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ABSTRACT
In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is
a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the
existing methods often impose some specific model structures such as linear models or additive models,
and assume independent data observations. Our proposed test instead allows the associations among
the random variables to be nonlinear and the data to be time-dependent. We build the test based on
some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while
allowing either the number of subjects or the number of time points for each subject to diverge to infinity.
We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis.
Supplementary materials for this article are available online.
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1. Introduction

Directed acyclic graph (DAG) is an important tool to char-
acterize pairwise associations among multivariate and high-
dimensional random variables. It has been frequently used in a
wide range of scientific applications. One example is gene regu-
latory network analysis in genetics (Sachs et al. 2005), where the
time-course expression data ofmultiple genes aremeasured over
multiple cellular samples through microarray or RNA sequenc-
ing, and the goal is to understand the regulatory activation or
repression relations among different genes. Another example
is brain effective connectivity analysis in neuroscience (Garg,
Cecchi, and Rao 2011), where the time-course neural activities
aremeasured atmultiple brain regions formultiple experimental
subjects through functional magnetic resonance imaging, and
the goal is to infer the influences of brain regions exerting over
each other under the stimulus.

There is a large body of literature studying penalized esti-
mation of DAG given the observational data (see, e.g., Spirtes,
Glymour, and Scheines 2000; van de Geer and Bühlmann 2013;
Zheng et al. 2018; Yuan et al. 2019, among many others). These
works all impose some specific model structures, most often,
linear models or additive models. There have recently emerged
a number of proposals in the computer science literature that
used neural networks or reinforcement learning to tackle non-
linear models and to estimate the associated DAG (Yu et al.
2019; Zheng et al. 2020; Zhu, Ng, and Chen 2020). While
all these works have made crucial contributions, DAG model
estimation is an utterly different problem from DAG inference.
By inference, we mean hypothesis testing of individual edges
throughout this article. The two problems are closely related,
and both can, in effect, identify important links of a DAG.

CONTACT Lexin Li lexinli@berkeley.edu University of California at Berkeley, Berkeley, CA.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

Besides, DAG inference usually relies on DAG estimation as
a precedent step. Nevertheless, estimation does not produce
an explicit quantification of statistical significance as inference
does. Bayesian networks have been proposed for DAG estima-
tion and inference. However, computationally, it is extremely
difficult to search through all possible graph structures in a
Bayesian network (Chickering, Heckerman, and Meek 2004),
and as a result, the dimension of the Bayesian network is
often small (Friston 2011). There are very few frequentist infer-
ence solutions for inferring DAG structures. Only recently,
Janková and van de Geer (2019) proposed a de-biased estima-
tor to construct confidence intervals for the edge weights in
a DAG, whereas Li, Shen, and Pan (2020) developed a con-
strained likelihood ratio test to infer individual edges or some
given directed paths of a DAG. These works are probably the
most relevant to our proposal. However, both have focused
on Gaussian linear DAG, and cannot be easily extended to
more general nonlinear DAG models. Moreover, all the above
works considered the setting where the data observations are
iid. Learning DAG from time-dependent data remains largely
unexplored.

There is another body of literature studying conditional inde-
pendence testing (CIT); see Li and Fan (2019), Shah and Peters
(2020), Shi et al. (2021) and the references therein. CIT is closely
related to DAG inference, and is to serve as a building block
of our proposed testing procedure. On the other hand, naively
performing CIT on two variables given the rest would fail to
infer the directed edges of a DAG; see Section 2.2 for details.
Besides, most CIT methods assume the data observations are
independent, and are not suitable for the setting where the
measurements are time-dependent.

© 2023 American Statistical Association

https://doi.org/10.1080/01621459.2023.2220169
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2220169&domain=pdf&date_stamp=2023-07-07
mailto:lexinli@berkeley.edu
http://www.tandfonline.com/r/JASA


2 C. SHI, Y. ZHOU, AND L. LI

In this article, we propose a novel statistical testing procedure
for the inference of individual links or some given paths in a large
and general DAG. The new test hinges upon some highly flex-
ible neural networks-based machine learning techniques. The
associations among the random variables can be either linear or
nonlinear, the variables themselves can be either continuous or
discrete-valued, and the observed data can be time-dependent.

Methodologically, we employ a number of state-of-the-art
deep learning techniques that are highly flexible and can capture
nonlinear associations among high-dimensional variables. We
begin with a new characterization of directed edges under the
additive noise structure (Peters et al. 2014); see Theorem 1.
Based on this characterization, we propose a new testing pro-
cedure that integrates three key deep learning ingredients: (a)
a DAG structural learning method based on neural networks
or reinforcement learning to estimate the DAG; (b) a super-
vised learning method based on neural networks to estimate the
conditional mean; and (c) a distribution generator produced by
generative adversarial networks (Goodfellow et al. 2014, GANs)
to approximate the conditional distribution of the variables in
theDAG.We further couple these deep learning tools with some
hypothesis testing strategies, including data splitting and cross-
fitting to ensure a valid size control, and constructing a doubly
robust test statistic as the maximum of multiple transformation
functions to improve the power.

Theoretically, we establish the asymptotic size and power
guarantees for the proposed test. The data-splitting and cross-
fitting strategy ensures that our test achieves a valid Type-I
error control asymptotically under minimal conditions on those
learningmethods. As a result, our test procedure canworkwith a
wide range of nonparametric estimators. Next, our DAG testing
procedure requires a DAG estimation solution as a precedent
step, which is common for almost all graph inference approaches
(Cai 2017).However, we donot assume the ordering of the nodes
is known a priori, but instead estimate this DAG ordering from
the data using some DAG structural learning method. To estab-
lish the consistency of the proposed test, we require this ordering
is consistently estimated; see condition (C1). Nevertheless, this
order consistency is much weaker than requiring the initial
DAG estimator to be selection consistent, or to satisfy the sure
screening property. In other words, we only require a reasonably
good initial estimator of DAG, which is order consistent but
not necessarily selection consistent. We then develop a testing
procedure that produces an explicit quantification of statistical
significance for each individual link, and we show the test has
the desired size and power guarantees. We also prove that the
estimator from the DAG structural learning method we employ
is indeed order consistent. Meanwhile, we discuss the impact on
our test when this order consistency condition is not satisfied.
Finally, for our theoretical analysis, we introduce a bidirectional
asymptotic framework that allows either the number of subjects,
or the number of time points for each subject, to diverge to
infinity. This is useful for different types of applications. There
are plenty of studies where the interest is about the general
population, and thus it is reasonable to let the number of subjects
or samples to diverge. Meanwhile, there are plenty of other
applications, for example, neuroimaging-based brain networks
studies, where the number of subjects is almost always limited,
but the scanning time and the temporal resolution can greatly

increase. For those applications, it is more suitable to let the
number of time points to diverge.

Our proposal is innovative andmakes useful contributions in
several ways.

First, rigorous inference of directed edges in DAG is a vital
but also a long-standing open question. The existing solutions
rely on particular model structures such as linear or additive
models, andmostly deal with iid data. Such requirements can be
restrictive in numerous applications, since the actual relations
may be nonlinear and the data are correlated. By contrast, we
only require an additive noise structure. To the best of our
knowledge, our work is the first frequentist hypothesis testing
solution for a general DAG with time-dependent data.

Second, we employ modern deep learning techniques such
as neural networks and GANs to help address a classical statis-
tical hypothesis testing problem. Such modern learning meth-
ods serve as nonparametric learners, and conceptually, play
a similar role as splines and reproducing kernels. Meanwhile,
they are often more flexible and can handle more complex
data structures. With increasingly efficient implementations of
thesemethods and improved understandings of their theoretical
properties (e.g., Bauer andKohler 2019; Farrell, Liang, andMisra
2021), this family of deep learning methods offer a powerful set
of tools for classical statistical problems. Our proposal can be
viewed as one of the early examples of harnessing such power, as
the use of these deep learning techniques allows us to accurately
estimate the DAG structure, the conditional means, as well as
the distribution functions, and to improve the power of the test.

