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Abstract

Wedescribe a connection between the subjects of cluster

algebras, polynomial identity algebras, and discrimi-

nants. For this, we define the notion of root of unity

quantum cluster algebras and prove that they are poly-

nomial identity algebras. Inside each such algebra we

construct a (large) canonical central subalgebra, which

can be viewed as a far reaching generalization of the cen-

tral subalgebras of big quantum groups constructed by

De Concini, Kac, and Procesi and used in representa-

tion theory. Each such central subalgebra is proved to

be isomorphic to the underlying classical cluster algebra

of geometric type. When the root of unity quantum clus-

ter algebra is free over its central subalgebra, we prove

that the discriminant of the pair is a product of powers

of the frozen variables times an integer. An extension of

this result is also proved for the discriminants of all sub-

algebras generated by the cluster variables of nerves in

the exchange graph. These results can be used for the

effective computation of discriminants. As an applica-

tion we obtain an explicit formula for the discriminant

of the integral form over ℤ[ÿ] of each quantum unipo-

tent cell of De Concini, Kac, and Procesi for arbitrary

symmetrizable Kac–Moody algebras, where ÿ is a root

of unity.
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1 INTRODUCTION

1.1 Cluster algebras and discriminants

Cluster algebraswere introduced by Fomin andZelevinsky in [14] and since then, they have played
a fundamental role in a number of diverse areas such as representation theory, combinatorics,
Poisson and algebraic geometry, mathematical physics, and others [17, 35].
Discriminants of number fields were defined by Dedekind in the 1870s. They have proven an

invaluable tool in number theory, algebraic geometry, combinatorics, and orders in central simple
algebras [23, 37, 38]. In more recent years, new applications of discriminants have been found in
the noncommutative setting. Bell, Ceken, Palmieri, Wang, and Zhang used the discriminant as an
invariant in determining the automorphism groups of certain polynomial identity (PI) algebras
[7, 8] and to address the Zariski cancellation problem (when ý[ý] ≃ ý[ý] implies ý ≃ ý) [1]. Dis-
criminant ideals are also intrinsically related to the representation theory of the corresponding
noncommutative algebra [6].
In this paper, we connect the subjects of cluster algebras, polynomial identity algebras, and

discriminants (we refer the reader to [5, section I.13– 14 and part III] and [33, chapter 13] for
an overview of polynomial identity algebras and their representation theory). We define the
notion of root of unity quantum cluster algebra, show that these algebras are polynomial iden-
tity algebras, and construct a canonical large central subalgebra in each of them which is shown
to be isomorphic to the underlying classical cluster algebra. These special central subalgebras
can be viewed as far reaching generalizations of the De Concini–Kac–Procesi central subalge-
bras of big quantum groups [11, 12]. We prove a theorem giving an explicit formula for the
discriminant of a root of unity quantum cluster algebra, and apply it to compute the discrimi-
nants of the big quantum unipotent cells for all symmetrizable Kac–Moody algebras at roots of
unity.

1.2 Root of unity quantum cluster algebras

Let ÿ1∕2 be a primitive ýth root of unity for a positive integer ý. We define a root of unity quantum
cluster algebra by constructing mutations in the skew field of fraction of the based quantum torus
over ℤ[ÿ1∕2] with basis {ÿÿ | ÿ ∈ ℤý} and relations

ÿÿÿg = ÿΛ(ÿ,g)∕2ÿÿ+g , ∀ÿ, g ∈ ℤý

for a skew-symmetric bilinear form Λ ∶ ℤý × ℤý → ℤ∕ý. Quantum framesýÿ are introduced in
this setting as in the quantum setting of Berenstein and Zelevinsky [4], but weaker compatibility
assumptions between the bilinear formΛ and the exchangematrix ý̃ are imposed (Definition 3.2).
In particular, ý̃ need no longer have a full rank as the quantum case in [4]. A subset ÿÿÿ of the
exchange indices ÿý is allowed to be inverted and the corresponding ℤ[ÿ1∕2]-algebra generated
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by all cluster variables and the inverses of the frozen ones in ÿÿÿ is denoted by ýÿ(ýÿ, ý̃, ÿÿÿ)

(Definition 3.7).
In the special case of ý = 1 this construction exactly recovers the definition of a classical cluster

algebra of geometric type. QuantumWeyl algebras and quantum unipotent cells at roots of unity
for all symmetrizable Kac–Moody algebras are examples of root of unity quantum cluster algebras
(Subsections 5.6 and 8.3). In addition to the standard properties of classical and quantum cluster
algebras, such as the Laurent phenomenon, we prove the following key results for the algebras
ýÿ(ýÿ, ý̃, ÿÿÿ):

Theorem A. Let ÿ1∕2 be a primitive ýth root of unity for a positive integer ý.

(1) All root of unity quantum cluster algebras ýÿ(ýÿ, ý̃, ÿÿÿ) are PI algebras.

(2) The subringÿ(ýÿ, ý̃, ÿÿÿ) ofýÿ(ýÿ, ý̃, ÿÿÿ) generated by the ýth powers of all cluster variables

and the inverses of the ýth powers of the frozen ones in ÿÿÿ is in the center of ýÿ(ýÿ, ý̃, ÿÿÿ). If

ý is odd and coprime to the entries of the symmetrizing diagonal matrix for the principal part of

ý̃, this subring is isomorphic to the corresponding classical cluster algebra ý(ý̃, ÿÿÿ).

(3) Under the assumption in part (2) the exchange graphs of ýÿ(ýÿ, ý̃, ÿÿÿ) and ý(ý̃, ÿÿÿ) are

canonically isomorphic.

In [13], Fock and Goncharov defined and studied root of unity quantum cluster algebras in
the setting of cluster -varieties. They constructed an isomorphism between the (upper) cluster
algebra of a cluster -variety and a central subalgebra of the corresponding root of unity (upper)
quantum cluster algebra under the following assumption:
(*) the order of the root of unity is coprime to the entries of the exchange matrices of all seeds

of the algebra.
This isomorphism in [13] is called the quantum Frobenius map. The differences between our

setting and the setting of [13] are as follows. First, compared to the assumption (*), the assump-
tion in Theorem A(2) is weaker and explicit in the sense that it requires knowledge of only one
seed, while (*) involves the exchange matrices of all seeds which are very rarely known except the
case of surface cluster algebras. Second, the cluster -variety is a regular Poisson manifold and
the representations of the corresponding root of unity upper quantum cluster -algebra have the
same dimension, that is, that setting captures only the Azumaya locus of a root of unity quantum
algebra. Our setting of the algebras ýÿ(ýÿ, ý̃, ÿÿÿ) is suitable to the study of all irreducible rep-
resentations of root of unity quantum algebras, for instance the spectrum of the central subring
of ýÿ(ýÿ, ý̃, ÿÿÿ) (when the base is extended from ℤ to ℂ) is extremely rarely a regular Poisson
manifold. The proofs of the quantum Frobenius map in [13] is different from ours. It relies to
specializations of quantum dilogarithms defined for generic ÿ, while we work directly with the
root of unity algebra without the use of specialization. Finally, we note that in the setting of [13],
Mandel [34] proved the quantum Frobenius conjecture of [13] on the specialization of quantum
theta functions to roots of unity.
In the setting of Theorem A, denote by

ÿÿ(ýÿ, ý̃, ÿÿÿ) (1.1)

the ℤ[ÿ1∕2]-extension of the subring ÿ(ýÿ, ý̃, ÿÿÿ) of ýÿ(ýÿ, ý̃, ÿÿÿ). It is isomorphic to
ý(ý̃, ÿÿÿ) ⊗ℤ ℤ[ÿ1∕2]. In concrete important situations ýÿ(ýÿ, ý̃, ÿÿÿ) is module finite over
ÿÿ(ýÿ, ý̃, ÿÿÿ) (Subsections 6.4 and 8.3). For quantum unipotent cells at roots of unity, the
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latter is proved to be precisely the special De Concini–Kac–Procesi subalgebra [12]. The punchline
of part (2) of the theorem is that it not only constructs a large central subalgebra in vast general-
ity, but it also gives a full control on it via cluster theory. As an upshot, the representation theory
of the algebras in [12] can be studied within the framework of root of unity and classical cluster
algebras.
The proof of part (3) uses a different strategy from the Berenstein–Zelevinsky [4] result for the

isomorphism between classical and quantum exchange graphs. It is based on the special central

subalgebras from part (2).

Root of unity quantum cluster algebras do not necessarily arise as specializations of quantum
cluster algebras. For instance, in the case ý = 1 we recover all cluster algebras of geometric type.
For these reasons, we introduce a subclass of strict root of unity quantum cluster algebras, defined
as those for which the skew-symmetric bilinear form Λ ∶ ℤý × ℤý → ℤ∕ý comes from a skew-
symmetric bilinear form ℤý × ℤý → ℤ which is compatible with the exchange matrix ý̃ in the
sense of [4]. In the case ý = 1, that notion is the same as the notion of a classical cluster algebra
with a compatible Poisson structure in the sense of Gekhtman–Shapiro–Vainshtein [24]. If the
quantum cluster algebra for ý̃ equals the corresponding upper quantum cluster algebra, then
we prove that the root of unity ýÿ(ýÿ, ý̃, ÿÿÿ) arises as a specialization from a quantum cluster
algebra (Section 5). This gives an effective tool for the construction of root of unity quantumcluster
algebras (Subsections 5.6 and 8.3).

1.3 Discriminants

Knowing the explicit form of the discriminant of a noncommutative algebra has a number of
important applications, but its calculation is very difficult. Only a few results are known to date
and they concern concrete classes of algebras. Skew-polynomial algebras were treated in [7, 8],
their Veronese subrings in [10], low dimension Artin–Schelter regular algebras in [1, 40, 41], Ore
extensions without skew-derivations and skew group extensions in [19], quantized Weyl alge-
bras in [9, 31], Taft algebra smash products in [20] and others. A Poisson geometric method for
computing discriminants via deformation theory was given in [36].
We prove the following general results for the computation of the discriminants of all root of

unity quantum cluster algebras over their special central subalgebras (1.1) arising from Theorem
A(2):

Theorem B. Let ÿ1∕2 be a primitive ýth root of unity and ýÿ(ýÿ, ý̃, ÿÿÿ) be a root of unity quan-

tum cluster algebra such that ý is odd and coprime to the entries of the skew-symmetrizing diagonal

matrix for the principal part of ý̃. Let Θ be any collection of seeds that is a nerve (in the sense

of [18] and Definition 6.4) and ýÿ(Θ, ÿÿÿ), ý(Θ, ÿÿÿ) (resp., ÿÿ(Θ, ÿÿÿ)) be the subalgebras of

ýÿ(ýÿ, ý̃, ÿÿÿ), ý(ý̃, ÿÿÿ) (resp., ÿÿ(ýÿ, ý̃, ÿÿÿ)) generated by the cluster variables from the seeds

in Θ (resp., their ýth powers).

(1) If ýÿ(Θ, ÿÿÿ) is a free module over ÿÿ(Θ, ÿÿÿ), then ýÿ(Θ, ÿÿÿ) is a finite rank ÿÿ(Θ, ÿÿÿ)-

module of rank ýý , where as before ý denotes the number of variables in each seed, and its

discriminant ý (ýÿ(Θ, ÿÿÿ)∕ÿÿ(Θ, ÿÿÿ)) with respect to the regular trace function equals

ýýýý
∏

ÿ∈[1,ý]∖(ÿý⊔ÿÿÿ)

ÿ
ýÿÿ
ÿ

for some ÿÿ ∈ ℕ
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up to multiplication by a unit of ÿÿ(Θ, ÿÿÿ) (discriminants are nonuniquely defined up to such

unit). Here ÿÿ denote the frozen variables of ýÿ(Θ, ÿÿÿ) and ℕ ∶= {0, 1, …}.

(2) Ifýÿ(Θ, ÿÿÿ) is a free module overý(Θ, ÿÿÿ), thenýÿ(Θ, ÿÿÿ) is a finite ranký(Θ, ÿÿÿ)-module

of rank ýýÿ(ý) and its discriminant ý (ýÿ(Θ, ÿÿÿ)∕ý(Θ, ÿÿÿ)) with respect to the regular trace

function equals

(
ý(ý+1)ÿ(ý)

∏
ý∣ý ý

ÿ(ý)∕(ý−1)

)ýý ∏
ÿ∈[1,ý]∖(ÿý⊔ÿÿÿ)

ÿ
ýýÿ
ÿ

for some ýÿ ∈ ℕ

up to multiplication by a unit of ý(Θ, ÿÿÿ), where ÿ(.) denotes Euler’s ÿ-function.

In the theorem, one can choose Θ to be the set of all seeds, which gives a formula for the dis-
criminant of ýÿ(ýÿ, ý̃, ÿÿÿ) over ÿÿ(ýÿ, ý̃, ÿÿÿ). The choice of any nerve Θ in the collection of
all seeds allows for the extra flexibility in computing discriminants of subalgebras of root of unity
quantum cluster algebras that do not have cluster structures on their own. The very specific form
of the discriminant in the theorem makes the computation of the integers ÿÿ easy by degree and
filtration arguments (see, e.g., Subsection 8.5).

1.4 The De Concini–Kac–Procesi quantum unipotent cells

Many PI algebras are secretly root of unity quantum cluster algebras or, more generally, algebras
of the form ýÿ(Θ, ÿÿÿ). Let ý be an arbitrary symmetrizable Kac–Moody algebra and ý a Weyl
group element. In Theorems 8.4 and 8.5, we prove that this is the case for the integral forms over
ℤ[ÿ] of all big quantum unipotent cells ýÿ(ÿ+(ý))ℤ[ÿ] of [12] (when ý is odd and coprime to the
symmetrizing integers of the Cartan matrix of ý), namely that

ýÿ(ÿ+(ý))ℤ[ÿ] ≅ ýÿ(ýÿ, ý̃, ∅) (1.2)

for a certain exchange matrix ý̃, and that the corresponding De Concini–Kac–Procesi cen-
tral subalgebra ÿÿ(ÿ+(ý))ℤ[ÿ] of ýÿ(ÿ+(ý))ℤ[ÿ] is precisely the underlying classical cluster
algebra

ÿÿ(ÿ+(ý))ℤ[ÿ] ≅ ÿÿ(ýÿ, ý̃, ∅) ≅ ý(ý̃, ∅) ⊗ℤ ℤ[ÿ]. (1.3)

TheDKP central subalgebrasÿÿ(ÿ+(ý))ℤ[ÿ] play a fundamental role [11, 12] in the study of the rep-
resentation theory of big quantum unipotent cellsýÿ(ÿ+(ý))ℤ[ÿ]. The power of the isomorphisms
(1.2)–(1.3) is that we get a full control on the pair (ýÿ(ÿ+(ý))ℤ[ÿ], ÿÿ(ÿ+(ý))ℤ[ÿ]) as a pair of a root
of unity quantum cluster algebra and the underlying classical cluster algebra. Furthermore, using
Theorem B, we prove:

Theorem C. For all symmetrizable Kac–Moody algebras ý, Weyl group elements ý and primitive

ýth roots of unity ÿ such thatý is oddand coprime to the symmetrizing integers of theCartanmatrix of

ý, the discriminant ý
(
ýÿ(ÿ+(ý))ℤ[ÿ]∕ÿÿ(ÿ+(ý))ℤ[ÿ]

)
of the integral form of the corresponding quan-

tum unipotent cellýÿ(ÿ+(ý))ℤ[ÿ] over its De Concini–Kac–Procesi central subalgebra ÿÿ(ÿ+(ý))ℤ[ÿ]
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with respect to the regular trace equals

ý(ýýý)
∏

ÿ∈(ý)

ÿ
ýý(ý−1)

ÿÿ ,ýÿÿ
,

up to multiplication by a unit of ℤ[ÿ], where (ý) is the support of ý and ÿÿÿ ,ýÿÿ
are the standard

unipotent quantum minors in ýÿ(ÿ+(ý))ℤ[ÿ] associated to the fundamental weightsÿÿ .

A special and weaker case of this theorem was proved in [36]. It only dealt with the case of
finite-dimensional simple Lie algebras ý, due to the use of Poisson geometric results from [11, 12].
Furthermore, [36] only applied to the case of discriminants of algebras over ℂ(ÿ) and not over
ℤ[ÿ], because of the use of Poisson geometric techniques.

Remark D. We expect that other important pairs of the form

(PI algebra, previously constructed central subalgebra)

will be shown to be special cases of pairs of the form

(ýÿ(Θ, ÿÿÿ), ÿÿ(Θ, ÿÿÿ) ≅ ý(Θ, ÿÿÿ) ⊗ℤ ℤ[ÿ1∕2])

and that cluster algebras can provide a strong new tool for the study of the representation theory
of such PI algebras.

1.5 Notation

We will use the following notation throughout the paper. For a pair of integers ÿ ⩽ ý, denote
[ÿ, ý] ∶= {ÿ, ÿ + 1,… , ý}. For a pair of positive integers ÿ, ÿ, denote 0ÿ×ÿ the zero matrix of size
ÿ × ÿ.

2 PRELIMINARIES ON CLASSICAL AND QUANTUM CLUSTER
ALGEBRAS

In this section, we gather backgroundmaterial on cluster algebras of geometric type and quantum
cluster algebras which will be used in the rest of the paper.

2.1 Cluster algebras of geometric type

Cluster algebras were defined by Fomin and Zelevinsky in [14]. Let ý be a positive integer, ÿý be
a subset of [1, ý], and  be a purely transcendental extension of ℚ of transcendence degree ý. A
pair (ý̃, ý̃) is called a seed if

(1) ý̃ = {ý1, … , ýý} is a transcendence basis of  over ℚ which generates  ;
(2) ý̃ ∈ ýý×ÿý(ℤ) and its ÿý × ÿý submatrix ý (called the principal part of ý̃) is skew-

symmetrizable; that is ÿý is skew-symmetric for a matrix ÿ = diag(ýÿ , ÿ ∈ ÿý) with ýÿ ∈

ℤ+.
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We call ý̃ the exchange matrix of the seed, ý̃ the cluster of the seed, ýÿ the cluster variables. The
subset ÿý ⊆ [1,ý] is called set of exchangeable indices. The columns of ý̃ are indexed by this set.
The mutation of ý̃ in direction ý ∈ ÿý is given by

ÿý(ý̃) = (ÿ′ÿÿ) ∶=

{
−ÿÿÿ if ÿ = ý or ÿ = ý

ÿÿÿ +
|ÿÿý|ÿýÿ+ÿÿý|ÿýÿ|

2
otherwise.

Equivalently, ÿý(ý̃) = ýýý̃ýý where ý = ± is a sign and the matrices ýý ∈ ýý(ℤ), ýý ∈ ýÿý(ℤ)

are defined by

ýý ∶= (ÿÿÿ) =

⎧⎪«⎪¬

ÿÿÿ if ÿ ≠ ý

−1 if ÿ = ÿ = ý

max(0, −ýÿÿý) if ÿ ≠ ÿ = ý,

ýý ∶= (ÿÿÿ) =

⎧⎪«⎪¬

ÿÿÿ if ÿ ≠ ý

−1 if ÿ = ÿ = ý

max(0, ýÿýÿ) if ÿ ≠ ÿ = ý.

