

i€ninv

Denote
Y(B)° = Y(B)\V(z) = MaxSpec U(B).
For a seed (X', B') ~ (X, B), denote

Sz := MaxSpec L(X')5 2 (CX)lexI+linvl o lninv],
52, := MaxSpec L(X') = (C*)V.

Clearly,

S)E(/ = ;(/\V(x)
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The algebras £(X')> and L(X') are localizations of U(B, inv) by the multiplicative sub-
sets generated by z; for ¢ € ex and ¢ € ex L ninv, respectively. So, Sz and Sg, are
Zariski open, and thus, dense subsets of Y (B).

Recall from Sect. 3.3 that the Poisson structure = is invariant under the action
¥ of T(E) Thus it makes sense to consider the T(E)—orbits of symplectic leaves of
(U(B,inv), 7), which are regular Poisson submanifolds.

Theorem 4.1. Assume that U(§7inv) is a finitely generated upper cluster algebra for
which there exists a skew-symmetric matriv A € My (Z) such that (A, B) is a compat-

ible pair. Then the affine Poisson variety (Y (B), ) has a Zariski open T(B)-orbit of
symplectic leaves, which equals

Y(B)8\V(z) = (Y (B)°)"®.
4.2. One-sided containment

Definition 4.2. [26, Sect. 4], [32, Sect. 2.2] Let R be a Poisson algebra which is an integral
domain considered as a commutative algebra. An element p € R is called Poisson prime,
if the principal ideal (p) is a Poisson ideal and a prime ideal of R, considered as a
commutative algebra.

Equivalently, p € R is a prime element and

pl{p.,r}, VreR.

Proposition 4.3. Assume that U(E, inv) is an upper cluster algebra, such that B admits
a compatible skew-symmetric matric A € My (Z). Then the following hold:

(i) Every prime element of Clz;;i € ninv] is a prime element of U(B, inv).
(ii) Ewvery non-inverted frozen wvariable x;, (i.e. i € ninv) is a Poisson prime of
U(B, inv) with respect to the Poisson structure associated to A.

Proof. (i) Let p € Clz;;¢ € ninv] be a prime element. Analogously to the proof of [18,
Proposition 3.5], one shows that

LX) N (pLX)>) = (PLE)>) N L(1rX) > (4.2)

for all seed (X', B') ~ (X,B) and k € ex. Assume that plab for some a,b € U(B, inv).
Then a,b € L(X)>, and since p is a prime element of £(X)>, either p | a or p | b. Say
p | a. Then a € pL(X)>, and by (4.2),

a € pL(ppX)>, Vk € ex.

Iterating this argument gives that a € pL(X')> for all (x',B') ~ (%, E) Hence,
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a€ ﬂ pLEX)> = pU(B,inv).
(%',B")~(X,B)

This implies the statement of (i) because p is not a unit of U(B, inv).
(i) Fix b € U(B, inv). It follows from (2.9) that

{z:,0}/x; € LX)
for all (X', B') ~ (X, B). Hence,
{:,b}/2; € U(B,inv),
which completes the proof of part (ii). O

Proposition 4.4. In the setting of Theorem /.1, Y (B)*8\V(z) = (Y (B)°)™8 is a union
of T(B)-orbits of symplectic leaves.

Proof. Let i € ninv. By (3.18), z; is rescaled by the T(B)-action. So V(x;) is T(B)-
stable. It follows from [26, Proposition 2.3] that V(z;) is a union of symplectic leaves.
Therefore, V(z;) is a union of T'(B)-orbits of symplectic leaves.

Since T'(B) acts on U(B,inv) by algebra automorphisms, Y (B)3"8 is T(B)-stable.

By [34, Corollary 2.4], it is also a union of symplectic leaves. Thus, Y (B)18 is a union
of T(B)-orbits of symplectic leaves.

Hence, Y (B)*™& U V(z) is a union of T'(B)-orbits of symplectic leaves, and the same
applies to its complement,

Y(B)*\V(z) = Y (B\(Y(B)™™ U V(). O

4.3. A section of the anticanonical bundle of Y (B)*®

For v € Ker(BT), denote by

w, the vector field on Y (B),

which represents the infinitesimal action of the C*-action ¢, on Y (B), cf. Lemma 3.4(ii).
The rank of the skew-symmetric matrix A = (A\jx) € Mn(Z) equals

rk(A) = 2r
for some r € Z. It follows from (2.6) that

2r 4+ n(B) = dimIm(A) 4+ dim Ker(BT) > dimIm(B ' A) + dimKer(B")  (4.3)
= dimIm(ET) + dimKer(éT) = N.
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The Poisson structure m on Y(f?) has rank r (meaning A"7m # 0 and A"*l7 = 0). This
follows from the fact that its rank equals the rank of its restriction to the Zariski open
subset S on Y (B), on which the Poisson structure is explicitly given by

0
7T|S;( = Z )‘zk: ﬁxk

1<i,k<N

Recall from (3.16) that the action 1 of the torus T(B) on Y(B ) is defined from a basis
{1, v B} of Ker(BT). Denote by A the set of (N —2r)-element subsets of [1, n(B)],
recall (4.3). For 6 := {i1,...,in—_2-} € A, denote the section of the anticanonical bundle
of Y(B),

X0 = Wyir Ao AW iy, N (/\Tﬂ') € F(Y(B) K*( ))
Theorem 4.5. Assume that U(E,inv) is a finitely generated upper cluster algebra, such
that B admits a compatible skew-symmetric matriz A € My (Z).