Third, even though the individual learning components such
as neural networks, GANs and cross-fitting are not completely
new, how to integrate them properly and effectively into a test
with desired theoretical guarantees is highly nontrivial, and
is one of the main contributions of this article. In effect, our
proposed test achieves a parametric convergence rate and a para-
metric power guarantee while using nonparametric estimators.
This is made possible mainly due to the innovative way we put
together these learning components, which leads to a doubly
robust test statistic (Tsiatis 2007), in the sense that the proposed
statistic is consistent, as long as either the conditional mean
function in (b), or the distribution generator in (c) is correctly
specified. In our solution, we propose to estimate both the
conditional mean and the distribution generator fully nonpara-
metrically. As such, the convergence rate of the two estimators,
denoted by κ1 and κ2, respectively, may each be slower than the
parametric rate. Nevertheless, we only require κ1 + κ2 > 1/2,
which is totally achievable for the multilayer perceptron models
and GANs; see the discussion after condition (C4). The key idea
of our theoretically analysis is to show the bias of the estimating
equation grows faster than the parametric rate. Thanks to the
double robustness property of the test statistic, if we replace
either estimator with its oracle value, the bias would be equal to
zero. This observation, together with the Neyman orthogonality
property of the estimating equation, ensures that the bias can
be represented as a product of the difference between the two
nonparametric estimators and their oracle values. Consequently,
when κ1 + κ2 > 1/2, the test statistic converges at a parametric
rate, the corresponding test controls the Type-I error, and has a
parametric power guarantee. We comment that, in their semi-
nal work on double/debiased machine learning, Chernozhukov
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et al. (2018) proposed to combine twomachine learning estima-
tors to infer the average treatment effect, which they showed to
achieve a parametric convergence rate, even though each of the
machine learning estimator converges at a nonparametric rate.
Our result is similar in spirit as theirs, but targets a completely
different problem, and thus is the first of its kind for DAG
inference.

The rest of the article is organized as follows. We formally
define the hypotheses, along with the model and data structure,
in Section 2. We develop the testing procedure in Section 3, and
establish the theoretical properties in Section 4. We study the
empirical performance of the test through simulations and a real
data example in Sections 5 and 6.We relegate several extensions,
additional results, and all technical proofs to the Supplementary
Appendix.

2. Problem Formulation

In this section, we first present the DAGmodel, based on which
we formally define our hypotheses. We next propose an equiv-
alent characterization of the hypotheses, for which we develop
our testing procedure. Finally, we detail the data structure.

2.1. DAGModel

Consider d random variables X = (X1, . . . ,Xd)
�, each with a

finite fourth moment. We use a directed graph to characterize
the relationships among these variables, where a node of the
graph corresponds to a variable in X. For two nodes i, j ∈
{1, . . . , d}, if an arrow is drawn from i to j, that is, i → j, then Xi
is called a parent ofXj, andXj a child ofXi. A directed path in the
graph is a sequence of distinct nodes i1, . . . , id′ , such that there is
a directed edge ik → ik+1 for all k = 1, . . . , d′ −1. If there exists
a directed path from i to j, thenXi is called an ancestor ofXj, and
Xj a descendant of Xi. For node Xj, let PAj, DSj and ACj denote
the set of indices of the parents, descendants, and ancestors of
Xj, respectively. Moreover, let XM denote the sub-vector of X
formed by those whose indices are in a subsetM ⊆ {1, . . . , d}.

To rigorously formulate our problem, we make two assump-
tions.

(A1) The directed graph is acyclic; that is, no variable is an
ancestor of itself.

(A2) The DAG is identifiable from the joint distribution of X.

Condition (A1) has been commonly imposed in directed graph
analysis. It does not permit any variable to be its own ances-
tor. As a result, the relationship between any two variables is
unidirectional. Condition (A2) helps simplify the problem, and
avoids dealingwith the equivalence class ofDAG.This condition
is again frequently imposed in the DAG estimation literature
(Zheng et al. 2018; Yuan et al. 2019; Li, Shen, and Pan 2020;
Zheng et al. 2020). We discuss the extension to the equivalence
class in Section S1.4 of the Appendix.

We consider a class of structural equation models that follow
an additive noise structure,

Xj = fj(XPAj) + εj, for any j = 1, . . . , d, (1)

where {fj}dj=1 are a set of continuous functions, and {εj}dj=1 are a
set of independent zero mean random errors. Model (1) permits

a fairly flexible structure. For instance, if each fj is a linear func-
tion, then (1) reduces to a linear structural equation model. If
each fj is an additive function, that is, fj(XPAj) =∑k∈PAj fj,k(Xk),
then (1) becomes an additive model. In our test, we do not
impose linear or additive model structures. Moreover, we can
easily extend the proposed test to the setting of generalized linear
model, where theXj can be either continuous or discrete-valued.
We discuss such an extension in Section S1.3 of the Appendix.

Under model (1), the corresponding DAG is identifiable
under some reasonable conditions. We consider three examples
to discuss explicitly those conditions.

Example 1 (Gaussian graphical model). Suppose X1, . . . ,Xd are
jointly normal, and model (1) becomes Xj = W�

j XPAj + bj + εj,
for someWj and bj. Then the correspondingDAG is identifiable,
if the variance of the random error εj is the same for all j =
1, . . . , d (Bühlmann, Peters, and Ernest 2014, Theorem 1).

Example 2 (Nonlinear graphical model with Gaussian noise).
Suppose ε1, . . . , εd are jointly normal, but X1, . . . ,Xd are not.
Then the corresponding DAG is identifiable, if each fj is three
times differentiable and not linear in any of its arguments (Peters
et al. 2014, Corollary 31).

Example 3 (Nonlinear graphical model with general noise). Sup-
pose neither Xj nor εj is normal. Then the corresponding DAG
is identifiable, if each fj is non-constant in each of its arguments,
and (1) is a restricted additive noise model (Peters et al. 2014,
Definition 27).

2.2. Hypotheses and Equivalent Characterization

We next formally define the hypotheses we target, then give an
equivalent characterization. For a given pair of nodes (j, k), j, k =
1, . . . , d, j �= k, we aim at the hypotheses:

H0(j, k) : k /∈ PAj, versus H1(j, k) : k ∈ PAj. (2)

When the alternative hypothesis holds, there is a link fromXk to
Xj. In the following, we mainly focus on testing an individual
link H0(j, k). We discuss the extension of testing a directed
pathway, or a union of links, in Sections S1.1 and S1.2 of the
Appendix.

We next consider a pair of hypotheses that involve two vari-
ables that are conditionally independent (CI). The new hypothe-
ses are closely related to (2), but are not exactly the same.

H∗
0 (j, k) : Xk and Xj are CI given the rest of variables, versus

H∗
1 (j, k) : Xk and Xj are not CI given the rest of variables.

(3)

We point out that, testing for (3) is generally not the same as
testing for (2). To elaborate this, we consider a three-variable
DAG with a v-structure.

Example 4 (v-structure). Consider three random variables
X1,X2,X3 that form a v-structure, as illustrated in Figure 1(a),
where X1 and X2 are the common parents of X3. Even if X1
and X2 are marginally independent, they can be conditionally
dependent given X3. To better understand this, consider the
following toy illustration. Either the ballgame or the rain could
cause traffic jam, but they are uncorrelated. However, seeing
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Figure 1. (a) A three-variable DAG with a v-structure; (b) A graphical illustration of a multilayer perceptron, with two hidden layers,m0 = 2,m1 = m2 = 3, where u is the
input, A(�) and b(�) denote the corresponding parameters to produce the linear transformation for the (� − 1)th layer; (c) A five-variable DAG.

traffic jam puts the ballgame and the rain in competition as a
potential explanation. As such, these two events are condition-
ally dependent. Since X2 is not a parent of X1, bothH0(1, 2) and
H∗
1 (1, 2) hold. Consequently, testing for (3) can have an inflated

Type-I error for testing (2).