The principal part of ÿý(ý̃) is the mutation ÿý(ý) of the principal part ý of ý̃ and thematrix ÿý(ý)
is skew-symmetrizable with respect to the same diagonal matrixÿ that skew-symmetrizes ý, [14].
Mutation ÿý of the seed (ý̃, ý̃) in the direction of ý ∈ ÿý is given by ÿý(ý̃, ý̃) ∶= (ý̃′, ÿý(ý̃))where
the mutation of ý̃ is given by

ý̃′ = {ý′
ý
} ∪ ý̃∖{ýý} and ýýý

′
ý
∶=

∏
ÿÿý>0

ý
ÿÿý
ÿ

+
∏
ÿÿý<0

ý
−ÿÿý
ÿ

. (2.1)

Mutation is an involution, ÿ2
ý
= id, [14]. We say that two seeds (ý̃′, ý̃′), (ý̃′′, ý̃′′) are mutation-

equivalent if (ý̃′′, ý̃′′) can be obtained from (ý̃′, ý̃′) via a finite sequence of mutations. Denote this
by (ý̃′, ý̃′) ∼ (ý̃′′, ý̃′′). All seeds that aremutation-equivalent to (ý̃, ý̃) contain the cluster variables
ý ∶= {ýÿ ∣ ÿ ∈ [1,ý]∖ÿý}, called the frozen variables.
The cluster algebra ý(ý̃) is defined as the ℤ[ý±1]-subalgebra of  generated by all cluster vari-

ables in the seeds (ý̃′, ý̃′) ∼ (ý̃, ý̃). For the purposes of applications to coordinate rings, instead
of inverting all frozen variables, we often need to pick a subset ÿÿÿ ⊆ [1,ý]∖ÿý to invert. Then
ý(ý̃, ÿÿÿ), denotes theℤ[ý, ý−1

ý
, ý ∈ ÿÿÿ]-subalgebra generated by all cluster variables in the seeds

(ý̃′, ý̃′) ∼ (ý̃, ý̃). In particular, ý(ý̃) = ý(ý̃, [1, ý]∖ÿý).
The upper cluster algebra ý(ý̃, ÿÿÿ) is the intersection of all mixed polynomial/Laurent

polynomial subrings

ℤ[ý′1, … , ý′ý][(ý
′
ÿ )
−1, ÿ ∈ ÿý ⊔ ÿÿÿ]

of  for the seeds ((ý′
1
, … , ý′

ý
), ý̃′) ∼ (ý̃, ý̃). The Laurent phenomenon of Fomin–Zelevinsky [15]

established that ý(ý̃, ÿÿÿ) ⊆ ý(ý̃, ÿÿÿ).

2.2 Quantum cluster algebras

Quantum cluster algebras were defined by Berenstein and Zelevinsky in [4]. Let Λ ∶ ℤý ×

ℤý → ℤ be a skew-symmetric bilinear form. By abuse of notation, we will denote its matrix
in the standard basis ÿ1, … , ÿý of ℤý by the same symbol Λ = (Λ(ÿÿ , ÿÿ)), and we will use



8 of 47 NGUYEN et al.

interchangeably both notions. The bilinear form is uniquely reconstructed from thismatrix. Using
a formal variable ÿ1∕2, we work with the Laurent polynomial ring


1∕2
ÿ ∶= ℤ[ÿ±1∕2]. (2.2)

Definition 2.1. The based quantum torus ÿ(Λ) associated with Λ is defined as the
1∕2
ÿ -algebra

with a
1∕2
ÿ -basis {ÿÿ |ÿ ∈ ℤý } and multiplication given by

ÿÿÿg = ÿΛ(ÿ,g)∕2ÿÿ+g , where ÿ, g ∈ ℤý .

The bilinear form Λ can be recovered from the commutation relations of the generators ÿÿ1 ,
… , ÿÿý of ÿ(Λ), because ÿ

ÿÿg = ÿΛ(ÿ,g)ÿgÿÿ . We denote by  the skew-field of fractions of

ÿ(Λ), which is aℚ(ÿ
1∕2)-algebra. Each ÿ ∈ ÿÿý(ℤ) gives rise to the based quantum torus ÿ(Λ

′)

associated to the form Λ′(ÿ, g) = Λ(ÿÿ, ÿg). Note that if we consider Λ′ as a matrix, then Λ′ =

ÿ⊤Λÿ. Also, we have an
1∕2
ÿ -algebra isomorphism Ψÿ ∶ ÿ(Λ) → ÿ(Λ

′) given by ÿÿ ↦ ÿÿ−1ÿ .

Definition 2.2. Let ÿ be a division algebra over ℚ(ÿ
1∕2). A toric frameýÿ for ÿ is defined as

a mapýÿ ∶ ℤý → ÿ for which there exists a skew-symmetric matrix Λ ∈ ýý(ℤ) satisfying the
following.

(1) There is an
1∕2
ÿ -algebra embedding ÿ ∶ ÿ(Λ) ↪ ÿ with ÿ(ÿ

ÿ) = ýÿ(ÿ) for all ÿ ∈ ℤý .
(2) ÿ = Fract(ÿ(ÿ(Λ))).

The skew-symmetric matrix associated to a toric frameýÿ will be denoted byΛýÿ
. For any ÿ ∈

ÿÿý(ℤ), ÿ ∈ Aut(ÿ), and toric frame ýÿ, the map ÿýÿÿ is a toric frame with Λÿýÿÿ
= ÿ⊤Λÿ.

The embedding ÿ for ýÿ gives rise to an embedding ÿ′ ∶ ÿ(Λÿýÿÿ
) ↪ ÿ by ÿ′ = ÿ◦ÿ◦Ψÿ−1 ,

which satisfies the two properties above for ÿýÿÿ.
For a toric frameýÿ, we indicate the based quantum torus that lies inÿ with basis {ýÿ(ÿ) |ÿ ∈

ℤý } by ÿ(ýÿ). We have the canonical isomorphism ÿ(ýÿ) ≃ ÿ(Λýÿ
).

As in the previous subsection fix ÿý ⊆ [1,ý]. View Λ = (ÿÿÿ) as a skew-symmetric matrix and
let ý̃ be an ý × ÿýmatrix. We call the pair (Λ, ý̃) compatible if

ý∑
ý=1

ÿýÿÿýÿ = ÿÿÿýÿ for all ÿ ∈ [1,ý], ÿ ∈ ÿý (2.3)

for someýÿ ∈ ℤ+. Equivalently ý̃
⊤Λ = ÿ̃whereýÿÿ = ýÿ for ÿ ∈ ÿý and otherwiseýÿÿ = 0. Denote

byÿ ∶= diag(ýÿ , ÿ ∈ ÿý) the principal part of ÿ̃. If (Λ, ý̃) is a compatible pair, then ý̃ has full rank
and its principal part ý is skew-symmetrized by ÿ, [4]
A pair (Λ, ý̃) is mutated in the direction of ý ∈ ÿý, by setting ÿý(Λ, ý̃) ∶= (Λ′, ý̃′) where ý̃′ =

ýýý̃ýý as in the classical case andΛ
′ ∶= ý⊤

ý Λýý, which is independent on the choice of sign ý, [4].
As in the classical case ÿý is an involution, [4].
We call a pair (ýÿ, ý̃) (consisting of a toric frame ýÿ for a division algebra ÿ and a matrix

ý̃ ∈ ýý×ÿý(ℤ)) a quantum seed if the pair (Λýÿ
, ý̃) is compatible. We call {ýÿ(ÿÿ) | ÿ ∈ [1,ý]}

the cluster variables of the seed (ýÿ, ý̃). The subset of cluster variables {ýÿ(ÿÿ) | ÿ ∉ ÿý} are called
frozen variables.
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Proposition 2.3. Suppose ýÿ is a toric frame, ý ∈ [1,ý] and g = (ÿ1, … , ÿý) ∈ ℤý is such that

Λýÿ
(g , ÿÿ) = 0 for ÿ ≠ ý and ÿý = 0. Then for each ý = ±, there is an automorphism ÿ

g ,ý = ÿ
ýÿ
g ,ý of

ÿ , such that

ÿ
g ,ý(ýÿ(ÿÿ)) =

{
ýÿ(ÿý) + ýÿ(ÿý + ýg) if ÿ = ý

ýÿ(ÿÿ) if ÿ ≠ ý.

This is a variation of [4, Proposition 4.2], proved in [25, Lemma 2.8], whichwill bemore suitable
for our root of unity treatment and its relation to the quantum picture via the homomorphism
(5.3).
Mutation ÿý(ýÿ, ý̃) of a quantum seed in the direction of ý ∈ ÿý is defined as

(ÿý(ýÿ), ÿý(ý̃)) ∶=
(
ÿ
ýÿ

ÿý ,ý
ýÿýý, ýýý̃ýý

)
,

which is independent on the choice of sign, and Λÿý(ýÿ)
= ÿý(Λýÿ

), [4]. Explicitly, mutation of
toric frames is given by

ÿý(ýÿ)(ÿÿ) = ýÿ(ÿÿ) for ÿ ≠ ý,

ÿý(ýÿ)(ÿý) = ýÿ(−ÿý + [ÿý]+) + ýÿ(−ÿý − [ÿý]−),
(2.4)

[4]. Here, for ÿ = (ÿ1, … , ÿý) ∈ ℤý , set [ÿ]± ∶= (ý1, … , ýý) ∈ ℤý where ýÿ ∶= ÿÿ if ±ÿÿ ⩾ 0 and
ýÿ ∶= 0 otherwise.
We fix a subset ÿÿÿ ⊆ [1,ý]∖ÿý corresponding to frozen variables that will be inverted.

Definition 2.4. The quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) is the
1∕2
ÿ -subalgebra of ÿ gener-

ated by all cluster variablesý′
ÿ(ÿÿ), ÿ ∈ [1,ý] of quantum seeds (ý′

ÿ, ý̃
′)mutation equivalent to

(ýÿ, ý̃) and by the inversesýÿ(ÿÿ)
−1 for ÿ ∈ ÿÿÿ.

The upper quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) is defined as the intersection over quantum

seeds (ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃) of all
1∕2
ÿ -subalgebras of ÿ of the form


1∕2
ÿ ïý′

ÿ(ÿÿ),ý
′
ÿ(ÿÿ)

−1 | ÿ ∈ [1,ý], ÿ ∈ ÿý ⊔ ÿÿÿ ð.

These subalgebras of ÿ are calledmixed quantum tori.

The quantum Laurent phenomenon states that

ýÿ(ýÿ, ý̃, ÿÿÿ) ⊆ ýÿ(ýÿ, ý̃, ÿÿÿ).

Berenstein and Zelevinsky [4] proved this in the case when all frozen variables are inverted, that
is, when ÿÿÿ = [1,ý]∖ÿý. The general case was proved in [25, Theorem 2.5], where the result is

stated over ℂ(ÿ±1∕2) but the proof works over
1∕2
ÿ .

The exchange graphs of a cluster algebra ý(ý̃, ý̃) and a quantum cluster algebra ýÿ(ýÿ, ý̃) are
the labeled graphswith vertices corresponding to seedsmutation-equivalent to (ý̃, ý̃), respectively,
(ýÿ, ý̃), and edges given by seed mutation and labeled by the corresponding mutation number.
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Those graphs will be denoted by ý(ý̃) and ýÿ(Λýÿ
, ý̃). A map between two labeled graphs is a

graph map that preserves labels of edges. Berenstein and Zelevinsky [4] proved that there is a
(unique) isomorphism between the exchange graphs ýÿ(Λýÿ

, ý̃) and ý(ý̃) obtained by sending

the vertex corresponding to seed (ý̃, ý̃) to that of (ýÿ, ý̃). Obviously, the exchange graphs do not
depend on the choice of inverted set ÿÿÿ.

3 ROOT OF UNITY QUANTUM CLUSTER ALGEBRAS AND
ELEMENTARY PROPERTIES

In this section, we define root of unity quantum cluster algebras and describe their elementary
properties that are similar to those for quantum cluster algebras. We furthermore prove that all of
them are PI algebras.

3.1 Construction

Let ý be a positive integer. For a matrix ÿ ∈ ýÿ×ÿ(ℤ) denote its image inýÿ×ÿ(ℤ∕ý) by ÿ. Let
ÿ1∕2 ∈ ℂ be a primitive ýth root of unity and set


1∕2
ÿ ∶= ℤ[ÿ1∕2]. (3.1)

Note that in the case of ý odd, ÿ is also a primitive ýth root of unity and ℤ[ÿ1∕2] = ℤ[ÿ].
By abuse of notation, for a skew-symmetric bilinear form Λ ∶ ℤý × ℤý → ℤ∕ý we will denote

by the same letter its matrix (Λ(ÿÿ , ÿÿ)) ∈ ýý(ℤ∕ý). For such a bilinear form define the root of

unity based quantum torus ÿ(Λ) to be the 
1∕2
ÿ -algebra with an 

1∕2
ÿ -basis {ÿÿ | ÿ ∈ ℤý} and

multiplication given by

ÿÿÿg = ÿΛ(ÿ,g)∕2ÿÿ+g where ÿ, g ∈ ℤý .

Hence,ÿÿÿg = ÿΛ(ÿ,g)ÿgÿÿ . The bilinear formΛ can be recovered from the based quantum torus
by

ÿΛ(ÿ,g)∕2 = ÿÿÿgÿ−ÿ−g , ∀ÿ, g ∈ ℤý

by using the assumption that ÿ is a primitive ýth root of unity.

Definition 3.1. A root of unity toric frame ýÿ of a division algebra ÿ over ℚ(ÿ
1∕2) is a map

ýÿ ∶ ℤý → ÿ such that there is a skew-symmetric matrixΛ ∈ ýý(ℤ∕ý) satisfying the following
conditions.

(1) There is an
1∕2
ÿ -algebra embedding ÿ ∶ ÿ(Λ) ↪ ÿ with ÿ(ÿ

ÿ) = ýÿ(ÿ) for all ÿ ∈ ℤý .
(2) ÿ ≃ Fract (ÿ(Λ)).

The matrix Λ ∈ ýý(ℤ∕ý) is uniquely reconstructed from the root of unity toric frame ýÿ. It
will be calledmatrix of the frameýÿ and we will denote Λýÿ

∶= Λ.
Fix a subset of ÿý ⊆ [1,ý].
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Definition 3.2. Let ý̃ ∈ ýý×ÿý(ℤ) andΛ = (ÿÿÿ) ∈ ýý(ℤ∕ý) be skew-symmetric. The pair (Λ, ý̃)
will be called ý-compatible if there exists a diagonal matrix ÿ ∶= diag(ýÿ , ÿ ∈ ÿý) with ýÿ ∈ ℤ+

such that

(1) the principal part ý of ý̃ is skew-symmetrized by ÿ; that is ÿý is skew-symmetric;

(2)
∑ý

ý=1 ÿýÿÿýÿ = ÿÿÿýÿ (mod ý) for all ÿ ∈ [1,ý], ÿ ∈ ÿý; that is Λ⊤ý̃ =

[
ÿ

0

]
, where 0 denotes

the zero matrix of size ([1, ý]∖ÿý) × ÿý.

We will not require any conditions on ýÿ , so the matrix ý̃ need not have full rank like in the
case of quantum cluster algebras.
Similar to the generic case, we define themutation in direction ý ∈ ÿý of ý-compatible pairs to

be

ÿý(Λ, ý̃) ∶=
(
ý
⊤

ý Λýý, ýýý̃ýý

)
for a choice of sign ý.

The proof of the following proposition is analogous to [4, Propositions 3.4 and 3.6].

Proposition 3.3. The pair ÿý(Λ, ý̃) is independent of the choice of sign ý. If the pair (Λ, ý̃) is ý-

compatible with respect to a diagonal matrix ÿ, then the pair ÿý(Λ, ý̃) is also ý-compatible with

respect to the same diagonal matrix ÿ. Mutation ÿý of ý-compatible pairs is an involution.

Definition 3.4. We will call a pair (ýÿ, ý̃) a root of unity quantum seed if

(1) ýÿ is a root of unity toric frame of ÿ,
(2) ý̃ ∈ ýý×ÿý(ℤ) and (Λýÿ

, ý̃) is an ý-compatible pair.

Proposition 3.5. Supposeýÿ is a root of unity toric frame, ý ∈ [1,ý], and g = (ÿ1, … , ÿý) ∈ ℤý

is such that Λýÿ
(g , ÿÿ) ≡ 0 (mod ý) for ÿ ≠ ý and ÿý = 0. Then for each ý = ±, there is a unique

automorphism ÿ
ýÿ
g ,ý of ÿ, such that

ÿ
ýÿ
g ,ý (ýÿ(ÿÿ)) =

{
ýÿ(ÿý) + ýÿ(ÿý + ýg) if ÿ = ý

ýÿ(ÿÿ) if ÿ ≠ ý.
(3.2)

Our argument is similar to [25, Lemma 2.8] but we spell out the details because they will be
needed later.

Proof. Denote Fract(ÿ(ýÿ)) by ÿ. We have a homomorphism ÿ
g ,ý ∶ ÿ(ýÿ) → ÿ because

(ýÿ(ÿý) + ýÿ(ÿý + ýg))ýÿ(ÿÿ) = ÿΛ(ÿý ,ÿÿ)ýÿ(ÿÿ)(ýÿ(ÿý) + ýÿ(ÿý + ýg))

for ÿ ≠ ý. On the
1∕2
ÿ -basis {ýÿ(ÿ)}, one calculates that

ÿ
g ,ý(ýÿ(ÿ)) =

⎧⎪«⎪¬

ÿ
ýÿ ,ÿý
g ,ý,+ ýÿ(ÿ) ifÿý ⩾ 0

(
ÿ
ýÿ ,−ÿý
g ,ý,−

)−1
ýÿ(ÿ) ifÿý < 0
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for ÿ = (ÿ1, … ,ÿý) ∈ ℤý , where

ÿ
ýÿ ,ÿý
g ,ý,± ∶=

ÿý∏
ý=1

(
1 + ÿ∓ý(2ý−1)Λýÿ

(g ,ÿý)∕2ýÿ(ýg)
)
forÿý ⩾ 0.

Let ÿ ∶= 
1∕2
ÿ [ýÿ(ýg)]∖{0} ⊂ ÿ(ýÿ). Note that ÿ ⋅ýÿ(ÿ) = ýÿ(ÿ) ⋅ ÿ for any ÿ ∈ ℤý , and

hence ÿ is an Ore set. Moreover, as im(ÿ
g ,ý) ⊂ ÿ(ýÿ)ÿ

−1, we may consider ÿ
g ,ý ∶ ÿ(ýÿ) →

ÿ(ýÿ)ÿ
−1. As g has ÿý = 0, the map ÿ

g ,ý acts by the identity on ÿ. We can clearly extend the
map to an endomorphism ÿ

g ,ý ∶ ÿÿ(ýÿ)ÿ
−1 → ÿÿ(ýÿ)ÿ

−1.
We can similarly construct an algebra endomorphism ÿ′

g ,ý ∶ ÿÿ(ýÿ)ÿ
−1 → ÿÿ(ýÿ)ÿ

−1 defined
by

ÿ′
g ,ý(ýÿ(ÿÿ)) =

⎧
⎪«⎪¬

(
ÿ
ýÿ ,1
g ,ý,+

)−1
ýÿ(ÿ) if ÿ = ý

ýÿ(ÿÿ) if ÿ ≠ ý

.

Clearly, ÿ
g ,ý and ÿ

′
g ,ý are inverse to each other and are automorphisms of ÿÿ(ýÿ)ÿ

−1. In particu-
lar, they are injective and can be extended to automorphisms of ÿ. Uniqueness follows because
ýÿ(ÿÿ) are skew-field generators of ÿ. □

Similar to the generic case, we define mutation of a root of unity quantum seed (ýÿ, ý̃) in the
direction of ý ∈ ÿý by

ÿý(ýÿ, ý̃) ∶=
(
ÿ
ýÿýý
ÿý ,ý

ýÿýý, ýýý̃ýý

)
. (3.3)

The proof of the following proposition is analogous to [4, Propositions 4.7 and 4.10].

Proposition 3.6. Given a root of unity quantum seed (ýÿ, ý̃), the following hold.