(i) There exists a unique up to rescaling non-zero global section x of the anticanonical

bundle K)*/(fé) such that for every (X', B') ~ (X, B),

p— ~ / / DR
Xls, = Ce, BT TN G A A

for some Cx.B) € C*.
(ii) For each 6 € A, either xg = 0 or xg is a non-zero scalar multiple of x. The latter
is the case for at least one 6 € A.

Proof. First we show that for all § € A and (X', B') ~ (X, B),

9 )
Xols., = Cy 5 B xix?v—//\/\
* (%', B’) axl

!
ox'y

for some ¢, .5 € C. Lemma 3.4(ii) implies that
U (t) - ) = t'%% ), . Yk e [1,N]

for some ay, € Z. Therefore,

N
, 0
wu|5;/ = E fakl‘k—a i
k=1 Tk

This equality and the fact that
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0 0
_ . X ! !
W‘S;c/ - E A(;‘E/,B/)(elaek)mixkax/_ A 81‘;6
1<i, k<N g

imply (4.4). Since Sz is a Zariski open subset of the irreducible affine variety Y (B), the
following are equivalent for 6 € A:

(1) X6 7& 07
(2) C,(%,B) #0,
(3) €z By # 0 for all (x',B") ~ (X, B).
The proof of [19, Lemma 2.4] gives that T(B) acts transitively on the symplectic

leaves of (S2,,m|yv). Furthermore, for y € Y(B)™® the tangent space at y of the orbit
T(B) -y is

T, (T(E) -y) = Spanc{w,1 y, ..., wn-2r ,}. (4.5)

Therefore, there exists 8y € A such that

Co,(%,B) # 0,

which, in view of the above equivalence, implies that

X = X6o

satisfies the conditions in the proposition. Furthermore, for all 6 € A, X6Xg, ! is a mero-
morphic function on Y(E), which by (4.4) is constant on every Zariski open subset S/,
and thus, it should be constant on Y (B). The same argument proves the uniqueness of

a section x with stated properties in part (i). O
4.4. Normality and codimension two results

Recall that an upper cluster algebra U(E) is called totally coprime [1, Sect. 1.2] if
every two columns of all of its extended exchange matrices are linearly independent.
If the exchange matrix B has full rank, then this condition is satisfied. In turn, this
condition is satisfied whenever B has a compatible skew-symmetric matrix A € My (Z),
[1, Proposition 1.8].

Proposition 4.6. If U(E) is a finitely generated, totally coprime upper cluster algebra,
then

(Y(B)°)™  and Y (B)°\(Sx U (UrcexSyu,x)))

are closed subvarieties of Y(E)O = MaxSpec U(E), each irreducible component of which
lies in codimension > 2.
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Proof. Since U(B) is Noetherian and normal, Serre’s Criterion (e.g. [11, Theorem 11.5.1])
implies that each irreducible component of the singular locus (Y (B)°)*"8 has codimen-
sion > 2 (this is the R1 condition).

Because U(B) is totally coprime, [1, Corollary 1.7] implies that the coordinate ring of
the open subvariety Sz U (UrecexSu, (%)) S Y (B)® (called the upper bound cluster algebra
in [1]) is equal to the coordinate ring of Y (B)° (which is the upper cluster algebra
U(B)). By the Algebraic Hartogs Lemma, the complement of Si U (UreexSpu,(x)) in

Y (B)° must have codimension > 2; see [29, Lemma 4.3.1] for the general statement and
[29, Lemma 4.4.2] for the statement in this setting. O

4.5. Proof of Theorem 4.1

We prove a stronger result than that of Theorem 4.1, namely that Y (B B)ree\V(z) is a
single torus orbit of symplectic leaves of (Y (B), ) for a subtorus of T'(B) of rank equal
to

dimY(B) — 21k 7 = dim Y (B) — dim %,
where . is a symplectic leaf of Y (B) of maximal dimension.

Theorem 4.7. Assume that in the setting of Theorem 4.5, 0 = {i1,...,iN—2} is one
of the elements of A such that xg # 0. Let T(B) > (C*)N=2" be the subtorus of
T(B) = ((CX)"(B), corresponding to coordinates iy, ...,iN—or. Then the following hold:

(i) The restriction X9|(Y(§)O)reg is a nowhere vanishing section of the anticanonical bun-

die K, g

(ii) The Zariski open subset

Y(B)*¥\V(z) = (Y(B)°)"®
of Y/(B) is a single T(B)o-orbit of symplectic leaves of (Y (B), ).

Proof. (i) The section x9|(y(§)o)reg does not vanish on

(Y (B)°)™5\ (Sx U (Ukcex Sy )

by Theorem 4.5. It can not vanish anywhere on (Y(E)O)reg because otherwise its zero
locus will be a codimension 1 subvariety of (Y (B)°)™, which is disjoint from the union
Sz U (

(ii) Let £ be a symplectic leaf of (S, 7|s,). There exists a symplectic leaf .2 of
(Y(B),) such that .%, is a connected component of the intersection . N Sg. The proof
of [19, Lemma 2.4] gives that

UkeexSM(;()). This would contradict Proposition 4.6.
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T(B)o - % = S%.