In this example, we see the reason that testing for (3) is not
the same as for (2) is because the conditioning set of X1 and
X2 contains their common descendant X3. This key observation
motivates us to consider a variant of (3), which we show is
equivalent to (2) under certain conditions. We also remark that
missing links in a DAG correspond to specific conditional inde-
pendence between variables, but are not equivalent to marginal
independence in general.

Specifically, for a given set of indices M ⊆ {1, . . . , d} such
that j /∈ M, and letting XM−{k} denote the set of variables in
M − {k}, we consider the hypotheses:
H∗
0 (j, k|M) : Xk and Xj are CI given XM−{k}, versus

H∗
1 (j, k|M) : Xk and Xj are not CI given XM−{k},

(4)

Proposition 1. For a given pair of nodes (j, k) such that j ∈ DSk,
j, k = 1, . . . , d, and for anyM such that j /∈ M, PAj ⊆ M and
M ∩ DSj = ∅, testing (4) is equivalent to testing (2).
Proposition 1 forms the basis for our test. That is, to infer the
directed links, we first restrict our attention to the pairs (j, k)
such that j ∈ DSk. Apparently, H0(j, k) does not hold when
j /∈ DSk. Next, when devising a conditional independence
test for H0(j, k), the conditioning set M is supposed to con-
tain the parents of node j, but cannot contain any common
descendants of j, k. Under these conditions, we establish the
equivalence between (4) and (2). A similar idea of using CI tests
for DAG structural learning was employed in Spirtes, Glymour,
and Scheines (2000) too.

Next, we develop a test statistic for the hypotheses (4). We
introduce a key quantity. Let h denote a square-integrable func-
tion that takes Xk and XM−{k} as the input. Define

I(j, k|M; h) = E
{
Xj − E

(
Xj|XM−{k}

)} [
h
(
Xk,XM−{k}

)
−E
{
h
(
Xk,XM−{k}

) |XM−{k}
}]

.
Under the additive noise model (1), the next theorem con-
nects this quantity with the null hypothesis H∗

0 (j, k|M) in (4).

Together with Proposition 1, it shows that I(j, k|M; h) can serve
as a test statistic for (4), and equivalently, for (2) that we target.

Theorem 1. Suppose (1) holds. For a given pair of nodes (j, k)
such that j ∈ DSk, j, k = 1, . . . , d, for any M such that j /∈ M,
PAj ⊆ M andM∩DSj = ∅, the null hypothesisH∗

0 (j, k|M) in
(4) is equivalent to suph |I(j, k|M; h)| = 0 where the supremum
is taken over all square-integrable functions h.

Theorem 1 immediately suggests a possible testing procedure
for (4). That is, we first employ a DAG estimator to learn the
ancestors and descendants for node j.We then consider a natural
choice for h, where h

(
Xk,XM−{k}

) = Xk. Then I(j, k|M; h)
becomes

I(j, k|M; h) = E
{
Xj − E

(
Xj|XM−{k}

)}
(5){

Xk − E
(
Xk|XM−{k}

)}
.

By Theorem 1, under the null hypothesis H∗
0 (j, k|M), a con-

sistent estimator for (5) should be close to zero. A Wald type
test can then be devised with iid data. That is, we first obtain
an estimator Îj,k for I(j, k|M; h), by plugging in the estima-
tors of the conditional mean functions, Ê

(
Xj|XM−{k}

)
and

Ê
(
Xk|XM−{k}

)
. We then get an estimator of its asymptotic

variance σ̂ 2
j,k, and obtain the Wald type test statistic,

√
Nσ̂−1

j,k Îj,k,
where N is the number of samples. Such a test is similar in
spirit as the tests of Zhang, Zhou, and Guan (2018) and Shah
and Peters (2020). Since it involves estimation of two condi-
tional mean functions, we refer to it as the double regression-
based test. We later numerically compare our proposed test with
this test.

On the other hand, this double regression-based test has
some limitations. One is that it requires the set M to be fixed.
To meet the requirement in Proposition 1, M needs to be
determined in a data-adaptive way. The resulting test may not
control the type-I error due to the dependence betweenM and
the estimator of the mean functions in Îj,k. Another limitation
is that it may not have a sufficient power to detect H1(j, k). As
an illustration, we revisit Example 4. For this example, consider
the structural equation model: X1 = ε1, X2 = ε2, and X3 =
X2
1 + X2 + ε3. Under this model, H1(1, 3) holds. Meanwhile,

I(1, 3) = E(X3 − X2)X1 = Eε31. When the distribution of ε1 is
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symmetric, I(1, 3) = 0, despite the fact that X1 is a parent of X3.
As such, for this example, the double regression-based test is to
have no power at all.

To address the first limitation, we employ the sample splitting
strategy to ensure its size control. To address the second limita-
tion, we considermultiple transformation functions h, instead of
a single h, to improve the power. We detail our idea in Section 3.

2.3. Time-Dependent Observational Data

Throughout this article, we use X to denote the population
variables, andX to denote the data realizations. Suppose the data
come from an observational study, and are of the form, {Xi,t,j :
i = 1, . . . ,N, t = 1, . . . ,Ti, j = 1, . . . , d}, where i indexes the
ith subject, t indexes the tth time point, and j indexes the jth
random variable. Suppose there are totally N subjects, with Ti
observations for the ith subject.WriteXi,t = (Xi,t,1, . . . ,Xi,t,d)

�,
i = 1, . . . ,N, t = 1, . . . ,Ti. We consider the following data
structure.

(B1) Across subjects, the measurements X1,t , . . ., XN,t are iid.
(B2) Across time points, the random vectors Xi,1, . . ., Xi,Ti are

stationary.
(B3) For any i, t, Xi,t,1, . . ., Xi,t,d are DAG-structured. In

addition, their joint distribution is the same as that of
X1, . . . ,Xd.

Condition (B1) is reasonable, as the subjects are usually inde-
pendent from each other. We do not study the scenario where
the data come from the same families or clusters. Condition (B2)
about the stationarity is common in numerous applications such
as brain connectivity analysis (Bullmore and Sporns 2009; Qiu
et al. 2016;Wang et al. 2016). Condition (B3) brings the data into
theDAG framework that we study. Note that (B3) does not allow
directed edges from past to future observations. Meanwhile, we
discuss the extensions of our test for nonstationary DAG, or for
past to future edges, in Section S1.5 of the Appendix.

3. Testing Procedure

In this section, we develop an inferential procedure for the
hypotheses in (2) for a given pair (j, k), through (4), given the
observational data Xi,t . We first present the main ideas and
the complete procedure, then detail the major steps. As our
test is based on Structural learning, sUpervised learning, and
Generative AdveRsarial networks, we call our method SUGAR.

3.1. TheMain Algorithm

Our main idea is to construct a series of measures
{I(j, k|M; hb) : b = 1, . . . ,B}, for a large number of
transformation functions h1, . . . , hB, then take the maximum
of some standardized version of I(j, k|M; hb). Toward that goal,
our test involves three key components:

(a) ADAG structural learningmethod to learn the set of indices
M that satisfy Proposition 1;

(b) A supervised learning method to estimate the conditional
mean function E

(
Xj|XM−{k}

)
;

(c) A distribution generator to approximate the conditional
distribution of the variables.

For (a), we apply a structural learning algorithm to learn the
underlying DAG G corresponding to X. The input of this step
is the observed data {Xi,t,j : i = 1, . . . ,N, t = 1, . . . ,Ti, j =
1, . . . , d}, and the output is the estimatedDAG.We then setM as
the estimated set of ancestors of Xj. To capture possible sparsity
and nonlinear associations in G, we employ the DAG estimation
method of Zheng et al. (2020). See Section 3.3 for details.

For (b), we employ a supervised learning algorithm. The
input of this step is XM−{k} that serves as the “predictors,”
and Xj that serves as the “response,” and the output is the esti-
mated mean function Ê

(
Xj|XM−{k}

)
. We employ a multilayer

perceptron learner, which has a good capacity of estimating
complex high-dimensional mean, and the estimator has the
desired consistency guarantees (Farrell, Liang, andMisra 2021).
See Section 3.4 for details.