(1) For ý ∈ ÿý and either sign ý = ±:

ÿ
ýÿýý
ÿý ,ý

ýÿýý(ÿÿ) = ýÿ(ÿÿ) for ÿ ≠ ý,

ÿ
ýÿýý
ÿý ,ý

ýÿýý(ÿý) = ýÿ(−ÿý + [ÿý]+) + ýÿ(−ÿý − [ÿý]−).

In particular, mutation does not depend on the sign used.

(2) ÿý(ýÿ, ý̃) is also a root of unity quantum seed.

Moreover, mutation is an involution.

We consider the equivalence classes under finite sequences of mutations of root of unity quan-
tum seeds. Fix a subset ÿÿÿ ⊆ [1,ý]∖ÿý corresponding to frozen variables that we will set as
invertible.

Definition 3.7. Given a root of unity quantumseed (ýÿ, ý̃), we define the quantumcluster algebra

at a root of unity ýÿ(ýÿ, ý̃, ÿÿÿ) as the
1∕2
ÿ -subalgebra of ÿ generated by all cluster variables of
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quantum seeds (ý′
ÿ, ý̃

′)mutation equivalent to (ýÿ, ý̃) and by the inverses of the frozen variables
corresponding to ÿÿÿ,

ýÿ(ýÿ, ý̃, ÿÿÿ) ∶= 
1∕2
ÿ ïý′

ÿ(ÿÿ),ýÿ(ÿÿ)
−1 | ÿ ∈ [1,ý], ÿ ∈ ÿÿÿ, (ý′

ÿ, ý̃
′) ∼ (ýÿ, ý̃)ð.

Wehave associated to each skew-symmetric bilinear formΛ a based quantum torus. Given sub-
sets ÿý and ÿÿÿ, we can also associate an algebra in between the corresponding skew-polynomial
algebra and the quantum torus,

ÿ(Λ)⩾ ∶= 
1∕2
ÿ

ï
ÿÿ , ÿ

−1
ÿ | ÿ ∈ [1,ý], ÿ ∈ ÿý ⊔ ÿÿÿ

ð
⊂ ÿ(Λ). (3.4)

We call this amixed based quantum torus. Equivalently, it is the algebra


1∕2
ÿ −Span

{
ÿÿ ∣ ÿ ∈ ℤý

⩾

}
with the product ÿÿÿg = ÿΛ(ÿ,g)∕2ÿÿ+g , ∀ÿ, g ∈ ℤý

⩾ ,

where

ℤý
⩾ ∶= {ÿ = (ÿ1, … , ÿý) ∈ ℤý ∣ ÿÿ ⩾ 0, ∀ÿ ∉ ÿý ⊔ ÿÿÿ}. (3.5)

We similarly define

ÿ(ýÿ)⩾ ∶= ïýÿ(ÿÿ), ýÿ(ÿÿ)
−1 | ÿ ∈ [1,ý], ÿ ∈ ÿý ⊔ ÿÿÿð ⊂ ÿ(ýÿ).

Definition 3.8. Given a root of unity quantum seed (ýÿ, ý̃) and specified subsets ÿý and ÿÿÿ,
we define the upper quantum cluster algebra at a root of unity ýÿ(ýÿ, ý̃, ÿÿÿ) as the intersection
of mixed quantum tori corresponding to quantum seeds mutation equivalent to (ýÿ, ý̃),

ýÿ(ýÿ, ý̃, ÿÿÿ) ∶=
⋂

(ýÿ ,ý̃)∼(ý
′
ÿ ,ý̃

′)

ÿ(ý
′
ÿ)⩾.

Remark 3.9. In the case when ÿ1∕2 = 1 (i.e., ý = 1), a root of unity quantum cluster algebra can
be identified with a classical cluster algebra (of geometric type)

ý1(ý1, ý̃, ÿÿÿ) = ý((ý1(ÿ1), … ,ý1(ÿý)), ý̃, ÿÿÿ),

and similarly a root of unity upper quantum cluster algebra with an upper cluster algebra

ý1(ý1, ý̃, ÿÿÿ) = ý((ý1(ÿ1), … ,ý1(ÿý)), ý̃, ÿÿÿ).

3.2 The quantum Laurent phenomenon at roots of unity

Theorem 3.10. For any root of unity quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ)

ýÿ(ýÿ, ý̃, ÿÿÿ) ⊆ ýÿ(ýÿ, ý̃, ÿÿÿ).
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Proof. The case when ý̃ has full rank is proved analogously to [25, Theorem 2.15]. We deduce the
general case of the theorem from the full rank one as follows.
For simplicity of notation, assume that ÿý = [1, ÿ] for some integer ÿ ⩽ ý. Consider the

augmented skew-symmetric bilinear form with matrix

Λaug ∶=

[
Λ 0ý×ÿ

0ÿ×ý 0ÿ×ÿ

]
,

where 0ÿ×ÿ denotes the zero matrix of size ÿ × ÿ. Denote the augmented exchange matrix

ý̃aug ∶=

[
ý̃

ýÿ

]

whose principal part is the same as ý̃. The pair (Λaug, ý̃aug) is ý-compatible with respect to the
same diagonal matrix ÿ because

ý̃
⊤

augΛaug =
[
ÿ 0

]
.

Denote by ̂ÿ the skew-field Fract(ÿ(Λaug)) and consider the toric frame (ýÿ)aug withmatrixΛaug

such that (ýÿ)aug(ÿý) ∶= ÿý for all ý ∈ [ý + 1,ý + ÿ]. Clearly, ((ýÿ)aug, ý̃aug) is a root of unity

quantum seed. We have a canonical surjective
1∕2
ÿ -algebra homomorphism

ÿ ∶ ÿ((ýÿ)aug)⩾ → ÿ(ýÿ)⩾ given by ÿ((ýÿ)aug(ÿý)) ∶=

{
ýÿ(ÿý), 1 ⩽ ý ⩽ ý

1, ý < ý ⩽ ý + ÿ

because the elements (ýÿ)aug(ÿý) are in the center of ÿ((ýÿ)aug)⩾ for ý < ý ⩽ ý + ÿ.
By induction onÿ ⩾ 0 one easily shows that

ÿ
(
ÿÿ1 …ÿÿÿ ((ýÿ)aug)(ÿý)

)
= ÿÿ1 …ÿÿÿ (ýÿ)(ÿý)

for all ý ∈ [1,ý]. As the matrix ý̃aug has full rank, by the validity of the root of unity quantum
Laurent phenomenon in the full rank case we have

ÿÿ1 …ÿÿÿ ((ýÿ)aug)(ÿý) ∈ ÿ((ýÿ)aug)⩾.

Hence, ÿÿ1 …ÿÿÿ (ýÿ)(ÿý) ∈ ÿ(ýÿ)⩾ for all ý ∈ [1,ý], which completes the proof of the theorem
in the general case. □

3.3 PI properties of root of unity quantum cluster algebras

Theorem 3.11. All root of unity quantum cluster algebras ýÿ(ýÿ, ý̃, ÿÿÿ) and root of unity upper

quantum cluster algebras ýÿ(ýÿ, ý̃, ÿÿÿ) are PI domains, see, for example, [5, section I.13] or [33,

chapter 13].
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Proof. By Theorem 3.10, for every toric frameýÿ of ýÿ(ýÿ, ý̃, ÿÿÿ) we have the embeddings

ýÿ(ýÿ, ý̃, ÿÿÿ) ⊆ ýÿ(ýÿ, ý̃, ÿÿÿ) ⊆ ÿ(ýÿ) ≅ ÿ(Λýÿ
).

As each root of unity quantum torus ÿ(Λ) is a PI domain, the same is true for the first two algebras
in the chain. □

4 CANONICAL CENTRAL SUBRINGS OF ROOT OF UNITY
QUANTUM CLUSTER ALGEBRAS

The main results of this section are the construction of a canonical central subring of a root of
unity quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) and a theorem that it is isomorphic to the classical
cluster algebra ý(ý̃, ÿÿÿ).

4.1 Central embedding of commutative cluster algebras

Lemma 4.1. If (ý′
ÿ, ý̃

′) is mutation-equivalent to (ýÿ, ý̃), then the element ý′
ÿ(ÿÿ)

ý ∈

ýÿ(ýÿ, ý̃, ÿÿÿ) is central for any ÿ ∈ [1,ý].

Proof. We only need show that ýÿ(ÿÿ)
ý ∈ ý(ýÿ(ýÿ, ý̃)) for ÿ ∈ [1,ý], as ýÿ(ýÿ, ý̃, ÿÿÿ) =

ýÿ(ý
′
ÿ, ý̃

′, ÿÿÿ). Nowýÿ(ÿÿ)
ý is central in ÿ(ýÿ) as

ýÿ(ÿÿ)
ýýÿ(ÿ) = ýÿ(ýÿÿ)ýÿ(ÿ) = ÿΛ(ýÿÿ ,ÿ)ýÿ(ÿ)ýÿ(ýÿÿ) = ýÿ(ÿ)ýÿ(ÿÿ)

ý.

Thus, it is central in Fract(ÿ(ýÿ)) and in ýÿ(ýÿ, ý̃, ÿÿÿ). □

For a root of unity quantum seed (ýÿ, ý̃) and for ÿ ∈ ÿý, consider the commutation of elements
ýÿ(−ÿÿ + [ÿÿ]+) andýÿ(−ÿý − [ÿÿ]−). The relation in the quantum torus is

ýÿ(−ÿÿ − [ÿÿ]−)ýÿ(−ÿÿ + [ÿÿ]+) = ÿΛ(−ÿÿ−[ÿ
ÿ]−,−ÿÿ+[ÿ

ÿ]+)ýÿ(−ÿÿ + [ÿÿ]+)ýÿ(−ÿÿ − [ÿÿ]−).

Set ýÿ ∶= Λ(−ÿÿ − [ÿÿ]−, −ÿÿ + [ÿÿ]+) for brevity.

Lemma 4.2. Let (ýÿ, ý̃) be a root of unity quantum seed, so (Λýÿ
, ý̃) is an ý-compatible pair with

respect to a diagonal matrix ÿ = diag(ýÿ , ÿ ∈ ÿý) with ýÿ ∈ ℤ+. Then for ÿ ∈ ÿý, ýÿ = ýÿ .

Proof. We have that

ýÿ = Λ(−ÿÿ − [ÿÿ]−, −ÿÿ + [ÿÿ]+)

= Λ(−ÿÿ , −ÿÿ) + Λ(−ÿÿ , [ÿ
ÿ]+) + Λ(−[ÿÿ]−, −ÿÿ) + Λ(−[ÿÿ]−, [ÿ

ÿ]+)

= Λ(ÿÿ , ÿÿ) + Λ([ÿÿ]+, [ÿ
ÿ]−) = ýÿ + Λ([ÿÿ]+, [ÿ

ÿ]−).
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To evaluate Λ([ÿÿ]+, [ÿ
ÿ]−), we note that ÿ

ÿ − [ÿÿ]+ = [ÿÿ]−, so

Λ([ÿÿ]+, [ÿ
ÿ]−) = Λ([ÿÿ]+, ÿ

ÿ) − Λ([ÿÿ]+, [ÿ
ÿ]+) = Λ([ÿÿ]+, ÿ

ÿ).

As ÿÿÿ = 0,

Λ([ÿÿ]+, [ÿ
ÿ]−) = Λ([ÿÿ]+, ÿ

ÿ) =
∑
ÿÿÿ>0

ÿÿÿΛ(ÿÿ , ÿ
ÿ) =

∑
ÿÿÿ>0

−ÿÿÿÿÿ,ÿýÿ = 0.

Thus, ýÿ = ýÿ . □

We will often require the following condition on our root of unity quantum seed (ýÿ, ý̃):

(ÿýýÿÿÿÿ)
ý is an odd integer coprime to ýý for ý ∈ ÿý, where ÿ = diag(ýÿ , ÿ ∈ ÿý)

is the matrix that skew-symmetrizes the principal part ý of ý̃.

The condition (Coprime) only concerns the ýth root of unity ÿ and the compatible pair (Λýÿ
, ý̃),

and not the root of unity toric frameýÿ.

Remark 4.3. The diagonal matrix ÿ that skew-symmetrizes exchange matrices is invariant under
mutation. Therefore, if a root of unity quantum seed satisfies condition (Coprime), then any
mutation equivalent seed does so as well. So, (Coprime) is a condition on a root of unity quantum
cluster algebra and not on individual seeds.

Themain use of Lemma 4.2 is the following result. The formula appearing should be compared
to the mutation relation of (2.1).

Proposition 4.4. Let (ýÿ, ý̃) be a root of unity quantum seed satisfying the condition (ÿýýÿÿÿÿ).

Then for ý ∈ ÿý,

ýÿ(ÿý)
ý(ÿýýÿ(ÿý))

ý =
∏
ÿÿý>0

(ýÿ(ÿÿ)
ý)ÿÿý +

∏
ÿÿý<0

(ýÿ(ÿÿ)
ý)−ÿÿý .

Proof. Denote

ý ∶= ýÿ(−ÿý + [ÿý]+), ý ∶= ýÿ(−ÿý − [ÿý]−) ∈ ÿ(ýÿ).

As ýý = ÿýýýý (by Lemma 4.2) and ÿýý is an ýth primitive root of unity,

(ý + ý)ý = ýý + ýý .

Thus,

(ÿýýÿ(ÿý))
ý =

(
ýÿ(−ÿý + [ÿý]+) + ýÿ(−ÿý − [ÿý]−)

)ý
= (ý + ý)ý

= ýÿ(−ÿý + [ÿý]+)
ý +ýÿ(−ÿý − [ÿý]−)

ý
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= ýÿ(−ýÿý + ý[ÿý]+) + ýÿ(−ýÿý − ý[ÿý]−)

= ýÿ(−ýÿý)
∏
ÿÿý>0

ýÿ(ýÿÿýÿÿ) + ýÿ(−ýÿý)
∏
ÿÿý<0

ýÿ(−ýÿÿýÿÿ).
□

Example 4.5. The previous proposition does not hold if the condition that ý is coprime to the
integers ýý is dropped. Consider the following example when ý = 9. Let

ÿ1∕2 = ÿ2ÿÿ∕9, Λ =

[
0 1

−1 0

]
, ý̃ =

[
0 1

−3 0

]
.

Let ÿ ∶= Fract (ÿ(Λ)) andýÿ ∶ ℤ2 → ÿ be the toric frame related to Λ such thatýÿ(ÿ) = ÿÿ

and Λýÿ
∶= Λ. Clearly, (ýÿ, ý̃) is a root of unity quantum seed. Here we have

ý̃⊤Λ =

[
3 0

0 1

]
.

In particular, ý1 = 3 is not coprime to ý = 9. For ý ∶= ýÿ(−ÿ1 + [ÿ1]+) = ýÿ(−ÿ1) and ý ∶=

ýÿ(−ÿ1 − [ÿ1]−) = ýÿ(−ÿ1 + 3ÿ2), by a direct computation one obtains

(ý + ý)9 = ý9 + 3ý6ý3 + 3ý3ý6 + ý9 ≠ ý9 + ý9,

so the conclusion of Proposition 4.4 fails.
In a similar way, dropping the odd root of unity conditionwill result in a failure of the statement

of Proposition 4.4. Consider the same choice forΛ and ý̃, but with ÿ1∕2 = ÿ, a primitive fourth root
of unity. Then ÿ = −1 and

(ý + ý)4 = ý4 + (1 + ÿ + 2ÿ2 + ÿ3 + ÿ4)ý2ý2 + ý4

= ý4 + 2ý2ý2 + ý4 ≠ ý4 + ý4

leading once again to a failure of the conclusion of Proposition 4.4. The issue in the even case is
that ÿ is a primitive (ý∕2)th root of unity, not a primitive ýth root of unity.

Define the ℤ-subring

ÿ(ýÿ, ý̃, ÿÿÿ) ∶= ℤïý′
ÿ(ÿÿ)

ý , ý′
ÿ(ÿÿ)

−ý | (ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃), ÿ ∈ [1,ý], ÿ ∈ ÿÿÿ ð

of ýÿ(ýÿ, ý̃, ÿÿÿ).

Theorem4.6. Suppose that (ýÿ, ý̃) satisfies condition (Coprime). Then the subringÿ(ýÿ, ý̃, ÿÿÿ)

of ýÿ(ýÿ, ý̃, ÿÿÿ) is isomorphic to ý(ý̃, ÿÿÿ).

Proof. As ý({ý1, … , ýý}, ý̃, ∅) is constructed as a subalgebra of ℚ(ý1, … , ýý), consider the iso-
morphism ÿ ∶ ℚ(ý1, … , ýý) → Fract

(
ℤ[ýÿ(ÿ1)

ý , … ,ýÿ(ÿý)
ý ]

)
given by ýÿ ↦ ýÿ(ÿÿ)

ý . Proposi-
tion 4.4 gives us that ÿ(ÿÿ(ýÿ)) = (ÿÿýÿ(ÿÿ))

ý for all ÿ ∈ ÿý, ÿ ∈ [1,ý]. By induction on the length
of the mutation sequence, ÿ(ÿÿý …ÿÿ1(ýÿ)) = (ÿÿý …ÿÿ1ýÿ(ÿÿ))

ý .
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As the generators ofℤïý′
ÿ(ÿÿ)

ý | (ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃), ÿ ∈ [1,ý]ð are the images of the generators
of ý({ý1, … , ýý}, ý̃, ∅) under the isomorphism ÿ, then we have an isomorphism of ℤ-algebras.
Themore general case, when ÿÿÿ ≠ ∅, is obtained by adjoining the appropriate inverses of frozen
variables. □

Corollary 4.7. If (ýÿ, ý̃) satisfies condition (Coprime), then the
1∕2
ÿ -subalgebra

ÿÿ(ýÿ, ý̃, ÿÿÿ) ∶= 
1∕2
ÿ ïý′

ÿ(ÿÿ)
ý , ý′

ÿ(ÿÿ)
−ý | (ý′

ÿ, ý̃
′) ∼ (ýÿ, ý̃), ÿ ∈ [1,ý], ÿ ∈ ÿÿÿ ð

of ýÿ(ýÿ, ý̃, ÿÿÿ) is isomorphic to
1∕2
ÿ ⊗ℤ ý(ý̃, ÿÿÿ).

4.2 Exchange graphs of root of unity quantum cluster algebras

For a root of unity quantum cluster algebra ýÿ(ýÿ, ý̃), define its exchange graph ýÿ(ýÿ, ý̃) to be
the labeled graphwith vertices corresponding to root of unity quantum seedsmutation-equivalent
to (ýÿ, ý̃) and with edges given by seed mutation labeled by the corresponding letters.

Theorem 4.8. Let (ýÿ, ý̃) be a root of unity quantum seed satisfying condition (ÿýýÿÿÿÿ). There

is a unique isomorphism of labeled graphs from the exchange graph ýÿ(ýÿ, ý̃) to the exchange graph

ý(ý̃) which sends the vertex corresponding to the seed (ýÿ, ý̃) to the vertex corresponding to the seed

(ý̃, ý̃), where ý̃ = (ýÿ(ÿ1)
ý , … ,ýÿ(ÿý)

ý).

Wewill need the following two propositions for the proof of the theoremwhich are of indepen-
dent interest. Recall that an exchange matrix ý̃ is indecomposable if it cannot be represented in a
block diagonal form with blocks of strictly smaller size.
The first proposition establishes a leading term statement for cluster expansions.