This proves the first inclusion in

Sz CT(B)o-Z C(Y(B)°)rs. (4.6)
The second inclusion follows from Proposition 4.4. Consider a point
y € (Y(B)°)s

and let .Z, be a relatively open neighborhood of y (in the C'*° topology) in the symplectic
leaf of (Y(B), m) through y. Since

Wyir y Ao AW in oy, A (N'my) = X0y # 0,

there exists a neighborhood (in the C'*° topology) &) of the identity element of the

torus T'(B)o such that ) - %, contains a neighborhood (in the C'° topology) of y in

(Y(B)°)™s. Since Sk is a Zariski open subset of the irreducible variety (Y (B)®)"¢,
T(B)o- LN O, - %, =800 - %, + 2.
Hence, there exist ¢ € 01 and t' € T(B)y such that
W(t) - 2, Co(t)- 2.

Note that the right hand side is a symplectic leaf of (Y (B), ), while the left hand side
is a C'*° open subset of a symplectic leaf of (Y (B), ). Therefore,

ye L, Cut )L,
which shows that the second containment in (4.6) is an equality. O
5. Poisson order structures
This section contains a construction of Poisson order structures on strict root of
unity upper quantum cluster algebras that will be used to link Poisson geometry and
representation theory.
5.1. Poisson orders on mized root of unity quantum tori

Denote

2y = {(m1,...myn) € Z" | m; > 0,Vi € ninv}.
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Proposition 5.1. Assume that UE(ME,E,inv) is a strict root of unity upper quantum
cluster algebra and ¢ is an odd positive integer that is coprime to the diagonal entries of
the skew-symmetrizing matrix D for the principal part of the exchange matriz B.

Then, for every seed (M, E’) ~ (M, B), the pair

(Te(M])>, Lc(M])>)
has a unique Poisson order structure 8" : Lc(M.)> — Derc (T:(M})>) such that

1

ah;(zf)(Ms'(g)) = ZA(M;,E/)(ﬁ g)ML(Lf +g). (5.1)

The underlying Poisson structure is given by
{yp, yitor = A(]V[;J;,)(ek,ei)y;yg7 Vk,i € [1, N], (5.2)
where y}, 1= M!(e)" for1 <k <N.

Recall from Proposition 3.3 the construction of the skew-symmetric matrices
A( Mo By € Mn(Z), identified with the corresponding bilinear forms

A 2N x 72N > 7.

(M{,B")

In the proposition we suppress the dependence of the C-linear map @' on the choice of
seed (M], B") for simplicity of the notation. Note that, in view of (3.2) and (3.5),

To(M!)> = Spanc {M.(f) | f € ZT}, Lo(M!)> = Spanc{M.(¢f) ]| f € ZY}.
Proof. Set A’ := A(Mé,él)' Let (Mg, B) ~ (M, B) be the seed corresponding to (M, B')
under the exchange graph isomorphisms of Theorems 2.7 and 3.1(i). Consider the sur-
jective C-algebra homomorphism from (3.8) for the seed (M., B'):

ke To(My)> — To(M)> (5.3)
and its C-linear section
LT (ML) = Ty(M))s, ML) = MU(F), Vf € Z. (5.4)

By Lemma 2.2 and eq. (3.9), we obtain a Poisson order structure D’ on the pair
(T-(M2), Z(T-(MY))). It is given by

/ , qIZA’(ﬁg)/? _ q—éA’(fvg)/2

eMU(Lf +9), Vf.geZ¥,
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where

qéA/(fvg)/2 — qfeA/(f7g)/2

YRS = 2N (f, g)eN 9 /2712 — 90727/ (1 g).

ql/2=¢1/2

C =

The underlying Poisson structure satisfies
{y;m y;}D/ = Dg\lé(éek) (Ms/(gez)) = 262571/2A/(6k7 ez)y;cy;a ka S [17 N]

In particular, £.(M].)> is a Poisson subalgebra of Z(L.(M!)>) with respect to the
bracket {—, —}ps. Therefore,

/ 61/2 /
0= 5 Dle.ouns

is a Poisson order structure on the pair (7:(M!)>, L:(M!)>), which is given by (5.1).
Eq. (5.2) follows at once from (5.1). In light of the C-linearity of &', there is a unique
Poisson order structure satisfying (5.1). O

5.2. Poisson order structures on root of unity upper quantum cluster algebras

Theorem 5.2. Assume that U, (M., E, inv) is a strict root of unity upper quantum cluster
algebra and £ is an odd positive integer that is coprime to the diagonal entries of the
skew-symmetrizing matriz D for the principal part of the exchange matriz B such that

A.(M., B,inv) = U.(M., B,inv). (5.5)

Then the pair (U. (M., B,inv), CU.(M., B,inv)) admits a Poisson order structure such
that under the isomorphism

CU.(M., B,inv) = U(B, inv)

from (3.7) the underlying Poisson structure on CU. (M, E, inv) corresponds to the GSV
Poisson structure on U(B,inv).

Proof. Recall the surjective C-algebra homomorphism
Re o Tq(My)> = To(Me)>

from (3.8) and consider its restriction to Uy (M-, B, inv). For all seeds (M, B') ~ (M, B)
and indices k € ex, we have

(q"% =) Ty(M)) > N Ty (M) > = To(My)> 0 (¢"% — /)Ty (M)
= (¢"? =) (Ty(M))> N Ty(M])>).  (5.6)
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The first equality follows from [33, Proposition 5.10] and the second is an immediate
consequence of the first one. Since Ker . = (¢*/2 — &/2)T,(M,)> by eq. (3.9),

Ker K5|UQ(ME,§,inV) = (¢"/? — /U, (M., B, inv). (5.7)
The exchange graph isomorphism from Theorem 3.1(i) implies that

ke (Ug(Me, B,inv)) C U. (M., B,inv). (5.8)
By [33, Theorem 5.7]

ke (Ay(M,, B,inv)) = A (M., B, inv).
Using the quantum Laurent phenomenon (2.8) and the assumption (5.5), we obtain

ke (Uy(My, B,inv)) D k. (A,(M,, B,inv)) = A.(M,, B,inv) = U.(M,, B, inv).

