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Abstract

We describe a connection between the subjects of cluster
algebras, polynomial identity algebras, and discrimi-
nants. For this, we define the notion of root of unity
quantum cluster algebras and prove that they are poly-
nomial identity algebras. Inside each such algebra we
construct a (large) canonical central subalgebra, which
can be viewed as a far reaching generalization of the cen-
tral subalgebras of big quantum groups constructed by
De Concini, Kac, and Procesi and used in representa-
tion theory. Each such central subalgebra is proved to
be isomorphic to the underlying classical cluster algebra
of geometric type. When the root of unity quantum clus-
ter algebra is free over its central subalgebra, we prove
that the discriminant of the pair is a product of powers
of the frozen variables times an integer. An extension of
this result is also proved for the discriminants of all sub-
algebras generated by the cluster variables of nerves in
the exchange graph. These results can be used for the
effective computation of discriminants. As an applica-
tion we obtain an explicit formula for the discriminant
of the integral form over Z[e] of each quantum unipo-
tent cell of De Concini, Kac, and Procesi for arbitrary
symmetrizable Kac-Moody algebras, where ¢ is a root
of unity.

© 2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

J. London Math. Soc. (2) 2025;111:¢70060.
https://doi.org/10.1112/jlms.70060

wileyonlinelibrary.com/journal/jlms 1 of 47



20f47 NGUYEN ET AL.

MSC 2020
13F60 (primary), 16G30, 17B37, 14A22 (secondary)

1 | INTRODUCTION
1.1 | Cluster algebras and discriminants

Cluster algebras were introduced by Fomin and Zelevinsky in [14] and since then, they have played
a fundamental role in a number of diverse areas such as representation theory, combinatorics,
Poisson and algebraic geometry, mathematical physics, and others [17, 35].

Discriminants of number fields were defined by Dedekind in the 1870s. They have proven an
invaluable tool in number theory, algebraic geometry, combinatorics, and orders in central simple
algebras [23, 37, 38]. In more recent years, new applications of discriminants have been found in
the noncommutative setting. Bell, Ceken, Palmieri, Wang, and Zhang used the discriminant as an
invariant in determining the automorphism groups of certain polynomial identity (PI) algebras
[7, 8] and to address the Zariski cancellation problem (when A[¢] ~ B[t] implies A ~ B) [1]. Dis-
criminant ideals are also intrinsically related to the representation theory of the corresponding
noncommutative algebra [6].

In this paper, we connect the subjects of cluster algebras, polynomial identity algebras, and
discriminants (we refer the reader to [5, section 1.13- 14 and part III] and [33, chapter 13] for
an overview of polynomial identity algebras and their representation theory). We define the
notion of root of unity quantum cluster algebra, show that these algebras are polynomial iden-
tity algebras, and construct a canonical large central subalgebra in each of them which is shown
to be isomorphic to the underlying classical cluster algebra. These special central subalgebras
can be viewed as far reaching generalizations of the De Concini—Kac-Procesi central subalge-
bras of big quantum groups [11, 12]. We prove a theorem giving an explicit formula for the
discriminant of a root of unity quantum cluster algebra, and apply it to compute the discrimi-
nants of the big quantum unipotent cells for all symmetrizable Kac-Moody algebras at roots of
unity.

1.2 | Root of unity quantum cluster algebras

Let £!/2 be a primitive #th root of unity for a positive integer #. We define a root of unity quantum
cluster algebra by constructing mutations in the skew field of fraction of the based quantum torus
over Z[e'/2] with basis {X7 | f € ZN} and relations

x/x9 = MTD2xT+e 0 yf gezN

for a skew-symmetric bilinear form A : ZN x ZN — 7/#. Quantum frames M, are introduced in
this setting as in the quantum setting of Berenstein and Zelevinsky [4], but weaker compatibility
assumptions between the bilinear form A and the exchange matrix B are imposed (Definition 3.2).
In particular, B need no longer have a full rank as the quantum case in [4]. A subset inv of the
exchange indices ex is allowed to be inverted and the corresponding Z[¢!/?]-algebra generated
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by all cluster variables and the inverses of the frozen ones in inv is denoted by AE(ME,E, inv)
(Definition 3.7).

In the special case of # = 1 this construction exactly recovers the definition of a classical cluster
algebra of geometric type. Quantum Weyl algebras and quantum unipotent cells at roots of unity
for all symmetrizable Kac-Moody algebras are examples of root of unity quantum cluster algebras
(Subsections 5.6 and 8.3). In addition to the standard properties of classical and quantum cluster
algebras, such as the Laurent phenomenon, we prove the following key results for the algebras
A. (M., B,inv):

Theorem A. Let c'/2 be a primitive £th root of unity for a positive integer £.