Proposition 4.9. Assume that (ýÿ, ý̃) and (ý
′
ÿ, ý̃

′) are two seeds of a root of unity quantum cluster

algebra, where ý̃ is indecomposable and ý̃ ≠ 0. Then for every ý ∈ [1,ý] there exists a functional

ÿ ∶ ℤý → ℤ such that

ý′
ÿ(ÿý) = ýÿ(ÿ) +

∑
ÿ

ÿÿýÿ(ÿÿ)

for some ÿÿ ∈ 
1∕2
ÿ and ÿ, ÿÿ ∈ ℤý such that ÿ(ÿ) > ÿ(ÿÿ) for all ÿ.

The statement fails when ý̃ = 0, because in that case ÿ1(ýÿ)(ÿ1) = 2ýÿ(−ÿ1).

Proof. Weprove the proposition by induction on the distance between the vertices in the exchange
graph corresponding to the seeds (ýÿ, ý̃) and (ý′

ÿ, ý̃
′). The case when the distance equals 1

is trivial because the condition that ý̃ is indecomposable and ý̃ ≠ 0 implies that ÿÿ(ýÿ)(ÿÿ) =

ýÿ(ÿ1) + ýÿ(ÿ2) for some ÿ1 ≠ ÿ2 ∈ ℤý .
Assume the validity of the statement when the distance equals ÿ. Consider two seeds (ýÿ, ý̃)

and (ý′
ÿ, ý̃

′) whose vertices are at distance ÿ + 1 in the exchange graph. Then there exists a
seed (ý′′

ÿ , ý̃
′′) such that (ý′′

ÿ , ý̃
′′) = ÿÿ(ýÿ, ý̃) for some ÿ ∈ [1,ý] and the distance between the
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vertices of the exchange graph corresponding to the seeds (ý′′
ÿ , ý̃

′′) and (ý′
ÿ, ý̃

′) equals ÿ. The
exchange matrices ý̃′ and ý̃′′ are necessarily indecomposable. We have

ý′′
ÿ (ÿý) = ýÿ(ÿý) for ý ≠ ÿ,

ý′′
ÿ (ÿÿ) = ýÿ(−ÿÿ + [ÿÿ]+) + ýÿ(−ÿÿ − [ÿÿ]−).

By the induction hypothesis, there exists a functional ÿ′′ ∶ ℤý → ℤ such that

ý′
ÿ(ÿý) = ý′′

ÿ (g) +
∑
ÿ

ÿ′′ÿ ý
′′
ÿ (gÿ) (4.1)

for some ÿ′′
ÿ
∈ 

1∕2
ÿ and g , gÿ ∈ ℤý such that ÿ′′(g) > ÿ′′(gÿ) for all ÿ.

Denote by ý the sign ± for which ÿ′′([ÿÿ]+) or −ÿ
′′([ÿÿ]−) is minimal. Define the functional

ÿ ∶ ℤý → ℤ by

ÿ(ÿÿ) = ÿ′′(−ÿÿ + ý[ÿÿ]ý), ÿ(ÿý) = ÿ′′(ÿý) for ý ≠ ÿ.

Let ̂ÿ(ýÿ) be the completion of the quantum torus ÿ(ýÿ) spanned by formal sums of the form

∞∑
ÿ=0

ýÿýÿ(ℎ − ÿýÿÿ)

for ℎ ∈ ℤý and ýÿ ∈ 
1∕2
ÿ . It is an

1∕2
ÿ -algebra on its own. We have −ý[ÿÿ]−ý = ý[ÿÿ]ý − ýÿÿ . As

ýÿ(−ÿÿ + [ÿÿ]+) andýÿ(−ÿÿ − [ÿÿ]−) skew-commute up to a power of ÿ, for all ÿ ∈ ℤ,

ý′′
ÿ (ÿÿÿ) =

(
ýÿ(−ÿÿ + ý[ÿÿ]ý) + ýÿ(−ÿÿ − ý[ÿÿ]−ý)

)ÿ
(4.2)

= ýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý)

)
+

∞∑
ÿ=1

ýÿýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý) − ÿýÿÿ

)

for some ýÿ ∈ 
1∕2
ÿ . Denote ℤý−1 ∶=

⨁
ÿ≠ý ℤÿÿ ⊂ ℤý . For all ℎ ∈ ℤý−1 we have

Λ′′(ÿÿ , ℎ) = Λ(−ÿÿ + [ÿÿ]+, ℎ) = Λ(−ÿÿ − [ÿÿ]−, ℎ)

and thus, by using (4.2) and the definition of root of unity toric frames,

ý′′
ÿ (ÿÿÿ + ℎ) = ýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý) + ℎ

)
+

∞∑
ÿ=1

ýÿýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý) + ℎ − ÿýÿÿ

)
(4.3)

for some ýÿ ∈ 
1∕2
ÿ . Write the elements g , gÿ ∈ ℤý in (4.1) in the form g = ÿÿÿ + ℎ, gÿ = ÿÿÿÿ + ℎÿ ,

for ÿ, ÿÿ ∈ ℤ, ℎ, ℎÿ ∈ ℤý−1 and apply (4.3) to obtain,

ý′
ÿ(ÿý) = ýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý) + ℎ

)
+

∞∑
ÿ=1

ýÿýÿ

(
ÿ(−ÿÿ + ý[ÿÿ]ý) + ℎ − ÿýÿÿ

)

+
∑
ÿ

ÿ′′ÿ ýÿ

(
ÿÿ(−ÿÿ + ý[ÿÿ]ý) + ℎÿ

)
+

∞∑
ÿ=1

ýÿ,ÿýÿ

(
ÿÿ(−ÿÿ + ý[ÿÿ]ý) + ℎÿ −ÿýÿÿ

)
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for some ýÿ,ÿ ∈ 
1∕2
ÿ . By the root of unity quantumLaurent phenomenon (Theorem3.10), the sum

in the right-hand side belongs to ÿ(ýÿ). Furthermore, the definition of the functional ÿ implies
that

ÿ(ÿ(−ÿÿ + ý[ÿÿ]ý) + ℎ) = ÿ′′(g) > ÿ′′(gÿ) = ÿ(ÿÿ(−ÿÿ + ý[ÿÿ]ý) + ℎÿ),

ÿ(ýÿÿ) = ÿ(ý[ÿÿ]ý) + ÿ(ý[ÿÿ]−ý) < 0.

Hence, the above expansion of ý′
ÿ(ÿý) in ÿ(ýÿ) has the desired properties with respect to the

functional ÿ. □

Remark 4.10. The proof of Proposition 4.9 directly translates to the case of quantum cluster
algebras to yield the validity of the obvious analog of it in that situation.

The second auxiliary proposition for the proof of Theorem 4.8 is a recognition statement for
toric frames of root of unity quantum cluster algebras in terms of the ýth powers of the cluster
variables in them.

Proposition 4.11. Assume that (ýÿ, ý̃) and (ý′
ÿ, ý̃

′) are two seeds of a root of unity quantum

cluster algebra. Then
(
ý′

ÿ(ÿ1), … ,ý′
ÿ(ÿý)

)
is a permutation of

(
ýÿ(ÿ1), … ,ýÿ(ÿý)

)
if and only if(

ý′
ÿ(ÿ1)

ý , … ,ý′
ÿ(ÿý)

ý
)
is a permutation of

(
ýÿ(ÿ1)

ý , … ,ýÿ(ÿý)
ý
)
.

Proof. The forward direction is obvious. For the reverse direction it is sufficient to consider the
case when ý̃ is indecomposable. If ý̃ = 0, the statement is clear. In the remaining part we assume
that ý̃ is indecomposable and ý̃ ≠ 0. Suppose that

ý′
ÿ(ÿý)

ý = ýÿ(ÿÿ(ý))
ý for some ÿ ∈ ÿý . (4.4)

Consider a root of unity quantum torus ÿ(Λ)with generatorsÿ
±1
1
, … , ÿ±1

ý
. By using the standard

basis of ÿ(Λ), one easily sees that the only solutions of the equation ÿý = ÿý

ý
for ÿ ∈ ÿ(Λ) and

1 ⩽ ý ⩽ ý are ÿ = (ÿ1∕2)ÿÿý forÿ ∈ [0,ý). By Theorem 3.10,ý′
ÿ(ÿý) ∈ ÿ(ýÿ), and (4.4) implies

that for all 1 ⩽ ý ⩽ ý

ý′
ÿ(ÿý) = (ÿ1∕2)ÿýýÿ(ÿÿ(ý)) for some ÿý ∈ [0,ý).

Proposition 4.9 implies thatÿý = 0 for all 1 ⩽ ý ⩽ ý, so

ý′
ÿ(ÿý) = ýÿ(ÿÿ(ý)), ∀1 ⩽ ý ⩽ ý. □

Proof of Theorem 4.8. Anymap of labeled graphs from ýÿ(ýÿ, ý̃) to ý(ý̃) that sends the vertex cor-
responding to the seed (ýÿ, ý̃) to the vertex corresponding to the seed ((ýÿ(ÿ1)

ý , … ,ýÿ(ÿý)
ý), ý̃)

necessarily sends the vertex ÿÿ1 …ÿÿÿ (ýÿ, ý̃) to the vertex ÿÿ1 …ÿÿÿ ((ýÿ(ÿ1)
ý , … ,ýÿ(ÿý)

ý), ý̃) for
all sequences ÿ1, … , ÿÿ in ÿý. Proposition 4.11 implies that this map is well-defined. It is obviously
surjective. It is injective by Proposition 4.11. □
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4.3 The full centers of roots of unity quantum cluster algebras

In Corollary 4.7, we constructed a central subalgebraÿÿ(ýÿ, ý̃, ÿÿÿ) of each root of unity quantum
cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) satisfying condition (Coprime). We will call it the special central
subalgebra. One can provide a characterization of the full center of the algebra ýÿ(ýÿ, ý̃, ÿÿÿ), as
follows. For a skew-symmetric bilinear form Λ ∶ ℤý × ℤý → ℤ∕ý denote

KerΛ ∶= {ÿ ∈ ℤý ∣ Λ(ÿ, g) = 0, ∀g ∈ ℤý}.

Proposition 4.12. Let ýÿ(ýÿ, ý̃, ÿÿÿ) be a root of unity quantum cluster algebra. For every seed

(ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃), the center of ýÿ(ýÿ, ý̃, ÿÿÿ) is given by

ý(ýÿ(ýÿ, ý̃, ÿÿÿ)) = ýÿ(ýÿ, ý̃, ÿÿÿ) ∩
1∕2
ÿ −Span{ý′

ÿ(ÿ) ∣ ÿ ∈ KerΛý′
ÿ
}.

Proof. Using the standard basis of a root of unity quantum torus, one easily shows that

ý(ÿ(ý
′
ÿ)) = 

1∕2
ÿ −Span{ý′

ÿ(ÿ) ∣ ÿ ∈ KerΛý′
ÿ
} (4.5)

The root of unity quantum Laurent phenomenon (Theorem 3.10) implies that
ýÿ(ýÿ, ý̃, ÿÿÿ) ⊆ ÿ(ý

′
ÿ). As Fract(ýÿ(ýÿ, ý̃, ÿÿÿ)) = Fract(ÿ(ý

′
ÿ)),

ý(ýÿ(ýÿ, ý̃, ÿÿÿ)) = ýÿ(ýÿ, ý̃, ÿÿÿ) ∩ ý(ÿ(ý
′
ÿ))

and the proposition follows from (4.5). □

Remark 4.13. Using the full form of the root of unity quantum Laurent phenomenon (Theo-
rem 3.10), one analogously proves the following stronger (but more technical) description of the
center of ýÿ(ýÿ, ý̃, ÿÿÿ):

ý(ýÿ(ýÿ,ý̃, ÿÿÿ)) = ýÿ(ýÿ, ý̃, ÿÿÿ)∩


1∕2
ÿ −Span{ýÿ(ÿ) ∣ ÿ = (ÿ1, … , ÿý) ∈ KerΛýÿ

, ÿÿ ⩾ 0, ∀ÿ ∉ ÿý ⊔ ÿÿÿ}.

5 STRICT ROOT OF UNITY QUANTUM CLUSTER ALGEBRAS AND
SPECIALIZATIONS

In this section, we introduce the notion of strict root of unity quantum cluster algebras and show
that, under certain general assumptions, they arise as specializations.

5.1 Construction

Definition 5.1. Consider a root of unity quantum seed (ýÿ, ý̃), so that (Λýÿ
, ý̃) is ý-compatible

with respect to a diagonal matrix ÿ. We say that this seed is strict if there exists a skew-symmetric
integer matrix Λ ∈ ýý(ℤ) such that
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(1) Λ = Λýÿ
and

(2) the pair (Λ, ý̃) is compatible with respect to the diagonal matrix ÿ.

Recall that ÿ denotes the image of a matrix ÿ ∈ ýÿ×ÿ(ℤ) inýÿ×ÿ(ℤ∕ý). Clearly, condition (2)
is stronger than requiring that (Λýÿ

, ý̃) be ý-compatible with respect to ÿ. The choice of matrix
Λ is not unique.

Proposition 5.2. If (ýÿ, ý̃) is a strict root of unity quantum seed with respect to a skew-symmetric

integer matrix Λ ∈ ýý(ℤ), then ÿý(ýÿ, ý̃) is also a strict root of unity quantum seed with respect to

the skew-symmetric integer matrix

Λ′ = ý⊤
ý Λýý

Proof. The pair (ý⊤
ý Λýý, ýýý̃ýý) is the mutation of the compatible pair of matrices (Λ, ý̃). By [4,

Proposition 3.4] the first pair is compatible with respect to the matrix ÿ. We have

Λÿý(ýÿ)
= ý

⊤

ý Λýÿ
ýý = ý

⊤

ý Λýý = Λ
′
. □

Definition 5.3. We call a root of unity quantum cluster algebra strict if one, and thus every of its
seeds, is strict.

Remark 5.4. The class of strict root of unity quantum cluster algebras is a proper subset of the class
of root of unity quantum cluster algebras. For example, by Remark 3.9, for ý = 1, a root of unity
quantum cluster algebra is the same object as a classical cluster algebra. At the same time, it is easy
to see that a strict root of unity quantum cluster algebra for ý = 1 is the same object as a classical
cluster algebrawith a compatible Poisson structure in the sense ofGekhtman–Shapiro–Vainshtein
[24].

5.2 Specialization of quantum tori

Denote the ýth cyclotomic polynomial by

Φý(ý) ∈ ℤ[ý]. (5.1)

We have the isomorphism 
1∕2
ÿ ∕(Φý(ÿ

1∕2)) ≃ 
1∕2
ÿ given by ÿ1∕2 ↦ ÿ1∕2. This makes

ÿ(Λ)∕(Φý(ÿ
1∕2)) an

1∕2
ÿ -algebra.

Lemma 5.5. There is an isomorphism of
1∕2
ÿ -algebras ÿ(Λ)∕(Φý(ÿ

1∕2)) ≃ ÿ(Λ).

Proof of Lemma 5.5. It follows that ÿ(Λ)∕(Φý(ÿ
1∕2)) ≃ ÿ(Λ) because the free

1∕2
ÿ -module ÿ(Λ)

and the free
1∕2
ÿ -module ÿ(Λ) both have the basis {ÿ

ÿ | ÿ ∈ ℤý}. □
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Denote the specialization map

ÿÿ ∶ ÿ(Λ) ↠ ÿ(Λ)∕(Φý(ÿ
1∕2)) ≃ ÿ(Λ). (5.2)

It is a homomorphism of
1∕2
ÿ -algebras, where

1∕2
ÿ acts on ÿ(Λ) via the map ÿ ↦ ÿ.

Construction 5.6. Let (ýÿ, ý̃) be a strict root of unity quantum seed associated to a skew-
symmetric integer matrix Λ ∈ ýý(ℤ). To it we associate the unique quantum seed (ýÿ, ý̃) of
ÿ ∶= Fract(ÿ(Λ)) such that Λýÿ

= Λ. The compatibility of the pair (Λ, ý̃) with respect to the

matrix ÿ implies that (ýÿ, ý̃) is indeed a quantum seed.
The isomorphisms of quantum tori ÿ(ýÿ) ≃ ÿ(Λ) and ÿ(ýÿ) ≃ ÿ(Λ) and the specialization

map (5.2) give rise to the specialization map (an
1∕2
ÿ -algebra homomorphism)

ÿÿ ∶ ÿ(ýÿ) ↠ ÿ(ýÿ) (5.3)

with kernel (Φý(ÿ
1∕2)). It is given by ÿÿ(ýÿ(ÿ)) ∶= ýÿ(ÿ) for ÿ ∈ ℤý .

The next theorem provides a general realization of a root of unity quantum cluster algebra in
terms of the specialization maps (5.3) for toric frames.

Theorem 5.7. Let (ýÿ, ý̃) be a root of unity quantum toric frame associated to a skew-

symmetric integer matrix Λ ∈ ýý(ℤ) and (ýÿ, ý̃) be the corresponding quantum toric frame from

Construction 5.6. We have the isomorphism of
1∕2
ÿ -algebras

ÿÿ(ýÿ(ýÿ, ý̃, ÿÿÿ)) ≃ ýÿ(ýÿ, ý̃, ÿÿÿ). (5.4)

In the special case ÿ1∕2 = 1 (i.e., ý = 1), the theorem provides a realization of classical clus-
ter algebras with a compatible Poisson structure (in the sense of [24]) in terms of toric frame
specializations of quantum cluster algebras, recall Remark 3.9.

Proof. As the elements ýÿ(ÿý), 1 ⩽ ý ⩽ ý generate ÿ(ýÿ) and ÿÿ ∶ ÿ(ýÿ) ↠ ÿ(ýÿ) is a
surjective ring homomorphism,

Fract
(
ÿÿ(ýÿ(ýÿ, ý̃, ÿÿÿ))

)
≃ Fract(ÿ(ýÿ)). (5.5)

We claim that the following hold for all quantum seeds (ý′
ÿ, ý̃

′) of ýÿ(ýÿ, ý̃, ÿÿÿ):

(i) (ÿÿý
′
ÿ, ý̃

′) is a root of unity quantum seed of ÿÿ(ýÿ(ýÿ, ý̃, ÿÿÿ)).

(ii) ÿý
(
ÿÿý

′
ÿ, ý̃

′
)
= (ÿÿ(ý

′′
ÿ ), ÿý(ý̃

′)) whereý′′
ÿ is the toric frame of the seed ÿý(ý

′
ÿ, ý̃

′).

Property (i): ÿÿý
′
ÿ is a root of unity quantum toric frame of ÿ(ýÿ) because of (5.5) and the fact

that ÿÿ is a homomorphism of
1∕2
ÿ -algebras. The compatibility of the pair (Λýÿ

, ý̃′) implies that

the matrix of the frame ÿÿý
′
ÿ and the exchange matrix ý̃

′ are ý-compatible. Property (ii) follows
from the mutation formulae in Equation (2.4) and Proposition 3.6(1), and once again the fact that

fact that ÿÿ is an
1∕2
ÿ -algebra homomorphism.
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The properties (i)–(ii), the fact that the image ÿÿ(ýÿ(ýÿ, ý̃, ÿÿÿ)) is generated by the elements
ÿÿý

′
ÿ(ÿÿ) for quantum seeds (ý′

ÿ, ý̃
′) ∼ (ýÿ, ý̃), 1 ⩽ ÿ ⩽ ý and by the inverses of these elements

for ÿ ∈ ÿÿÿ imply the isomorphism in (5.4). □

5.3 Generalized specialization

For a commutative ring and an ideal  of it, denote the factor ring′ ∶= ∕.

Lemma 5.8.

(1) For every-module ý we have the short exact sequence of-modules

0 → ý → ý → ′ ⊗ ý → 0,

where the third map is ÿ ↦ 1 ⊗ ÿ for ÿ ∈ ý and ′ ⊗ ý is made into an -module via the

surjection ↠ ′.