This, combined with (5.8), gives

ke (Uy(M,, B,inv)) = U, (M., B,inv).

In view of (5.7) and Lemma 2.2, the restriction of . to Ug(Mg, B, inv) gives rise to a
Poisson order structure Dy on

(Uc(M,, B,inv), Z(U.(M,, B,inv))).

Denote

1/2
= —=D
%= 5p
Consider a C-linear section
U.(M., B,inv) — U,(M,, B,inv)
of the restriction of k. to Uq(Mq,E,inV). For an arbitrary seed (ME’,E’) ~ (M., B),
extend it to a section of the homomorphism . : Ty(My)> — To(M[)> from (5.3).

Proposition 5.1 and the independence of the underlying Poisson structure of a Poisson
order obtained by specialization (Lemma 2.2) imply that

{y;my;}au = {yl/wy;}a’ = A(Mé’él)(elwei)y;cy;, Vk,’& € [LN]’ (59)

for y! := M!(e;)*. Therefore,
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CU.(M., B,inv) := N Lo(M!)s
(M!,B")~(M,B)

is closed under the Poisson bracket {.,.}s, and 9y restricts to a Poisson order structure
8y : CU(M., B,inv) — Derc (U.(M., B,inv)).

Eqs. (2.9) and (5.9) imply that the underlying Poisson structure on CU.(M,, B, inv)
corresponds to the GSV Poisson structure on U(B,inv). O

6. Root of unity quantum side: the fully Azumaya loci

In this section we prove our second main result describing the fully Azumaya loci
of all finitely generated strict upper cluster algebras U (M., B, inv) with the property
U. =A..

6.1. Statement of the main result

Consider a root of unity upper quantum cluster algebra U (M, B ,inv) and its central
subalgebra

CU.(M., B,inv) C Z(U.(M., B,inv)),

given by (3.6). If, the order of ¢ is odd and coprime to the diagonal entries of the
skew-symmetrizing matrix D for the principal part of the exchange matrix B, then by
Theorem 3.1(iii),

CU.(M., B,inv) = U(B, inv).

If, in addition, U, (M, B, inv) is a finitely generated C-algebra, then by Theorem 3.1(iii),
it is a module finite domain over CU. (M., B,inv) and CU.(M., B,inv) is a finitely
generated normal commutative C-algebra. So, we can consider the fully Azumaya locus
A of UE(ME,E,inv) with respect to CUE(ME,E,inv), recall Definition 2.4. We will
identify

MaxSpec CU, (M., B, inv) = Y (B) = MaxSpec U(B, inv)
and think of A as of a Zariski open subset of Y(E)7 recall Lemma 2.5.

Recall (4.1). Denote the set of non-central frozen variables among the non-inverted
ones:

nc := {i € ninv | M(e;) ¢ Z(U.(M., B,inv))} C ninv (6.1)
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and set

Tne 1= H ;. (6.2)

i€Enc

Our main result provides an explicit characterization of the fully Azumaya locus A.
Theorem 6.1. Assume that U, (M., E, inv) is a finitely generated strict root of unity upper

quantum cluster algebra such that the order of € is odd and coprime to the diagonal entries
of the skew-symmetrizing matriz D for the principal part of the exchange matriz B and

A.(M., B,inv) = U.(M., B, inv).
Then the fully Azumaya locus A of Uz (M., E, inv) with respect to the central subalgebra
CU.(M., B,inv) = U(B, inv)
satisfies
(Y (B)°)®® C A C Y (B)\V(wne).

All important root of unity quantum cluster algebras that we are aware of do not have
central frozen variables. In those situations

nc =ninv and z,.=2x,
so the upper bound for the fully Azumaya locus in Theorem 6.1 becomes
Y(B)\V(zne) = Y (B)\V(z) = Y(B)°.

Corollary 6.2. If UE(ME,B, inv) is a strict root of unity upper quantum cluster algebra
as in Theorem 0.1 such that

M(e;) ¢ Z(U.(M., B,inv)), Vi € ninv,
then

(Y(B))*® CACY(B).

However, in general, one cannot replace the upper bound in Theorem 6.1 with Y (B)°
as shown in Proposition 6.6.
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6.2. Proof of the first inclusion in Theorem 6.1

The first inclusion in Theorem 6.1 follows from the following;:
Proposition 6.3. In the setting of Theorem 6.1, for all
m € (Y(B)°)™8 C Y (B) = MaxSpec CU. (M., B, inv),
the algebra
U.(M., B, inv)/mU. (M., B, inv)
is isomorphic to
Te(A)/nT=(A),
where n is any mazimal ideal of L.(N) (recall (3.1) and (3.3)) and A € Mn(Z) is the

skew-symmetric integer matrix compatible with B as in Definition 3.2. All irreducible
representations of the last algebra have dimension

\/[ZN : Ker(A)], (6.3)
which equals the PI degree of UE(ME,E7 inv).

