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1. Introduction

1.1. Setting

Cluster Algebras were defined by Fomin and Zelevinsky [13] in 2001, and since then 

have played a prominent role in many areas of mathematics and mathematical physics. 

There are two main classes of algebras in this theory. The algebras in these classes 

are defined from an integer matrix B̃ (called exchange matrix) of size N × ex where 

N is a positive integer and ex ⊂ [1, N ] is a set of mutable (exchangeable) variables. 

Furthermore, one partitions

[1, N ]\ex = inv � ninv.

The two subsets inv and ninv will index the inverted and non-inverted frozen variables. 

It is important to allow this degree of flexibility because many key examples in Lie theory 

require that not all frozen variables are inverted.

(1) The upper cluster algebra U(B̃, inv) is defined as the intersection

U(B̃, inv) =
⋂

(x̃′,B̃′)∼(x̃,B̃)

C[(x′
k)±1, x′

i; k ∈ ex � inv, i ∈ ninv],

where the intersection ranges over all seeds (x̃′ := (x′
1, . . . , x′

N ), B̃′) in the mutation 

class of the initial seed (x̃ = (x1, . . . , xN ), B̃). Gekhtman, Shapiro and Vainshtein 

proved in [19] that, if the exchange matrix B̃ is compatible with a skew-symmetric 

integer matrix Λ of size N ×N (cf. (2.6)), then U(B̃, inv) admits a canonical Poisson 

structure. The cluster variables in each seed are in log-canonical form, meaning that

{x′
k, x′

i} = λ′
kix

′
kx′

i, ∀k, i ∈ [1, N ]

for some skew-symmetric integer matrix (λ′
ki) depending on the seed.

(2) Let ε1/2 ∈ C be a primitive �-th root of unity for a positive integer �. The root of 

unity upper quantum cluster algebra Uε(Mε, B̃, inv) is a non-commutative algebra, 

defined in a similar way to U(B̃, inv), by intersecting mixed quantum tori/quantum 

affine spaces

Uε(Mε, B̃, inv) :=
⋂

(M ′
ε,B̃′)∼(Mε,B̃)

Tε(M ′
ε)≥,
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where M ′
ε are root of unity toric frames, see Sect. 3.1. Each such algebra has a 

canonical central subalgebra CUε(Mε, B̃, inv) obtained by intersecting the mixed 

Laurent polynomial rings in the �-th powers of the generators of M ′
ε. Under mild 

assumptions on �,

CUε(Mε, B̃, inv) ∼= U(B̃, inv), (1.1)

see Sect. 3.1.

There is a canonical action of the torus

T (B̃) := (C×)dim Ker B̃

on both algebras U(B̃, inv) and Uε(Mε, B̃, inv) by algebra automorphisms. In the first 

case, T (B̃) acts by Poisson automorphisms. In the second case, it preserves the central 

subalgebra CUε(Mε, B̃, inv) and the isomorphism (1.1) intertwines the two actions.

1.2. Results on the Poisson geometric side

The affine Poisson variety corresponding to the GSV Poisson structure

Y (B̃) := MaxSpec U(B̃, inv)

is of much interest in Lie theory and integrable systems (we suppress the dependance 

of Y (B̃) on inv for brevity). However, little is known about its global geometry. One 

only knows that the cluster tori inside Y (B̃) are regular Poisson [19]. This is a local 

result because the symplectic leaves inside each cluster torus never entirely belong to the 

cluster torus. So, general Hamiltonian flows on Y (B̃) leave each cluster torus after some 

time.

In Lie theory and combinatorics, one knows [22] that each Schubert cell X◦
w in the full 

flag variety G/B+ of a complex simple Lie group G, equipped with the standard Poisson 

structure, has a dense torus orbit of symplectic leaves which equals the complement of 

the Richardson divisor [28] of X◦
w. The latter equals the union of the closures in X◦

w of 

the open Richardson varieties Rw,si
for i ranging over the support of the Weyl group 

element, see Sect. 7.1.

Remarkably, such a fact holds for the spectrum of every upper cluster algebra 

U(B̃, inv) with the GSV Poisson structure, without any assumptions on U(B̃, inv) ex-

cept for finite generation which is needed to be even able to talk about symplectic leaves. 

This is the topic of our first main result on the global description of the T (B̃)-orbit of 

the symplectic leaves S of (Y (B̃), π) of maximal dimension,

T (B̃) · S.
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Theorem A. Assume that U(B̃, inv) is a finitely generated upper cluster algebra for which 

the exchange matrix B̃ admits a compatible skew-symmetric integer matrix. Then the 

affine Poisson variety (Y (B̃), π) has a Zariski open T (B̃)-orbit of symplectic leaves, 

which equals

Y (B̃)reg\
⋃

i∈ninv

V(x̃i),

where Y (B̃)reg is the nonsingular part of Y (B̃).

The theorem is proved by using sections of the anticanonical bundle of Y (B̃)reg coming 

from the GSV Poisson structure π and the action of T (B̃), coupled with normality of 

Y (B̃).

At this point it might be tempting to conjecture that a much stronger result than 

Theorem A holds, namely that there are finitely many T (B̃)-orbits of symplectic leaves 

of Y (B̃) (or Y (B̃)reg). However, that is not correct. For large classes of Belavin–Drinfeld 

Poisson structures [9, Sect. 3.2] on GLn(C), Gekhtman, Shapiro and Vainshtein proved 

[20,21] that the coordinate ring C[GLn] admits upper cluster algebra structures with 

compatible Poisson structures given by the ones in the list. Their symplectic leaves were 

classified in [37], where it was proved that they are classified by Weyl group datum and 

twisted conjugacy classes of reductive groups. Because of the last bit of data, in general, 

those Poisson structures have infinitely many torus orbits of symplectic leaves.

1.3. Results on the quantum side

It was proved in [27, Theorem B] that, if the C-algebra Uε(Mε, B̃, inv) is finitely gener-

ated, then it is a finitely generated module over CUε(Mε, B̃, inv) and CUε(Mε, B̃, inv) ∼=

U(B̃, inv) is a finitely generated commutative C-algebra. The root of unity upper quan-

tum cluster algebras Uε(Mε, B̃, inv) form a vast family of algebras that includes as 

special cases many important classes of quantum algebras at roots of unity arising in Lie 

theory and topology. A fundamental open problem for them is to classify their irreducible 

representations. By [4, Theorem III.1.6] all of their representations are finite dimensional 

of dimension less than or equal to the PI degree of Uε(Mε, B̃, inv). In this generality, 

the problem of classifying the irreducible representations of Uε(Mε, B̃, inv) is extremely 

difficult. The first step towards its resolution is to classify the representations of maximal 

dimension. For this, Brown and Gordon defined [5, Sect. 1.3] the fully Azumaya locus of 

a finitely generated prime algebra R with respect to a central subalgebra Z such that 

R is a finitely generated Z-module. This locus is a Zariski open subset of MaxSpec Z

consisting of those maximal ideals m of Z such that all irreducible representations of R

annihilated by m have maximal dimension (equal to the PI degree of R), see Sect. 2.1

for details.
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Our second main result gives an explicit description of the fully Azumaya locus of 

the root of unity upper quantum cluster algebras Uε(Mε, B̃, inv) with respect to their 

central subalgebras CUε(Mε, B̃, inv) ∼= U(B̃, inv):

Theorem B. Assume that Uε(Mε, B̃, inv) is a finitely generated strict root of unity upper 

quantum cluster algebra such that the order of ε1/2 is odd and coprime to the diagonal 

entries of the skew-symmetrizing matrix D for the principal part of the exchange matrix 

B̃ and

Aε(Mε, B̃, inv) = Uε(Mε, B̃, inv). (1.2)

Then the fully Azumaya locus A of Uε(Mε, B̃, inv) with respect to the central subalgebra

CUε(Mε, B̃, inv) ∼= U(B̃, inv)

satisfies

Y (B̃)reg\
⋃

i∈ninv

V(x̃i) ⊆ A ⊆ Y (B̃)\
⋃

i∈nc

V(x̃i),

where nc denotes the set of those non-inverted frozen variables M(ei) that are not in the 

center on Uε(Mε, B̃, inv).

The assumption that Uε(Mε, B̃, inv) is a finitely C-algebra is needed to be even 

able to define the fully Azumaya locus. The strictness assumption on Uε(Mε, B̃, inv)

means that B̃ admits a skew-symmetric integer matrix which is compatible with B̃ over 

Z and not just over Z/�, which is what is needed to define root of unity quantum 

cluster algebras in general. This assumption ensures that there is an associated upper 

quantum cluster algebra Uq(Mq, B̃, inv) in the sense of Berenstein and Zelevinsky [2]. 

The assumption (1.2) is needed to ensure that Uε(Mε, B̃, inv) is a specialization of 

Uq(Mq, B̃, inv). This in turn is used to construct a Poisson order structure on the pair 

(Uε(Mε, B̃, inv), CUε(Mε, B̃, inv)) in the sense of Brown and Gordon [5] to be able 

to link Poisson geometry to representation theory. A property of the form A = U was 

established in numerous situations on the classical and quantum levels [8,23–26,30,31,35]. 

Undoubtably, these methods will be extended in the future to show that the assumption 

(1.2) is satisfied in broad generality.

In [6] the fully Azumaya loci of all quantum function algebras of complex simple Lie 

groups G at roots of unity were determined. In [16] a second proof of the Bonahon–Wang 

unicity conjecture [3] was given, stating that the Azumaya loci of the skein algebras of 

oriented surfaces at roots of unity contain the smooth parts of the spectra of their centers 

(this was first proved in [15]). Both [6,16] relied on Poisson orders. The result of [6] is 

that the fully Azumaya locus inside G is the open double Bruhat cell (a torus orbit of 

symplectic leaves), while the proofs of [16] relied on an argument that in that situation, 
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the smooth part in question is a single symplectic leaf. Our Theorems A and B prove that 

such phenomena hold in much wider generality in the world of cluster algebras, rather 

than quantum groups or skein algebras. The zero loci of frozen variables and singular 

part of Y (B̃) were exactly the points that were thrown out in [6] and [16].

1.4. Organization of the paper and notation

The paper is organized as follows. Section 2 provides background on Azumaya loci, 

Poisson orders, cluster algebras, compatible Poisson structures and quantum cluster 

algebras. Section 3 contains background on root of unity quantum cluster algebras and 

results on torus actions on them and the related Poisson cluster algebras. Section 4

proves Theorem A. Section 5 construct Poisson orders on root of unity quantum cluster 

algebras. Section 6 proves Theorem B. Section 7 discusses the motivation for the main 

theorem from the stand point of Richardson varieties, the special case of the theorems 

on acyclic cluster algebras, and a Kronecker type example.

The following notation will be used throughout the paper. The standard basis of ZN

will be denoted by

e1, . . . , eN .

The dot product on ZN will be denoted by μ · ν. The transpose of a matrix B will be 

denoted by B�.

For a complex affine algebraic variety Y , its singular part will be denoted by Y sing

and its smooth part by Y reg. Given a regular function f ∈ C[Y ], we will denote by V(f)

the zero locus of f .

Acknowledgments. We are grateful to the referee for many suggestions which helped us 

to improve the exposition.

2. Preliminaries on Poisson orders and cluster algebras

In this section we gather background material on Poisson orders and cluster algebras 

that will be used in the paper.

2.1. Poisson orders

We follow Brown and Gordon [7]. Let R be a C-algebra and Z be a central subalgebra 

of R.

Definition 2.1. [7] The pair (R, Z) is called a Poisson order if R is a finitely generated 

Z-module satisfying the following conditions:

(i) Z has the structure of a Poisson algebra with bracket {·, ·};
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(ii) There exists a C-linear map ∂ : Z −→ DerC(R) such that ∂z|Z = {z, −} for all 

z ∈ Z.

By assumption (ii), the Poisson structure is uniquely determined from the linear map 

∂. Because of this we will denote Poisson orders as triples (R, Z, ∂).

Restriction of Poisson orders: For a Poisson order (R, Z, ∂), if C is a Poisson subal-

gebra of Z with respect to the underlying Poisson structure, then (R, C, ∂|C) is also a 

Poisson order.