(2) For an-submoduleÿ ⊆ ý, the following are equivalent:

(a) the induced map′ ⊗ − ∶ ′ ⊗ ÿ → ′ ⊗ ý is injective,

(b) ÿ ∩ ý = ÿ.

Proof. The first part is well-known, see, for example, [22, Lemma 3.1].
(2) Consider the commutative diagram

where the horizontal maps are the ones from part (1) and the vertical ones are induced from the
embedding ÿ ∶ ÿ ↪ ý.
(a) ⇒ (b) Let ÿ0 ∈ ý and ý ∈ ÿ be such that ÿý(ÿ0) = ÿ(ý). Then ÿ′ÿÿ(ý) = ÿýÿ(ý) =

ÿý ÿý(ÿ0) = 0. As (a) holds, ÿÿ(ý) = 0, and so ý ∈ Im ÿÿ .
(b) ⇒ (a) Let ý′ ∈ ′ ⊗ ÿ be such that ÿ′(ý′) = 0. Choose ý ∈ ÿ such that ý′ = ÿÿ(ý).

Because ÿýÿ(ý) = ÿ′ÿÿ(ý) = 0, ÿ(ý) ∈ Im ÿý . As (b) holds,ý = ÿÿ(ý0) for someý0 ∈ ÿ, and
thus ý′ = ÿÿ ÿÿ(ý0) = 0.
A special case of the second part of the lemma for principal ideal domains , prime ideals 

and free modules ý is stated in [22, Lemma 2.1]. □

The′-moduleý∕ý ≃ ′ ⊗ ý is called the (generalized) specialization ofý at ; tradition-
ally, specialization deals with the special casewhen is a principal ideal. The canonical projection
map

ÿý ∶ ý ↠ ý∕ý ≃ ′ ⊗ ý
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is called the specialization map. It is a homomorphism of-modules. If an-submoduleÿ ⊆ ý

satisfies the equivalent conditions in Lemma 5.8(2), then

ÿ∕ÿ ≃ ÿý(ÿ) and ÿÿ = ÿý|ÿ .

5.4 A general specialization result for quantum cluster algebras

Recall from (5.1) that Φý(ý) denotes the ýth cyclotomic polynomial and
1∕2
ÿ ∕(Φý(ÿ

1∕2)) ≃ 
1∕2
ÿ .

For a quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) denote the corresponding specialization map

ÿÿ ∶ ýÿ(ýÿ, ý̃, ÿÿÿ) ↠ ýÿ(ýÿ, ý̃, ÿÿÿ)∕(Φý(ÿ
1∕2)) ≃ 

1∕2
ÿ ⊗


1∕2
ÿ

ýÿ(ýÿ, ý̃, ÿÿÿ),

which is a surjective homomorphism of
1∕2
ÿ -modules.

Similarly to (3.4), for a quantum seed (ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃) denote the subalgebra

ÿ(ý
′
ÿ)⩾ ∶= 

1∕2
ÿ ïý′

ÿ(ÿÿ),ý
′
ÿ(ÿÿ)

−1 | ÿ ∈ [1,ý], ÿ ∈ ÿý ⊔ ÿÿÿð (5.6)

of the quantum torus ÿ(ý
′
ÿ). It is isomorphic to the mixed (based) quantum torus/skew

polynomial algebra


1∕2
ÿ −Span{ÿÿ ∣ ÿ ∈ ℤý

⩾ } with the product ÿÿÿg = ÿΛ
′(ÿ,g)∕2ÿÿ+g , ∀ÿ, g ∈ ℤý

≥

for ℤý
≥
as in (3.5). The specialization map ÿÿ ∶ ÿ(ýÿ) ↠ ÿ(ýÿ) ≅ ÿ(ýÿ)∕(Φý(ÿ

1∕2)) form (5.3)
restricts to the specialization map

ÿÿ ∶ ÿ(ýÿ)⩾ ↠ ÿ(ýÿ)⩾ ≅ ÿ(ýÿ)⩾∕(Φý(ÿ
1∕2)), (5.7)

which, by abuse of notation, will be denoted by the same symbol.
The following result gives a general way of constructing root of unity quantum cluster algebras

as specializations from quantum cluster algebras.

Theorem 5.9. Let (ýÿ, Λ, ý̃) be a root of unity quantum toric frame and (ýÿ, ý̃) be the

corresponding quantum toric frame from Construction 5.6. If

ýÿ(ýÿ, ý̃, ÿÿÿ) ∩
(
Φý(ÿ

1∕2)ÿ(ýÿ)⩾

)
= Φý(ÿ

1∕2)ýÿ(ýÿ, ý̃, ÿÿÿ), (5.8)

then the root of unity quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) is a specialization of the quantum

cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ):

ýÿ(ýÿ, ý̃, ÿÿÿ)∕(Φý(ÿ
1∕2)) ≃ ýÿ(ýÿ, ý̃, ÿÿÿ)

and the specialization map ÿÿ is a restriction of the specialization map ÿÿ ∶ ÿ(ýÿ)⩾ ↠ ÿ(ýÿ)⩾ to

ýÿ(ýÿ, ý̃, ÿÿÿ).
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Verifying the condition (5.8) in concrete cases is difficult. Theorem 5.11 presents another result
of the form that ýÿ(ýÿ, ý̃, ÿÿÿ) is a specialization of ýÿ(ýÿ, ý̃, ÿÿÿ) under an assumption that is
stronger but more natural and easier to verify. The proof of Theorem 5.11 uses Theorem 5.9.

Proof of Theorem 5.9. In light of Lemma 5.8(2), the assumption (5.8) implies that

ýÿ(ýÿ, ý̃, ÿÿÿ)∕(Φý(ÿ
1∕2)) ≃ ÿÿ(ýÿ(ýÿ, ý̃, ÿÿÿ)) and ÿÿ = ÿÿ|ýÿ(ýÿ ,ý̃,ÿÿÿ)

.

Thus, we have the commutative diagram

The theorem now follows from Theorem 5.7. □

5.5 Specialization results for quantum cluster algebras

The following is an extension of [22, Proposition 3.5]:

Proposition 5.10. For each prime element ý ∈ 
1∕2
ÿ and ý ∈ ÿý,

ÿ(ýÿ)⩾ ∩ (ýÿ(ÿýýÿ)⩾) = (ýÿ(ýÿ)⩾) ∩ ÿ(ÿýýÿ)⩾.

Proof. We follow the line of argument of [22, Proposition 3.5] but include the proof because the
original result in [22] is stated over the base ring ý[ÿ±1∕2], where ý is a field, and for a concrete
choice of ý.
Denote by ÿ(ýÿ)

◦
⩾ the subalgebra ÿ(ýÿ)⩾ with those generators as in (5.6) such that ÿ, ÿ ≠ ý.

Let ÿý ∶= ýÿ(ÿý) and ÿ
′
ý
∶= ÿý(ýÿ)(ÿý). ÿ(ýÿ)⩾ is a free (left and right) ÿ(ýÿ)

◦
⩾-module with

basis {ÿÿ
ý
∣ ÿ ∈ ℤ}:

ÿ(ýÿ)⩾ =
⨁
ÿ∈ℤ

ÿ
ÿ
ý
ÿ(ýÿ)

◦
⩾. (5.9)

For ÿ ∈ ℤ denote

ýÿ = ÿÿΛ(ÿý ,[ÿ
ý]+)∕2ýÿ([ÿ

ý]+) + ÿ−ÿΛ(ÿý ,[ÿ
ý]−)∕2ýÿ(−[ÿ

ý]−) ∈ ÿ(ýÿ)
◦
⩾.

We have

ý1 = ÿýÿ
′
ý

and ýÿÿý = ÿýý
ÿ−2, ∀ÿ ∈ ℤ.

If ÿ ∈ ÿ(ýÿ)⩾ ∩ (ýÿ(ÿýýÿ)⩾), then

ÿ =
∑
ÿ∈ℤ

ÿ
ÿ
ý
ýÿ =

∑
ÿ∈ℤ

(ÿ′
ý
)ÿýÿ ,
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where both sums are finite and ýÿ ∈ ÿ(ýÿ)
◦
⩾, ýÿ ∈ ýÿ(ýÿ)

◦
⩾ for all ÿ ∈ ℤ. The free module

structure (5.9) implies that

ý0 = ý0

ýÿ = ý−2ÿ−1…ý3ý1ý−ÿ for ÿ < 0,

ý−1ý−3…ý−2ÿ+1ýÿ = ý−ÿ for ÿ > 0.

Therefore, ýÿ ∈ ýÿ(ýÿ)
◦
⩾ for all ÿ ⩽ 0. For the case ÿ > 0, first note that 

1∕2
ÿ ∕(ý) is an inte-

gral domain because ý ∈ 
1∕2
ÿ is prime. As a consequence, ÿ(ýÿ)

◦
⩾∕ýÿ(ýÿ)

◦
⩾ is a domain

because it is a subalgebra of a quantum torus with coefficients in 
1∕2
ÿ ∕(ý). If ÿ ∶ ÿ(ýÿ)

◦
⩾ ↠

ÿ(ýÿ)
◦
⩾∕ýÿ(ýÿ)

◦
⩾ denotes the canonical projection, then

ÿ(ýÿ)ÿ(ý
2ÿ−1) … ÿ(ý3)ÿ(ý1) = ÿ(ý−ÿ) = 0.

Becauseýÿ ∉ ýÿ(ýÿ)
◦
⩾ for all ÿ ∈ ℤ and ÿ(ýÿ)

◦
⩾∕ýÿ(ýÿ)

◦
⩾ is a domain, ÿ(ýÿ) = 0 and thus ýÿ ∈

ýÿ(ýÿ)
◦
⩾ for ÿ > 0. Hence, ÿ ∈ ýÿ(ýÿ)⩾. □

Theorem 5.11. Let (ýÿ, Λ, ý̃) be a root of unity quantum toric frame and (ýÿ, ý̃) be the

corresponding quantum toric frame from Construction 5.6. If

ýÿ(ýÿ, ý̃, ÿÿÿ) = ýÿ(ýÿ, ý̃, ÿÿÿ),

then the root of unity quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) is a specialization of the quantum

cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ):

ýÿ(ýÿ, ý̃, ÿÿÿ)∕(Φý(ÿ
1∕2)) ≃ ýÿ(ýÿ, ý̃, ÿÿÿ)

and the specialization map ÿÿ is a restriction of the specialization map ÿÿ ∶ ÿ(ýÿ)⩾ ↠ ÿ(ýÿ)⩾
from (5.7) to ýÿ(ýÿ, ý̃, ÿÿÿ).

Proof. Applying Proposition 5.10, one proves that for all quantum seeds (ý′
ÿ, ý̃

′) ∼ (ýÿ, ý̃),

ýÿ(ýÿ, ý̃, ÿÿÿ) ∩
(
Φý(ÿ

1∕2)ÿ(ýÿ)⩾

)
= ýÿ(ýÿ, ý̃, ÿÿÿ) ∩

(
Φý(ÿ

1∕2)ÿ(ýÿ)⩾

)

⊆ Φý(ÿ
1∕2)ÿ(ý

′
ÿ)⩾

by induction on the distance from (ýÿ, ý̃) to (ý
′
ÿ, ý̃

′) in the exchange graph. Hence

ýÿ(ýÿ, ý̃, ÿÿÿ) ∩
(
Φý(ÿ

1∕2)ÿ(ýÿ)⩾

)
⊆ Φý(ÿ

1∕2)ýÿ(ýÿ, ý̃, ÿÿÿ) = Φý(ÿ
1∕2)ýÿ(ýÿ, ý̃, ÿÿÿ)

and clearly ýÿ(ýÿ, ý̃, ÿÿÿ) ∩
(
Φý(ÿ

1∕2)ÿ(ýÿ)⩾
)
⊇ Φý(ÿ

1∕2)ýÿ(ýÿ, ý̃, ÿÿÿ). This verifies the
condition (5.8) and the theorem now follows from Theorem 5.9. □
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5.6 An example: QuantizedWeyl algebras at roots of unity

Let ý = (ÿÿÿ) ∈ ýÿ(ℤ) be a skew-symmetric integer matrix and ÿ
1∕2 ∈ ℂ be a primitive ýth root

of unity for ý > 1. Denote by ýý
ÿ,ÿ,ℂ the quantized Weyl algebra at the root of unity ÿ, which is a

ℂ-algebra generated by ýÿ , ÿÿ for ÿ ∈ [1, ÿ] with relations

ÿÿÿÿ = ÿÿÿÿÿÿÿÿ ∀ÿ, ÿ, ýÿýÿ = ÿ1+ÿÿÿýÿýÿ for ÿ < ÿ,

ýÿÿÿ = ÿ−ÿÿÿÿÿýÿ for ÿ < ÿ, ýÿÿÿ = ÿ1−ÿÿÿÿÿýÿ for ÿ > ÿ,

ýÿÿÿ = 1 + ÿÿÿýÿ + (ÿ − 1)

ÿ−1∑
ÿ=1

ÿÿýÿ.

Note that {ýÿ , (ÿ − 1)ÿÿ ∣ 1 ⩽ ÿ ⩽ ÿ} is another set of generators for this algebra. Denote by ýý
ÿ,ÿ,ℤ

the
1∕2
ÿ -subalgebra generated by ýÿ , (ÿ − 1)ÿÿ . It is an

1∕2
ÿ -form of ýý

ÿ,ÿ,ℂ. The algebra ý
ý
ÿ,ÿ,ℤ is a

specialization of the
1∕2
ÿ -algebra ýý

ÿ,ÿ,ℤ with generators and relations as in [26, eq. (4.9)]:

ýý
ÿ,ÿ,ℤ ≅ ýý

ÿ,ÿ,ℤ∕Φý(ÿ
1∕2).

This easily follows by using bases for both algebras.
By [26, Example 4.10] ýý

ÿ,ÿ,ℤ has a quantum cluster algebra structure of type (ý1)
ÿ and by [26,

Theorem 4.8] this quantum cluster algebra equals the corresponding upper quantum cluster alge-
bra. Proposition 5.10 implies thatýý

ÿ,ÿ,ℤ has a strict root of unity quantumcluster algebra structure.
The root of unity quantum toric frame for its initial seed is given by

ýÿ(ÿÿ) ∶= (−1)ÿÿ1∕2ýÿ , ýÿ(ÿÿ+ÿ) ∶= (−1)ÿ[ýÿ , ÿÿ] = (−1)ÿ + (−1)ÿ(ÿ − 1)

ÿ∑
ÿ=1

ýÿÿÿ

for 1 ⩽ ÿ ⩽ ÿ, and the corresponding matrix is

Λ =

[
ý′ −ý

ý 0ÿ×ÿ

]

whose blocks are the ÿ × ÿ integer matrices

(ý′)ÿÿ =

⎧
⎪«⎪¬

ÿÿÿ + 1 if ÿ < ÿ

−ÿÿÿ − 1 if ÿ > ÿ

0 if ÿ = ÿ

(ý)ÿÿ =

⎧
⎪«⎪¬

1 if ÿ < ÿ

ÿÿÿ if ÿ > ÿ

0 if ÿ = ÿ

.

The set of exchangeable indices is ÿý = [1, ÿ] and the set of inverted frozen variables is empty,
ÿÿÿ = ∅. The exchange matrix of the seed is

ý̃ =

[
0ÿ×ÿ
ÿ

]

where the entries of ÿ ∈ ýÿ(ℤ) are (ÿ)ÿ,ÿ+1−ÿ = 1, (ÿ)ÿ,ÿ−ÿ = −1, (ÿ)ÿÿ = 0 otherwise.
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6 DISCRIMINANTS OF ROOT OF UNITY QUANTUM CLUSTER
ALGEBRAS

In this section, we prove a general result for the computation of discriminants of root of unity
quantum cluster algebras.

6.1 Background on discriminants

For an algebraic number field ÿ, consider its trace function tr = trÿ∕ℚ ∶ ÿ → ℚ obtained from

the composition ÿ ↪ ýý(ℚ)
Tr
��→ ℚ, where the first embedding is obtained from the ÿ-action on

ÿ ≃ ℚý (for some positive integer ý) and the second map is the trace map on matrices. The
discriminant of ÿ is defined by

Δÿ ∶= det
(
tr(ÿÿÿÿ)

)ý
ÿ,ÿ=1

,

where {ÿ1, ÿ2, … , ÿý} is aℤ-basis of the ring of integersÿÿ ofÿ. The discriminant does not depend
on the choice of basis. More generally, we consider algebras with trace:

Definition 6.1. An algebra with trace is a ring ý with a central subring ÿ and a ÿ-linear map
tr ∶ ý → ÿ such that

tr(ýÿ) = tr(ÿý), ∀ý, ÿ ∈ ý.

Such a ring ý is naturally a ÿ-algebra.

Example 6.2. Consider a ringýwhich is free and of finite ranký over a central subringÿ ⊆ ý(ý).
Choosing a ÿ-basis of ý gives rise to a ÿ-module isomorphism ý ≃ ÿý , and the left action of ý on
itself gives rise to an algebra homomorphism ý → ýý(ÿ). The regular trace of ý is defined as the
composition

trreg ∶ ý → ýý(ÿ)
Tr
��→ ÿ ⊆ ý,

where the second maps is the trace map on matrices. The trace map trreg is independent of the
choice of ÿ-basis used to construct the homomorphism ý → ýý(ÿ).

For a commutative ring ÿ, denote by ÿ× its group of units (i.e., invertible elements under the
product operation). Two elements ý1, ý2 ∈ ÿ are called associates (denoted ý1 =ÿ× ý2) if ý1 = ÿý2
for some ÿ ∈ ÿ×.

Definition 6.3. Assume that ý is an algebra with trace tr ∶ ý → ÿ such that ý is a free and of
finite rank ý over the central subring ÿ ⊆ ý(ý). The discriminant of ý over ÿ is defined by

ý(ý∕ÿ) ∶=ÿ× det
(
tr(ÿÿÿÿ)

)ý
ÿ,ÿ=1

, (6.1)
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where {ÿ1, ÿ2, … , ÿý} is a ÿ-basis of ý. For different choices of ÿ-bases of ý, the right-hand sides
of (6.1) are associates of each other.

6.2 Nerves and the algebras ýÿ(ÿ, ÿÿÿ) and ÿÿ(ÿ, ÿÿÿ)

Let ýÿ(ýÿ, ý̃, ÿÿÿ) be a quantum cluster algebra with exchange graph ýÿ(ýÿ, ý̃).
For a collection of seeds Θ in ýÿ(ýÿ, ý̃), let

(1) ýÿ(Θ, ÿÿÿ) be 
1∕2
ÿ -subalgebra of ýÿ(ýÿ, ý̃, ÿÿÿ) generated by ý′

ÿ(ÿÿ) for ÿ ∈ [1,ý] and
ý′

ÿ(ÿÿ)
−1 for ÿ ∈ ÿÿÿ, for all (ý′

ÿ, ý̃
′) ∈ Θ, and

(2) ÿÿ(Θ, ÿÿÿ) be 
1∕2
ÿ -subalgebra of ÿÿ(ýÿ, ý̃, ÿÿÿ) generated by ý′

ÿ(ÿÿ)
ý for ÿ ∈ [1,ý] and

ý′
ÿ(ÿÿ)

−ý for ÿ ∈ ÿÿÿ, for all (ý′
ÿ, ý̃

′) ∈ Θ.

Thus, ÿÿ(Θ, ÿÿÿ) is in the center of ýÿ(Θ, ÿÿÿ).

Definition 6.4. A subset of seeds Θ that satisfies the following conditions is called a nerve:

(1) The subgraph in ýÿ(ýÿ, ý) induced by Θ is connected.
(2) For each mutable direction ý ∈ ÿý, there are at least two seeds in Θ mutation equivalent by

ÿý.