For (c), we propose to use generative adversarial networks
(Goodfellow et al. 2014, GANs) to approximate the conditional
distribution of Xk given XM−{k}. The input of this step is
Xi,t,M−{k} and multivariate Gaussian noise vectors, and the
output is the learnt generator model, with a set of M pseudo
samples X̃(s,m)

i,t,k , m = 1, . . . ,M, that have a similar distribution
as the training samples. We employ a generator model with the
Sinkhorn divergence loss (Genevay, Peyré, and Cuturi 2018) to
mitigate the potential bias of GANs. See Section 3.5 for details.

Given the generated pseudo samples, we then proceed to
estimate the conditional mean function E

{
hb
(
Xk,XM−{k}

)|
XM−{k}

}
in (5), and construct the corresponding test statistic.

We also incorporate the data-splitting and cross-fitting strategy
(Romano and DiCiccio 2019), to ensure a valid Type-I error
control for the test underminimal conditions for the above three
learners. Specifically, we randomly split the samples into two
equal halves I1 ∪ I2, where Is denotes the set of subsample
indices, s = 1, 2. We then compute the three learners in (a) to
(c) using each half of the data separately. Based on these learners,
we next use cross-fitting to estimate {I(j, k|M; hb)}Bb=1, and their
associated standard deviations. We construct our test statistic as
the largest standardized version of I(j, k|M; hb) in the absolute
value. This leads to two Wald-type test statistics, one for each
half of the data. Finally, we derive the p-values based onGaussian
approximation, and reject the null when either one of the p-value
is smaller than α/2. By Bonferroni’s inequality, this yields a valid
α-level test. See Section 3.2 for details.

A summary of the proposed testing procedure is given in
Algorithm 1.

3.2. Test Statistic and p-value

We begin with the presentation of our test, including the test
statistic and the computation of the p-value, which are built on
the three learners in (a) to (c) that we discuss in detail later.

First, for each half of the data, s = 1, 2, we begin with a
bounded function class H(s) =

{
h(s)

ω : ω ∈ �(s)
}
, indexed by

some parameterω. In our implementation, we consider the class
of characteristic functions of Xk,

H
(1) = H

(2) = H = { cos(ωXk), sin(ωXk) : ω ∈ R
}
. (6)
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Algorithm 1 Testing procedure for a given edge (j, k).
Step 1. Randomly split the data into two equal halves,

{Xi,t,k}i∈Is,t=1,...,Ti , s = 1, 2.
Step 2. For each half of the data, s = 1, 2,

(2a) Apply the structural learning method (9) to esti-
mate the DAG G. Denote the estimated set of
ancestors ofXj by ÂC

(s)
j . SetM(s) = ÂC(s)

j −{k}.
(2b) If k /∈ ÂC(s)

j , return the p-value, p(s)(j, k) = 1.

Step 3. For s = 1, 2, apply the supervised learning method
(10) to estimate the conditional mean function
E
(
Xj|XM(s)

)
, and denote the estimator by ĝ(s).

Step 4. For s = 1, 2, apply the GANs method to learn
a generator model to approximate the conditional
distribution of Xk given XM(s)−{k}. It returns the
learnt generator G

(s), and a set of pseudo samples{
X̃

(s,m)

i,t,k
}
i∈Is,t=1,...,Ti,m=1,...,M .

Step 5. Construct the test statistic:

(5a) Randomly generate B functions
{
h(s)
b
}B
b=1 from

the classH(s) in (6).
(5b) For each (s, b), construct two standardized mea-

sures, T̂(s)
b,CF and T̂

(s)
b,NCF, with and without cross-

fitting, using (7).
(5c) Select the index, b̂(s) =

argmaxb∈{1,...,B}
∣∣T̂(s)

b,NCF
∣∣, based on the measure

without cross-fitting.
(5d) Set the test statistic as T̂(s)

b̂(s),CF
, based on the

measure with cross-fitting.

Step 6. Return the p-value:

(6a) Compute the p-value, p(s)(j, k) = 2P
{
Z0 ≥∣∣T̂(s)

b̂(s),CF

∣∣}, for each half of the data, s = 1, 2,
where Z0 is a standard normal random variable.

(6b) Return p(j, k) = 2min
{
p(1)(j, k), p(2)(j, k)

}
.

We note that (6) is not able to approximate the entire class of
square integrable functions. Nevertheless, our numerical exper-
iments have found that setting H

(s) according to (6) results in
a good power empirically. Moreover, we note that one may set
H

(s) to the class of characteristic functions of (Xk,XM(s) ). By
the Fourier Theorem (Siebert 1986), this alternative choice can
approximate any square integrable function h, and the resulting
test is consistent against all alternatives. We choose (6) for its
simplicity as well as good empirical performance. Without loss
of generality, we choose an even number for the total number of
transformation functions B. We randomly generate iid standard
normal variables ω1, . . . ,ωB/2, and set

h(s)
b
(
Xk,XM(s)

) =
{
cos(ωbXk), for b = 1, . . . ,B/2,
sin(ωbXk), for b = B/2 + 1, . . . ,B.

Next, for each pair of (s, b), b = 1, . . . ,B, s = 1, 2, let ÂC(s)
j ,

M(s), ĝ(s), and {X̃(s,m)

i,t,k } denote the estimated set of ancestors of
Xj, the estimated set of indices M, the estimated conditional

mean function, and the generated pseudo samples, obtain from
the components (a)–(c), respectively. We compute two estima-
tors Î(s)b,CF and Î

(s)
b,NCF for the measure I

(
j, k|ÂC(s)

j , h(s)
b

)
, onewith

cross-fitting, and the other without cross-fitting. Specifically, we
compute

Î(s)b,CF =
(∑

i∈Ic
s
Ti
)−1 (∑

i∈Ic
s
I(s)i,t,b

)
,

Î(s)b,NCF = (∑i∈Is Ti
)−1
(∑

i∈Is I
(s)
i,t,b

)
,

where

I(s)i,t,b =
{
Xi,t,j − ĝ(s) (

Xi,t,M(s)
)}

{
h(s)
b
(
Xi,t,k,Xi,t,M(s)

)− 1
M

M∑
m=1

h(s)
b

(
X̃

(s,m)

i,t,k ,Xi,t,M(s)

)}
,

and M is the total number of pseudo samples. We note that,
for Î(s)b,NCF, we use the same subset of data to learn the graph,
the generator, the condition mean function, and to construct
I(s)i,t,b. By contrast, for Î(s)b,CF, the data used for the DAG learner,
the conditional mean learner and the generator are independent
from the data used to construct I(s)i,t,b.

Next, we compute the corresponding standard errors σ̂
(s)
b,CF

and σ̂
(s)
b,NCF for Î(s)b,CF and Î(s)b,NCF, respectively. Since our data

are time-dependent, the usual sample variance would not be
a consistent estimator. Therefore, we employ the batched esti-
mator common in time series analysis (Carlstein 1986). That
is, we divide the data associated with each subject into non-
overlapping batches, with each batch containing at most K
observations. For simplicity, suppose Ti is divisible by K for all
i = 1, . . . ,N. We obtain the following standard error estimators,

σ̂
(s)
b,CF =

⎡⎢⎣ K∑
i∈Ic

s
Ti

∑
i∈Ic

s

Ti/K∑
k=1

⎧⎨⎩
∑kK

t=(k−1)K+1

(
I(s)i,t,b − Î(s)b,CF

)
√
K

⎫⎬⎭
2⎤⎥⎦

1/2

,

σ̂
(s)
b,NCF =

⎡⎢⎣ K∑
i∈Is Ti

∑
i∈Is

Ti/K∑
k=1

⎧⎨⎩
∑kK

t=(k−1)K+1

(
I(s)i,t,b − Î(s)b,NCF

)
√
K

⎫⎬⎭
2⎤⎥⎦

1/2

.