(1) All root of unity quantum cluster algebras A_(M,, B, inv) are PI algebras.

(2) The subring C(M,, B,inv) of A_.(M.,, B, inv) generated by the ¢th powers of all cluster variables
and the inverses of the £th powers of the frozen ones in inv is in the center of A.(M., B, inv). If
¢ is odd and coprime to the entries of the symmetrizing diagonal matrix for the principal part of
B, this subring is isomorphic to the corresponding classical cluster algebra A(B,inv).

(3) Under the assumption in part (2) the exchange graphs of A,(M,, B,inv) and A(B,inv) are
canonically isomorphic.

In [13], Fock and Goncharov defined and studied root of unity quantum cluster algebras in
the setting of cluster X-varieties. They constructed an isomorphism between the (upper) cluster
algebra of a cluster X-variety and a central subalgebra of the corresponding root of unity (upper)
quantum cluster algebra under the following assumption:

(*) the order of the root of unity is coprime to the entries of the exchange matrices of all seeds
of the algebra.

This isomorphism in [13] is called the quantum Frobenius map. The differences between our
setting and the setting of [13] are as follows. First, compared to the assumption (*), the assump-
tion in Theorem A(2) is weaker and explicit in the sense that it requires knowledge of only one
seed, while (*) involves the exchange matrices of all seeds which are very rarely known except the
case of surface cluster algebras. Second, the cluster X-variety is a regular Poisson manifold and
the representations of the corresponding root of unity upper quantum cluster X-algebra have the
same dimension, that is, that setting captures only the Azumaya locus of a root of unity quantum
algebra. Our setting of the algebras A_(M,, B, inv) is suitable to the study of all irreducible rep-
resentations of root of unity quantum algebras, for instance the spectrum of the central subring
of A,(M,, B,inv) (when the base is extended from Z to C) is extremely rarely a regular Poisson
manifold. The proofs of the quantum Frobenius map in [13] is different from ours. It relies to
specializations of quantum dilogarithms defined for generic q, while we work directly with the
root of unity algebra without the use of specialization. Finally, we note that in the setting of [13],
Mandel [34] proved the quantum Frobenius conjecture of [13] on the specialization of quantum
theta functions to roots of unity.

In the setting of Theorem A, denote by

C.(M,, B,inv) 1.1
the Z[¢'/?]-extension of the subring C(M_,B,inv) of A.(M,,B,inv). It is isomorphic to

A(B,inv) R Z[e'/?]. In concrete important situations AE(ME,E, inv) is module finite over
C.(M,, B,inv) (Subsections 6.4 and 8.3). For quantum unipotent cells at roots of unity, the



4ofa7 | NGUYEN ET AL.

latter is proved to be precisely the special De Concini-Kac-Procesi subalgebra [12]. The punchline
of part (2) of the theorem is that it not only constructs a large central subalgebra in vast general-
ity, but it also gives a full control on it via cluster theory. As an upshot, the representation theory
of the algebras in [12] can be studied within the framework of root of unity and classical cluster
algebras.

The proof of part (3) uses a different strategy from the Berenstein—Zelevinsky [4] result for the
isomorphism between classical and quantum exchange graphs. It is based on the special central
subalgebras from part (2).

Root of unity quantum cluster algebras do not necessarily arise as specializations of quantum
cluster algebras. For instance, in the case # = 1 we recover all cluster algebras of geometric type.
For these reasons, we introduce a subclass of strict root of unity quantum cluster algebras, defined
as those for which the skew-symmetric bilinear form A : ZN x ZN — 7 /¢ comes from a skew-
symmetric bilinear form zN x zZV — Z which is compatible with the exchange matrix B in the
sense of [4]. In the case # = 1, that notion is the same as the notion of a classical cluster algebra
with a compatible Poisson structure in the sense of Gekhtman-Shapiro-Vainshtein [24]. If the
quantum cluster algebra for B equals the corresponding upper quantum cluster algebra, then
we prove that the root of unity A.(M,, B,inv) arises as a specialization from a quantum cluster
algebra (Section 5). This gives an effective tool for the construction of root of unity quantum cluster
algebras (Subsections 5.6 and 8.3).