The concept of nerves was introduced in [18] for a practical way of specifying a quasi-
homomorphism of a cluster algebra. A basic example of a nerve would be a star neighborhood
in ýÿ(ýÿ, ý) of any particular seed.

6.3 The discriminant of ýÿ(ÿ, ÿÿÿ) over ÿÿ(ÿ, ÿÿÿ)

For the proof of the main theorem on discriminants we will need the following lemma. Its proof
was communicated to us by Greg Muller.

Lemma 6.5. If

ÿ

ý∏
ÿ=1

ý
ÿÿ
ÿ
∈ ý(ý̃, ý̃, ÿÿÿ) (6.2)

for some ÿÿ , ÿ ∈ ℤ, ÿ ≠ 0, then ÿÿ ⩾ 0 for ÿ ∉ ÿÿÿ.

Proof. It is sufficient to prove the statement in the case ÿÿÿ = ∅ because (6.2) implies that
ÿ
∏ý

ÿ=1 ý
ÿÿ
ÿ

∏
ÿ∈ÿÿÿ ý

ÿÿ
ÿ
∈ ý(ý̃, ý̃, ∅) for some ýÿ ∈ ℕ. For the rest of the proof we assume that

ÿÿÿ = ∅.
If ÿ ∈ ÿý, then ÿÿ ⩾ 0 because, if ÿÿ < 0, then expressing the Laurent monomial in terms of the

cluster variables of the seed ÿÿ(ý̃, ý̃) would contradict the Laurent phenomenon. If ÿ ∉ ÿý, the
statement follows from [16, Proposition 3.6]. □
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Theorem 6.6. Consider a root of unity quantum cluster algebra ýÿ(ýÿ, ý̃, ÿÿÿ) satisfying the con-

dition (Coprime), where ÿ1∕2 is a primitive ýth root of unity. Let Θ be a collection of seeds which is

a nerve.

(1) If ýÿ(Θ, ÿÿÿ) is a free ÿÿ(Θ, ÿÿÿ)-module, then ýÿ(Θ, ÿÿÿ) is a finite rank ÿÿ(Θ, ÿÿÿ)-module

of rank ýý and its discriminant with respect to the regular trace function is given as a product

of noninverted frozen variables raised to the ýth power,

ý(ýÿ(Θ, ÿÿÿ)∕ÿÿ(Θ, ÿÿÿ)) =ÿÿ(Θ,ÿÿÿ)
× ý(ýýý)

∏
ÿ∈[1,ý]∖(ÿý⊔ÿÿÿ)

ýÿ(ÿÿ)
ýÿÿ for some ÿÿ ∈ ℕ.

(2) If ýÿ(Θ, ÿÿÿ) is a free ÿ(Θ, ÿÿÿ)-module, then ýÿ(Θ, ÿÿÿ) is a finite rank ÿ(Θ, ÿÿÿ)-module of

rank ýýÿ(ý) and its discriminant with respect to the regular trace function is given by

ý(ýÿ(Θ, ÿÿÿ)∕ÿ(Θ, ÿÿÿ)) =ÿ(Θ,ÿÿÿ)×

(
ý(ý+1)ÿ(ý)

∏
ý∣ý ý

ÿ(ý)∕(ý−1)

)ýý ∏
ÿ∈[1,ý]∖(ÿý⊔ÿÿÿ)

ýÿ(ÿÿ)
ýýÿ

for some ýÿ ∈ ℕ.

Proof. Throughout the proof all discriminants are computed with respect to the regular traces of
the algebras that are involved.

(1) For a root of unity quantum frameý′
ÿ denote the skew polynomial subalgebra of ÿ(ý

′
ÿ)

ÿ(ý
′
ÿ) ∶= 

1∕2
ÿ ïý′

ÿ(ÿÿ), 1 ⩽ ÿ ⩽ ýð ≃ 
1∕2
ÿ ïÿ1, … , ÿýð∕(ÿÿÿÿ − ÿ

ÿ′
ÿÿÿÿÿÿ),

where ÿ′
ÿÿ
∶= Λý′

ÿ
(ÿÿ , ÿÿ). By [8, Proposition 2.8], the discriminant of ÿ(ý

′
ÿ) over the central

subalgebra
1∕2
ÿ [ý′

ÿ(ÿÿ)
ý]ý

ÿ=1
is given by

ý
(
ÿ(ý

′
ÿ)∕

1∕2
ÿ [ý′

ÿ(ÿÿ)
ý]ýÿ=1

)
=

1∕2
ÿ

× ýýýý
∏

ÿ∈[1,ý]

(
ý′

ÿ(ÿÿ)
ýý(ý−1)

)
.

Therefore, the discriminant of its localization

ÿ(ý
′
ÿ) ≃ ÿ(ý

′
ÿ)[ý

′
ÿ(ÿÿ)

−ý]ýÿ=1

is given by

ý
(
ÿ(ý

′
ÿ)∕

1∕2
ÿ [ý′

ÿ(ÿÿ)
±ý]ýÿ=1

)
=(


1∕2
ÿ [ý′

ÿ(ÿÿ)
±ý]ý

ÿ=1

)× ýýýý .

For the rest of the proof assume that (ý′
ÿ, ý̃

′) ∈ Θ. Applying Theorem 4.6 (using
the assumption that ýÿ(ýÿ, ý̃, ÿÿÿ) satisfies the condition (Coprime)) and the Laurent
phenomenon, we obtain that

ÿÿ(Θ, ÿÿÿ)[ý
′
ÿ(ÿÿ)

−ý]ýÿ=1 ≃ 
1∕2
ÿ [ý′

ÿ(ÿÿ)
±ý]ýÿ=1.
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The root of unity quantum Laurent phenomenon (Theorem 3.10) implies

ýÿ(Θ, ÿÿÿ)[ý
′
ÿ(ÿÿ)

−ý]ýÿ=1 ≃ ÿ(ý
′
ÿ).

Therefore, the rank of ýÿ(Θ, ÿÿÿ) as an ÿÿ(Θ, ÿÿÿ)-module equals the rank of ÿ(ý
′
ÿ) as

an 
1∕2
ÿ [ý′

ÿ(ÿÿ)
±ý]ý

ÿ=1
-module. As the latter rank equals ýý , ýÿ(Θ, ÿÿÿ) is a finite rank

ÿÿ(Θ, ÿÿÿ)-module of rank ýý . Furthermore,

ý(ýÿ(Θ, ÿÿÿ)[ý
′
ÿ(ÿÿ)

−ý]ýÿ=1∕ÿÿ(Θ, ÿÿÿ)[ý
′
ÿ(ÿÿ)

−ý]ýÿ=1) =ÿ(ý
′
ÿ)
× ýýýý . (6.3)

Theorem 4.6 implies that

ÿÿ(Θ, ÿÿÿ) ∩ ÿ(ý
′
ÿ)
× ⊆ {(

1∕2
ÿ )×ý′

ÿ(ÿ1)
ýÿ1 …ý′

ÿ(ÿý)
ýÿý ∣ ÿÿ ∈ ℤ}. (6.4)

Combining (6.3) and (6.4) gives that for all seeds (ý′
ÿ, ý̃

′) ∈ Θ,

ý(ýÿ(Θ, ÿÿÿ)∕ÿÿ(Θ, ÿÿÿ)) =ÿÿ(Θ,ÿÿÿ)
× ýýýý

∏
ÿ∈[1,ý]

(
ý′

ÿ(ÿÿ)
ý
)ÿÿ (6.5)

for some integers ÿÿ (depending on each seed).Wewill assume that ÿÿ = 0 for ÿ ∈ ÿÿÿ because
ýÿ(ÿÿ)

ý ∈ ÿÿ(Θ, ÿÿÿ)
× for ÿ ∈ ÿÿÿ. Theorem 4.6 and Lemma 6.5 imply that ÿÿ ⩾ 0 for ÿ ∉ ÿÿÿ.

Fix ý ∈ ÿý. As Θ is a nerve, there exists (ý′
ÿ, ý̃

′) ∈ Θ such that ÿý(ý
′
ÿ, ý̃

′) ∈ Θ. Applying
(6.5) to the two seeds gives

ý(ýÿ(Θ, ÿÿÿ)∕ÿÿ(Θ, ÿÿÿ)) =ÿÿ(Θ,ÿÿÿ)
× ýýýý

(
ý′

ÿ(ÿý)
ý
)ÿý ∏

ÿ∈[1,ý]∖(ÿÿÿ⊔{ý})

(
ý′

ÿ(ÿÿ)
ý
)ÿÿ

=ÿÿ(Θ,ÿÿÿ)
× ýýýý

(
ÿýý

′
ÿ(ÿý)

ý
)ýý ∏

ÿ∈[1,ý]∖(ÿÿÿ⊔{ý})

(
ý′

ÿ(ÿÿ)
ý
)ýÿ

for some ÿÿ , ýÿ ∈ ℤ, ÿ ∈ [1,ý]∖ÿÿÿ. By Proposition 4.4,

ÿýý
′
ÿ(ÿý)

ý = ý′
ÿ(−ÿý + [ÿý]+)

ý +ý′
ÿ(−ÿý − [ÿý]−)

ý ,

which is not a monomial of theý′
ÿ(ÿÿ)’s for ÿ ∈ [1,ý]∖(ÿÿÿ ⊔ {ý}). Hence,

ÿý = 0 = ýý,

ÿÿ = ýÿ for ÿ ≠ ý.

Because of the connectedness assumption in Definition 6.4(1), for all seeds (ý′
ÿ, ý̃

′) ∈ Θ and
ý ∈ ÿý ⊔ ÿÿÿ, ÿý = 0 in (6.5).

(2) For every root of unity quantum frame ý′
ÿ, ÿ(ý

′
ÿ) is a free ℤ[ý′

ÿ(ÿÿ)
ý]ý

ÿ=1
-module of rank

ýýÿ(ý). The discriminant of the cyclotomic field extension ℚ(ÿ1∕2) of ℚ equals

(−1)ÿ(ý)∕2ýÿ(ý)∏
ý∣ý ý

ÿ(ý)∕(ý−1)
⋅
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From this one easily deduces that

ý
(
ÿ(ý

′
ÿ)∕ℤ[ý

′
ÿ(ÿÿ)

ý]ýÿ=1
)
=ℤ×

(
ý(ý+1)ÿ(ý)

∏
ý∣ý ý

ÿ(ý)∕(ý−1)

)ýý ∏
ÿ∈[1,ý]

(
ý′

ÿ(ÿÿ)
ýý(ý−1)ÿ(ý)

)
.

Using this formula, the proof of part (2) is carried out using exactly the same arguments as
part (1). □

Remark 6.7. As it is unknown whether ÿÿ(Θ, ÿÿÿ) is a free ÿ(Θ, ÿÿÿ)-module, part (2) of the
theorem is not a consequence of part (1) and the formula for the discriminants of cyclotomic
field extensions.

6.4 An example: Discriminants of quantizedWeyl algebras at roots of
unity

By the construction in Subsection 5.6,

ýý
ÿ,ÿ,ℤ ≅ ýÿ(ýÿ, ý̃, ∅)

for the toric frame ýÿ and exchange matrix ý̃ specified there. The underlying cluster algebra is

of finite type (ý1)
ÿ. Let ÿ1∕2 be a primitive ýth root of unity for an odd integer ý > 1,

1∕2
ÿ = ÿ.

Denote

ÿý
ÿ,ÿ,ℤ ∶= ÿ[ý

ý
ÿ , ((ÿ − 1)ÿÿ)

ý , 1 ⩽ ý ⩽ ÿ].

It is well-known and easy to verify that ÿý
ÿ,ÿ,ℤ is in the center of ý

ý
ÿ,ÿ,ℤ. We apply Theorem 6.6 for

Θ equal to the set of all seeds of the root of unity quantum cluster algebra. It is easy to see that it
has 2ÿ seeds with cluster variables

(ý1, … , ýÿ, −ÿ1, … , (−1)ÿÿÿ , … , (−1)ÿÿÿ) where ýÿ = (−1)ÿÿ1∕2ýÿ or ýÿ = (ÿ − 1)ÿÿ .

This implies that ÿÿ(ýÿ, ý̃, ∅) = ÿý
ÿ,ÿ,ℤ. The algebra ý

ý
ÿ,ÿ,ℤ is a free ÿ

ý
ÿ,ÿ,ℤ-module with basis

{ý
ÿ1
1
…ý

ÿÿ
ÿ ÿ

ÿ1
1

…ÿ
ÿÿ
ÿ ∣ ÿ1, … , ÿÿ, ÿ1, … ,ÿÿ ∈ [0,ý − 1]}.

Applying Theorem 6.6 gives that

ý(ýý
ÿ,ÿ,ℤ∕ÿ

ý
ÿ,ÿ,ℤ) =ÿ

× ý2ÿý
2ÿ
ÿ
ýÿ1
1

…ÿ
ýÿÿ
ÿ (6.6)

for some ÿý ∈ ℕ (here and below discriminants are computed with respect to the regular trace).
To determine the integers ÿý, consider the filtration ofý

ý
ÿ,ÿ,ℤ given by deg ýý = deg ÿý = ý for ý ∈

[1, ÿ]. The associated graded is isomorphic to a skew-polynomial algebra with generators given by

the images ofýý, (ÿ − 1)ÿý for ý ∈ [1, ÿ], whichwill be denoted byýý, (ÿ − 1)ÿý. The discriminants
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of skew-polynomial algebras are given by [8, Proposition 2.8]:

ý(grýý
ÿ,ÿ,ℤ∕grÿ

ý
ÿ,ÿ,ℤ) =ÿ

× ý2ÿý
2ÿ
(ý1(ÿ − 1)ÿ1)

(ý−1)ýÿ … (ýÿ(ÿ − 1)ÿÿ)
(ý−1)ýÿ .

Applying [8, Proposition 4.10] to (6.6) gives that ÿ1 = ⋯ = ÿÿ = (ý − 1)ýÿ−1, which proves the
following proposition. It recovers results in [9, 31].

Proposition 6.8. For each root of unity ÿ1∕2 of odd order ý, the discriminant of the quantized

Weyl algebra ýý
ÿ,ÿ,ℤ over its central subalgebra ÿý

ÿ,ÿ,ℤ with respect to the regular trace is given

by

ý
(
ýý
ÿ,ÿ,ℤ∕ÿ

ý
ÿ,ÿ,ℤ

)
=ÿ

× ý2ÿý
2ÿ
ÿ(ý−1)ý

ÿ

1
…ÿ(ý−1)ý

ÿ

ÿ .

7 QUANTUMGROUPS

In this section, we gather material about quantized universal enveloping algebras of symmetriz-
able Kac–Moody algebras, their integral forms and specializations to roots of unity.

7.1 Quantized universal enveloping algebras

We will follow the notation of Kashiwara for quantized universal enveloping algebras of sym-
metrizable Kac–Moody algebras, [28]. Let ý ∶= [1, ÿ] serve as an index set and (ý, ÿ,Π, ÿ∨, Π∨) be
a Cartan datum composed of the following.

(i) A symmetrizable, generalized Cartan matrix ý = (ÿÿÿ)ÿ,ÿ∈ý . In particular, ÿÿÿ = 2 for ÿ ∈ ý,
ÿÿÿ ∈ ℤ⩽0 for ÿ ≠ ÿ, and there exists a diagonal matrix ÿ = (ýÿ)ÿ∈ý consisting of positive,
relatively prime integers ýÿ such that ÿý is symmetric.

(ii) A free abelian group ÿ (weight lattice).
(iii) A linearly independent subset Π = {ÿÿ | ÿ ∈ ý} ⊂ ÿ (set of simple roots).
(iv) The dual group ÿ∨ = Homℤ(ÿ,ℤ) (coweight lattice).
(v) Two linearly independent subsets Π∨ = {ℎÿ | ÿ ∈ ý} ⊂ ÿ∨ (set of simple coroots), such that

ïℎÿ , ÿÿð = ÿÿÿ for ÿ, ÿ ∈ ý, and {ÿÿ | ÿ ∈ ý} ⊂ ÿ (set of fundamental weights), such that
ïℎÿ ,ÿÿð = ÿÿÿ for ÿ, ÿ ∈ ý.

Let ÿ+ ∶= {ÿ ∈ ÿ | ïℎÿ , ÿð ∈ ℤ⩾0}. Denote the root lattice ý ∶=
⨁

ÿ∈ý ℤÿÿ and set ý+ ∶=⨁
ÿ∈ý ℤ⩾0ÿÿ . Set ý ∶= ℚ⊗ℤ ÿ∨. There is aℚ-valued nondegenerate, symmetric bilinear form (⋅, ⋅)

on ý∗ = ℚ⊗ℤ ÿ that satisfies

ïℎÿ , ÿð =
2(ÿÿ , ÿ)

(ÿÿ , ÿÿ)
and (ÿÿ , ÿÿ) = 2ýÿ for all ÿ ∈ ý, ÿ ∈ ý∗.

Note that the existence of such a bilinear form is equivalent to the symmetrizability of the
generalized Cartan matrix ý. Denote ‖ÿ‖ ∶= (ÿ, ÿ) for ÿ ∈ ý∗.
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Let ý be the symmetrizable Kac–Moody algebra over ℚ associated to this Cartan datum. It is
the Lie algebra generated by ý, ÿÿ , and ÿÿ for ÿ ∈ ý with Serre relations for ℎ ∈ ý and ÿ, ÿ ∈ ý,

ý is an abelian Lie subalgebra,

[ℎ, ÿÿ] = ïℎ, ÿÿðÿÿ , [ℎ, ÿÿ] = −ïℎ, ÿÿðÿÿ , [ÿÿ , ÿÿ] = ÿÿÿℎÿ ,

(adÿÿ)
1−ÿÿÿ (ÿÿ) = 0, (adÿÿ)

1−ÿÿÿ (ÿÿ) = 0.

Letÿ be the Weyl group of ý, acting on (ý∗, (⋅, ⋅)) by isometries. Denote its generators by ýÿ for
ÿ ∈ ý. The length function onÿ will be written as ý ∶ ÿ → ℤ⩾0. The Bruhat order will be denoted
by ≥. Let Δ+ ⊂ ý+ be the set of positive roots of ý.
Let ÿ+ and ÿ− denote the Lie subalgebras of ý generated by {ÿÿ ∣ ÿ ∈ ý} and {ÿÿ ∣ ÿ ∈ ý}. So,

ÿ± =
⨁
ÿ∈Δ+

ý±ÿ,

where ýÿ is the root space in ý corresponding to ÿ. The root spaces are one-dimensional for real
roots; that is roots inÿ{ÿÿ ∣ ÿ ∈ ý}. For ý ∈ ÿ, we denote the nilpotent Lie subalgebras

ÿ±(ý) ∶=
⨁

ÿ∈Δ+∩ý
−1(−Δ+)

ý±ÿ.