Poisson orders from specialization: The following is a well known fact for obtaining 

Poisson order structures from specialization, see e.g. [7, Sect. 2.2]:

Lemma 2.2. Assume that R and S are C-algebras and η : S → R is a surjective C-

algebra homomorphism with kernel (h) = hS for a regular central element h ∈ S. Choose 

a C-linear map

ι : Z(R) → S

such that η◦ι = idZ(R). If R is a finitely generated Z(R)-module, then the pair (R, Z(R))

admits a Poisson order structure with ∂z : Z(R) → DerC(R) given by

∂z(r) := η
( ι(z)r̃ − r̃ι(z)

h

)
, ∀z ∈ Z(R), r ∈ R, (2.1)

where r̃ is any preimage of r under η. Its underlying Poisson structure is given by

{z1, z2} := η
( ι(z1)ι(z2) − ι(z2)ι(z1)

h

)
, ∀z1, z2 ∈ Z(R).

This Poisson structure is independent on the choice of C-linear section ι : Z(R) → S.

In (2.1), ι(z)r̃ − r̃ι(z) ∈ (h) because z ∈ Z(R) and η is an algebra homomorphism. 

The right hand side of (2.1) is independent on the choice of preimage r̃ by a similar 

argument.

Recall that an affine Poisson variety is an affine variety X whose coordinate ring is 

equipped with a Poisson algebra structure. Its singular part Xsing is automatically an 

affine Poisson variety as well [34, Corollary 2.4]. The symplectic leaves of a complex 

affine Poisson variety X are defined recursively as the symplectic leaves of the smooth 

complex manifold Xreg together with the symplectic leaves of the lower dimensional 

Poisson variety Xsing.

Theorem 2.3. (Brown–Gordon) [7] Assume that (R, Z) is a complex Poisson order and 

m, m′ ∈ MaxSpec Z lie in the same symplectic leaf. Then we have the isomorphism of 

finite dimensional complex algebras

R/mR ∼= R/m′R.
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The theorem proved in [7] has a stronger conclusion using Poisson cores, but we will 

not need that fact in this paper.

For the rest of this subsection we assume that

(*) R is a finitely generated prime C-algebra, which is a finitely generated Z-module 

over a central subalgebra Z.

By the Artin–Tate Lemma (see e.g. [4, Sect. I.13.4]), Z is a finitely generated C-

algebra. The primeness assumption on R implies that Z(R), and thus also Z, are integral 

domains. Hence, MaxSpec Z(R) and MaxSpec Z are irreducible affine varieties.

Recall that m ∈ MaxSpec Z(R) is in the Azumaya locus of R if Rm is an Azumaya 

algebra over Zm. This is equivalent to saying that R has an irreducible module, annihi-

lated by m, of maximal dimension among the irreducible R-modules (which equals the 

PI degree of R); such a representation is automatically unique (see [4, Theorem III.1.6]).

We have the canonical map

MaxSpec Z(R) → MaxSpec Z, (2.2)

induced by the inclusion Z ⊆ Z(R).

Definition 2.4. A point m ∈ MaxSpec Z is said to be in the fully Azumaya locus of R

with respect to Z if all of its preimages are in the Azumaya locus of R, see [5, Sect. 1.3]. 

In other words, one requires that all irreducible modules of R/mR have dimensions equal 

to the PI degree of R.

The map (2.2) is closed by [4, Lemma III.1.5]. This and the fact that the Azumaya 

locus of R is open, and hence dense in MaxSpec Z(R), imply

Lemma 2.5. In the above setting, the fully Azumaya locus of R with respect to Z is an 

open and hence dense subset of MaxSpec Z.

This fact is stated in [4, Proposition III.4.10] under a Hopf algebra assumption on R

and Z, but this assumption is not used in its proof.

Finally, we have the following corollary of Theorem 2.3:

Corollary 2.6. Assume that R is a finitely generated C-algebra and (R, Z) is a com-

plex Poisson order. Then the fully Azumaya locus of R with respect to Z is a union of 

symplectic leaves of MaxSpec Z.

Proof. If m, m′ ∈ MaxSpec Z lie in the same symplectic leaf of MaxSpec Z, then R/mR ∼=

R/m′R by Theorem 2.3. In particular, if all irreducible representations of the algebra 

R/mR have dimensions equal to the PI degree of R, then the same holds for the algebra 

R/m′R. �
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2.2. Cluster algebras of geometric type

We follow Berenstein, Fomin and Zelevinsky [13,1] with the exception that all algebras 

are defined over C instead of Z. Let N be a positive integer, ex ⊆ [1, N ] and F be a 

purely transcendental field extension of C of transcendence degree N . We say that a pair 

(x̃, B̃) is a seed if

(i) x̃ = {x1, . . . , xN } is a transcendence basis of F over C;

(ii) B̃ ∈ MN×ex(Z) and its ex × ex submatrix B, called the principal part of B̃, is 

skew-symmetrizable for some matrix D = diag(dj , j ∈ ex) with diagonal entries 

dj ∈ Z+.

The elements xi ∈ F are called cluster variables. A matrix B̃ satisfying the condition in 

(ii) is called an exchange matrix. For each k ∈ ex, the mutation of B̃ in the direction of 

k is the matrix μk(B̃), where

μk(B̃) = (b′
ij) :=

{
−bij if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2 otherwise.

For a choice of sign, s = ±, define the matrices Es ∈ MN (Z) and Fs ∈ Mex(Z) to be

Es := (eij)=

⎧
⎪⎪«
⎪⎪¬

δij if j 
= k

−1 if i = j = k

max(0, −sbik) if i 
= j = k,

Fs := (fij)=

⎧
⎪⎪«
⎪⎪¬

δij if i 
= k

−1 if i = j = k

max(0, sbkj) if j 
= i = k.

Then we also have μk(B̃) = EsB̃Fs for both s = ±.

The mutation of a seed (x̃, B̃) in the direction of k ∈ ex is defined to be μk(x̃, B̃) :=

(x̃′, μk(B̃)) where

x̃
′ := {x′

k} ∪ x̃\{xk} and xkx′
k :=

∏

bik>0

xbik
i +

∏

bik<0

x−bik
i . (2.3)

The pair μk(x̃, B̃) is also a seed, the principal part of μk(B̃) equals μk(B), and μk(B) is 

skew-symmetrizable with respect to the same matrix D that skew-symmetrizes B.

Mutation is an involution. Two seeds are mutation equivalent, (x̃′, B̃′) ∼ (x̃′′, B̃′′), if 

one can be obtained from the other by a finite sequence of mutations. Any seed which 

is mutation-equivalent to (x̃, B̃) contains xi for i ∈ [1, N ]\ex and we call these, frozen 

variables.

Fix a decomposition of the set of frozen variables into a disjoint union of two sets:

[1, N ]\ex = inv � ninv.
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The set inv will index the set of those frozen variables that will be inverted. The set 

ninv will index the non-inverted frozen variables.

The cluster algebra A(B̃, inv) is defined to be the C-subalgebra of F generated by 

the cluster variables in all the seeds (x̃′, B̃′) ∼ (x̃, B̃) together with {x−1
i | i ∈ inv}. For 

a seed (x̃′, B̃′) ∼ (x̃, B̃) denote the Laurent polynomial ring

L(x̃′) = C[(x′
k)±1; 1 ≤ k ≤ N ]

and its mixed polynomial/Laurent polynomial subring

L(x̃′)≥ = C[(x′
k)±1, x′

i; k ∈ ex � inv, i ∈ ninv]. (2.4)

The upper cluster algebra U(B̃, inv) is the intersection

U(B̃, inv) =
⋂

(x̃′,B̃′)∼(x̃,B̃)

L(x̃′)≥. (2.5)

By the Laurent phenomenon [14], we have A(B̃, inv) ⊆ U(B̃, inv).

We will need the algebra (2.5) in the special case when all frozen variables are inverted:

U(B̃) := U(B̃, [1, N ]\ex) =
⋂

(x̃′,B̃′)∼(x̃,B̃)

L(x̃′).

It is easy to verify that the latter is obtained as a localization:

U(B̃) = U(B̃, inv)[x−1
i ; i ∈ ninv].

2.3. Quantum cluster algebras

We follow Berenstein and Zelevinsky [2] with the exception that we allow for an 

arbitrary subset of frozen quantum cluster variables not to be inverted and we work over 

the algebra

A1/2
q := C[q±1/2]

instead of Z[q±1/2].

By abuse of notation, we will identify a skew-symmetric bilinear form Λ : Z
N ×Z

N →

Z with the skew-symmetric integer matrix with entries Λ(ei, ej). Recall that e1, . . . , eN

denotes the standard basis of ZN .

The based quantum torus Tq(Λ) associated with Λ is the A
1/2
q -algebra with the A

1/2
q -

basis { xf | f ∈ Z
N } and multiplication given by xfxg = qΛ(f,g)/2xf+g, where f, g ∈ Z

N .

A toric frame Mq for a division C(q1/2)-algebra Fq is a map Mq : Z
N → Fq for 

which there exists an A
1/2
q -algebra embedding φ : Tq(Λ) ↪→ Fq for some skew-symmetric 
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matrix Λ ∈ MN (Z), such that φ(xf ) = Mq(f) for all f ∈ Z
N and Fq 
 Fract (φ(Tq(Λ))). 

Denote by ΛMq
the skew-symmetric matrix (bilinear form) of a toric frame Mq, defined 

by

Mq(f)Mq(g) = qΛ(f,g)/2Mq(f + g), ∀f, g ∈ Z
N .

For a torus frame Mq, the image of φ in Fq will be denoted by Tq(Mq); its basis is 

{ Mq(f) | f ∈ Z
N }. We have the isomorphism of quantum tori Tq(Mq) 
 Tq(ΛMq

).

Let B̃ ∈ MN×ex(Z) be an exchange matrix and Λ = (λij) ∈ MN (Z) be a skew-

symmetric matrix. The pair (Λ, B̃) is called compatible if

N∑

k=1

bkjλki = δijdj , ∀k ∈ [1, N ], j ∈ ex

for a collection of positive integers (dj , j ∈ ex). In terms of the diagonal matrix D :=

diag(dj , j ∈ ex), this condition is written as

B̃�Λ = [D 0], (2.6)

where 0 denotes the zero matrix of size ex × ([1, N ]\ex). If (Λ, B̃) is a compatible pair, 

then B̃ has full rank and its principal part B is skew-symmetrized by D.

For each k ∈ ex, the mutation of a compatible pair (Λ, B̃) in the direction of k is

μk(Λ, B̃) := (Λ′, B̃′), (2.7)

where B̃′ = EsB̃Fs as in Sect. 2.2 and Λ′ := E�
s ΛEs, s = ±. The pair (Λ′, B̃′) is 

compatible with respect to the same diagonal matrix D and is independent on the choice 

of sign s.

A quantum seed is a pair (Mq, B̃), consisting of a toric frame Mq of Fq and an exchange 

matrix B̃ such that (ΛMq
, B̃) is compatible. We call Mq(ej), j ∈ [1, N ], cluster variables

of the seed, among which the frozen ones are those indexed by [1, N ]\ex. Denote bk

be the k-th column of B̃. The mutation of a quantum seed (Mq, B̃) in the direction of 

k ∈ ex is

μk(Mq, B̃) = (μk(Mq), μk(B̃)) := (ρ
Mq

bk,s
MqEs, EsB̃Fs)

for any choice of sign s, where ρbk,s = ρ
Mq

bk,s
is the unique automorphism of Fq such that

ρbk,s(Mq(ej)) =

{
Mq(ek) + Mq(ek + sbk) if j = k

Mq(ej) if j 
= k.

The skew-symmetric matrix associated to the toric frame μk(Mq) is Λμk(Mq) = μk(ΛMq
). 

The mutation process is involutive.
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The quantum cluster algebra Aq(Mq, B̃, inv) is the A
1/2
q -subalgebra of Fq generated 

by all cluster variables of quantum seeds (M ′
q, B̃′) ∼ (Mq, B̃) and by the inverted frozen 

variables {Mq(ej)−1 | j ∈ inv}. The corresponding upper quantum cluster algebra is 

given by the intersection

Uq(Mq, B̃, inv) :=
⋂

(M ′
q,B̃′)∼(Mq,B̃)

Tq(M ′
q)≥

of the mixed quantum tori

Tq(M ′
q)≥ := A1/2

q 〈M ′
q(ek)±1, M ′

q(ei) | k ∈ ex � inv, i ∈ ninv〉 ⊂ Tq(M ′
q).