1.3 | Discriminants

Knowing the explicit form of the discriminant of a noncommutative algebra has a number of
important applications, but its calculation is very difficult. Only a few results are known to date
and they concern concrete classes of algebras. Skew-polynomial algebras were treated in [7, 8],
their Veronese subrings in [10], low dimension Artin-Schelter regular algebras in [1, 40, 41], Ore
extensions without skew-derivations and skew group extensions in [19], quantized Weyl alge-
bras in [9, 31], Taft algebra smash products in [20] and others. A Poisson geometric method for
computing discriminants via deformation theory was given in [36].

We prove the following general results for the computation of the discriminants of all root of
unity quantum cluster algebras over their special central subalgebras (1.1) arising from Theorem
A(2):

Theorem B. Let ¢/ be a primitive £th root of unity and A.(M,, B,inv) be a root of unity quan-
tum cluster algebra such that ¢ is odd and coprime to the entries of the skew-symmetrizing diagonal
matrix for the principal part of B. Let © be any collection of seeds that is a nerve (in the sense
of [18] and Definition 6.4) and A,(O,inv), A(©,inv) (resp., C.(0,inv)) be the subalgebras of
A.(M E,E, inv), A(B,inv) (resp., Ca(ME,E, inv)) generated by the cluster variables from the seeds
in © (resp., their £th powers).

@) If A(O,inv) is a free module over C.(0,inv), then A, (0,inv) is a finite rank C.(0,inv)-
module of rank £N, where as before N denotes the number of variables in each seed, and its
discriminant d (A,(0©,inv)/C_(0, inv)) with respect to the regular trace function equals

NN H Xfa" for some a; € N
ie[1,N]\(exLinv)
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up to multiplication by a unit of C.(0, inv) (discriminants are nonuniquely defined up to such
unit). Here X; denote the frozen variables of A,(©,inv) and N :={0,1, ...}

(2) IfA.(©,inv)is a free module over A(@, inv), then A,(©,inv) is a finite rank A(O, inv)-module
of rank ¢No(¢) and its discriminant d (A(©,inv)/A(®, inv)) with respect to the regular trace
function equals

N

(N+D)p(#) / A
(%) H X;ﬂc‘ forsome c; €N
L 772D Jcy Ni\exviny)

up to multiplication by a unit of A(®, inv), where ¢(.) denotes Euler’s p-function.

In the theorem, one can choose © to be the set of all seeds, which gives a formula for the dis-
criminant of A_(M,, B,inv) over C.(M,, B, inv). The choice of any nerve @ in the collection of
all seeds allows for the extra flexibility in computing discriminants of subalgebras of root of unity
quantum cluster algebras that do not have cluster structures on their own. The very specific form
of the discriminant in the theorem makes the computation of the integers a; easy by degree and
filtration arguments (see, e.g., Subsection 8.5).

1.4 | The De Concini-Kac-Procesi quantum unipotent cells

Many PI algebras are secretly root of unity quantum cluster algebras or, more generally, algebras
of the form A, (@, inv). Let g be an arbitrary symmetrizable Kac-Moody algebra and w a Weyl
group element. In Theorems 8.4 and 8.5, we prove that this is the case for the integral forms over
Z[e] of all big quantum unipotent cells A.(n,(w))z[) of [12] (when ¢ is odd and coprime to the
symmetrizing integers of the Cartan matrix of g), namely that

A (ny (W) =AM, B, @) (1.2)

for a certain exchange matrix B, and that the corresponding De Concini-Kac-Procesi cen-
tral subalgebra C,(n (w))z[ of A.(n (w))z is precisely the underlying classical cluster
algebra

Ce(ny(W))z(e) = C.(M,, B, @) = A(B, 2) ®; Zle]. 13)

The DKP central subalgebras C,(n (w))z play a fundamental role [11, 12] in the study of the rep-
resentation theory of big quantum unipotent cells A,(n . (w))¢]- The power of the isomorphisms
(1.2)-(1.3) is that we get a full control on the pair (A,(n..(w))7¢), C.(n;(w))z[.)) as a pair of a root
of unity quantum cluster algebra and the underlying classical cluster algebra. Furthermore, using
Theorem B, we prove:

Theorem C. For all symmetrizable Kac-Moody algebras g, Weyl group elements w and primitive
¢throots of unity € such that ¢ is odd and coprime to the symmetrizing integers of the Cartan matrix of
g, the discriminant d (Ag(n +(W))71¢)/Ce(m (W) 7 ) of the integral form of the corresponding quan-
tum unipotent cell A.(n (w))z.| over its De Concini-Kac-Procesi central subalgebra C (n ()7
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with respect to the regular trace equals

—N(e-1)
A T D
w;,ww;
ieS(w)

up to multiplication by a unit of Z[e], where S(w) is the support of w and D. are the standard

Wi, Ww;
unipotent quantum minors in A,(n(w))z[.) associated to the fundamental weights w;.