If ý has a reduced expression ý = ýÿ1 ⋯ ýÿý , then ÿ+(ý) is generated by the root vectors
corresponding to the real roots ÿÿ1 , ýÿ1(ÿÿ2), … , ýÿ1 … ýÿý−1

(ÿÿý ).
Let ýÿ(ý) be the corresponding quantized universal enveloping algebra defined over ℚ(ÿ),

which is generated by ÿÿ , ÿÿ , and ÿ
ℎ for ÿ ∈ ý, ℎ ∈ ý subject to the relations

ÿ0 = 1, ÿℎÿℎ
′
= ÿℎ+ℎ

′
, ÿℎÿÿÿ

−ℎ = ÿïℎ,ÿÿðÿÿ , ÿℎÿÿÿ
−ℎ = ÿ−ïℎ,ÿÿðÿÿ ,

[ÿÿ , ÿÿ] = ÿÿÿ
ÿýÿℎÿ − ÿ−ýÿℎÿ

ÿÿ − ÿ−1
ÿ

,

1−ÿÿÿ∑
ý=0

(−1)ý
[
1 − ÿÿÿ

ý

]

ÿ

ÿ
1−ÿÿÿ−ý

ÿ
ÿÿÿ

ý
ÿ = 0,

1−ÿÿÿ∑
ý=0

(−1)ý
[
1 − ÿÿÿ

ý

]

ÿ

ÿ
1−ÿÿÿ−ý

ÿ
ÿÿÿ

ý
ÿ = 0, ÿ ≠ ÿ

for ℎ, ℎ′ ∈ ý, ÿ, ÿ ∈ ý, where

ÿÿ = ÿýÿ , [ÿ]ÿ =
ÿÿ
ÿ
− ÿ−ÿ

ÿ

ÿÿ − ÿ−1
ÿ

, [ÿ]ÿ! = [ÿ]ÿ … [1]ÿ , and

[
ÿ

ý

]

ÿ

=
[ÿ]ÿ!

[ÿ − ý]ÿ! [ý]ÿ!
⋅

The standard Hopf algebra structure on ýÿ(ý) has counit, coproduct, and antipode given by

ÿ(ÿℎ) = 1, ÿ(ÿÿ) = ÿ(ÿÿ) = 0,

Δ(ÿℎ) = ÿℎ ⊗ ÿℎ, Δ(ÿÿ) = ÿÿ ⊗ 1 + ÿýÿℎÿ ⊗ ÿÿ , Δ(ÿÿ) = ÿÿ ⊗ ÿ−ýÿℎÿ + 1 ⊗ ÿÿ ,

ÿ(ÿℎ) = ÿ−ℎ, ÿ(ÿÿ) = −ÿ−ýÿℎÿÿÿ , ÿ(ÿÿ) = −ÿÿÿ
ýÿℎ,
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where ℎ ∈ ÿ∨ and ÿ ∈ ý. The unital subalgebras generated by {ÿÿ ∣ ÿ ∈ ý}, {ÿℎ ∣ ℎ ∈ ÿ∨}, and {ÿÿ ∣
ÿ ∈ ý} will be denoted by ýÿ(ÿ+), ýÿ(ý), and ýÿ(ÿ−). The algebras ýÿ(ÿ±) ∶= ýÿ(ÿ±)ýÿ(ý) are
Hopf subalgebras of ýÿ(ý).
For a ýÿ(ý)-module ý and ÿ ∈ ÿ, denote the root space ýÿ ∶= {ÿ ∈ ý ∣ ÿℎ ⋅ ÿ = ÿïℎ,ÿðÿ, ∀ℎ ∈

ÿ∨}.
Let {ÿÿ ∣ ÿ ∈ ý} be the standard generators of the braid group of ÿ. For a reduced expression

ýÿ1 … ýÿý of ý ∈ ÿ, let ÿý ∶= ÿÿ1 …ÿÿý in the braid group of ÿ (this element is independent on
choice of reduced expression). We use the same notation for Lusztig’s braid group action [32] on
ýÿ(ý) and on integrable ýÿ(ý)-modules (i.e., modules ý on which ÿÿ and ÿÿ act locally nilpotent
for ÿ ∈ ý and ý = ⊕ÿ∈ÿýÿ). For ÿ ∈ ÿ+, let ý(ÿ) be the irreducible highest weightýÿ(ý)-module
with highest weight ÿ, and ÿÿ be a highest weight vector of it. For ý ∈ ÿ, denote ÿýÿ = ÿ−1

ý−1ÿÿ.
In (ý(ÿ)ýÿ)

∗, let ÿýÿ be such that ïÿýÿ, ÿýÿð = 1. The quantumminors (viewed as functionals on
ýÿ(ý)) are defined as the matrix coefficients Δÿÿ,ýÿ ∶= ýÿÿÿ ,ÿýÿ for ÿ,ý ∈ ÿ and ÿ ∈ ÿ+. Note

that Δÿÿ,ýÿΔÿÿ,ýÿ = Δÿ(ÿ+ÿ),ý(ÿ+ÿ) because ÿ
−1
ý−1(ÿÿ ⊗ ÿÿ) = ÿ−1

ý−1ÿÿ ⊗ ÿ−1
ý−1ÿÿ.

7.2 Hopf pairings and integral forms

Recall that a Hopf pairing between Hopf ÿ-algebrasý andÿ is a bilinear form (⋅, ⋅) ∶ ý × ÿ → ÿ

such that

(1) (ÿÿ, ℎ) = (ÿ, ℎ(1))(ÿ, ℎ(2))

(2) (ÿ, gℎ) = (ÿ(1), g)(ÿ(2), ℎ)

(3) (ÿ, 1) = ÿý(ÿ) and (1, ℎ) = ÿÿ(ℎ)

for all ÿ, ÿ ∈ ý and g , ℎ ∈ ÿ in terms of Sweedler notation.
Let ý ∈ ℤ+ be an integer such that (ÿ

∨, ÿ∨) ⊆ 1

ý
ℤ. The Rosso–Tanisaki form (⋅, ⋅)ýÿ ∶ ýÿ(ÿ−) ×

ýÿ(ÿ+) → ℚ(ÿ1∕ý) is the Hopf pairing defined by

(ÿÿ , ÿÿ)ýÿ = ÿÿÿ
1

ÿ−1
ÿ

− ÿÿ
, (ÿℎ, ÿℎ

′
)ýÿ = ÿ−(ℎ,ℎ

′), (ÿÿ , ÿ
ℎ)ýÿ = 0 = (ÿℎ, ÿÿ)ýÿ

for all ÿ ∈ [1, ÿ] and ℎ ∈ ÿ∨. The Rosso–Tanisaki form has the following useful properties,

(
ýÿℎ, ÿÿℎ

′
)
ýÿ

= (ý, ÿ)ýÿÿ
−(ℎ,ℎ′),

(
ýÿ(ÿ−), ýÿ(ÿ+)

)
ýÿ

⊂ ℚ(ÿ),

and
(
ýÿ(ÿ−)−ÿ , ýÿ(ÿ+)ÿ

)
ýÿ

= 0

(7.1)

for ý ∈ ýÿ(ÿ−), ÿ ∈ ýÿ(ÿ+), and ÿ, ÿ ∈ ý+ with ÿ ≠ ÿ, see [27, chapter 6].
Recall (2.2) and denote

ÿ ∶= ℤ[ÿ±1].
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The divided power integral forms ýÿ(ÿ+)ÿ
and ýÿ(ÿ−)ÿ

of ýÿ(ÿ±) are the ÿ-subalgebras
generated by

{ÿýÿ ∕[ý]ÿ! ∣ ÿ ∈ ý, ý ∈ ℤ+} and {ÿýÿ ∕[ý]ÿ! ∣ ÿ ∈ ý, ý ∈ ℤ+}.

The dual integral form ýÿ(ÿ−)
∨
ÿ

of ýÿ(ÿ−) is defined as

ýÿ(ÿ−)
∨
ÿ

∶= {ý ∈ ýÿ(ÿ−) ∣ (ý,ýÿ(ÿ+)ÿ
)ýÿ ⊂ ÿ}.

7.3 Quantum Schubert cells

Fixing a Weyl group element and a reduced expression ý = ýÿ1 … ýÿý , we denote the following
elements ofÿ:

ý⩽ý ∶= ýÿ1 … ýÿý , ý[ÿ,ý] ∶= ýÿÿ … ýÿý , ý
−1
⩽ý

∶= (ý⩽ý)
−1, and ý−1

[ÿ,ý]
∶= (ý[ÿ,ý])

−1

where 0 ⩽ ÿ ⩽ ý ⩽ ý. To each root ÿý ∶= ý⩽ý−1(ÿÿý ) ∈ ý+ for ý ∈ [1,ý], associate the root
vectors

ÿÿý ∶= ÿ−1
ý−1
⩽ý−1

(ÿÿý ) ∈ ýÿ(ÿ+)ÿ
and ÿÿý ∶= ÿ−1

ý−1
⩽ý−1

(ÿÿý ) ∈ ýÿ(ÿ−)ÿ
.

The quantum Schubert cells ýÿ(ÿ+(ý)) and ýÿ(ÿ−(ý)) are defined to be the unital ℚ(ÿ)-
subalgebras of ýÿ(ÿ±) generated by ÿÿ1 , … , ÿÿý and ÿÿ1 , … , ÿÿý , respectively. They were defined
by De Concini–Kac–Procesi [12] and Lusztig [32], who considered the anti-isomorphic algebras
ý±
ÿ [ý] =∗

(
ýÿ(ÿ±(ý))

)
. It was proved in [2, 30, 39] that

ýÿ

(
ÿ±(ý)

)
= ýÿ

(
ÿ±

)
∩ ÿ−1

ý−1

(
ýÿ

(
ÿ∓

))
.

The dual integral form of ýÿ(ÿ−(ý)) is theÿ-algebra

ýÿ(ÿ−(ý))
∨
ÿ

∶= ýÿ(ÿ−(ý)) ∩ ýÿ(ÿ−)
∨
ÿ
.

The dual PBW generators of ýÿ(ÿ−(ý)) are given by

ÿ′
ÿý

∶=
1

(ÿÿý , ÿÿý )ýÿ
ÿÿý = (ÿ−1ÿý

− ÿÿý )ÿÿý ∈ ýÿ(ÿ−(ý))
∨
ÿ

for ý ∈ [1,ý]. Kimura proved [30, Proposition 4.26, Theorems 4.25 and 4.27] that

ýÿ(ÿ−(ý))
∨
ÿ

= ⊕ÿ1,…,ÿý∈ℕ
ÿ ⋅ (ÿ

′
ÿ1
)ÿ1 ⋯ (ÿ′

ÿý
)ÿý . (7.2)

7.4 Quantum unipotent cells

Let ýÿ(ÿ+), as in [21], denote the subalgebra of the full dual ýÿ(ÿ+)
∗ of elements ÿ that satisfy

the following conditions.

(1) ÿ(ÿÿℎ) = ÿ(ÿ) for any ÿ ∈ ýÿ(ÿ+) and ℎ ∈ ÿ∨.
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(2) There is a finite subset ÿ ⊆ ý+, such that ÿ(ý) = 0 for all ý ∈ ýÿ(ÿ+)ÿ for ÿ ∈ ý+∖ ÿ.

The map ÿ ∶ ýÿ(ÿ−) → ýÿ(ÿ+)
∗ given by

ïÿ(ý), ÿð = (ý, ÿ)ýÿ for all ý ∈ ýÿ(ÿ−), ÿ ∈ ýÿ(ÿ+)

is an algebra homomorphism because the Rosso–Tanisaki form is a Hopf pairing. The image of ÿ is
contained inýÿ(ÿ+) by the properties listed in (7.1). As theRosso–Tanisaki form is nondegenerate,
ÿ is an isomorphism onto ýÿ(ÿ+),

ÿ ∶ ýÿ(ÿ−)
≃
���→ ýÿ(ÿ+).

Following Geiß–Leclerc–Schröer [21], define the quantum unipotent cell ýÿ(ÿ+(ý)) ⊆ ýÿ(ÿ+)

as the image of ýÿ(ÿ−(ý)) ⊆ ýÿ(ÿ−) under ÿ,

ÿ ∶ ýÿ(ÿ−(ý))
≃
���→ ýÿ(ÿ+(ý)) ⊂ ýÿ(ÿ+).

The images of the elements of ýÿ(ÿ−(ý)) in ýÿ(ÿ+(ý)) will be denoted by the same symbols.
We transport the automorphisms ÿÿ via ÿ to a partial braid group action on ýÿ(ÿ+(ý)). Quantum
unipotent cells also inherit a ý+-grading

ýÿ(ÿ+(ý))ÿ ∶= ÿ
(
ýÿ(ÿ−(ý))−ÿ

)
for all ÿ ∈ ý+. (7.3)

Finally, the dual integral form of ýÿ(ÿ−(ý)) gives rise to anÿ-integral form of the quantum
unipotent cell ýÿ(ÿ+(ý)),

ýÿ(ÿ+(ý))ÿ
∶= ÿ

(
ýÿ(ÿ−(ý))

∨
ÿ

)
.

The restriction of ÿ gives rise to theÿ-algebra isomorphism

ÿ ∶ ýÿ(ÿ−(ý))
∨
ÿ

≃
���→ ýÿ(ÿ+(ý))ÿ

. (7.4)

The integral forms ýÿ(ÿ−)
∨
ÿ
, ýÿ(ÿ−(ý))

∨
ÿ

and ýÿ(ÿ+(ý))ÿ
are often defined by using the

Kashiwara [28] and Lusztig [32] bilinear forms on ýÿ(ÿ−) instead of the Rosso–Tanisaki form.
However, the correspondingÿ-algebras are isomorphic [26, Remark 5.3].
Following [21], define the unipotent quantum minors of ýÿ(ÿ+(ý)) for ÿ ∈ ÿ, ÿ ∈ ÿ+ as the

elements of ýÿ(ÿ+(ý))(ÿ−ý)ÿ such that

ïÿÿÿ,ýÿ, ÿÿ
ℎð ∶= ïÿÿÿ, ÿÿýÿð

for all ÿ ∈ ýÿ(ÿ+) and ℎ ∈ ÿ∨. The quantum minors Δÿÿ,ýÿ ∈ ýÿ(ý) only depend on ÿÿ and ýÿ
but not on the individual choice of ý, ÿ and ÿ, [4, section 9.3]. As the unipotent minors ÿÿÿ,ýÿ

can be realized as homomorphic images of them [26, section 6.3], the same is true for them. The
minors ÿÿ,ýÿ ÿ-commute with homogeneous elements with respect to the ý+-grading [26, eq.
(6.9)]:

ÿÿ,ýÿý = ÿ((ý+1)ÿ,ÿ)ýÿÿ,ýÿ, ∀ÿ ∈ ÿ+, ý ∈ ýÿ(ÿ+(ý))ÿ, ÿ ∈ ý+. (7.5)
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7.5 Specialization to roots of unity

Recall (3.1) and denote

ÿ ∶= ℤ[ÿ].

For every symmetrizable Kac–Moody algebra ý and Weyl group element ý ∈ ÿ, define the
(integral) quantum unipotent cell at root of unity to be theÿ-algebra

ýÿ(ÿ+(ý))ÿ
∶= ýÿ(ÿ+(ý))ÿ

∕(Φý(ÿ)).

Denote the canonical projection

ÿÿ ∶ ýÿ(ÿ+(ý))ÿ
↠ ýÿ(ÿ+(ý))ÿ

(7.6)

and for ÿ ∈ [1,ý] set

ÿ′′
ÿÿ
∶= ÿÿÿ(ÿ

′
ÿÿ
) ∈ ýÿ(ÿ+(ý))ÿ

. (7.7)

By Kimura’s result in (7.2) and the isomorphism (7.4), we have

ýÿ(ÿ+(ý))ÿ
= ⊕ÿ1,…,ÿý∈ℕ

ÿ ⋅ (ÿ
′′
ÿ1
)ÿ1 ⋯ (ÿ′′

ÿý
)ÿý . (7.8)

Theorem 7.1 (De Concini–Kac–Procesi [12]). For every symmetrizable Kac–Moody algebra ý, Weyl
group element ý ∈ ÿ, and primitive ýth root of unity ÿ such that ý is coprime to {ýÿ ∣ ÿ ∈ ý},

ÿÿ(ÿ+(ý))ÿ
= ⊕ÿ1,…,ÿý∈ℕ

ÿ ⋅ (ÿ
′′
ÿ1
)ÿ1ý ⋯ (ÿ′′

ÿý
)ÿýý

is a centralÿ-subalgebra of ýÿ(ÿ+(ý))ÿ
.

The theorem was proved in [12] in the case when ý is finite-dimensional, but the same proof
works for general symmetrizable Kac–Moody algebras. Alternatively, in the case when ý is odd,
this theorem also follows by combining Proposition 4.4 and Theorem 8.5 (we note that the proof
of Theorem 8.5 does not use Theorem 7.1).

8 DISCRIMINANTS OF QUANTUMUNIPOTENT CELLS AT ROOTS
OF UNITY

In this section, we obtain an explicit formula for the discriminant of each (integral) quantum
unipotent cell ýÿ(ÿ+(ý))ÿ

over the central subalgebra ÿÿ(ÿ+(ý))ÿ
for every symmetrizable

Kac–Moody algebra ý andWeyl group element ý. It is also proved that the algebras ýÿ(ÿ+(ý))ÿ

possess a strict root of unity quantum cluster algebra structure. In this picture, we give an intrinsic
interpretation of the central subalgebras ÿÿ(ÿ+(ý))ÿ

in cluster algebra terms.

8.1 Theorem on discriminants of quantum unipotent cells

For a Weyl group element ý denote its support (ý) ∶= {ÿ ∈ ý ∣ ýÿ ⩽ ý}.
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It follows from (7.8) and the definition of ÿÿ(ÿ+(ý))ÿ
that ýÿ(ÿ+(ý))ÿ

is a free module over
ÿÿ(ÿ+(ý))ÿ

of rank ýý with basis

{(ÿ′′
ÿ1
)ÿ1 … (ÿ′′

ÿý
)ÿý ∣ ÿ1, … ,ÿý ∈ [0,ý − 1]}. (8.1)

The corresponding discriminant is given by:

Theorem 8.1. Let ý be a symmetrizable Kac–Moody algebra, ý be a Weyl group element with a

reduced expressioný = ýÿ1 … ýÿý , and ý > 2 be an odd integer which is coprime to ýÿ for all ÿ ∈ (ý).

Let ÿ be a primitive ýth root of unity. Then

ý
(
ýÿ(ÿ+(ý))ÿ

∕ÿÿ(ÿ+(ý))ÿ

)
=×

ÿ
ý(ýýý)

∏
ÿ∈(ý)

ÿÿ(ÿÿÿ ,ýÿÿ
)ý

ý(ý−1).

Note that, as ÿÿ(ÿ+(ý))ÿ
is a polynomial algebra overÿ, ÿÿ(ÿ+(ý))

×
ÿ

= ×
ÿ . The theorem is

proved in Subsection 8.5.

8.2 Cluster structures of the integral forms of quantum unipotent
cells

For the construction of strict root of unity quantum cluster structure onýÿ(ÿ+(ý))ÿ
, we will use

results from [26, 29] on a quantum cluster algebra structure on

ýÿ(ÿ+(ý))1∕2
ÿ

∶= ýÿ(ÿ+(ý))ÿ
⊗ÿ


1∕2
ÿ .

Fix a reduced expression ý = ýÿ1 … ýÿý . In terms of the support of ý, it is given by (ý) =

{ý ∈ ý ∣ ý = ÿý for some ý}. Let ý ∶ [1,ý] → [1,ý − 1] ∪ {−∞} and ý ∶ [1,ý] → [2,ý] ∪ {∞} be
the predecessor and successor maps given by

ý(ý) = max{ÿ < ý ∣ ÿÿ = ÿý} wheremax∅ ∶= −∞,

ý(ý) = min{ÿ > ý ∣ ÿÿ = ÿý} where min ∅ ∶= ∞.

The mutable directions in the cluster structure will be given by the subset

ÿý(ý) ∶= {ý ∈ [1,ý] ∣ ÿÿ = ÿý for ÿ > ý}.