Here, the term mixed refers to the fact that these algebras are mixtures of quantum tori 

and quantum affine spaces. We have the quantum Laurent phenomenon:

Aq(Mq, B̃, inv) ⊆ Uq(Mq, B̃, inv), (2.8)

proved in [2] for inv = [1, N ]\ex and [23] in general.

The exchange graphs of the upper cluster algebra U(B̃, inv) and the upper quantum 

cluster algebra Uq(Mq, B̃, inv) are the labelled graphs with vertices corresponding to the 

seeds that are mutation-equivalent to (x̃, B̃) and (Mq, B̃), respectively, and edges given 

by seed mutation, labelled by the corresponding mutation number. (The exchange graph 

does not depend on the set inv of inverted frozen variables.)

Theorem 2.7. (Berenstein–Zelevinsky) [2, Theorem 6.1] There exists a unique isomor-

phism of labelled graphs, between the exchange graphs of U(B̃, inv) and Uq(Mq, B̃, inv)

that sends the vertex corresponding to the seed (x̃, B̃) to that of the seed (Mq, B̃).

2.4. Poisson structures on cluster algebras

We follow Gekhtman, Shapiro and Vainshtein [19]. Consider an upper cluster algebra 

U(B̃, inv) for which there exists a skew-symmetric matrix Λ ∈ MN (Z) such that (Λ, B̃) is 

a compatible pair. This is equivalent to saying that there exists a quantum cluster algebra 

with a seed with exchange matrix B̃. For such a seed (Mq, B̃), the skew-symmetric matrix 

of the toric frame Mq equals Λ.

In this setting, for every seed (x̃′, B̃′) ∼ (x̃, B̃), there exists a skew symmetric matrix 

Λ(x̃′,B̃′) satisfying the following two conditions:

(i) the pair 
(
Λ(x̃′,B̃′), B̃

′
)

is compatible and

(ii) for all k ∈ ex,

μk

(
Λ(x̃′,B̃′), B̃′

)
=

(
Λ(μk(x̃′),μk(B̃′)), μk(B̃′)

)

where the left hand side uses mutation of compatible pairs, see (2.7).
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For a seed (x̃′, B̃′) ∼ (x̃, B̃), we choose a sequence of mutations such that

μk1
. . . μkj

(x̃, B̃) = (x̃′, B̃′).

Applying the sequence of mutations to the compatible pair (Λ, B̃) gives that

μk1
. . . μkj

(Λ, B̃) = (Λ′, B̃′)

for a skew-symmetric matrix Λ′ ∈ MN (Z). The exchange graph isomorphism from The-

orem 2.7 implies that the matrix Λ′ is independent on the choice of mutation sequence 

μk1
. . . μkj

. We set Λ(x̃′,B̃′) := Λ′. It is clear that conditions (i)-(ii) are satisfied.

For each seed (x̃′, B̃′) ∼ (x̃, B̃), the mixed polynomial/Laurent polynomial ring L(x̃′)

has a Poisson algebra structure such that

{x′
k, x′

i} = Λ(x̃′,B̃′)(ek, ei)x
′
kx′

i, ∀k, i ∈ [1, N ]. (2.9)

All algebras L(x̃′) have a common field of fractions F , so all Poisson brackets (2.9)

automatically extend to Poisson field structures on F . Those extensions coincide and, 

hence, the intersection (2.5), U(B̃, inv), inherits a Poisson algebra structure, called the 

Gekhtman–Shapiro–Vainshtein (GSV) Poisson algebra structure of U(B̃, inv).

3. Root of unity quantum cluster algebras and torus automorphisms

In this section we gather background material on root of unity quantum cluster alge-

bras from [33,27] and prove auxiliary properties that will be used in the next sections. 

In particular, we describe certain torus actions on these algebras, which will play a key 

role in the paper.

3.1. Root of unity quantum cluster algebras

Let � be a positive integer and ε1/2 ∈ C be a primitive �-th root of unity. Denote

Z/� := Z/�Z.

In this paper we will work over C, while the construction in [33] was carried out over 

Z[ε1/2]. We start with a skew-symmetric bilinear form Ω : Z
N × Z

N → Z/� and identify 

it with the skew-symmetric matrix (Ω(ei, ej))N
i,j=1 ∈ MN (Z/�). The associated root of 

unity based quantum torus is

Tε(Ω) := SpanC{xf | f ∈ Z
N }, where xf xg = εΩ(f,g)/2xf+g, ∀f, g ∈ Z

N . (3.1)

A root of unity toric frame Mε of a division algebra Fε over C is a map

Mε : Z
N → Fε
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for which there exists an C-algebra embedding φ : Tε(Ω) ↪→ Fε for a skew-symmetric 

matrix Ω ∈ MN (Z/�) with the properties that φ(xf ) = Mε(f) for all f ∈ Z
N and 

Fε 
 Fract (Tε(Ω)). Denote by ΩMε
the skew-symmetric matrix (bilinear form) with 

values in Z/� of the root of unity toric frame Mε, given by

Mε(f)Mε(g) = εΩ(f,g)/2Mε(f + g), ∀f, g ∈ Z
N .

The mixed quantum tori for the root of unity setting are given by

Tε(Mε)≥ := C〈Mε(ek)±1, Mε(ei) | k ∈ ex � inv, i ∈ ninv〉 ⊂ Tε(Mε). (3.2)

A pair (Ω, B̃), consisting of a skew-symmetric matrix Ω ∈ MN (Z/�) and an exchange 

matrix B̃ ∈ MN×ex(Z), is said to be �-compatible if there exists a diagonal matrix 

D := diag(dj , j ∈ ex) with dj ∈ Z+ such that the principal part B of B̃ is skew-

symmetrized by D and

B̃
�

Ω =
[

D 0
]

.

Here and below, for an integer matrix C, C denotes its reduction modulo �.

The mutation in direction k ∈ ex of an �-compatible pair is defined to be μk(Ω, B̃) :=

(E
�

s ΩEs, EsB̃Fs) for s = ±, and as in the quantum case; it is independent of the choice of 

sign s. Further, the pair μk(Ω, B̃) is also �-compatible with respect to the same diagonal 

matrix D.

A pair (Mε, B̃) is called a root of unity quantum seed if (ΩMε
, B̃) is an �-compatible 

pair. The mutation in direction k ∈ ex of a root of unity quantum seed is similar to that 

in the quantum seed case, μk(Mε, B̃) := (ρMε

bk,s
MεEs, EsB̃Fs), where ρbk,s = ρMε

bk,s
is the 

unique automorphism of Fε given by

ρMε

bk,s
(Mε(ej)) =

{
Mε(ek) + Mε(ek + sbk) if j = k

Mε(ej) if j 
= k.

The skew-symmetric matrix associated to μk(Mε) is Ωμk(Mε) = μk(ΩMε
). Moreover, 

mutation of root of unity quantum seeds does not depend on the choice of sign and is an 

involution. Two seeds are called mutation equivalent, (M ′
ε, B̃′) ∼ (M ′′

ε , B̃′′), if one can 

be obtained from the other by a finite sequence of mutations.

The root of unity quantum cluster algebra Aε(Mε, B̃, inv) is defined to be the C-

subalgebra of Fε generated by all cluster variables of the seeds (M ′
ε, B̃′) ∼ (Mε, B̃) and 

by Mε(ei)
−1 for i ∈ inv. The corresponding root of unity upper quantum cluster algebra

is defined as the intersection

Uε(Mε, B̃, inv) :=
⋂

(M ′
ε,B̃′)∼(Mε,B̃)

Tε(M ′
ε)≥.
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We have Aε(Mε, B̃, inv) ⊆ Uε(Mε, B̃, inv) by [33, Theorem 3.10].

For every root of unity toric frame M ′
ε of Fε and 1 ≤ i ≤ N ,

M ′
ε(ei)

� ∈ Z(Fε).

Consider the central subalgebra

Lε(Ω′) = C[(xek )±�; 1 ≤ k ≤ N ] ⊂ Z(Tε(Ω′)) (3.3)

and the mixed polynomial/Laurent polynomial central subalgebras

Lε(Ω′)≥ := C[(xek )±�, (xei)�; k ∈ ex � inv, i ∈ ninv] ⊂ Z(Tε(Ω′)≥), (3.4)

Lε(M ′
ε)≥ := C[M ′

ε(ek)±�, M ′
ε(ei)

�; k ∈ ex � inv, i ∈ ninv] ⊂ Z(Tε(M ′
ε)≥). (3.5)

Denote the central subalgebra

CUε(Mε, B̃, inv) :=
⋂

(M ′
ε,B̃′)∼(Mε,B̃)

Lε(M ′
ε)≥ ⊂ Z(Uε(Mε, B̃, inv)). (3.6)

The exchange graph of the root of unity upper quantum cluster algebra Uε(Mε, B̃, inv)

is the labelled graph with vertices corresponding to the root of unity quantum seeds that 

are mutation-equivalent to (Mε, B̃) and edges given by seed mutations, labelled by the 

corresponding mutation number. (The exchange graph is independent of the set inv.)

Theorem 3.1. Assume that � is an odd positive integer that is coprime to the diagonal 

entries of the skew-symmetrizing matrix D for the principal part of the exchange matrix 

B̃. Then the following hold:

(i) [33, Theorem 4.8] There exists a unique isomorphism of labelled graphs, between 

the exchange graphs of U(B̃, inv) and Uε(Mε, B̃, inv) that sends the vertex corre-

sponding to the seed (x̃, B̃) to that of the seed (Mε, B̃).

(ii) [33, Proposition 4.4] For all seeds (M ′
ε, B̃′) ∼ (Mε, B̃) and k ∈ ex,

M ′
ε(ek)� (μkM ′

ε(ek))
�

=
∏

b′
ik>0

(M ′
ε(ei)

�)b′
ik +

∏

b′
ik<0

(M ′
ε(ei)

�)−b′
ik ,

which is precisely the mutation formula for the seeds of U(B̃, inv).

(iii) [27, Proposition 3.9] We have an isomorphism of C-algebras

CUε(Mε, B̃, inv) 
 U(B̃, inv), (3.7)

which is uniquely determined by sending M ′
ε(ek)� �→ x′

k, where the seed (M ′
ε, B̃′)

corresponds to the seed (x̃′, B̃′) under the graph isomorphism in part (i).
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(iv) [27, Theorem B] Uε(Mε, B̃, inv) is a Cayley–Hamilton algebra of degree �N over 

its central subalgebra CUε(Mε, B̃, inv) in the sense of Procesi [10, Definition 4.2]. 

Uε(Mε, B̃, inv) is finitely generated C-algebra if and only if Uε(Mε, B̃, inv) is a 

finitely generated CUε(Mε, B̃, inv)-module and U(B̃, inv) is a finitely generated C-

algebra.

We will need the root of unity upper quantum cluster algebra in the special case when 

all frozen variables are inverted:

Uε(Mε, B̃) := Uε(Mε, B̃, [1, N ]\ex) =
⋂

(x̃′,B̃′)∼(x̃,B̃)

Tε(M ′
ε).

It is easy to verify that it is a localization of the ones for other choices of inv:

Uε(Mε, B̃) = Uε(Mε, B̃, inv)[M(ei)
−1; i ∈ ninv].

The above treatment can be viewed as defining quantum cluster A-varieties at roots 

of unity. Quantum cluster X -varieties at roots of unity were defined and studied by Fock 

and Goncharov in [12], who obtain analogous algebraic results to Theorem 3.1(ii)-(iii) 

under the stronger assumption that the order of the root of unity is coprime to the 

entries of the exchange matrices of all seeds of the algebra. However, they only consider 

varieties up to birational isomorphism and therefore do not consider such phenomena as 

singularities.