Putting Î(s)b,CF and Î(s)b,NCF together with their standard error
estimators, we obtain two standardized measures,

T̂(s)
b,CF =

√∑
i∈Ic

s
Ti
(
σ̂

(s)
b,CF

)−1
Î(s)b,CF, and

T̂(s)
b,NCF =

√∑
i∈Is Ti

(
σ̂

(s)
b,NCF

)−1
Î(s)b,NCF.

(7)

We then select the index b̂(s) that maximizes the standardized
measure without cross-fitting, T̂(s)

b,NCF, in absolute value, that

is, b̂(s) = argmaxb∈{1,...,B}
∣∣∣T̂(s)

b,NCF

∣∣∣. We take the measure with

cross-fitting, T̂(s)
b̂(s),CF

, under the selected b̂(s), as our final test
statistic.

We make a few remarks. First, we use the cross-fitting mea-
sure to construct the test statistic T̂(s)

b̂(s),CF
. This enables us to

derive its limiting distribution more easily. Specifically, condi-
tional on the data in Is, for each b = 1, . . . ,B, T̂(s)

b,CF converges
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in distribution to standard normal under the null. Since b̂(s)

is determined by T̂(s)
b,NCF, the index b̂(s) depends solely on the

data in Is. Consequently, conditional on the data in Is, T̂(s)
b̂(s),CF

converges in distribution to standard normal under the null as
well. By contrast, the limiting distribution of the no-cross-fitting
measure T̂(s)

b̂(s),NCF
is unclear, due to the complicated dependence

between b̂(s) and T̂(s)
b,NCF.

Second, we use the no-cross-fitting measure to select the
index b̂(s). As we show in Section 4, when the estimated con-
ditional mean function and the distributional generator belong
to the VC type class (Chernozhukov, Chetverikov, and Kato
2014,Definition 2.1), the index b̂(s) thatmaximizes the no-cross-
fitting measure {T̂(s)

b,NCF} asymptotically maximizes the cross-
fitting measure {T̂(s)

b,CF} as well. This choice of the index b̂(s) is
to maximize the power of the resulting test.

Finally, the random binary data splittingmay introduce some
sampling uncertainty. This issue is mitigated in our test, since
we construct two test statistics based on both data subsets, then
combine them to derive the final decision rule. One may also
consider the multiple binary-splits idea of Meinshausen, Meier,
and Bühlmann (2009), or the multi-split idea of Romano and
DiCiccio (2019). We discuss a multiple binary-splits version of
our test in Section S2.2 of the Appendix.

3.3. DAG Structural Learning

We next discuss the three key learning components (a) to (c) of
our proposed test. The first is to estimate the DAG G associated
with X = (X1, . . . ,Xd)

�, and to construct M. In our imple-
mentation, we employ the neural structural learning method of
Zheng et al. (2020). Othermethods, for example, Yu et al. (2019);
Zhu, Ng, and Chen (2020), can be used as well.

Consider amultilayer perceptron (MLP)with L hidden layers
and an activation function σ :

MLP
(
u;A(1), b(1), . . . ,A(L), b(L)

)
(8)

= A(L)σ
{
· · ·A(2)σ

(
A(1)μ + b(1)

)
· · · + b(L−1)

}
+ b(L),

where u ∈ R
m0 is the input signal of the MLP, A(s) ∈

R
m�×m�−1 , b(s) ∈ R

m� are the parameters that produce the linear
transformation of the (� − 1)th layer, the output is a scalar with
mL = 1, and there are m� nodes at layer �, � = 0, . . . , L. See
Figure 1(b) for a graphical illustration.

We employ MLP to approximate the functions fj’s in our
DAG model (1). In our theoretical analysis, we focus on the
setting where fj’s are a set of continuous functions. Meanwhile,
we may also consider a family of piecewise smooth functions
(Imaizumi and Fukumizu 2019) for fj’s. In both cases, neural
networks models such as MLP can consistently estimate fj’s. Let
θj = {

A(�)
j , b(�)

j : 1 ≤ � ≤ L
}
collect all the parameters for the

jthMLP that approximates fj, and let θ = {θj}dj=1. Accordingly, θ
uniquely determines a graph structure, that is, how the variables
are dependent to each other in the graph. We call this structure
the graph induced by θ , and denote it by G(θ). For each half of
the data, s = 1, 2, we estimate the DAG via

min
θ

∑
i∈Is

∑
t,j

{
Xi,t,j − MLP(Xi,t ; θj)

}2, subject to G(θ) is a DAG.

This optimization, however, is challenging to solve, mainly due
to the fact that the search space scales super-exponentially with
the dimension d. To resolve this issue, Zheng et al. (2020)
proposed a novel characterization of the acyclic constraint,
and showed that the DAG constraint can be represented by
trace[exp{W(θ) ◦ W(θ)}] = d, where ◦ denotes the Hadamard
product, exp(W) is the matrix exponential of W, trace(W) is
the trace ofW, andW(θ) is a d × d matrix whose (k, j)th entry
equals the Euclidean norm of the kth column of A(1)

j . Based on
this characterization, the above optimization problem becomes,

min
θ

d∑
j=1

⎡⎣∑
i∈Is

Ti∑
t=1

{
Xi,t,j − MLP(Xi,t ; θj)

}2 + λns
∥∥A(1)

j
∥∥
1,1

⎤⎦ ,

subject to trace[exp{W(θ) ◦ W(θ)}] = d,
(9)

where ns = ∑
i∈Is Ti is the number of observations in Is,∥∥A(1)

j
∥∥
1,1 is the sum of all elements in A(1)

j in absolute values,
and λ > 0 is a sparsity tuning parameter. Note that the sparsity
penalization is placed only on A(1)

j , since this is the only layer
that determines the sparsity of the input variables X1, . . . ,Xd.
This new optimization problem in (9) can be efficiently solved
using the augmented Lagrangian method (Zheng et al. 2020).

Let Ĝ(s) denote the estimated graph, and ÂCj and P̂Aj denote
the corresponding estimated set of ancestors and parents of Xj,
respectively. If k /∈ ÂC(s)

j , then it follows from PAj ⊆ ÂC(s)
j that

k /∈ PAj. Consequently, we simply set the corresponding p-value
p(s)(j, k) = 1. Our subsequent testing procedure is to focus on
the case where k ∈ ÂC(s)

j , and we set M(s) = ÂC(s)
j − {k}.

We also remark that, to establish the consistency of our test,
we only require P(PAj ⊆ ÂC(s)

j ⊆ DScj − {j}) → 1, where
DScj denotes the complement of the set DSj. This essentially
requires the order of the DAG to be consistently estimated. We
later show in Section S2.1 that this condition is satisfied when
using the method of Zheng et al. (2020). Meanwhile, this order
consistency is much weaker than requiring the DAG estimator
Ĝ(s) to be selection consistent, that is, P(PAj = P̂Aj) → 1, or to
satisfy sure screening, that is, P(PAj ⊆ P̂Aj) → 1.

3.4. Supervised Learning

The second key component of our test is to learn the conditional
mean g(s)(x) = E

(
Xj|XM(s) = x

)
. This is essentially a regres-

sion problem, and there aremany choices, for example, boosting,
random forests, or neural networks. In our implementation, we
use the MLP again, by seeking

min
θj

∑
i∈Is

Ti∑
t=1

{
Xi,t,j − MLP

(
Xi,t,M(s) ; θj

)}2 , (10)

where the learner MLP(·) is as defined in (8). The optimization
problem in (10) can be solved using a stochastic gradient descent
algorithm, or the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (Byrd et al. 1995).
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3.5. Generative Adversarial Learning

The third key component of our test is to use GANs to learn
a generator G(s)(·, ·), which generates a set of pseudo samples
that have a similar distribution as the training samples. More
accurately, in our setting, we learn the generatorG(·, ·) that takes
Xi,t,M−{k} and a set of multivariate Gaussian noise vectors as the
input, and the output are a set of pseudo samples X̃(s,m)

i,t,k .We train
the generator such that the divergence between the conditional
distribution of Xi,t,k given Xi,t,M−{k} and that of X̃(s,m)

i,t,k given
Xi,t,M−{k} is minimized.