Here, [G : H] denotes the index of a subgroup H of a group G. The matrix A €
My (Z/?) is identified with the corresponding bilinear form Z~ x ZN — 7Z /¢, and Ker(A)
denotes the kernel of this form. The index in (6.3) is finite because Ker(A) D (¢Z)V.
Proof. The algebras

U.(M., B, inv)/mU. (M., B,inv)
are isomorphic to each other for all
m e (Y (B)°)™s.

This follows by combining Theorems 5.2 and 4.1, Corollary 2.6, and the fact that ¢ is an
action of T (E) on U, (M, B ,inv) by algebra automorphisms that preserves the central
subalgebra CU. (M., B ,inv), see Lemma 3.4. So, we can restrict ourselves to the special
case when

m € MaxSpec L. (M.) = MaxSpec L(X) C (Y (B)°)"®. (6.4)
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Denote by E the multiplicative subset of CU.(M., B,inv), generated by M. (e;)* for
i € [1, N]\(ex Uinv). We have

U.(M., B,inv)[E™'] = To(M.) = T-(A) (6.5)
and, on the level of their centers,
CU.(M., B,inv)[E~'| = £.(M.) = L.(R). (6.6)

For the rest of the proof assume (6.4). This implies that m is a maximal ideal of
CU. (M., B,inv) that is disjoint from E. This property and eq. (6.5) give

U. (M., B, inv)/mU. (M., B,inv)
~U. (M., B, inv)[E~"]/mU. (M., B, inv)[E~'] = T.(A) /nT-(A).
Here n is the maximal ideal of £.(A) corresponding to the maximal ideal m[E~'] of
U.(M., B,inv)[E~!] under the isomorphism (6.6).
Since 7Z(A) is an Azumaya algebra of PI degree y/[Z" : Ker(A)] by [27, Proposi-

tion 6.1(3-4)], all irreducible representations of 7z(A) have dimension equal to the same
integer. The latter equals the PI degree of U.(M., B,inv) by [27, Proposition 6.4]. O

6.3. Proof of the second inclusion in Theorem 6.1

Consider a strict root of unity quantum cluster algebra U. (M., B ,inv) with skew-
symmetric integer matrix A € My (Z) as in Definition 3.2.

For j € [1, N]\(ex Uinv), denote by A; € My_1(Z) the submatrix of A, obtained by
removing the j-th row and column. Set

Y =P ze; czV.
7]

The bilinear form Z;V_l X Z;V_l — Z /¢ associated to Kj is the restriction to Zj.v_l of the
bilinear form Z~ x ZN — 7 /¢ associated to A. Let T(A;) be the root of unity quantum
subtorus of 7z(A) spanned by z/ for f € Z;V_l, cf. (3.1). Denote

J :=ninv\{j}. (6.7)
It is easy to see that we have a second description of TZ(A;):
(T-(M)=[(x")7H5i € J]) /(2) = Te(Ay). (6.8)

Recall that an element a of an algebra R is called normal if Ra = aR. Here and below,
for such an element a € R, we denote the principal ideal



34 G. Muller et al. / Advances in Mathematics 453 (2024) 109822

(a) := Ra = aR.

Proposition 6.4. Assume the setting of Theorem 6.1.
Then the open subset

(V(z;) N Sz)\V(z/z;)

of V(z;) is non-empty and for all

m e (V(z;) N Sz)\V(z/z;) C Y(B) = MaxSpec CU. (M., B, inv), (6.9)
the algebra

U.(M., B, inv)/mU. (M., B,inv)
is isomorphic to
Te(Ag) I T(4y),

where n is a mazimal ideal of L.(A;) and A € My(Z) is the skew-symmetric integer

matriz as in Definition 3.2. All irreducible representations of the last algebra have di-
mension

VIZY T Ker(R)).

Proof. Recall (6.7). We have

UE(ME,E,inv)[Mg(ei)fe;i € J] = TE(ME)Z[ME(EZ')*Z;Z' e J = ﬁ(A)Z[(zei)%;i e J].

Combining this with (6.8) gives
(UE(M@E,inv)[ME(ei)_e;i € J])/(M(ej)) >~ T.(A;). (6.10)
Analogously, on the level of centers one shows that
CU. (M., B,inv)[M.(e;) i € J] = L. (N)s[(z%) i € J]. (6.11)

The assumption (6.9) implies that the maximal ideal m of CU.(M.,B,inv) is dis-
joint from the multiplicative set [M.(e;)%;i € J]. Denote by n the maximal ideal
of L.(AN)s[z;%i € J] that corresponds to the maximal ideal m[M.(e;)~%i € J| of

CU. (M., B, inv)[M.(e;)~%i € J] under the isomorphism (6.11). We have,
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=(Te(A)>[z; %0 € J)) /n(Te(K)s[z; i € J]),
(U. (M., B, inv)[M_(e;) % i € J})/m(UE(ME,E,inv)[ME(ei)fe;i e J))
U.(M., B, inv)/mU. (M., B,inv).