3.2. Strict root of unity quantum cluster algebras

Definition 3.2. [33, Sect. 5] We say that a root of unity quantum seed (Mε, B̃) is strict

if there exists a skew-symmetric integer matrix Λ ∈ MN (Z) such that

(i) ΩMε
= Λ and

(ii) (Λ, B̃) is a compatible pair, see Sect. 2.3.

The corresponding root of unity upper quantum cluster algebra Uε(Mε, B̃, inv) will be 

also called strict.

Proposition 3.3. Assume that Uε(Mε, B̃, inv) is a strict root of unity upper quantum 

cluster algebra such that � is an odd positive integer that is coprime to the diagonal 

entries of the skew-symmetrizing matrix D for the principal part of the exchange matrix 

B̃. Then for every seed (M ′
ε, B̃′) ∼ (Mε, B̃) there exists a unique skew-symmetric integer 

matrix Λ(M ′
ε,B̃′) ∈ MN (Z), such that Λ(M ′

ε,B̃′) = Λ′, the matrix from Definition 3.2, and

(i) the pair 
(
Λ(M ′

ε,B̃′), B̃
′
)

is compatible and Λ(M ′
ε,B̃′) = ΩM ′

ε
;
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(ii) for all k ∈ ex,

μk

(
Λ(M ′

ε,B̃′), B̃′
)

=
(
Λ(μk(M ′

ε,B̃′)), μk(B̃′)
)
,

where the left hand side uses mutation of compatible pairs, defined in (2.7).

For the proof of the proposition we will need the surjective C-algebra homomorphism

κε : Tq(Mq)≥ → Tε(Mε)≥, (3.8)

given by

q1/2 �→ ε1/2, Mq(ek)±1 �→ Mε(ek)±1, Mq(ei) �→ Mε(ei), ∀k ∈ ex � inv, i ∈ ninv.

Its kernel is

ker κε = (q1/2 − ε1/2)Tq(Mq)≥, (3.9)

see [33, Lemma 5.5].

Proof of Proposition 3.3. For a given seed (M ′
ε, B̃′) ∼ (Mε, B̃) consider a sequence of 

mutations μk1
. . . μkj

such that

μk1
. . . μkj

(Mε, B̃) = (M ′
ε, B̃′). (3.10)

Applying this sequence of mutations to the compatible pair (Λ, B̃) gives that

μk1
. . . μkj

(Λ, B̃) = (Λ′, B̃′) (3.11)

for a skew-symmetric matrix Λ′ ∈ MN (Z). The two exchange graph isomorphisms from 

Theorems 2.7 and 3.1(i) imply that the matrix Λ′ is independent on the choice of muta-

tion sequence μk1
. . . μkj

satisfying (3.10). Define

Λ(M ′
ε,B̃′) := Λ′.

Since the mutations of a compatible pair are compatible pairs (see Sect. 2.3), (
Λ(M ′

ε,B̃′), B̃
′
)

is a compatible pair. By [33, Theorem 5.7], κε restricts to a surjective 

C-algebra homomorphism Aq(Mq, B̃, inv) → Aε(Mε, B̃, inv) that sends cluster vari-

ables to cluster variables and commutes with mutation. The toric frame Mq of Fq is 

such that ΛMq
= Λ. The existence of such a homomorphism implies that

M ′
ε(ei)M

′
ε(ek) = εΛ′(ei,ek)/2M ′

ε(ei + ek), ∀i, k ∈ [1, N ].

Hence,
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Λ(M ′
ε,B̃′) = ΩM ′

ε
.

Finally, property (ii) in the statement of the proposition follows at once from the defini-

tion (3.11) of Λ(M ′
ε,B̃′). �

3.3. Torus action on Uε(Mε, B̃, inv)

Denote by Ker(B̃�) the null space of B̃� in ZN . Let ν = (ν1, . . . , νN ) ∈ Ker(B̃�). 

For each k ∈ ex, we define the vector μk(ν) = (ν1, . . . , νk−1, ν′
k, νk+1, . . . , νN ), where

ν′
k := ν · [bk]+ − νk.

Recall that bk denotes the k-th column of B̃ and f · g the dot product on ZN .

By [19, Lemma 2.3],

ν ∈ Ker(B̃�) ⇒ μk(ν) ∈ Ker(μk(B̃)�), ∀k ∈ ex. (3.12)

For ν ∈ Ker(B̃�), we have the C
×-action on the root of unity mixed quantum torus 

Tε(Mε, B̃)≥, given by

ϕν(t) · Mε(f) := tν·f Mε(f), ∀f ∈ Z
N . (3.13)

It induces C×-action on the skew field of fractions Fε of Tε(Mε, B̃). Analogously to the 

proof of [19, Lemma 2.3] one verifies that

ϕν(t) · μk(Mε)(f) := tμk(ν)·f μk(Mε)(f), ∀f ∈ Z
N . (3.14)

By recursively applying (3.12), we obtain that this action preserves the root of unity 

mixed quantum tori Tε(M ′
ε, B̃′)≥ associated to all seeds (M ′

ε, B̃′) ∼ (Mε, B̃), and thus, 

the action preserves Uε(Mε, B̃, inv). This proves the first part of the following lemma:

Lemma 3.4.

(i) For every ν ∈ Ker(B̃�), there is a C×-action ϕν on the root of unity upper quantum 

cluster algebra Uε(Mε, B̃, inv), given by (3.13). For every seed (M ′
ε, B̃′) ∼ (Mε, B̃)

and k ∈ [1, N ],

ϕν(t) · M ′
ε(ek) = taM ′

ε(ek) (3.15)

for some a ∈ Z depending on the seed and k.

(ii) The action ϕν preserves CUε(Mε, B̃, inv). Under the isomorphism (3.7), it corre-

sponds to the C×-action ψν on U(B̃, inv) uniquely determined from
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ψν(t) · xk := t�(ν·ek)xk, ∀k ∈ [1, N ].

For every seed (x̃′, B̃′) ∼ (x̃, B̃) and k ∈ [1, N ],

ψν(t) · x′
k := t�ax′

k

for some a ∈ Z.

(iii) For every ν, η ∈ Ker(B̃�), the C-actions ϕν and ϕ· commute.

The second and third parts of the lemma follow from (3.15) and the concrete form of 

the isomorphism (3.7) from Theorem 3.1(iii). Up to the �-th power the C-action ψν on 

U(B̃, inv) is the one constructed in [19, Lemma 2.3].

Definition 3.5. For an exchange matrix B̃, define the nullity

n(B̃) := dim Ker(B̃�)

and the complex torus

T (B̃) := (C×)n(B̃).

Ker(B̃�) is a free abelian group of rank n(B̃). Fix a basis

{ν1, . . . , νn(B̃)} (3.16)

of it. Parts (i) and (iii) Lemma 3.4 imply that we have a T (B̃)-action on Uε(Mε, B̃, inv), 

given by

ϕ(t1, . . . , tn(B̃)) · y := ϕν1(t1) · · · ϕ
νn(B̃)(tn(B̃)) · y,

for ti ∈ C and y ∈ Uε(Mε, B̃, inv). For every seed (M ′
ε, B̃′) ∼ (Mε, B̃) and k ∈ [1, N ], 

there exists a character θ : T (B̃) → C
× such that

ϕ(t) · M ′
ε(ek) = θ(t)M ′

ε(ek), ∀t ∈ T (B̃). (3.17)

For different choices of a basis {ν1, . . . , νm} of Ker(B̃�), the actions ϕ differ from each 

other by an automorphism of T (B̃).

Part (ii) of Lemma 3.4 implies that the action ϕ preserves CUε(Mε, B̃, inv). Under 

the isomorphism (3.7), it corresponds to the T (B̃)-action ψ on U(B̃, inv) given by

ψ(t1, . . . , tn(B̃)) · y := ψν1(t1) · · · ψ
νn(B̃)(tn(B̃)) · y,

for ti ∈ C and y ∈ U(B̃, inv). For every seed (x̃′, B̃′) ∼ (x̃, B̃) and k ∈ [1, N ], there 

exists a character θ : T (B̃) → C
× such that
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ψ(t) · x′
k = θ(t�)x′

k, ∀t ∈ T (B̃). (3.18)

By the results in [19], the GSV Poisson algebra structure on U(B̃, inv) is invariant under 

the action ψ of T (B̃). The action ψ is defined for every upper cluster algebra U(B̃, inv).

Finally, we note that the T (B̃)-action ψ on U(B̃, inv) is defined for any upper cluster 

algebra, without the need of existence of root of unity quantization Uε(Mε, B̃, inv)

4. Poisson side: the open torus orbit of symplectic leaves

In this section we prove our first main result proving that the GSV Poisson structure 

on every finitely generated upper cluster algebra always has a Zariski open torus orbit 

of symplectic leaves and explicitly describe this set.

4.1. Statement of main theorem

Throughout this section, we will assume that U(B̃, inv) is a finitely generated, upper 

cluster algebra for which there exists a skew-symmetric matrix Λ ∈ MN (Z) such that 

(Λ, B̃) is a compatible pair. The GSV Poisson algebra structure {., .} on U(B̃, inv) (see 

Sect. 2.4) gives rise to a Poisson structure π on the affine variety

Y (B̃) := MaxSpec U(B̃, inv).

This variety is in general singular. It is normal because each mixed polynomial/Laurent 

polynomial ring L(x̃′)≥ is integrally closed, and thus the upper cluster algebra U(B̃, inv), 

given by the intersection (2.5), is integrally closed too.

Denote the product of non-inverted frozen variables

x :=
∏

i∈ninv

xi ∈ C[Y (B̃)]. (4.1)

Denote

Y (B̃)◦ = Y (B̃)\V(x) ∼= MaxSpec U(B̃).

For a seed (x̃′, B̃′) ∼ (x̃, B̃), denote

Sx̃′ := MaxSpec L(x̃′)≥
∼= (C×)|ex|+|inv| × C

|ninv|,

S◦
x̃′ := MaxSpec L(x̃′) ∼= (C×)N .

Clearly,

S◦
x̃′

∼= Sx̃′\V(x).



G. Muller et al. / Advances in Mathematics 453 (2024) 109822 21

The algebras L(x̃′)≥ and L(x̃′) are localizations of U(B̃, inv) by the multiplicative sub-

sets generated by xi for i ∈ ex and i ∈ ex � ninv, respectively. So, Sx̃′ and S◦
x̃′ are 

Zariski open, and thus, dense subsets of Y (B̃).

Recall from Sect. 3.3 that the Poisson structure π is invariant under the action 

ψ of T (B̃). Thus it makes sense to consider the T (B̃)-orbits of symplectic leaves of 

(U(B̃, inv), π), which are regular Poisson submanifolds.

Theorem 4.1. Assume that U(B̃, inv) is a finitely generated upper cluster algebra for 

which there exists a skew-symmetric matrix Λ ∈ MN (Z) such that (Λ, B̃) is a compat-

ible pair. Then the affine Poisson variety (Y (B̃), π) has a Zariski open T (B̃)-orbit of 

symplectic leaves, which equals

Y (B̃)reg\V(x) = (Y (B̃)◦)reg.

4.2. One-sided containment

Definition 4.2. [26, Sect. 4], [32, Sect. 2.2] Let R be a Poisson algebra which is an integral 

domain considered as a commutative algebra. An element p ∈ R is called Poisson prime, 

if the principal ideal (p) is a Poisson ideal and a prime ideal of R, considered as a 

commutative algebra.

Equivalently, p ∈ R is a prime element and

p | {p, r}, ∀r ∈ R.

Proposition 4.3. Assume that U(B̃, inv) is an upper cluster algebra, such that B̃ admits 

a compatible skew-symmetric matrix Λ ∈ MN (Z). Then the following hold:

(i) Every prime element of C[xi; i ∈ ninv] is a prime element of U(B̃, inv).

(ii) Every non-inverted frozen variable xi, (i.e. i ∈ ninv) is a Poisson prime of 

U(B̃, inv) with respect to the Poisson structure associated to Λ.

Proof. (i) Let p ∈ C[xi; i ∈ ninv] be a prime element. Analogously to the proof of [18, 

Proposition 3.5], one shows that

L(x̃′)≥ ∩ (pL(μkx̃
′)≥) = (pL(x̃′)≥) ∩ L(μkx̃

′)≥ (4.2)

for all seed (x̃′, B̃′) ∼ (x̃, B̃) and k ∈ ex. Assume that p|ab for some a, b ∈ U(B̃, inv). 