It has cardinality |ÿý(ý)| = ý − |(ý)| as each ý ∈ (ý) in the support will have only one ÿ ∈
[1,ý] such that ÿÿ = ý and ý(ÿ) = ∞. Let ý̃ý be the ý × ÿý(ý)matrix with entries

(ý̃ý)ÿ,ý =

⎧⎪⎪⎪«⎪⎪⎪¬

1, if ÿ = ý(ý)

−1, if ÿ = ý(ý)

ÿÿÿ ÿý if ÿ < ý < ý(ÿ) < ý(ý)

−ÿÿÿ ÿý if ý < ÿ < ý(ý) < ý(ÿ)

0, otherwise.
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The principal part ýý is skew-symmetrizable by the matrix ÿ ∶= diag(ýÿÿ , ÿ ∈ ÿý(ý)). Moreover,

ý̃ý is compatible with the skew-symmetric ý ×ý matrix

(Λý)ÿ,ý ∶= −
(
(ý⩽ÿ + 1)ÿÿÿ

, (ý⩽ý − 1)ÿÿý

)
, for 1 ⩽ ÿ < ý ⩽ ý,

see [26, Proposition 7.2]. By (7.5), the unipotent quantum minors ÿÿÿý
,ý⩽ýÿÿý

, with weight (1 −

ý⩽ý)ÿÿý
, ÿ-commute among themselves:

ÿÿÿÿ
,ý⩽ÿÿÿÿ

ÿÿÿý
,ý⩽ýÿÿý

= ÿ(Λý)ÿ,ýÿÿÿý
,ý⩽ýÿÿý

ÿÿÿÿ
,ý⩽ÿÿÿÿ

, 1 ⩽ ÿ < ý ⩽ ý.

There is a unique toric frame ýý
ÿ ∶ ℤý → Fract(ýÿ(ÿ+(ý))1∕2

ÿ
) ≃ Fract(ÿ(Λý)), with corre-

sponding skew-symmetric matrix Λý, given by

ýý
ÿ (ÿý) = ÿÿ[1,ý]ÿÿÿý

,ý⩽ýÿÿý
for any ý ∈ [1,ý]

where

ÿ[ÿ, ý] = ‖(ý[ÿ,ý] − 1)ÿÿý
‖2∕4 ∈ 1

2
ℤ. (8.2)

The above facts show that (Λý, ý̃
ý) is a compatible pair and that (ýý

ÿ , ý̃
ý) is a quantum seed.

The following theorem is proved in [26] and in [29] in the case of symmetric Kac–Moody
algebras.

Theorem 8.2. Let ý be any symmetrizable Kac–Moody algebra and ý ∈ ÿ a Weyl element with

a reduced expression ý = ýÿ1 … ýÿý . Then the integral form of the corresponding quantum unipotent

cells has a cluster structure, ýÿ(ÿ+(ý))1∕2
ÿ

≃ ýÿ(ý
ý
ÿ , ý̃

ý, ∅).

Denote by Ξý the subset of the symmetric group ÿý consisting of permutations ÿ such that
ÿ([1, ý]) is an interval for 1 ⩽ ý ⩽ ý. We can combinatorially describe this subset in terms of one-
line notation for the elements of ÿý : first move 1 as far right as desired, then move 2 as far right as
desired up to where 1 now is, then moving 3 right possibly up to 2, and so on. The elements of ÿý
obtained in this way are precisely those of Ξý . The following diagram illustrates this with arrows
denoting pairs of elements of Ξý obtained from each other by a transposition:

For each ÿ ∈ Ξý , [26, Theorem 7.3(b)] constructs a quantum seed ofýÿ(ý
ý
ÿ , ý̃

ý, ∅). Their toric
frames (up to a permutation of the basis as below) have cluster variables

ýý
ÿ,ÿ(ÿý) = ÿÿ[ÿ,ý]ÿý⩽ÿ−1ÿÿý

,ý⩽ýÿÿý
= ÿÿ[ÿ,ý]ÿý⩽ÿ−1

ÿÿÿý
,ý[ÿ,ý]ÿÿý

, (8.3)

where ÿ = min{ÿ ∈ ÿ([1, ý]) ∣ ÿÿ = ÿÿ(ý)}, ý = max{ÿ ∈ ÿ([1, ý]) ∣ ÿÿ = ÿÿ(ý)} and ÿ[ÿ, ý] are given
by (8.2). In particular, ýý

ÿ,id
= ýý

ÿ . The exchange matrices of these seeds will not play a role
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in this paper. By abuse of notation, we will denote by Ξý this collection of quantum seeds of
ýÿ(ý

ý
ÿ , ý̃

ý, ∅).
By [26, Theorem 7.3(c)], this collection of quantum seeds of ýÿ(ÿ+(ý))1∕2

ÿ
is linked by muta-

tions as follows. Letÿ, ÿ′ ∈ Ξý be such thatÿ
′ = (ÿ(ý), ÿ(ý + 1))◦ÿ = ÿ◦(ý, ý + 1) forý ∈ [1,ý −

1].

If ÿÿ(ý) ≠ ÿÿ(ý+1), thený
ý
ÿ,ÿ′

= ýý
ÿ,ÿ ⋅ (ý, ý + 1);

If ÿÿ(ý) = ÿÿ(ý+1), thený
ý
ÿ,ÿ′

= ÿý(ý
ý
ÿ,ÿ),

(8.4)

where we use the canonical action of ÿý on quantum seeds and toric frames by reordering of basis
elements given byýÿ ⋅ ÿ(ÿÿ) ∶= ýÿ(ÿÿ(ÿ)) for ÿ ∈ ÿý and 1 ⩽ ÿ ⩽ ý.
The following lemma is simple and is left to the reader:

Lemma 8.3. The collection of quantum seeds Ξý of ýÿ(ý
ý
ÿ , ý̃

ý, ∅) is a nerve.

8.3 Root of unity quantum cluster structure on integral quantum
unipotent cells

Assume that ÿ1∕2 is a primitive ýth root of unity. Denote

ýÿ(ÿ+(ý))1∕2
ÿ

∶= ýÿ(ÿ+(ý))ÿ
⊗ÿ


1∕2
ÿ

In the casewhený is odd, ÿ is also a primitiveýth root of of unity,
1∕2
ÿ = ÿ, andýÿ(ÿ+(ý))1∕2

ÿ
≅

ýÿ(ÿ+(ý))ÿ
. In the case when ý is even, ÿ is a primitive (ý∕2)th root of unity. Consider the

canonical extension of the specialization (7.6) to a specialization map

ÿÿ ∶ ýÿ(ÿ+(ý))1∕2
ÿ

↠ ýÿ(ÿ+(ý))1∕2
ÿ

≃ ýÿ(ÿ+(ý))1∕2
ÿ
∕(Φý(ÿ

1∕2))

such that ÿ1∕2 ↦ ÿ1∕2. By [26, Theorem 7.3(a)]

ýÿ(ý
ý
ÿ , Λý, ý̃

ý, ∅) = ýÿ(ý
ý
ÿ , Λý, ý̃

ý, ∅),

so we are in a position to apply Theorem 5.11. First, this gives that the maps

ýý
ÿ,ÿ ∶= ÿÿ◦ý

ý
ÿ,ÿ ∶ ℤý → ýÿ(ÿ+(ý))1∕2

ÿ

are toric frames for all ý ∈ ÿ and ÿ ∈ Ξý . Second, we obtain that

ýÿ(ÿ+(ý))1∕2
ÿ

≃ ýÿ(ý
ý
ÿ , Λý, ý̃

ý, ∅).

This leads to the following theorem:

Theorem 8.4. For every symmetrizable Kac–Moody algebra ý, a Weyl group element ý with a

reduced expression ý = ýÿ1 … ýÿý , and a primitive ýth root of unity ÿ
1∕2 for ý ∈ ℤ+, the following

hold.
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(1) ýÿ(ÿ+(ý))1∕2
ÿ
has the structure of strict root of unity quantum cluster algebra and is isomorphic

to ýÿ(ý
ý
ÿ , Λý, ý̃

ý, ∅).

(2) The root of unity quantum cluster algebra in part (1) has seeds indexed by ÿ ∈ Ξý with toric

framesýý
ÿ,ÿ. By abuse of notation, this collection of seeds will be denoted by Ξý .

(3) The collection of seedsΞý is a nerve and we have themutation formulae (8.4) between themwith

ýý
ÿ,ÿ replaced byý

ý
ÿ,ÿ.

(4) Under the isomorphism in part (1), ýÿ(ÿ+(ý))1∕2
ÿ

= ýÿ(Ξý , ∅).

Proof. Parts (1) and (2) are established above.
(3) The mutation formulae (8.4) withýý

ÿ,ÿ replaced byý
ý
ÿ,ÿ follow from the original formulae

(8.4) by applying the ring homomorphism ÿÿ. It follows from Lemma 8.3 that Ξý is a nerve.
(4) It is clear that, under the isomorphism in part (1), ýÿ(Ξý , ∅) ⊆ ýÿ(ý

ý
ÿ , Λý, ý̃

ý, ∅) =

ýÿ(ÿ+(ý))1∕2
ÿ
. For the inverse inclusion, note that for each ý ∈ [1,ý], there exists ÿ ∈ Ξý such

that ÿ(1) = ý. For that ÿ we have

ýý
ÿ,ÿ(ÿ1) = ÿ

1∕2
ÿý

ÿ(ÿ′
ÿý
)

by combining [26, eq. (3.6), (7.2) and Theorem 7.1(c)], and thus

ýý
ÿ,ÿ(ÿ1) = ÿ

ýÿý
∕2

ÿý
ÿ′′
ÿý
. (8.5)

Hence, under the isomorphism inpart (1),ýÿ(Ξý , ∅) ⊇ ýÿ(ÿ+(ý))1∕2
ÿ
, which completes the proof

of the theorem. □

8.4 Identification of central subalgebras

Let ÿ be a primitive ýth root of unity such that ý is odd and coprime to the symmetrizing integers
ýÿ for the Kac–Moody algebra ý and ÿ ∈ (ý),ý ∈ ÿ. Choose a square root ÿ1∕2 of ÿ such that ÿ1∕2

is also a primitive ýth root of unity. Thenÿ = 
1∕2
ÿ . By Theorem 8.4, we have the identifications

ýÿ(ÿ+(ý))ÿ
= ýÿ(ÿ+(ý))1∕2

ÿ
= ýÿ(ý

ý
ÿ , Λý, ý̃

ý, ∅) = ýÿ(Ξý , ∅).

On the one hand, we have the central subalgebra ÿÿ(Ξý , ∅) of ýÿ(Ξý , ∅) constructed by clus-
ter theoretic methods, see Section 6.2. On the other hand, we have the De Concini–Kac–Procesi
central subalgebra ÿÿ(ÿ+(ý))ÿ

of ýÿ(ÿ+(ý))ÿ
, see Subsection 7.5.

Theorem 8.5. In the setting of Theorem 8.1, the canonical central subalgebra ÿÿ(Ξý , ∅)

of ýÿ(Ξý , ∅) = ýÿ(ÿ+(ý))ÿ
coincides with the De Concini–Kac–Procesi central subalgebra

ÿÿ(ÿ+(ý))ÿ
.

Proof. It follows from (8.5) thatÿÿ(ÿ+(ý))ÿ
⊆ ÿÿ(Ξý , ∅). To show the reverse inclusion, we need

to show that for all ÿ ∈ Ξý and ÿ ∈ [1,ý],ýý
ÿ,ÿ(ÿ)

ý ∈ ÿÿ(ÿ+(ý))ÿ
. By (8.3), this is equivalent to

ÿÿ

(
ÿý
ý⩽ÿ−1ÿÿý

,ý⩽ýÿÿý

)
∈ ÿÿ(ÿ+(ý))ÿ

, ∀1 ⩽ ÿ ⩽ ý ⩽ ý with ÿÿ = ÿý. (8.6)
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We prove (8.6) by induction on ý − ÿ. The case ý − ÿ = 0 is trivial because

ÿÿ(ÿý⩽ý−1ÿýý
,ý⩽ýÿÿý

) = ÿ
ýÿý

∕2

ÿý
ÿ′′
ÿý

by (8.5). Now assume that ý − ÿ = ý for some ý ∈ ℤ+ and that the statement holds for pairs 1 ⩽

ÿ′ ⩽ ý′ ⩽ ý with ý′ − ÿ′ < ý. As ÿÿ = ÿý, ÿ ⩽ ý(ý) and ý(ÿ) ⩽ ý. Consider the following elements of
Ξý :

ÿ = [ÿ + 1,… , ý − 1, ÿ, ý, ý + 1,… ,ý, 1… , ÿ − 1] and

ÿ′ = [ÿ + 1,… , ý − 1, ý, ÿ, ý + 1,…ý, 1, … , ÿ − 1] = ÿ(ý − ÿ, ý − ÿ + 1)

in the two line notation for elements of ÿý . By (8.4), ý
ý
ÿ,ÿ′

= ÿý−ÿý
ý
ÿ,ÿ. From [25, Theorem 6.6]

we have that the (ý − ÿ)th column of the exchange matrix of the root of unity quantum seed of
ýÿ(ÿ+(ý))1∕2

ÿ
corresponding to ÿ has the form (ÿ1, … , ÿý)

⊤ with

ÿý−ÿ+1 = −1, ÿý(ý)−ÿ = −1 if ÿ ⩽ ý(ý),

ÿÿ ⩾ 0 for ÿ < ý − ÿ, ÿ ≠ ý(ý) − ÿ,

ÿÿ = 0 otherwise.

Combining this with Proposition 4.4 gives

ýý
ÿ,ÿ′

(ÿý−ÿ)
ý = (ÿý−ÿý

ý
ÿ,ÿ(ÿý−ÿ))

ý = ýý
ÿ,ÿ(ÿý−ÿ)

−ý

(
ýý

ÿ,ÿ(ÿý−ÿ+1)
ýýý +

∏
ÿ<ý−ÿ,ÿÿ>0

ýý
ÿ,ÿ(ÿÿ)

ý

)

where

ýý ∶=

{
ýý

ÿ,ÿ(ÿý(ý)−ÿ)
ý , if ÿ ⩽ ý(ý)

1, otherwise.

It follows from (8.3) thatýý
ÿ,ÿ(ÿý−ÿ+1)

ý = ÿÿ(ÿ
ý
ý⩽ÿ−1ÿÿý

,ý⩽ýÿÿý
) and thatýý

ÿ,ÿ′
(ÿý−ÿ)

ý andýý
ÿ,ÿ(ÿÿ)

ý

for ÿ ⩽ ý − ÿ are of the form ÿÿ(ÿ
ý
ý⩽ÿ′−1ÿÿý′

,ý⩽ý′ÿÿý′
) for pairs 1 ⩽ ÿ′ ⩽ ý′ ⩽ ý with ý′ − ÿ′ < ý − ÿ.

The induction assumption implies that

ÿÿ

(
ÿý
ý⩽ÿ−1ÿÿý

,ý⩽ýÿÿý

)
∈ Fract(ÿÿ(ÿ+(ý))ÿ

) ∩ ýÿ(ÿ+(ý))ÿ
.

It remains to prove that

Fract(ÿÿ(ÿ+(ý))ÿ
) ∩ ýÿ(ÿ+(ý))ÿ

= ÿÿ(ÿ+(ý))ÿ
. (8.7)

Let

ÿ =
∑

ýÿ1,…,ÿý
(ÿ′′

ÿ1
)ÿ1ý … (ÿ′′

ÿý
)ÿýý , ý =

∑
ÿÿ1,…,ÿý

(ÿ′′
ÿ1
)ÿ1ý … (ÿ′′

ÿý
)ÿýý

and

ý =
∑

ÿÿ1,…,ÿý (ÿ
′′
ÿ1
)ÿ1 … (ÿ′′

ÿý
)ÿý ,
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be such that ÿ = ýý. As ÿ′′
ÿÿ
are in the center of ýÿ(ÿ+(ý))ÿ

,

ýý =
∑

ÿÿ1,…,ÿýÿÿ1,…,ÿý
(ÿ′′

ÿ1
)ÿ1+ÿ1ý … (ÿ′′

ÿý
)ÿÿ+ÿýý

In light of the PBW basis (7.8), the identity ÿ = ýý implies that ÿÿ1,…,ÿý = 0 unless ÿ1, … , ÿý are
divisible by ý. This proves (8.7). □

8.5 Proof of Theorem 8.1

As in the previous subsection, we chose a square root ÿ1∕2 of ÿ such that ÿ1∕2 is also a primitive

ýth root of unity. In particular,ÿ = 
1∕2
ÿ . By Theorems 8.4 and 8.5, we have the identifications

ýÿ(ÿ+(ý))ÿ
= ýÿ(ÿ+(ý))1∕2

ÿ
= ýÿ(ý

ý
ÿ , Λý, ý̃

ý, ∅) = ýÿ(Ξý , ∅) and

ÿÿ(Ξý , ∅) = ÿÿ(ÿ+(ý))ÿ
.

As we are requiring that ý is coprime to all ýÿý for 1 ⩽ ý ⩽ ý, the root of unity quantum seeds of

ýÿ(ý
ý
ÿ , Λý, ý̃

ý, ∅) satisfy condition (ÿýýÿÿÿÿ). Its frozen variables are

ýý
ÿ (ÿý) = ÿÿ[1,ý]ÿÿ(ÿÿÿý

,ý⩽ýÿÿý
) = ÿÿ[1,ý]ÿÿ(ÿÿÿý

,ýÿÿý
) for ý ∈ [1,ý]∖ÿý,

where the last equality holds becauseý⩽ýÿÿý
= ýÿÿý

for ý ∈ [1,ý]∖ÿý. By the definitions of the
sets ÿý and (ý), up to terms in×

ÿ , the frozen variables are

ÿÿ(ÿÿÿ ,ýÿÿ
) for ÿ ∈ (ý).

Theorem 6.6 implies that

ý
(
ýÿ(ÿ+(ý))ÿ

∕ÿÿ(ÿ+(ý))ÿ

)
=×

ÿ
ý(ýýý)

∏
ÿ∈(ý)

ÿÿ(ÿÿÿ ,ýÿÿ
)ÿÿ (8.8)

for some ÿÿ ∈ ℕ. Equation (6.1) and the fact that (8.1) is a basis of ýÿ(ÿ+(ý))ÿ
over ÿÿ(ÿ+(ý))ÿ

imply that with respect to the ý+-grading (7.3) of ýÿ(ÿ+(ý))ÿ
,

deg ý
(
ýÿ(ÿ+(ý))ÿ

∕ÿÿ(ÿ+(ý))ÿ

)
= 2

∑
0⩽ÿý⩽ý−1

deg
(
(ÿ′′

ÿ1
)ÿ1 … (ÿ′′

ÿý
)ÿý

)
(8.9)

= ýý(ý − 1)(ÿ1 +⋯ + ÿý).

For ý ∈ [1,ý]∖ÿý, let ÿý is the maximal integer such that ýÿý (ý) ≠ −∞. Iterating the identity
ý⩽ÿÿÿÿ

= ý⩽ÿ−1(ÿÿÿ
− ÿÿÿ ) = ý⩽ý(ÿ)ÿÿÿ

− ÿÿ , ∀ÿ ∈ [1,ý] gives

ÿýÿý (ý) +⋯ + ÿý = (1 − ý⩽ý)ÿÿý
= (1 − ý)ÿÿý

.

Therefore,

ÿ1 +⋯ + ÿý =
∑

ý∈[1,ý]∖ÿý

(ÿýÿý (ý) +⋯ + ÿý) =
∑

ÿ∈(ý)

(1 − ý)ÿÿ . (8.10)
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Combining (8.8)–(8.10) and using that deg ÿÿ(ÿÿÿ ,ýÿÿ
) = (1 − ý)ÿÿ leads to

(1 − ý)
∑

ÿ∈(ý)

(ÿÿ − (ý − 1)ýý) = 0.

This implies that ÿÿ = (ý − 1)ýý for all ÿ ∈ (ý) because (1 − ý) is nondegenerate on Span{ÿÿ ∣

ÿ ∈ (ý)}.
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