IIZ

|4

It follows from (6.9) that
()" e,
and thus, (%)% = 0 as an element of the algebra R. Therefore, all irreducible represen-

tations of R are annihilated by z%, and so, those representations are in bijection with
the irreducible representations of R/(x%). Now we invoke (6.10), to obtain

R/(z%) 2= (To(A)x[(e%) % i € J]) /(2% )n = To(Ay)

for an ideal n’ of 7-(A;). By [27, Proposition 6.1(3-4)], all irreducible representations of
7-(A;) have dimension equal to

VIZY T Ker(R)),
and hence, the same holds for the algebra U, (M., B, inv)/mU. (M., B, inv). O
Proposition 6.5. Assume the setting of Theorem 6.1. Let j € nc. Let
m e (V(z;) N Sz)\V(z/z;) C Y(B).
The all irreducible representations of the algebra
U.(M., B,inv)/mU. (M., B,inv)
have dimension strictly less than the PI degree of U. (M, E, inv),
ZY : Ker(R)).
Proof. Obviously, Ker(A) N Z;V ~1 C Ker(A;). Therefore,
[ZN : Ker(A)] > [ZY "+ (Ker(A) N ZY 1] > [ZY " : Ker(A;)].

The first inequality is in fact strict. If it is an equality, then e; € Ker(A), which implies
that

z% € Z(T.(A)),
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which implies that
M(e;) € Z(U.(M., B,inv))

because UE(ME,E,inv) is a subalgebra of the skew field of fractions of T.(M.). This
contradicts the definition (6.1) of the set nc. Hence,

\/[ZN : Ker(A;)] < \/[ZN : Ker(A)],
and the proposition now follows from Proposition 6.4. O
With this proposition we complete the proof of Theorem 6.1:

Proof of the second inclusion in Theorem 6.1. Let j € nc. Propositions 6.4 and 6.5 im-
ply that

(V(xj) N S;()\V(a;/xj) - Y(E)\A

and that the first set is a non-empty Zariski open subset of V(X;). Since V(x;) is irre-
ducible by Proposition 4.3,

(V(xj) N S;()\V(m/xj) =V(x;).

Furthermore, Lemma 2.5 implies that Y (B)\.A is a Zariski closed subset of Y (B). There-
fore,

V(z;) CY(B)\A, Vjenc,
hence, V(zne) C Y (B)\A, and thus A C Y(B)\V(2pe). O
Last we prove that one cannot replace the upper bound in Theorem 6.1 with Y(E )°.
Proposition 6.6. Assume the setting of Theorem 6.1. Let
J € ninv\nc.

All points

me (V(xj) N ( U Si/))\V(IE/;Ej)

(X/,B")~(X,B)

belong to the fully Azumaya locus of U.(M., B, inv) with respect to CU. (M., B,inv).
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Proof. It is sufficient to prove the statement for
m € (V(z;) N S%)\V(z/z;).

Applying Proposition 6.4, we obtain that all irreducible representations of the algebra
U.(M,, B,inv)/mU. (M., B, inv) have dimension

\/[Z;V—l : Ker(4;)].
Since j € ninv\nc, we have M (e;) € Z(U-(M-., B,inv)), and thus,
ej € Ker(A).

Therefore,

(2N : Ker(A)] = [Z2}7": (Ker(A) N ZY 1)) = [Z2} ! : Ker(A;)].

Hence,

\/[ZN : Ker(A;)] < \/[ZN : Ker(A)],
and the proposition now follows from Proposition 6.4. O
7. Special cases and examples
7.1. The Richardson divisor of a Schubert cell

The explicit Zariski open torus orbit of symplectic leaves from Theorem 4.1 is a far
reaching generalization of the complement of the Richardson divisor of a Schubert cell
for a complex simple Lie group G.

Let G be a complex simple Lie group with a pair of opposite Borel subgroups B..
Denote by T := B, NB_ the corresponding maximal torus of G and by Uy the unipotent
radicals of By. Let W be the Weyl group of G, identified with N(T")/T, where N(T) is
the normalizer of T in G. Denote by s1, ..., s, the set of simple reflections of W and by
[ : W — Z>¢ the length function on W. Let wy, ..., w, be the fundamental weights of
G.

The full flag variety has a canonical Poisson structure 7w which is the descent of the
standard Poison-Lie structure on G, [9, Sect. 1.2-1.3]. This Poisson structure is invariant
under T

The Schubert cell of the full flag variety G/By corresponding to w € W is

XZ} = B+U}B+/B+ C G/B+
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The open Richardson variety [28] in G/B corresponding to the pair (w,u) € W x W is
me = (B+wB+ N B_UB+)/B+ C G/B+
It is non-empty precisely when u < w in the Bruhat order. We have the partition:

xXo= || PRuuw

ueW,u<w
Denote the support of w € W,
Suppw := {i € [1,7] | s; < w}.

This is precisely the set of indices ¢ € [1,r] such that s; appears in one, and thus, in any
reduced decomposition of w. The Richardson divisor of X, is

RD,:= |J Clx
i€Supp(w)

@ (R’LU,S-;) = |_| Rw,ua
ueW,uw,u#1

where Cly (Z) stands for the Zariski closure of Z in Y.

Theorem 7.1. (Goodearl-Yakimov) [22, Theorem 0.4] The T-orbits of symplectic leaves of
the Schubert cell (X;’),WX%) are the open Richardson varieties R, ,, foru e W, u < w.
There is a Zariski open T-orbit of leaves, which is the complement of the Richardson
divisor of the Schubert cell X;,:

Ry1=X,\RD,.

Example 7.2. The complement of the Richardson divisor RD,, of the Schubert cell X,
is a very special case of the Zariski open torus orbit of symplectic leaves of Y(E) =
MaxSpec U(f?,inv) from Theorem 4.1, as we show next. (This can be shown in the
more general case of symmetrizable Kac-Moody groups, but the setting requires more
technical details.)