Then a, b ∈ L(x̃)≥, and since p is a prime element of L(x̃)≥, either p | a or p | b. Say 

p | a. Then a ∈ pL(x̃)≥, and by (4.2),

a ∈ pL(μkx̃)≥, ∀k ∈ ex.

Iterating this argument gives that a ∈ pL(x̃′)≥ for all (x̃′, B̃′) ∼ (x̃, B̃). Hence,
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a ∈
⋂

(x̃′,B̃′)∼(x̃,B̃)

pL(x̃′)≥ = p U(B̃, inv).

This implies the statement of (i) because p is not a unit of U(B̃, inv).

(ii) Fix b ∈ U(B̃, inv). It follows from (2.9) that

{xi, b}/xi ∈ L(x̃′)

for all (x̃′, B̃′) ∼ (x̃, B̃). Hence,

{xi, b}/xi ∈ U(B̃, inv),

which completes the proof of part (ii). �

Proposition 4.4. In the setting of Theorem 4.1, Y (B̃)reg\V(x) = (Y (B̃)◦)reg is a union 

of T (B̃)-orbits of symplectic leaves.

Proof. Let i ∈ ninv. By (3.18), xi is rescaled by the T (B̃)-action. So V(xi) is T (B̃)-

stable. It follows from [26, Proposition 2.3] that V(xi) is a union of symplectic leaves. 

Therefore, V(xi) is a union of T (B̃)-orbits of symplectic leaves.

Since T (B̃) acts on U(B̃, inv) by algebra automorphisms, Y (B̃)sing is T (B̃)-stable. 

By [34, Corollary 2.4], it is also a union of symplectic leaves. Thus, Y (B̃)sing is a union 

of T (B̃)-orbits of symplectic leaves.

Hence, Y (B̃)sing ∪ V(x) is a union of T (B̃)-orbits of symplectic leaves, and the same 

applies to its complement,

Y (B̃)reg\V(x) = Y (B̃)\(Y (B̃)sing ∪ V(x)). �

4.3. A section of the anticanonical bundle of Y (B̃)reg

For ν ∈ Ker(B̃�), denote by

wν the vector field on Y (B̃),

which represents the infinitesimal action of the C×-action ψν on Y (B̃), cf. Lemma 3.4(ii).

The rank of the skew-symmetric matrix Λ = (λik) ∈ MN (Z) equals

rk(Λ) = 2r

for some r ∈ Z+. It follows from (2.6) that

2r + n(B̃) = dim Im(Λ) + dim Ker(B̃�) ≥ dim Im(B̃�Λ) + dim Ker(B̃�) (4.3)

= dim Im(B̃�) + dim Ker(B̃�) = N.
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The Poisson structure π on Y (B̃) has rank r (meaning ∧rπ 
= 0 and ∧r+1π = 0). This 

follows from the fact that its rank equals the rank of its restriction to the Zariski open 

subset Sx̃ on Y (B̃), on which the Poisson structure is explicitly given by

π|S
x̃

=
∑

1≤i,k≤N

λik
∂

∂xi
∧

∂

∂xk
·

Recall from (3.16) that the action ψ of the torus T (B̃) on Y (B̃) is defined from a basis 

{ν1, . . . , νn(B̃)} of Ker(B̃�). Denote by ∆ the set of (N −2r)-element subsets of [1, n(B̃)], 

recall (4.3). For θ := {i1, . . . , iN−2r} ∈ ∆, denote the section of the anticanonical bundle 

of Y (B̃),

χ¸ := wνi1 ∧ . . . ∧ wνiN−2r ∧ (∧rπ) ∈ Γ(Y (B̃), K∗
Y (B̃)

).

Theorem 4.5. Assume that U(B̃, inv) is a finitely generated upper cluster algebra, such 

that B̃ admits a compatible skew-symmetric matrix Λ ∈ MN (Z).

(i) There exists a unique up to rescaling non-zero global section χ of the anticanonical 

bundle K∗
Y (B̃)

such that for every (x̃′, B̃′) ∼ (x̃, B̃),

χ|S
x̃

′ = c(x̃′,B̃′)x
′
1 . . . x′

N

∂

∂x′
1

∧ · · · ∧
∂

∂x′
N

for some c(x̃′,B̃′) ∈ C
×.

(ii) For each θ ∈ ∆, either χ¸ = 0 or χ¸ is a non-zero scalar multiple of χ. The latter 

is the case for at least one θ ∈ ∆.

Proof. First we show that for all θ ∈ ∆ and (x̃′, B̃′) ∼ (x̃, B̃),

χ¸|S
x̃

′ = c¸,(x̃′,B̃′)x
′
1 . . . x′

N

∂

∂x′
1

∧ · · · ∧
∂

∂x′
N

(4.4)

for some c¸,(x̃′,B̃′) ∈ C. Lemma 3.4(ii) implies that

ψν(t) · x′
k := t�ak x′

k, ∀k ∈ [1, N ]

for some ak ∈ Z. Therefore,

wν |S◦
x̃

′
=

N∑

k=1

�akx′
k

∂

∂x′
k

·

This equality and the fact that
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π|S
x̃

′ =
∑

1≤i,k≤N

Λ(x̃′,B̃′)(ei, ek)x′
ix

′
k

∂

∂x′
i

∧
∂

∂x′
k

imply (4.4). Since Sx̃′ is a Zariski open subset of the irreducible affine variety Y (B̃), the 

following are equivalent for θ ∈ ∆:

(1) χ¸ 
= 0,

(2) c¸,(x̃,B̃) 
= 0,

(3) c¸,(x̃′,B̃′) 
= 0 for all (x̃′, B̃′) ∼ (x̃, B̃).

The proof of [19, Lemma 2.4] gives that T (B̃) acts transitively on the symplectic 

leaves of (S◦
x̃′ , π|V ). Furthermore, for y ∈ Y (B̃)reg the tangent space at y of the orbit 

T (B̃) · y is

Ty

(
T (B̃) · y

)
= SpanC{wν1,y, . . . , wνN−2r,y}. (4.5)

Therefore, there exists θ0 ∈ ∆ such that

c¸0,(x̃,B̃) 
= 0,

which, in view of the above equivalence, implies that

χ := χ¸0

satisfies the conditions in the proposition. Furthermore, for all θ ∈ ∆, χ¸χ−1
¸0

is a mero-

morphic function on Y (B̃), which by (4.4) is constant on every Zariski open subset Sx̃′ , 

and thus, it should be constant on Y (B̃). The same argument proves the uniqueness of 

a section χ with stated properties in part (i). �

4.4. Normality and codimension two results

Recall that an upper cluster algebra U(B̃) is called totally coprime [1, Sect. 1.2] if 

every two columns of all of its extended exchange matrices are linearly independent. 

If the exchange matrix B̃ has full rank, then this condition is satisfied. In turn, this 

condition is satisfied whenever B̃ has a compatible skew-symmetric matrix Λ ∈ MN (Z), 

[1, Proposition 1.8].

Proposition 4.6. If U(B̃) is a finitely generated, totally coprime upper cluster algebra, 

then

(Y (B̃)◦)sing and Y (B̃)◦\
(
Sx̃ ∪ (∪k∈exSμk(x̃))

)

are closed subvarieties of Y (B̃)◦ = MaxSpec U(B̃), each irreducible component of which 

lies in codimension ≥ 2.
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Proof. Since U(B̃) is Noetherian and normal, Serre’s Criterion (e.g. [11, Theorem 11.5.i]) 

implies that each irreducible component of the singular locus (Y (B̃)◦)sing has codimen-

sion ≥ 2 (this is the R1 condition).

Because U(B̃) is totally coprime, [1, Corollary 1.7] implies that the coordinate ring of 

the open subvariety Sx̃ ∪ (∪k∈exSμk(x̃)) ⊆ Y (B̃)◦ (called the upper bound cluster algebra

in [1]) is equal to the coordinate ring of Y (B̃)◦ (which is the upper cluster algebra 

U(B̃)). By the Algebraic Hartogs Lemma, the complement of Sx̃ ∪ (∪k∈exSμk(x̃)) in 

Y (B̃)◦ must have codimension ≥ 2; see [29, Lemma 4.3.1] for the general statement and 

[29, Lemma 4.4.2] for the statement in this setting. �

4.5. Proof of Theorem 4.1

We prove a stronger result than that of Theorem 4.1, namely that Y (B̃)reg\V(x) is a 

single torus orbit of symplectic leaves of (Y (B̃), π) for a subtorus of T (B̃) of rank equal 

to

dim Y (B̃) − 2 rk π = dim Y (B̃) − dim L ,

where L is a symplectic leaf of Y (B̃) of maximal dimension.

Theorem 4.7. Assume that in the setting of Theorem 4.5, θ = {i1, . . . , iN−2r} is one 

of the elements of ∆ such that χ¸ 
= 0. Let T (B̃)0
∼= (C×)N−2r be the subtorus of 

T (B̃) ∼= (C×)n(B̃), corresponding to coordinates i1, . . . , iN−2r. Then the following hold:

(i) The restriction χ¸|(Y (B̃)◦)reg is a nowhere vanishing section of the anticanonical bun-

dle K∗
(Y (B̃)◦)reg

.

(ii) The Zariski open subset

Y (B̃)reg\V(x) = (Y (B̃)◦)reg

of Y (B̃) is a single T (B̃)0-orbit of symplectic leaves of (Y (B̃), π).

Proof. (i) The section χ¸|(Y (B̃)◦)reg does not vanish on

(Y (B̃)◦)reg\
(
Sx̃ ∪ (∪k∈exSμk(x̃))

)

by Theorem 4.5. It can not vanish anywhere on (Y (B̃)◦)reg because otherwise its zero 

locus will be a codimension 1 subvariety of (Y (B̃)◦)reg, which is disjoint from the union 

Sx̃ ∪ (∪k∈exSμk(x̃)). This would contradict Proposition 4.6.

(ii) Let L0 be a symplectic leaf of (Sx̃, π|S
x̃
). There exists a symplectic leaf L of 

(Y (B̃), π) such that L0 is a connected component of the intersection L ∩ Sx̃. The proof 

of [19, Lemma 2.4] gives that
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T (B̃)0 · L0 = Sx̃.

This proves the first inclusion in

Sx̃ ⊆ T (B̃)0 · L ⊆ (Y (B̃)◦)reg. (4.6)

The second inclusion follows from Proposition 4.4. Consider a point

y ∈ (Y (B̃)◦)reg

and let Ly be a relatively open neighborhood of y (in the C∞ topology) in the symplectic 

leaf of (Y (B̃), π) through y. Since

wνi1 ,y ∧ . . . ∧ wνiN−2r ,y ∧ (∧rπy) = χ¸,y 
= 0,

there exists a neighborhood (in the C∞ topology) O1 of the identity element of the 

torus T (B̃)0 such that O1 · Ly contains a neighborhood (in the C∞ topology) of y in 

(Y (B̃)◦)reg. Since Sx̃ is a Zariski open subset of the irreducible variety (Y (B̃)◦)reg,

T (B̃)0 · L0 ∩ O1 · Ly = Sx̃ ∩ O1 · Ly 
= ∅.

Hence, there exist t ∈ O1 and t′ ∈ T (B̃)0 such that

ψ(t) · Ly ⊆ ψ(t′) · L .

Note that the right hand side is a symplectic leaf of (Y (B̃), π), while the left hand side 

is a C∞ open subset of a symplectic leaf of (Y (B̃), π). Therefore,

y ∈ Ly ⊆ ψ(t−1t′)L ,

which shows that the second containment in (4.6) is an equality. �

5. Poisson order structures

This section contains a construction of Poisson order structures on strict root of 

unity upper quantum cluster algebras that will be used to link Poisson geometry and 

representation theory.

5.1. Poisson orders on mixed root of unity quantum tori

Denote

Z
N
≥ := {(m1, . . . mN ) ∈ Z

N | mi ≥ 0, ∀i ∈ ninv}.
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Proposition 5.1. Assume that Uε(Mε, B̃, inv) is a strict root of unity upper quantum 

cluster algebra and � is an odd positive integer that is coprime to the diagonal entries of 

the skew-symmetrizing matrix D for the principal part of the exchange matrix B̃.