More specifically, we adopt Genevay, Peyré, and Cuturi
(2018) to learn the generatorG(s), by optimizing

min
G

max
c

D̃c,ρ(μ, ν), (11)

where μ and ν denote the joint distribution of
(
Xi,t,k,Xi,t,M(s)

)
and

(
X̃

(s,m)

i,t,k ,Xi,t,M(s)

)
, respectively, and D̃c,ρ is the Sinkhorn

loss function between two probability measures. The loss D̃c,ρ is
with respect to a cost function c and a regularization parameter
ρ > 0,

D̃c,ρ(μ, ν) = 2Dc,ρ(μ, ν) − Dc,ρ(μ,μ) − Dc,ρ(ν, ν),

Dc,ρ(μ, ν) = inf
π∈�(μ,ν)

∫
x,y

{
c(x, y) − ρH(π |μ ⊗ ν)

}
π(dx, dy),

where �(μ, ν) is a set containing all probability measures π

whose marginal distributions correspond to μ and ν, H is the
Kullback-Leibler divergence, and μ ⊗ ν is the product measure
of μ and ν. When ρ = 0, Dc,0(μ, ν) measures the optimal
transport of μ into ν with respect to the cost function c(·, ·)
(Cuturi 2013). When ρ �= 0, an entropic regularization is added
to this optimal transport. As such, the objective function D̃c,ρ
in (11) is a regularized optimal transport metric, where the
regularization is to facilitate the computation, so that D̃c,ρ can be
efficiently evaluated. Intuitively, the closer the two conditional
distributions, the smaller the Sinkhorn loss. Therefore, maxi-
mizing D̃c,ρ with respect to the cost c learns a discriminator that
can better discriminateμ and ν. On the other hand, minimizing
the maximum cost with respect to the generator G makes the
conditional distribution of X̃(s,m)

i,t,k given Xi,t,M(s) closer to that
of Xi,t,k given Xi,t,M(s) . This yields the minimax formulation in
(11). In our implementation, we approximate the cost function
c and the generator based on MLP (8). We approximate the
distributions μj,k and νj,k in (11) by the empirical distributions
of the data samples. We update the parameters in GANs by the
Adam algorithm (Kingma and Ba 2015).

We again make a few remarks. First, we choose the Gaussian
noise as the input for GANs. We have found the performance
of the generator is not overly sensitive to the choice of the
distribution of the input noise. We present more discussion
and some additional numerical results in Section S2.3 of the
Appendix. Besides, we choose GANs based on the Sinkhorn
divergence loss to mitigate the potential bias of traditional
GANs. Moreover, in addition to GANs, other deep generative
learning approaches such as variational auto-encoders (Kingma
and Welling 2013) are equally applicable here. Second, we
note that, based on the estimated conditional distribution from
GANs, one can derive the joint distribution of all variables,

then infer the corresponding DAG structure. However, this
may be computationally inefficient, due to the huge number of
conditional dependence relations that must be learned. Finally,
we note that, an alternative approach for this step is to sepa-
rately apply a supervised learning method B times to estimate
E
{
hb
(
Xk,XM−{k}

)|XM−{k}
}
, for b = 1, . . . ,B. Nevertheless,

when B is large, and in our implementation, B = 2000,
this approach is computationally very expensive. Therefore, we
choose the generative learning approach for this step.

4. Bidirectional Theory

In this section, we establish the asymptotic size and power of
the proposed test. As a by-product, we also derive the oracle
property of theDAG estimator produced by (9), which is needed
to guarantee the validity of the test. In the interest of space, we
report that result in Section S2.1 of the Appendix. To simplify
the theoretical analysis, we assume T1 = · · · = Tn = T. All
the asymptotic results are derived when either the number of
subjects N, or the number of time points T, diverges to infinity.
Such results are new, provide useful theoretical guarantees for
different types of applications, and are referred as the bidirec-
tional theory.

We begin with a set of regularity conditions needed for the
asymptotic consistency.

(C1) With probability approaching one, PAj ⊆ ÂC(s)
j ⊆

DScj − {j}.
(C2) SupposeE

∣∣∣g(s)
(
XM(s)

)
− ĝ(s)

(
XM(s)

)∣∣∣2 = O
{
(NT)−2κ1

}
for some constant κ1 > 0, and ĝ(s) is uniformly bounded
almost surely. Suppose E supB̃∈B

∣∣∣P{Xk ∈ B̃|XM(s)

}
−

P

{
G

(s)
(
XM(s) ,Z(m)

j,k

)
∈ B̃| XM(s)

}∣∣∣2 = O
{
(NT)−2κ2

}
for

some constant κ2 > 0, where B denotes the Borel algebra
on R. Suppose κ1 + κ2 > 1/2.

(C3) The random process {Xi,t}t≥0 is β-mixing if T diverges
to infinity. The β-mixing coefficients {β(q)}q satisfy that∑

q qκ3β(q) < +∞ for some constant κ3 > 0. Here, β(q)
denotes the β-mixing coefficient at lag q, which measures
the time dependence between the set of variables {Xi,j}j≤t
and {Xi,j}j≥t+q.

(C4) Suppose the number of observations K in the batched
standard error estimators σ̂

(s)
b,CF and σ̂

(s)
b,NCF satisfies that,

K = T if T is bounded, and T(1+κ3)−1 � K � NT
otherwise.

Condition (C1) concerns about the step of structural learning
of DAG, which essentially requires the order of the DAG can be
consistently estimated. We first remark that, this order consis-
tency is much weaker than the selection consistency. In other
words, we only require a reasonably good initial DAG estimator
that is order consistent, which is much easier to obtain than a
DAG estimator that is selection consistent. In Section S2.1, we
show that (C1) holds when (9) is employed to estimate the DAG.
Second, (C1) may not be a necessary condition to ensure the
Type-I error control. We next give two examples, where (C1)
does not hold, but our proposed test can still control the Type-I
error. Moreover, in our simulation examples in Section 5, (C1)
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does not always hold either. We report the percentage of times
out of 500 data replications when (C1) holds for some selected
nodes in Section S2.4 of the Appendix. Nevertheless, our test
still manages to achieve a competitive empirical performance.
On the other hand, we keep (C1) in its current form, as it helps
simplify the proof considerably.

Example 5 (missing parents). Wefirst consider an examplewhere
ÂC(s)

j misses somenodes in PAj. The proposed test remains valid
as long as these nodes have weak effects on Xj and Xk. More
specifically, consider the five-variable example as illustrated in
Figure 1(c). Our goal is to test whether there is a directed link
from X3 to X4. Then PAj ⊆ ÂC(s)

j requires that {1, 2} ⊆ ÂC(s)
4 .

Suppose X1 has a weak effect on X4, so that X1 is not included
in ÂC(s)

4 . Suppose |E(X4|X1,X2)−E(X4|X2)|2 = O{(NT)−2κ∗
1 },

for some κ∗
1 ≥ κ1. When E supB̃∈B |P(X3 ∈ B̃|X2) − P(X3 ∈

B̃|X1,X2)| = O{(NT)−2κ∗
2 }, for some κ∗

2 ≥ κ2, under (C2)-
(C4), the estimated conditional mean function and the distribu-
tional generator would converge to E(X4|X1,X2) and PX3|X1,X2
at the rate of (NT)−κ1 and (NT)−κ2 , respectively. As such, the
proposed test still works as if X1 were included in ÂC(s)

4 .

Example 6 (including descendants). We next consider an exam-
ple where ÂC(s)

j includes some nodes in DSj. The proposed test
remains valid as long as none of these nodes is a descendant
of Xk, or has a common descendant with Xk. In this case, Xk
and Xj are d-separated given ÂC(s)

j , as none of those falsely
included nodes is a collider on any path between Xj and Xk; see
the definition of d-separation and collider in Pearl (2009). As
d-separation implies conditional independence, the proposed
test is still able to control the Type-I error. For the example in
Figure 1(c), when {5} ∈ ÂC(s)

4 , (C1) is violated. However, when
X3 does not have affect X5, the proposed test remains valid.