A special and weaker case of this theorem was proved in [36]. It only dealt with the case of
finite-dimensional simple Lie algebras g, due to the use of Poisson geometric results from [11, 12].
Furthermore, [36] only applied to the case of discriminants of algebras over C(¢) and not over
Z|[¢], because of the use of Poisson geometric techniques.

Remark D. We expect that other important pairs of the form
(PI algebra, previously constructed central subalgebra)

will be shown to be special cases of pairs of the form
(A,(0,inv),C.(8,inv) = A(0,inv) ®, Z[¢'/*])

and that cluster algebras can provide a strong new tool for the study of the representation theory
of such PI algebras.

1.5 | Notation

We will use the following notation throughout the paper. For a pair of integers j < k, denote
[j,k] :=1{j,j+1,...,k}. For a pair of positive integers m, n, denote 0,,,,, the zero matrix of size
mXxn.

2 | PRELIMINARIES ON CLASSICAL AND QUANTUM CLUSTER
ALGEBRAS

In this section, we gather background material on cluster algebras of geometric type and quantum
cluster algebras which will be used in the rest of the paper.

2.1 | Cluster algebras of geometric type

Cluster algebras were defined by Fomin and Zelevinsky in [14]. Let N be a positive integer, ex be
asubset of [1, N], and F be a purely transcendental extension of Q of transcendence degree N. A
pair (%, B) is called a seed if

1) X={xy,...,xy}is a transcendence basis of F over Q which generates F;

() B € Myyex(Z) and its ex X ex submatrix B (called the principal part of B) is skew-
symmetrizable; that is DB is skew-symmetric for a matrix D = diag(d;, j € ex) with d; €
z.,.
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We call B the exchange matrix of the seed, X the cluster of the seed, x; the cluster variables. The
subset ex C [1, N] is called set of exchangeable indices. The columns of B are indexed by this set.
The mutation of B in direction k € ex is given by

ifi=korj=k

oy e d P
Hi(B) = (b)) := il tbulbigl

Equivalently, 1 (B) = E;BF, where s = + is a sign and the matrices E; € My(Z), Fy € M (Z)
are defined by

5, it #k 5 ifi %k
:(eij): -1 1fl=]=k FS::(fij): -1 lfl=]=k
max(0, —sby,) ifi#j=k, max(0,sby;) ifj#i=k

The principal part of u, (B) is the mutation u, (B) of the principal part B of B and the matrix w; (B)
is skew-symmetrizable with respect to the same diagonal matrix D that skew-symmetrizes B, [14].
Mutation u,, of the seed (X, B) in the direction of k € ex is given by u; (X, B) : = (¥, ux(B)) where
the mutation of X is given by

{xk}Ux\{xk} and xkx 1= H X, bic 4 H X, ik 21)

lk>0 lk<0

Mutation is an involution, ,ui =id, [14]. We say that two seeds (¥, B"), (X’,B"") are mutation-

equivalent if (X", B'") can be obtained from (%', B’) via a finite sequence of mutations. Denote this

by (X,B) ~ (i’ ’,B""). All seeds that are mutation-equivalent to (X, B) contain the cluster variables
={x; | i € [1, N]\ex}, called the frozen variables.

The cluster algebra A(B) is defined as the Z[c*!]-subalgebra of F generated by all cluster vari-
ables in the seeds (X', B’) ~ (X, B). For the purposes of applications to coordinate rings, instead
of inverting all frozen Variables we often need to pick a subset inv C [1, N]\ex to invert. Then
A(B, inv), denotes the Z|c, X, ! k € inv]-subalgebra generated by all cluster variables in the seeds
(X',B) ~ (X,B).In partlcular A(B) = A(B,[1,N]\ex).