Then, for every seed (M ′
ε, B̃′) ∼ (Mε, B̃), the pair

(Tε(M ′
ε)≥, Lε(M ′

ε)≥)

has a unique Poisson order structure ∂′ : Lε(M ′
ε)≥ → DerC(Tε(M ′

ε)≥) such that

∂′
M ′

ε(�f)(M
′
ε(g)) =

1

�
Λ(M ′

ε,B̃′)(f, g)M ′
ε(�f + g). (5.1)

The underlying Poisson structure is given by

{y′
k, y′

i}∂′ = Λ(M ′
ε,B̃′)(ek, ei)y

′
ky′

i, ∀k, i ∈ [1, N ], (5.2)

where y′
k := M ′

ε(ek)� for 1 ≤ k ≤ N .

Recall from Proposition 3.3 the construction of the skew-symmetric matrices 

Λ(M ′
ε,B̃′) ∈ MN (Z), identified with the corresponding bilinear forms

Λ(M ′
ε,B̃′) : Z

N × Z
N → Z.

In the proposition we suppress the dependence of the C-linear map ∂′ on the choice of 

seed (M ′
ε, B̃′) for simplicity of the notation. Note that, in view of (3.2) and (3.5),

Tε(M ′
ε)≥ = SpanC{M ′

ε(f) | f ∈ Z
N
≥ }, Lε(M ′

ε)≥ = SpanC{M ′
ε(�f) | f ∈ Z

N
≥ }.

Proof. Set Λ′ := Λ(M ′
ε,B̃′). Let (M ′

q, B̃′) ∼ (Mq, B̃) be the seed corresponding to (M ′
ε, B̃′)

under the exchange graph isomorphisms of Theorems 2.7 and 3.1(i). Consider the sur-

jective C-algebra homomorphism from (3.8) for the seed (M ′
ε, B̃′):

κ′
ε : Tq(M ′

q)≥ → Tε(M ′
ε)≥ (5.3)

and its C-linear section

ι′
ε : Tε(M ′

ε)≥ → Tq(M ′
q)≥, M ′

ε(f) �→ M ′
q(f), ∀f ∈ Z

N
≥ . (5.4)

By Lemma 2.2 and eq. (3.9), we obtain a Poisson order structure D′ on the pair 

(Tε(M ′
ε), Z(Tε(M ′

ε))). It is given by

D′
M ′

ε(�f)(Mε(g)) = κ′
ε

(
q�Λ′(f,g)/2 − q−�Λ′(f,g)/2

q1/2 − ε1/2
M ′

ε(�f + g)

)
,

= cM ′
ε(�f + g), ∀f, g ∈ Z

N
≥ ,
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where

c =
q�Λ′(f,g)/2 − q−�Λ′(f,g)/2

q1/2 − ε1/2

∣∣∣∣∣
q1/2=ε1/2

= 2�Λ′(f, g)ε�Λ′(f,g)/2ε−1/2 = 2�ε−1/2Λ′(f, g).

The underlying Poisson structure satisfies

{y′
k, y′

i}D′ = D′
M ′

ε(�ek)

(
M ′

ε(�ei)
)

= 2�2ε−1/2Λ′(ek, ei)y
′
ky′

i, k, i ∈ [1, N ].

In particular, Lε(M ′
ε)≥ is a Poisson subalgebra of Z(Lε(M ′

ε)≥) with respect to the 

bracket {−, −}D′ . Therefore,

∂′ :=
ε1/2

2�2
D′|Lε(M ′

ε)≥

is a Poisson order structure on the pair (Tε(M ′
ε)≥, Lε(M ′

ε)≥), which is given by (5.1). 

Eq. (5.2) follows at once from (5.1). In light of the C-linearity of ∂′, there is a unique 

Poisson order structure satisfying (5.1). �

5.2. Poisson order structures on root of unity upper quantum cluster algebras

Theorem 5.2. Assume that Uε(Mε, B̃, inv) is a strict root of unity upper quantum cluster 

algebra and � is an odd positive integer that is coprime to the diagonal entries of the 

skew-symmetrizing matrix D for the principal part of the exchange matrix B̃ such that

Aε(Mε, B̃, inv) = Uε(Mε, B̃, inv). (5.5)

Then the pair (Uε(Mε, B̃, inv), CUε(Mε, B̃, inv)) admits a Poisson order structure such 

that under the isomorphism

CUε(Mε, B̃, inv) ∼= U(B̃, inv)

from (3.7) the underlying Poisson structure on CUε(Mε, B̃, inv) corresponds to the GSV 

Poisson structure on U(B̃, inv).

Proof. Recall the surjective C-algebra homomorphism

κε : Tq(Mq)≥ → Tε(Mε)≥

from (3.8) and consider its restriction to Uq(Mε, B̃, inv). For all seeds (M ′
q, B̃′) ∼ (Mq, B̃)

and indices k ∈ ex, we have

(q1/2 − ε1/2)Tq(M ′
q)≥ ∩ Tq(M ′′

q )≥ = Tq(M ′
q)≥ ∩ (q1/2 − ε1/2)Tq(M ′′

q )≥

= (q1/2 − ε1/2)
(
Tq(M ′

q)≥ ∩ Tq(M ′′
q )≥

)
. (5.6)
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The first equality follows from [33, Proposition 5.10] and the second is an immediate 

consequence of the first one. Since Ker κε = (q1/2 − ε1/2)Tq(Mq)≥ by eq. (3.9),

Ker κε|
Uq(Mε,B̃,inv) = (q1/2 − ε1/2)Uq(Mε, B̃, inv). (5.7)

The exchange graph isomorphism from Theorem 3.1(i) implies that

κε

(
Uq(Mε, B̃, inv)

)
⊆ Uε(Mε, B̃, inv). (5.8)

By [33, Theorem 5.7]

κε(Aq(Mq, B̃, inv)) = Aε(Mε, B̃, inv).

Using the quantum Laurent phenomenon (2.8) and the assumption (5.5), we obtain

κε(Uq(Mq, B̃, inv)) ⊇ κε(Aq(Mq, B̃, inv)) = Aε(Mε, B̃, inv) = Uε(Mε, B̃, inv).

This, combined with (5.8), gives

κε(Uq(Mq, B̃, inv)) = Uε(Mε, B̃, inv).

In view of (5.7) and Lemma 2.2, the restriction of κε to Uq(Mq, B̃, inv) gives rise to a 

Poisson order structure DU on

(Uε(Mq, B̃, inv), Z(Uε(Mq, B̃, inv))).

Denote

∂U :=
ε1/2

2�2
DU.

Consider a C-linear section

Uε(Mε, B̃, inv) → Uq(Mq, B̃, inv)

of the restriction of κε to Uq(Mq, B̃, inv). For an arbitrary seed (M ′
ε, B̃′) ∼ (Mε, B̃), 

extend it to a section of the homomorphism κ′
ε : Tq(M ′

q)≥ → Tε(M ′
ε)≥ from (5.3). 

Proposition 5.1 and the independence of the underlying Poisson structure of a Poisson 

order obtained by specialization (Lemma 2.2) imply that

{y′
k, y′

i}∂U
= {y′

k, y′
i}∂′ = Λ(M ′

ε,B̃′)(ek, ei)y
′
ky′

i, ∀k, i ∈ [1, N ], (5.9)

for y′
i := M ′

ε(ei)
�. Therefore,
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CUε(Mε, B̃, inv) :=
⋂

(M ′
ε,B̃′)∼(Mε,B̃)

Lε(M ′
ε)≥

is closed under the Poisson bracket {., .}∂U
and ∂U restricts to a Poisson order structure

∂′
U : CUε(Mε, B̃, inv) → DerC

(
Uε(Mε, B̃, inv)

)
.

Eqs. (2.9) and (5.9) imply that the underlying Poisson structure on CUε(Mε, B̃, inv)

corresponds to the GSV Poisson structure on U(B̃, inv). �

6. Root of unity quantum side: the fully Azumaya loci

In this section we prove our second main result describing the fully Azumaya loci 

of all finitely generated strict upper cluster algebras Uε(Mε, B̃, inv) with the property 

Uε = Aε.

6.1. Statement of the main result

Consider a root of unity upper quantum cluster algebra Uε(Mε, B̃, inv) and its central 

subalgebra

CUε(Mε, B̃, inv) ⊂ Z(Uε(Mε, B̃, inv)),

given by (3.6). If, the order of ε is odd and coprime to the diagonal entries of the 

skew-symmetrizing matrix D for the principal part of the exchange matrix B̃, then by 

Theorem 3.1(iii),

CUε(Mε, B̃, inv) ∼= U(B̃, inv).

If, in addition, Uε(Mε, B̃, inv) is a finitely generated C-algebra, then by Theorem 3.1(iii), 

it is a module finite domain over CUε(Mε, B̃, inv) and CUε(Mε, B̃, inv) is a finitely 

generated normal commutative C-algebra. So, we can consider the fully Azumaya locus 

A of Uε(Mε, B̃, inv) with respect to CUε(Mε, B̃, inv), recall Definition 2.4. We will 

identify

MaxSpec CUε(Mε, B̃, inv) ∼= Y (B̃) = MaxSpec U(B̃, inv)

and think of A as of a Zariski open subset of Y (B̃), recall Lemma 2.5.

Recall (4.1). Denote the set of non-central frozen variables among the non-inverted 

ones:

nc := {i ∈ ninv | M(ei) /∈ Z(Uε(Mε, B̃, inv))} ⊂ ninv (6.1)
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and set

xnc :=
∏

i∈nc

xi. (6.2)

Our main result provides an explicit characterization of the fully Azumaya locus A.

Theorem 6.1. Assume that Uε(Mε, B̃, inv) is a finitely generated strict root of unity upper 

quantum cluster algebra such that the order of ε is odd and coprime to the diagonal entries 

of the skew-symmetrizing matrix D for the principal part of the exchange matrix B̃ and

Aε(Mε, B̃, inv) = Uε(Mε, B̃, inv).

Then the fully Azumaya locus A of Uε(Mε, B̃, inv) with respect to the central subalgebra

CUε(Mε, B̃, inv) ∼= U(B̃, inv)

satisfies

(Y (B̃)◦)reg ⊆ A ⊆ Y (B̃)\V(xnc).

All important root of unity quantum cluster algebras that we are aware of do not have 

central frozen variables. In those situations

nc = ninv and xnc = x,

so the upper bound for the fully Azumaya locus in Theorem 6.1 becomes

Y (B̃)\V(xnc) = Y (B̃)\V(x) = Y (B̃)◦.

Corollary 6.2. If Uε(Mε, B̃, inv) is a strict root of unity upper quantum cluster algebra 

as in Theorem 6.1 such that

M(ei) /∈ Z(Uε(Mε, B̃, inv)), ∀i ∈ ninv,

then

(Y (B̃)◦)reg ⊆ A ⊆ Y (B̃)◦.

However, in general, one cannot replace the upper bound in Theorem 6.1 with Y (B̃)◦

as shown in Proposition 6.6.
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6.2. Proof of the first inclusion in Theorem 6.1

The first inclusion in Theorem 6.1 follows from the following:

Proposition 6.3. In the setting of Theorem 6.1, for all

m ∈ (Y (B̃)◦)reg ⊂ Y (B̃) ∼= MaxSpec CUε(Mε, B̃, inv),

the algebra

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv)

is isomorphic to

Tε(Λ)/nTε(Λ),

where n is any maximal ideal of Lε(Λ) (recall (3.1) and (3.3)) and Λ ∈ MN (Z) is the 

skew-symmetric integer matrix compatible with B̃ as in Definition 3.2. All irreducible 

representations of the last algebra have dimension

√
[ZN : Ker(Λ)], (6.3)

which equals the PI degree of Uε(Mε, B̃, inv).

Here, [G : H] denotes the index of a subgroup H of a group G. The matrix Λ ∈

MN (Z/�) is identified with the corresponding bilinear form ZN ×Z
N → Z/�, and Ker(Λ)

denotes the kernel of this form. The index in (6.3) is finite because Ker(Λ) ⊇ (�Z)N .