Condition (C2) concerns about the steps of learning the
conditional mean function and the distribution generator. It
requires the squared prediction loss of the supervised learner
of the conditional mean, and the squared total variation norm
between the conditional distributions of the observed and
pseudo samples to satisfy some convergence rate, κ1 and κ2,
respectively. We note that both estimators are nonparametric,
and as such, both κ1 and κ2 can be slower than the parametric
rate of 1/2. However, (C2) only requires that κ1 + κ2 > 1/2.
This is relatively easy to achieve when using the multilayer
perceptron models and GANs, whose convergence rates have
been established (see e.g., Schmidt-Hieber 2017; Liang 2018;
Bauer and Kohler 2019; Chen et al. 2020; Farrell, Liang, and
Misra 2021). Moreover, we remark that, it is possible to further
relax the requirement of κ1+κ2 > 1/2 to κ1, κ2 > 0, by using the
theory of higher order influence functions (Robins et al. 2017).
However, the corresponding estimators would be considerably
much more complicated, and thus we do not pursue those in
this article.

Condition (C3) characterizes the dependence of the data
observations over time, and is commonly imposed in the time
series literature (Bradley 2005). We also note that, (C3) is not
needed when T is bounded butN diverges to infinity. Condition
(C4) guarantees the consistency of the batched standard error

estimators σ̂
(s)
b,CF and σ̂

(s)
b,NCF, and is easily satisfied, since K is a

parameter we specify.When T is bounded and is relatively small
compared to a large sample size N, we can simply set K = T,
that is, treating the entire time series as one batch.

We next establish the asymptotic size of the propose testing
procedure.

Theorem 2 (Size). Suppose model (1), and conditions (C1)–
(C4) hold. Suppose minb NT var

(̂
I(s)b,CF|{Xi,t}i∈Is,1≤t≤T

)
≥ κ4

for some constant κ4 > 0. If the constants κ1, κ2, κ3 satisfy that
κ3 > max[{2min(κ1, κ2)}−1−1, 2], then, as eitherN orT → ∞,

(a) The test statistic T̂(s)
b̂(s),CF

d→ Normal(0, 1) under H0(j, k).
(b) The p-value satisfies that P{p(j, k) ≤ α} ≤ α + o(1), for any

nominal level 0 < α < 1.

To establish the asymptotic size of the test, we require β(q) to
decay at a polynomial rate with respect to q. Such a condition
holds for many common time series models (see, e.g., McDon-
ald, Shalizi, and Schervish 2015). We also require a minimum
variance condition, which automatically holds when the condi-
tional variance of h(s)

b
(
Xk,XM(s)

) − E
{
h(s)
b
(
Xk,XM(s)

)|XM(s)
}

givenXM(s) is bounded away from zero. Under these conditions,
we establish the asymptotic normality of the test statistic T̂(s)

b̂(s),CF
,

which further implies that the p-value p(s)(j, k) converges to a
uniform distribution on [0, 1]. By Bonferroni’s inequality, p(j, k)
is a valid p-value, and consequently, the proposed test achieves
a valid control of Type-I error.

Next, we study the asymptotic power of the test.We introduce
a quantity to characterize the degree to which the alternative
hypothesis deviates from the null for a given function class H:
�(H) = minM suph∈H |I(j, k|M; h)|, where the minimum is
taken over all subsetsM that satisfy the conditions in Proposi-
tion 1.WhenH is taken over the class of characteristic functions
of (Xk,XM), we have �(H) > 0. We also need the concept of
the VC type class (Chernozhukov, Chetverikov, and Kato 2014,
Definition 2.1); see Section S3.4 of the Appendix. To simplify
the analysis, we suppose Xj is bounded, and without loss of
generality, its support is [0, 1].
Theorem 3 (Power). Suppose the conditions in Theorem 2 hold,
and the β-mixing coefficient β(q) in (C3) satisfies that β(q) =
O(κ

q
5 ) for some constant 0 < κ5 < 1 when T diverges.

Suppose �(H) � (NT)−1/2 log(NT) under H1(j, k). Suppose,
with probability tending to one, ĝ(s) andG(s) belong to the class
of VC type functions with bounded envelope functions and the
boundedVC indices no greater thanO{(NT)min(2κ1,2κ2,1/2)}, s =
1, 2. If the number of transformation functions B = κ6(NT)κ7

for some constants κ6 > 0, κ7 ≥ 1/2, then, as either N or
T → ∞, p(j, k)

p→ 0 under H1(j, k).

To establish the asymptotic power of the test, we require the
function ĝ(s) and the generator G(s) to both belong to the VC
type class. This is to help establish the concentration inequali-
ties for the measure Î(s)b,NCF without cross-fitting. This condition
automatically holds in our implementation where the MLP is
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used to model both (Farrell, Liang, and Misra 2021). We have
also strengthened the requirement on β(q), so that it decays
exponentially with respect to q. This is to ensure the

√
NT-

consistency of the proposed test when T → ∞. This condition
holdswhen the process {Xi,t}t≥0 forms a recurrentMarkov chain
with a finite state space. It also holds for more general state
spaceMarkov chains (see, e.g., Bradley 2005, sec. 3). Under these
conditions, Theorem3 shows that our proposed test is consistent
against some local alternatives that are

√
NT-consistent to the

null up to some logarithmic term.
We remark that, Theorems 2 and 3 show that the proposed

test controls the Type-I error and achieves a parametric power
guarantee, even though we estimate the three key components,
the DAG structure, the conditional mean, and the distribu-
tion generator, all using fully nonparametric methods. This is
achieved mainly due to the fact that our test statistic T̂(s)

b̂(s),CF
is doubly robust, in that it is consistent as long as either the
conditional mean or the distribution generator is correctly spec-
ified. Together with the Neyman orthogonality of the estimating
equation, we show that the bias can be represented as a product
of the difference between the two nonparametric estimators and
their oracle values; see Step 3 of the proof of Theorem 2 in
Section S3.3 of the Appendix. Consequently, as long as κ1+κ2 >

1/2, the test statistic converges at a parametric rate, and the test
has a parametric power guarantee.

We also remark that, in our theory, the dimension d of the
DAG is allowed to diverge to infinity with the sample size. Note
that there is no explicit specification on d in the statements of
Theorems 2 and 3. It is implicitly imposed due to the require-
ment that κ1+κ2 > 1/2, as the convergence rates would become
slower as the dimension d increases.

5. Simulations

In this section, we examine the finite-sample performance of the
proposed testing procedure.

We begin with a discussion of some implementation details.
Our test employs three neural networks-based learners, which
involve numerous tuning parameters. Many of these parameters
are common, for example, the number of hidden layers and
hidden nodes, the activation function, batch size, and epoch
size, and we set them at the typical values recommended in the
literature. For the DAG learning step, one tuning parameter is
the sparsity parameter λ in (9). Following Zheng et al. (2020),
we fix λ = 0.025 in our implementation to speed up the
computation. We have also experimented with a number of
values of λ and find the results are not overly sensitive. It can also
be tuned via cross-validation. For the supervised learning step,
we employ the multilayer perceptron regressor implementation
of Pedregosa et al. (2011). For the GANs training step, we
follow the implementation ofGenevay, Peyré, andCuturi (2018).
There are three additional parameters associated with our test,
including the number of transformation functions B, the num-
ber of pseudo samples M, and the number of observations K
in the batched standard error estimators. We have found that
the results are not sensitive to the choice of M and K, and we
fix M = 100 and K = 20. For B, a larger value generally

improves the power of the test, but also increases the compu-
tational cost. In our implementation, we set B = 2000, which
achieves a reasonable balance between the test accuracy and the
computational cost.

We compare the proposed test with two alternative solu-
tions, the double regression-based test (DRT) as outlined in
Section 2.2, and the constrained likelihood ratio test (LRT)
proposed by Li, Shen, and Pan (2020) for linear DAGs. The
implementation of DRT is similar to our proposed method. The
main difference lies in that DRT uses the MLP regressor to first
estimate the conditional mean function E(Xk|XM(j)

j,k
) in Step 4,

then plugs in this estimate to construct the test statistic in Step
5, with B = 1 and h(s)

1 (Xk,XM(j)
j,k

) = Xk.