To each w € W, one associates an exchange matrix Ew of size

l(w) x (I(w) — | Supp(w)|)

by the first display before Theorem 10.1 of [23]. It is known [17,26,35] that for the
corresponding cluster algebras without inverted frozen variables (i.e., inv = @):

C[X2] = A(By, @) = U(By, ).
Thus,

Y(B,) = X2, (7.1)
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and in particular,
Y(Bu)™ =@, Y(B,)" = X)".

The frozen variables of the cluster algebra A(B,,, @) are the generalized minors (cf.
[1, Eq. (2.5)]),

Awi,ww“ Z € Supp(w)a

considered as functions on X via the identification Uy NwU_w™! = By wB, /B, given
by g — g.wB4/B. There is a canonical isomorphism T(gw) = T and the corresponding
actions on (7.1) coincide.

The exchange matrix Ew admits a compatible skew-symmetric matrix A, € M, (Z)
and the cluster algebra A(Ew, @), admits a quantization, isomorphic to the corresponding
integral quantum unipotent cell [25]. By specialization, the GSV Poisson structure on

Y (By) = MaxSpec U(B,,, @) = X? associated to A, coincides with 7. We have
V(Aw, ww;) = Rus;y Vi € Supp(w).

Thus,

Xi\RD,, =Y (B)® = (Y(B)°)*,

which shows how the Zariski open T-orbit of symplectic leaves in Theorem 7.1 is a special
case of that in Theorem 4.1 for a small class of cluster algebras.

7.2. All frozen variables inverted

There is an important special case of Theorems 4.1 and 6.1 when all frozen variables
are inverted. In those situations our results take on a particularly strong form. On the
Poisson side we have:

Corollary 7.3. If U(E) is a finitely generated upper cluster algebra with all frozen vari-
ables inverted for which there exists a skew-symmetric matriv A € My(Z) such that
(A, B) is a compatible pair, then the non-singular part of MaxSpecU(B) is a single

T(B)-orbit of symplectic leaves of the affine Poisson variety (MaxSpec U(B), ).
On the Azumaya loci side we have:

Corollary 7.4. If UE(ME,E) is a finitely generated strict root of unity upper quantum
cluster algebra with all frozen wvariables inverted such that the order of € is odd and
coprime to the diagonal entries of the skew-symmetrizing matriz D for the principal part
of the exchange matriz B and Ue(Mg,é) = AE(ME,E), then fully Azumaya locus of
U.(M., B) over CU.(M., B) contains the nonsingular part of MaxSpec U(B).
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7.8. Acyclic cluster algebras

Another important special case of Theorems 4.1 and 6.1 is the case of acyclic clus-
ter algebras when U.(M., B) = A.(M.,B) and an explicit presentation of U(B) and
UE(ME,E) can be given, which in particular implies that those algebras are finitely
generated.

Recall that the sign pattern of an exchange matrix B is encoded in the graph F(E)
with vertex set ex and directed edges (i, j) for the vertices ¢, j with b;; > 0. WS say that

B (and the corresponding cluster algebras of various kinds) are acyclic if T'(B) has no
oriented cycles, cf. [1, Definition 1.14].

Theorem 7.5. (Berenstein-Fomin-Zelevinsky) [1, Theorems 1.18 and 1.20] If B is an
acyclic exchange matriz and all variables are exchangeable (ex = [1, N]), then A(B) =
U(E) and this algebra is isomorphic to the C-algebra with generators x1,x,...,xn, ),
and relations

wpoe = [[ v+ ] a7"* Vke[1,N]. (7.2)

i,bik>0 i,bik<0

Analogously to this result and [2, Theorem 7.5], one proves the following:

Proposition 7.6. If AE(ME,E) is an acyclic root of unity quantum cluster algebra for
which all variables are exchangeable (ex = [1,N]), then A. (M., B) = U (M., B) and

this algebra is isomorphic to the C-algebra with generators yi,yy, - -, Yn, Y., and relations
Yiyk = M YRy, Vi<j<k<N, (7.3)
vige =2 I e I vt ke LN, (7.4)
1,bi5 >0 4,bi1 <0
where

Hii = Z birbjrxdij — Z bik bik,

1<J, bix>0,b5,>0 4,01 >0
Vgi = E birbjrdij + E bir ik
1<J, bik<0,bjk<0 i,b;1, <0

and (¢i;) € Mn(Z/2) is the matriz of the root of unity toric frame M..
An immediate consequence of Theorem 4.1 is the following:

Corollary 7.7. If an acyclic exchange matriz B has a compatible skew-symmetric ma-
triv A € Mn(Z) and all variables are exchangeable (ex = [1, N]), then the mazimum

spectrum Y (B) of the algebra with generators xi,x},...,2n, T,

' and relations (7.2) is
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an affine Poisson manifold whose non-singular part Y (B)'8 is a single T(B)-orbit of
symplectic leaves.

An immediate consequence of Theorem 6.1 is the following:

Corollary 7.8. Assume that Bis an acyclic exchange matriz, (\;;) € My(Z) is a compat-
ible skew-symmetric matriz and € is an odd root of unity whose order is coprime to the
diagonal entries of the skew-symmetrizing matriz D for the principal part of B. Con-
sider the C-algebra U, with generators yi,yy,...,Yn, Y, and relations (7.3)—(7.4) with
Gij = Xij. Then the following hold:

(i) The unital subalgebra CU. of U. generated by yt, (v1)%, ..., y5, ()" is central and
isomorphic to the algebra with generators x1,x},...,Tn, x,, and relations (7.2) via
vt =z, (y)" — ok Ue ds a finitely generated module over CU..