Proof. The algebras

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv)

are isomorphic to each other for all

m ∈ (Y (B̃)◦)reg.

This follows by combining Theorems 5.2 and 4.1, Corollary 2.6, and the fact that ϕ is an 

action of T (B̃) on Uε(Mε, B̃, inv) by algebra automorphisms that preserves the central 

subalgebra CUε(Mε, B̃, inv), see Lemma 3.4. So, we can restrict ourselves to the special 

case when

m ∈ MaxSpec Lε(Mε) ∼= MaxSpec L(x̃) ⊂ (Y (B̃)◦)reg. (6.4)
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Denote by E the multiplicative subset of CUε(Mε, B̃, inv), generated by Mε(ei)
� for 

i ∈ [1, N ]\(ex � inv). We have

Uε(Mε, B̃, inv)[E−1] ∼= Tε(Mε) ∼= Tε(Λ) (6.5)

and, on the level of their centers,

CUε(Mε, B̃, inv)[E−1] ∼= Lε(Mε) ∼= Lε(Λ). (6.6)

For the rest of the proof assume (6.4). This implies that m is a maximal ideal of 

CUε(Mε, B̃, inv) that is disjoint from E. This property and eq. (6.5) give

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv)

∼=Uε(Mε, B̃, inv)[E−1]/mUε(Mε, B̃, inv)[E−1] ∼= Tε(Λ)/nTε(Λ).

Here n is the maximal ideal of Lε(Λ) corresponding to the maximal ideal m[E−1] of 

Uε(Mε, B̃, inv)[E−1] under the isomorphism (6.6).

Since Tε(Λ) is an Azumaya algebra of PI degree 
√

[ZN : Ker(Λ)] by [27, Proposi-

tion 6.1(3-4)], all irreducible representations of Tε(Λ) have dimension equal to the same 

integer. The latter equals the PI degree of Uε(Mε, B̃, inv) by [27, Proposition 6.4]. �

6.3. Proof of the second inclusion in Theorem 6.1

Consider a strict root of unity quantum cluster algebra Uε(Mε, B̃, inv) with skew-

symmetric integer matrix Λ ∈ MN (Z) as in Definition 3.2.

For j ∈ [1, N ]\(ex � inv), denote by Λj ∈ MN−1(Z) the submatrix of Λ, obtained by 

removing the j-th row and column. Set

Z
N−1
j :=

⊕

i�=j

Zei ⊂ Z
N .

The bilinear form ZN−1
j ×Z

N−1
j → Z/� associated to Λj is the restriction to ZN−1

j of the 

bilinear form ZN × Z
N → Z/� associated to Λ. Let Tε(Λj) be the root of unity quantum 

subtorus of Tε(Λ) spanned by xf for f ∈ Z
N−1
j , cf. (3.1). Denote

J := ninv\{j}. (6.7)

It is easy to see that we have a second description of Tε(Λj):

(
Tε(Λ)≥[(xei)−1; i ∈ J ]

)
/(xej ) ∼= Tε(Λj). (6.8)

Recall that an element a of an algebra R is called normal if Ra = aR. Here and below, 

for such an element a ∈ R, we denote the principal ideal
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(a) := Ra = aR.

Proposition 6.4. Assume the setting of Theorem 6.1.

Then the open subset

(
V(xj) ∩ Sx̃

)
\V(x/xj)

of V(xj) is non-empty and for all

m ∈
(
V(xj) ∩ Sx̃

)
\V(x/xj) ⊂ Y (B̃) ∼= MaxSpec CUε(Mε, B̃, inv), (6.9)

the algebra

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv)

is isomorphic to

Tε(Λj)/nTε(Λj),

where n is a maximal ideal of Lε(Λj) and Λ ∈ MN (Z) is the skew-symmetric integer 

matrix as in Definition 3.2. All irreducible representations of the last algebra have di-

mension

√
[ZN−1

j : Ker(Λj)].

Proof. Recall (6.7). We have

Uε(Mε, B̃, inv)[Mε(ei)
−�; i ∈ J ] ∼= Tε(Mε)≥[Mε(ei)

−�; i ∈ J ] ∼= Tε(Λ)≥[(xei)−�; i ∈ J ].

Combining this with (6.8) gives

(
Uε(Mε, B̃, inv)[Mε(ei)

−�; i ∈ J ]
)

/(M(ej)) ∼= Tε(Λj). (6.10)

Analogously, on the level of centers one shows that

CUε(Mε, B̃, inv)[Mε(ei)
−�; i ∈ J ] ∼= Lε(Λ)≥[(xei)−�; i ∈ J ]. (6.11)

The assumption (6.9) implies that the maximal ideal m of CUε(Mε, B̃, inv) is dis-

joint from the multiplicative set [Mε(ei)
�; i ∈ J ]. Denote by n the maximal ideal 

of Lε(Λ)≥[x−�
i ; i ∈ J ] that corresponds to the maximal ideal m[Mε(ei)

−�; i ∈ J ] of 

CUε(Mε, B̃, inv)[Mε(ei)
−�; i ∈ J ] under the isomorphism (6.11). We have,
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R :=
(
Tε(Λ)≥[x−�

i ; i ∈ J ])/n
(
Tε(Λ)≥[x−�

i ; i ∈ J ]
)
,

∼=
(
Uε(Mε, B̃, inv)[Mε(ei)

−�; i ∈ J ]
)
/m

(
Uε(Mε, B̃, inv)[Mε(ei)

−�; i ∈ J ]
)

∼=Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv).

It follows from (6.9) that

(xej )� ∈ n,

and thus, (xej )� = 0 as an element of the algebra R. Therefore, all irreducible represen-

tations of R are annihilated by xej , and so, those representations are in bijection with 

the irreducible representations of R/(xej ). Now we invoke (6.10), to obtain

R/(xej ) ∼=
(
Tε(Λ)≥[(xei)−�; i ∈ J ]

)
/(xej )n ∼= Tε(Λj)

for an ideal n′ of Tε(Λj). By [27, Proposition 6.1(3-4)], all irreducible representations of 

Tε(Λj) have dimension equal to

√
[ZN−1

j : Ker(Λj)],

and hence, the same holds for the algebra Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv). �

Proposition 6.5. Assume the setting of Theorem 6.1. Let j ∈ nc. Let

m ∈
(
V(xj) ∩ Sx̃

)
\V(x/xj) ⊂ Y (B̃).

The all irreducible representations of the algebra

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv)

have dimension strictly less than the PI degree of Uε(Mε, B̃, inv),

√
[ZN : Ker(Λ)].

Proof. Obviously, Ker(Λ) ∩ Z
N−1
j ⊆ Ker(Λj). Therefore,

[ZN : Ker(Λ)] ≥ [ZN−1
j : (Ker(Λ) ∩ Z

N−1
j )] ≥ [ZN−1

j : Ker(Λj)].

The first inequality is in fact strict. If it is an equality, then ej ∈ Ker(Λ), which implies 

that

xej ∈ Z(Tε(Λ)),
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which implies that

M(ej) ∈ Z(Uε(Mε, B̃, inv))

because Uε(Mε, B̃, inv) is a subalgebra of the skew field of fractions of Tε(Mε). This 

contradicts the definition (6.1) of the set nc. Hence,

√
[ZN : Ker(Λj)] <

√
[ZN : Ker(Λ)],

and the proposition now follows from Proposition 6.4. �

With this proposition we complete the proof of Theorem 6.1:

Proof of the second inclusion in Theorem 6.1. Let j ∈ nc. Propositions 6.4 and 6.5 im-

ply that

(
V(xj) ∩ Sx̃

)
\V(x/xj) ⊆ Y (B̃)\A

and that the first set is a non-empty Zariski open subset of V(x̃j). Since V(xj) is irre-

ducible by Proposition 4.3,

(
V(xj) ∩ Sx̃

)
\V(x/xj) = V(xj).

Furthermore, Lemma 2.5 implies that Y (B̃)\A is a Zariski closed subset of Y (B̃). There-

fore,

V(xj) ⊆ Y (B̃)\A, ∀j ∈ nc,

hence, V(xnc) ⊆ Y (B̃)\A, and thus A ⊆ Y (B̃)\V(xnc). �

Last we prove that one cannot replace the upper bound in Theorem 6.1 with Y (B̃)◦.

Proposition 6.6. Assume the setting of Theorem 6.1. Let

j ∈ ninv\nc.

All points

m ∈
(

V(xj) ∩
( ⋃

(x̃′,B̃′)∼(x̃,B̃)

Sx̃′

))
\V(x/xj)

belong to the fully Azumaya locus of Uε(Mε, B̃, inv) with respect to CUε(Mε, B̃, inv).
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Proof. It is sufficient to prove the statement for

m ∈ (V(xj) ∩ Sx̃)\V(x/xj).

Applying Proposition 6.4, we obtain that all irreducible representations of the algebra 

Uε(Mε, B̃, inv)/mUε(Mε, B̃, inv) have dimension

√
[ZN−1

j : Ker(Λj)].

Since j ∈ ninv\nc, we have M(ej) ∈ Z(Uε(Mε, B̃, inv)), and thus,

ej ∈ Ker(Λ).

Therefore,

[ZN : Ker(Λ)] = [ZN−1
j : (Ker(Λ) ∩ Z

N−1
j )] = [ZN−1

j : Ker(Λj)].

Hence,

√
[ZN : Ker(Λj)] <

√
[ZN : Ker(Λ)],

and the proposition now follows from Proposition 6.4. �

7. Special cases and examples

7.1. The Richardson divisor of a Schubert cell

The explicit Zariski open torus orbit of symplectic leaves from Theorem 4.1 is a far 

reaching generalization of the complement of the Richardson divisor of a Schubert cell 

for a complex simple Lie group G.

Let G be a complex simple Lie group with a pair of opposite Borel subgroups B±. 

Denote by T := B+ ∩B− the corresponding maximal torus of G and by U± the unipotent 

radicals of B±. Let W be the Weyl group of G, identified with N(T )/T , where N(T ) is 

the normalizer of T in G. Denote by s1, . . . , sr the set of simple reflections of W and by 

l : W → Z≥0 the length function on W . Let �1, . . . , �r be the fundamental weights of 

G.

The full flag variety has a canonical Poisson structure π which is the descent of the 

standard Poison–Lie structure on G, [9, Sect. 1.2-1.3]. This Poisson structure is invariant 

under T .

The Schubert cell of the full flag variety G/B+ corresponding to w ∈ W is

X◦
w := B+wB+/B+ ⊂ G/B+.
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The open Richardson variety [28] in G/B+ corresponding to the pair (w, u) ∈ W × W is

Rw,u :=
(
B+wB+ ∩ B−uB+

)
/B+ ⊂ G/B+.

It is non-empty precisely when u ≤ w in the Bruhat order. We have the partition:

X◦
w = �

u∈W,u≤w

Rw,u.

Denote the support of w ∈ W ,

Supp w := {i ∈ [1, r] | si ≤ w}.

This is precisely the set of indices i ∈ [1, r] such that si appears in one, and thus, in any 

reduced decomposition of w. The Richardson divisor of X◦
w is

RDw :=
⋃

i∈Supp(w)

ClX◦
w

(Rw,si
) = �

u∈W,u≤w,u �=1

Rw,u,

where ClY (Z) stands for the Zariski closure of Z in Y .

Theorem 7.1. (Goodearl–Yakimov) [22, Theorem 0.4] The T -orbits of symplectic leaves of 

the Schubert cell (X◦
w, πX◦

w
) are the open Richardson varieties Rw,u for u ∈ W , u ≤ w. 

There is a Zariski open T -orbit of leaves, which is the complement of the Richardson 

divisor of the Schubert cell X◦
w:

Rw,1 = X◦
w\RDw.

Example 7.2. The complement of the Richardson divisor RDw of the Schubert cell X◦
w

is a very special case of the Zariski open torus orbit of symplectic leaves of Y (B̃) =

MaxSpec U(B̃, inv) from Theorem 4.1, as we show next. (This can be shown in the 

more general case of symmetrizable Kac–Moody groups, but the setting requires more 

technical details.)