We consider the following nonlinear DAG model,

Xt,j =
∑

k1,k2∈PAj
k1≤k2

cj,k1,k2 f
(1)
j,k1,k2(Xt,k1)f

(2)
j,k1,k2(Xt,k2)

+
∑

k3∈PAj

cj,k3 f
(3)
j,k3 (Xt,k3) + εt,j. (12)

The data generation follows that of Zhu, Ng, and Chen (2020).
Specifically, f (1)j,k1,k2 , f

(2)
j,k1,k2 , and f (3)j,k3 in (12) are randomly set to

be sine or cosine function with equal probability, whereas cj,k1,k2
and cj,k3 are randomly generated from uniform [0.5δ, 1.5δ] or
[−1.5δ,−0.5δ] with an equal probability, where δ > 0 denotes
some constant that controls the signal strength. The error εt,j
is an AR(1) process with the autoregressive coefficient equal
to 0.5 and a standard normal white noise. The DAG struc-
ture is determined by a d × d lower triangular binary adja-
cency matrix, in which each entry is randomly sampled from
a Bernoulli distribution with probability ζ . We vary four sets of
key parameters in our simulations: (a) the number of subjects
N from {10, 20, 40}; (b) the number of time points T from
{50, 100, 200}; (c) the signal strength δ from {0.5, 1, 2}, and (d)
the dimension d and the Bernoulli probability ζ from (d, ζ ) =
{(50, 0.10), (100, 0.04), (150, 0.02)}. When we vary one set of the
parameters, we keep the rest fixed at their default values of N =
20,T = 100, δ = 1, d = 50, ζ = 0.10.

For each scenario, we randomly sample 100 pairs of nodes
where the null hypothesis holds, and another 100 pairs of nodes
where the alternative hypothesis holds. We then apply the pro-
posed test to these pairs, and record the empirical size and power
of the test, that is, the percentage of the times out of 200 data
replications when the p-value is smaller than the nominal level
α = 0.05. Figure 2 shows the boxplots of the empirical size for
the pairs when the null holds, and Figure 3 shows the boxplots of
the empirical power for the pairs when the alternative holds. We
further report the difference of the powers of SUGAR and DRT
in Figure S2 in Section S2.5 of the Appendix. We do not report
the power of LRT, because it fails to control the Type-I error, and
thus its empirical power becomesmeaningless.Wemake the fol-
lowing observations from these plots. In terms of the empirical
size, both SUGAR and DRTmanage to control the Type-I error,
but LRT does not. The reason is that LRT requires the graph to
have a linear structure and the samples to be independent, but
none is satisfied in our simulation model. On the other hand,
in terms of the empirical power, SUGAR achieves generally a



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Figure 2. The boxplots of the empirical size of three methods: our proposed test (SUGAR), the double regression-based test (DRT), and the constrained likelihood ratio
test (LRT), under four sets of varying parameters: first row N = {10, 20, 40}, second row T = {50, 100, 200}, third row δ = {0.5, 1, 2}, and fourth row (d, ζ ) =
{(50, 0.10), (100, 0.04), (150, 0.02)}.

higher power than DRT, over 75% of the times in all scenarios as
seen from Figure S2. Finally, as the key model parameters vary,
the power of both SUGAR and DRT increases as the number of
subjectsN, or the number of time points T increases, sincemore
data information becomes available, and the power of both tests
decreases as the dimension d increases, since the graph becomes
bigger and the problemmore challenging.Meanwhile, the power
of SUGAR increases as the signal strength δ increases, but that
of DRT is not monotonic with respect to δ, because DRT is not
guaranteed to be consistent in general, as we have commented
earlier.

In terms of the computational time, our testing procedure
consists of two main parts: the DAG estimation in Step 2 of
Algorithm 1, and the rest in Steps 3–6. The DAG estimation is
themost time consuming step, but it only needs to be learnt once
for all pairs of edges in the graph. We implemented the DAG
estimation step on the NVIDIA Tesla T4 GPU, and it took about
5–20min when d ranges from 50 to 150 for one data replication.
We implemented the rest of the testing procedure on the N1
standard CPU, and it took about 2 min for one data replication.
A Python implementation of our method is available at https://
github.com/yunzhe-zhou/SUGAR.

https://github.com/yunzhe-zhou/SUGAR
https://github.com/yunzhe-zhou/SUGAR
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Figure 3. The boxplots of the empirical power of two methods: our proposed test (SUGAR), and the double regression-based test (DRT), under four sets of varying
parameters: first row N = {10, 20, 40}, second row T = {50, 100, 200}, third row δ = {0.5, 1, 2}, and fourth row (d, ζ ) = {(50, 0.10), (100, 0.04), (150, 0.02)}.

6. Brain Effective Connectivity Analysis

Wenext illustrate ourmethod with a brain effective connectivity
analysis of task-evoked functional magnetic resonance imaging
(fMRI) data. The brain is a highly interconnected dynamic
system, and it is of great interest to understand the relations
among different brain regions through fMRI, which measures
synchronized blood oxygen level dependent brain signals. The
dataset we analyze is part of the Human Connectome Project
(HCP, Van Essen et al. 2013), whose overarching objective is
to understand brain connectivity patterns of healthy adults. We
study the fMRI scans of a group of individuals who undertook

a story-math task. The task consisted of blocks of auditory
stories and addition-subtraction calculations, and required the
participant to answer a series of questions. An accuracy score
was given at the end. We analyze two subsets of individuals with
matching age and sex. One set consists of N = 28 individuals
who scored below 65 out of 100, and the other set consists of
N = 28 individuals who achieved the perfect score of 100. All
fMRI scans have been preprocessed following the pipeline of
Glasser et al. (2013) that summarized each fMRI scan as amatrix
of time series. Each row is a time series with lengthT = 316, and
there are 264 rows corresponding to 264 brain regions (Power



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

Table 1. The number of identified significant within-module and between-module connections of the four functional modules for the low-performance and high-
performance groups.

Auditory (13) Default mode (58) Visual (31) Fronto-parietal (25)

Low High Low High Low High Low High

Auditory (13) 20 17 0 0 0 1 2 0
Visual (31) 0 0 3 2 56 46 0 1
Fronto-parietal (25) 2 1 11 23 0 1 22 27

NOTE: The number of brain regions of each functional module is reported in the parenthesis.

et al. 2011). Those brain regions are further grouped into 14
functional modules (Smith et al. 2009). Each module possesses
a relatively autonomous functionality, and complex tasks are
believed to perform through coordinated collaborations among
the modules. In our analysis, we concentrate on d = 127 brain
regions from four functional modules: auditory, visual, fron-
toparietal task control, and default mode, which are generally
believed to be involved in language processing and problem
solving domains (Barch et al. 2013).

We apply the proposed test to the two datasets separately. We
control the false discovery at 0.05 using the standard Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). Table 1
reports the number of identified significant within-module
and between-module connections. We first note that, we iden-
tify many more within-module connections than the between-
module connections. The partition of the brain regions into
the functional modules has been fully based on the biological
knowledge, and our finding lends some numerical support to
this partition. In addition, we identify more within-module
connections for the frontoparietal task control module for the
high-performance subjects than the low-performance subjects,
while we have identified fewer within-module connections for
the default mode and visual modules for the high-performance
subjects. These findings generally agree with the neuroscience
literature. Particularly, the frontoparietal network is known to
be involved in sustained attention, complex problem solving
andworkingmemory (Menon 2011), and the high-performance
group exhibits more active connections for this module. Mean-
while, the default mode network is more active during passive
rest and mind-wandering, which usually involves remembering
the past or envisioning the future rather than the task being
performed (Van Praag et al. 2017), and the high-performance
group exhibits fewer active connections for this module.

Supplementary Materials

Section A of the supplementary article discusses several extensions of the
proposed test. Section B presents additional theoretical and numerical
results. Section C gives the detailed proofs.
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