(ii) The fully Azumaya locus of U, with respect to CU. contains the non-singular part
of MaxSpec(CU.).

7.4. An acyclic example

As an example of an acyclic cluster algebra, consider the following compatible pair.

SN O

As in the previous subsection, every cluster variable is mutable, and so, ex = [1, N] =
[1,2] and inv = @. Because Ker(BT) = 0, the torus T'(B) is trivial, and so Theorem 4.1
predicts that Y(é)reg is a single symplectic leaf.

The quiver of B is the Kronecker quiver, which is acyclic. By Theorem 7.5,

A(B) = U(B) = Clay, 22, 27, 7h]/(112] — 23 — 1,227} — o — 1).

There is an even nicer presentation in terms of the following element

z 1= xzh — z129 € U(B).
This element satisfies several notable identities.
_ .2 2 _ / _ /
T1To2z =] + 25+ 1, T12 = To + Ty, Toz =1 + 7.

The latter two equations imply that z;, x9, and z generate U(E ), and the first equation
implies that the relations among these generators are generated by a single element;
therefore,

A(B) = U(B) = C[z1, 22, 2]/ (v1222 — (23 + 23 + 1)). (7.5)
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Since
fzy, w9, 2) = 21202 — (23 + 235 4+ 1)

is an irreducible polynomial, the maximum spectrum of Y(E) is isomorphic to the irre-
ducible algebraic variety V(z1292z — (23 + 23 4+ 1)) C C? defined by f(z1,x2,2) = 0.

The GSV Poisson structure on Y(E) extends to the Poisson structure on C? with
potential f(x1,xzq,z). The latter is defined on the coordinates by

{xl,@} = f. = 1179, {xhz} = —fz, = 222 — 212, {IQ,Z} = fz, = T2z — 221.

At each point in Y(B), the latter two functions cannot simultaneously be zero, since

x1{x1, 2z} — xo{x2, 2} = x1(x22 — 221) + 22(212 — 221) = 201222 — 207 — 222

equals 2 everywhere on Y (B). This has two important consequences.

e The differential of the polynomial f(x1, 2, 2) is

df = {xe, z}dxy + {2, 21 }dao + {x1, 2} d2.

Since df does not vanish on V(f), it is a smooth variety, and so Y (B)™ = Y (B).
o The Hamiltonian vector field of z is

H, = ({z,21},{2,72},0).

Since H, does not vanish on Y (B), the rank of the Poisson bracket cannot be 0
anywhere on Y (B). Since Y (B) is smooth and 2-dimensional, the rank must be 2
everywhere.

Since Y (B) is connected, it is a single symplectic leaf as predicted.

An interesting feature of this example is that the cluster tori do not cover Y (B) =
Y (B)™#. By [36], the cluster variables may be indexed by the integers so that the clus-
ters are pairs of adjacent variables (z;,2;+1). These cluster variables may be defined

recursively by the mutation identity
_ .2
Tp—1Tnt+1 = T, + 1.

If x,, = 0 at a point, then the mutation identities force x,,_1x,+1 = 1 and x%_l +1=0,
and so x,_1 = £ and z,+1 = Fi. It follows that there are four points in Y (B) which
are not in any cluster torus, on which the sequence of cluster variables takes a periodic

sequence of values

..0,4,0,—i,0,—4,0,i,0, ...
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Fig. 1. Five curves in the family V(23 — zz122 + x5 + 1) (real part in blue and imaginary part in red). (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Under the embedding (21,5, z) : Y (B) < C3, these points are sent to

(0, +i,0), (£4,0,0) € C3.

The embedding Y (B) < C? and these four points can be visualized as follows. Fixing

a value of z is equivalent to intersecting the image of Y (B) with a plane, and the result
is the curve

V(23 — zwywg + 23 +1) C C2

For every value of z, this curve is a conic that passes through the four points (0, £7) and
(£i,0); Fig. 1 depicts these curves for five values of z. One may show that every conic
through the points (0, +¢) and (=+4,0) appears as z varies except one: the singular conic
V(z179).”

For historical reasons, this family of curves is called the pencil of conics through the
four base points (0, i) and (4i,0). The cluster Y (B) is then identified with the total
space of the pencil of conics through (0,+7) and (£, 0) minus one of the three singular
fibers. Under this identification, the four points not in any cluster torus correspond to
the base points in the z = 0 fiber, which is the complex circle of radius -1.

Let € be a primitive root of unity of odd order. Proposition 7.6 implies that for the
root of unity quantum cluster algebra and root of unity upper quantum cluster algebra
associated to B we have

n ~ C A
A.(M.,B) =U.(M.,B) = (x1, @2, 27, 25)

- 7.6
(v122 — exomy, 12) — e w3 — 1, maxly — ex? — 1) (7.6)

By Corollary 7.8 and the first part of the example, the subalgebra of this algebra gener-
ated by y, (y1)% v%, (y5)¢ is central and is isomorphic to the algebra (7.5) via yf — xy,
(y;.)¢ ~ .. Furthermore, all irreducible representations of the algebra (7.6) have dimen-
sion £, and thus, this algebra is Azumaya.

2 There are two other singular conics through the four points, which correspond to z = 2 and z = —2.
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