To each w ∈ W , one associates an exchange matrix B̃w of size

l(w) × (l(w) − | Supp(w)|)

by the first display before Theorem 10.1 of [23]. It is known [17,26,35] that for the 

corresponding cluster algebras without inverted frozen variables (i.e., inv = ∅):

C[X◦
w] = A(B̃w,∅) = U(B̃w,∅).

Thus,

Y (B̃w) ∼= X◦
w, (7.1)
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and in particular,

Y (B̃w)sing = ∅, Y (B̃w)reg = Xsing
w .

The frozen variables of the cluster algebra A(B̃w, ∅) are the generalized minors (cf. 

[1, Eq. (2.5)]),

∆�i,w�i
, i ∈ Supp(w),

considered as functions on X◦
w via the identification U+ ∩wU−w−1 ∼= B+wB+/B+, given 

by g �→ g.wB+/B+. There is a canonical isomorphism T (B̃w) ∼= T and the corresponding 

actions on (7.1) coincide.

The exchange matrix B̃w admits a compatible skew-symmetric matrix Λw ∈ Ml(w)(Z)

and the cluster algebra A(B̃w, ∅), admits a quantization, isomorphic to the corresponding 

integral quantum unipotent cell [25]. By specialization, the GSV Poisson structure on 

Y (B̃w) = MaxSpec U(B̃w, ∅) ∼= X◦
w associated to Λw coincides with π. We have

V(∆�i,w�i
) = Rw,si

, ∀i ∈ Supp(w).

Thus,

X◦
w\RDw = Y (B̃)◦ = (Y (B̃)◦)reg,

which shows how the Zariski open T -orbit of symplectic leaves in Theorem 7.1 is a special 

case of that in Theorem 4.1 for a small class of cluster algebras.

7.2. All frozen variables inverted

There is an important special case of Theorems 4.1 and 6.1 when all frozen variables 

are inverted. In those situations our results take on a particularly strong form. On the 

Poisson side we have:

Corollary 7.3. If U(B̃) is a finitely generated upper cluster algebra with all frozen vari-

ables inverted for which there exists a skew-symmetric matrix Λ ∈ MN (Z) such that 

(Λ, B̃) is a compatible pair, then the non-singular part of MaxSpec U(B̃) is a single 

T (B̃)-orbit of symplectic leaves of the affine Poisson variety (MaxSpec U(B̃), π).

On the Azumaya loci side we have:

Corollary 7.4. If Uε(Mε, B̃) is a finitely generated strict root of unity upper quantum 

cluster algebra with all frozen variables inverted such that the order of ε is odd and 

coprime to the diagonal entries of the skew-symmetrizing matrix D for the principal part 

of the exchange matrix B̃ and Uε(Mε, B̃) = Aε(Mε, B̃), then fully Azumaya locus of 

Uε(Mε, B̃) over CUε(Mε, B̃) contains the nonsingular part of MaxSpec U(B̃).
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7.3. Acyclic cluster algebras

Another important special case of Theorems 4.1 and 6.1 is the case of acyclic clus-

ter algebras when Uε(Mε, B̃) = Aε(Mε, B̃) and an explicit presentation of U(B̃) and 

Uε(Mε, B̃) can be given, which in particular implies that those algebras are finitely 

generated.

Recall that the sign pattern of an exchange matrix B̃ is encoded in the graph Γ(B̃)

with vertex set ex and directed edges (i, j) for the vertices i, j with bij > 0. We say that 

B̃ (and the corresponding cluster algebras of various kinds) are acyclic if Γ(B̃) has no 

oriented cycles, cf. [1, Definition 1.14].

Theorem 7.5. (Berenstein-Fomin-Zelevinsky) [1, Theorems 1.18 and 1.20] If B̃ is an 

acyclic exchange matrix and all variables are exchangeable (ex = [1, N ]), then A(B̃) =

U(B̃) and this algebra is isomorphic to the C-algebra with generators x1, x′
1, . . . , xn, x′

n

and relations

x′
kxk =

∏

i,bik>0

xbik
i +

∏

i,bik<0

x−bik
i , ∀k ∈ [1, N ]. (7.2)

Analogously to this result and [2, Theorem 7.5], one proves the following:

Proposition 7.6. If Aε(Mε, B̃) is an acyclic root of unity quantum cluster algebra for 

which all variables are exchangeable (ex = [1, N ]), then Aε(Mε, B̃) = Uε(Mε, B̃) and 

this algebra is isomorphic to the C-algebra with generators y1, y′
1, . . . , yn, y′

n and relations

yjyk = ελjk ykyj , ∀1 ≤ j < k ≤ N, (7.3)

y′
kyk = εμki/2

∏

i,bik>0

ybik
i + ενki/2

∏

i,bik<0

y−bik
i , ∀k ∈ [1, N ], (7.4)

where

μki =
∑

i<j, bik>0,bjk>0

bikbjkφij −
∑

i,bik>0

bikφik,

νki =
∑

i<j, bik<0,bjk<0

bikbjkφij +
∑

i,bik<0

bikφik

and (φij) ∈ MN (Z/�) is the matrix of the root of unity toric frame Mε.

An immediate consequence of Theorem 4.1 is the following:

Corollary 7.7. If an acyclic exchange matrix B̃ has a compatible skew-symmetric ma-

trix Λ ∈ MN (Z) and all variables are exchangeable (ex = [1, N ]), then the maximum 

spectrum Y (B̃) of the algebra with generators x1, x′
1, . . . , xn, x′

n and relations (7.2) is 
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an affine Poisson manifold whose non-singular part Y (B̃)reg is a single T (B̃)-orbit of 

symplectic leaves.

An immediate consequence of Theorem 6.1 is the following:

Corollary 7.8. Assume that B̃ is an acyclic exchange matrix, (λij) ∈ MN (Z) is a compat-

ible skew-symmetric matrix and ε is an odd root of unity whose order is coprime to the 

diagonal entries of the skew-symmetrizing matrix D for the principal part of B̃. Con-

sider the C-algebra Uε with generators y1, y′
1, . . . , yn, y′

n and relations (7.3)–(7.4) with 

φij := λij . Then the following hold:

(i) The unital subalgebra CUε of Uε generated by y�
1, (y′

1)�, . . . , y�
n, (y′

n)� is central and 

isomorphic to the algebra with generators x1, x′
1, . . . , xn, x′

n and relations (7.2) via 

y�
k �→ xk, (y′

k)� �→ xk. Uε is a finitely generated module over CUε.

(ii) The fully Azumaya locus of Uε with respect to CUε contains the non-singular part 

of MaxSpec(CUε).

7.4. An acyclic example

As an example of an acyclic cluster algebra, consider the following compatible pair.

B̃ = B =

[
0 −2
2 0

]
Λ =

[
0 1

−1 0

]

As in the previous subsection, every cluster variable is mutable, and so, ex = [1, N ] =

[1, 2] and inv = ∅. Because Ker(B̃�) = 0, the torus T (B̃) is trivial, and so Theorem 4.1

predicts that Y (B̃)reg is a single symplectic leaf.

The quiver of B is the Kronecker quiver, which is acyclic. By Theorem 7.5,

A(B̃) = U(B̃) ∼= C[x1, x2, x′
1, x′

2]/(x1x′
1 − x2

2 − 1, x2x′
2 − x2

1 − 1).

There is an even nicer presentation in terms of the following element

z := x′
1x′

2 − x1x2 ∈ U(B̃).

This element satisfies several notable identities.

x1x2z = x2
1 + x2

2 + 1, x1z = x2 + x′
2, x2z = x1 + x′

1.

The latter two equations imply that x1, x2, and z generate U(B̃), and the first equation 

implies that the relations among these generators are generated by a single element; 

therefore,

A(B̃) = U(B̃) ∼= C[x1, x2, z]/(x1x2z − (x2
1 + x2

2 + 1)). (7.5)
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Since

f(x1, x2, z) := x1x2z − (x2
1 + x2

2 + 1)

is an irreducible polynomial, the maximum spectrum of Y (B̃) is isomorphic to the irre-

ducible algebraic variety V(x1x2z − (x2
1 + x2

2 + 1)) ⊂ C
3 defined by f(x1, x2, z) = 0.

The GSV Poisson structure on Y (B̃) extends to the Poisson structure on C
3 with 

potential f(x1, x2, z). The latter is defined on the coordinates by

{x1, x2} := fz = x1x2, {x1, z} := −fx2
= 2x2 − x1z, {x2, z} := fx1

= x2z − 2x1.

At each point in Y (B̃), the latter two functions cannot simultaneously be zero, since

x1{x1, z} − x2{x2, z} = x1(x2z − 2x1) + x2(x1z − 2x1) = 2x1x2z − 2x2
1 − 2x2

2

equals 2 everywhere on Y (B̃). This has two important consequences.

• The differential of the polynomial f(x1, x2, z) is

df = {x2, z}dx1 + {z, x1}dx2 + {x1, x2}dz.

Since df does not vanish on V(f), it is a smooth variety, and so Y (B̃)reg = Y (B̃).

• The Hamiltonian vector field of z is

Hz = 〈{z, x1}, {z, x2}, 0〉.

Since Hz does not vanish on Y (B̃), the rank of the Poisson bracket cannot be 0 

anywhere on Y (B̃). Since Y (B̃) is smooth and 2-dimensional, the rank must be 2

everywhere.

Since Y (B̃) is connected, it is a single symplectic leaf as predicted.

An interesting feature of this example is that the cluster tori do not cover Y (B̃) =

Y (B̃)reg. By [36], the cluster variables may be indexed by the integers so that the clus-

ters are pairs of adjacent variables (xi, xi+1). These cluster variables may be defined 

recursively by the mutation identity

xn−1xn+1 = x2
n + 1.

If xn = 0 at a point, then the mutation identities force xn−1xn+1 = 1 and x2
n−1 + 1 = 0, 

and so xn−1 = ±i and xn+1 = ∓i. It follows that there are four points in Y (B̃) which 

are not in any cluster torus, on which the sequence of cluster variables takes a periodic 

sequence of values

...0, i, 0, −i, 0, −i, 0, i, 0, ...
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z = −3 z = −1.5 z = 0 z = 1.5 z = 3

Fig. 1. Five curves in the family V(x2
1 − zx1x2 + x2

2 + 1) (real part in blue and imaginary part in red). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Under the embedding (x1, x2, z) : Y (B̃) ↪→ C
3, these points are sent to

(0, ±i, 0), (±i, 0, 0) ∈ C
3.

The embedding Y (B̃) ↪→ C
3 and these four points can be visualized as follows. Fixing 

a value of z is equivalent to intersecting the image of Y (B̃) with a plane, and the result 

is the curve

V(x2
1 − zx1x2 + x2

2 + 1) ⊂ C
2.

For every value of z, this curve is a conic that passes through the four points (0, ±i) and 

(±i, 0); Fig. 1 depicts these curves for five values of z. One may show that every conic 

through the points (0, ±i) and (±i, 0) appears as z varies except one: the singular conic 

V(x1x2).2

For historical reasons, this family of curves is called the pencil of conics through the 

four base points (0, ±i) and (±i, 0). The cluster Y (B̃) is then identified with the total 

space of the pencil of conics through (0, ±i) and (±i, 0) minus one of the three singular 

fibers. Under this identification, the four points not in any cluster torus correspond to 

the base points in the z = 0 fiber, which is the complex circle of radius -1.

Let ε be a primitive root of unity of odd order. Proposition 7.6 implies that for the 

root of unity quantum cluster algebra and root of unity upper quantum cluster algebra 

associated to B̃ we have

Aε(Mε, B̃) = Uε(Mε, B̃) ∼=
C〈x1, x2, x′

1, x′
2〉

(x1x2 − εx2x1, x1x′
1 − ε−1x2

2 − 1, x2x′
2 − εx2

1 − 1)
· (7.6)

By Corollary 7.8 and the first part of the example, the subalgebra of this algebra gener-

ated by y�
1, (y′

1)�, y�
2, (y′

2)� is central and is isomorphic to the algebra (7.5) via y�
k �→ xk, 

(y′
k)� �→ x′

k. Furthermore, all irreducible representations of the algebra (7.6) have dimen-

sion �, and thus, this algebra is Azumaya.

2 There are two other singular conics through the four points, which correspond to z = 2 and z = −2.
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