The upper cluster algebra U(B,inv) is the intersection of all mixed polynomial/Laurent
polynomial subrings

Z[x}, .., x\[(x)7",i € ex L inv]
of F for the seeds ((x{, s lev)’gl ) ~ (%, B). The Laurent phenomenon of Fomin-Zelevinsky [15]
established that A(B,inv) C U(B, inv).
2.2 | Quantum cluster algebras
Quantum cluster algebras were defined by Berenstein and Zelevinsky in [4]. Let A : ZN x

7N — 7 be a skew-symmetric bilinear form. By abuse of notation, we will denote its matrix
in the standard basis ey, ...,ey of ZN by the same symbol A = (A(ei,ej)), and we will use
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interchangeably both notions. The bilinear form is uniquely reconstructed from this matrix. Using
a formal variable g'/2, we work with the Laurent polynomial ring

AP = Z[g*). 2.2)

Definition 2.1. The based quantum torus T,(A) associated with A is defined as the A;/ 2-algeblra
with a Aé/ *_basis {X/ | f € zV} and multiplication given by

x/x9 = qA(f,g)/2Xf+9, where f,g € ZV.

The bilinear form A can be recovered from the commutation relations of the generators X¢1,
s XN of T,(A), because XIx9 = grf9)x9XS We denote by F the skew-field of fractions of
Tq(A)’ which is a @(ql/ 2)-algebra. Each o € GLy(Z) gives rise to the based quantum torus Tq(A’ )
associated to the form A’(f, g) = A(cf,og). Note that if we consider A’ as a matrix, then A’ =
o T Ac. Also, we have an Aé/ 2-algebra isomorphism ¥ : Tq(A) - T(J(A’ ) given by X/ xo7',

Definition 2.2. Let ¥, be a division algebra over Q(q'/?). A toric frame M q for ¥, is defined as
amap M, : 7N - F, for which there exists a skew-symmetric matrix A € My/(Z) satisfying the
following.

(1) Thereis an A;/ 2-algebra embedding ¢ : 7,(A) & F, with ¢(X H= Mq( f)forall f € ZN.
(2) Fy = Fract(¢(T4(A))).

The skew-symmetric matrix associated to a toric frame M, will be denoted by AMq. Foranyo €
GLN(Z), p € Aut(Fq), and toric frame M, the map pM,o is a toric frame with AquU =0'Ao.
The embedding ¢ for M, gives rise to an embedding ¢ Tq(Aquo) < Fy by ¢’ = pogpo¥ 1,
which satisfies the two properties above for pM,0o.

For a toric frame M g We indicate the based quantum torus thatliesin Fy with basis {M q( NDIf e
ZN} by 7,(M,). We have the canonical isomorphism Tq(M q) ~ Tq(AMq).

As in the previous subsection fix ex C [1, N]. View A = (4;;) as a skew-symmetric matrix and
let B be an N X ex matrix. We call the pair (A, B) compatible if

N
Y by A = 8;;d; foralli € [1,N], j € ex (2.3)
k=1

forsomed; € Z, . Equivalently BT A = Dwhered;; = d; for j € exand otherwise d;; = 0. Denote
by D := diag(d,, j € ex) the principal part of D. If (A, B) is a compatible pair, then B has full rank
and its principal part B is skew-symmetrized by D, [4]

A pair (A, B) is mutated in the direction of k € ex, by setting u (A, B) := (A, B’) where B’ =

E,BF, asin the classical case and A’ := ESTAE » which is independent on the choice of sign s, [4].
As in the classical case uy, is an involution, [4].
_We call a pair (Mq,E) (consisting of a toric frame M, for a division algebra 7, and a matrix
B € Myyex(Z)) a quantum seed if the pair (AMq,E) is compatible. We call {M,(e;) | j € [1,N]}
the cluster variables of the seed (M ¢ B). The subset of cluster variables {M q(e j) | j & ex}are called
frozen variables.
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Proposition 2.3. Suppose M, is a toric frame, k € [1,N] and g = (n,,...,ny) € ZN is such that

M,
AMq(g,ej) =0 for j # k and ny = 0. Then for each s = +, there is an automorphism p, ; = p, { of
Fq, such that

My(e) + My(e +s9) ifj=k

pg,S(Mq(ej)) = {Mq(e]) lf} ;é k.

This is a variation of [4, Proposition 4.2], proved in [25, Lemma 2.8], which will be more suitable
for our root of unity treatment and its relation to the quantum picture via the homomorphism
(5.3).

Mutation (M, B) of a quantum seed in the direction of k € ex is defined as

~ M ~
(M), e (BY) 1= (" MyE, E,BF, ),

which is independent on the choice of sign, and Auk(Mq) = ,uk(AMq), [4]. Explicitly, mutation of
toric frames is given by

u(My)(e;) = My(e;) for j # k,

e (My)(ey) = My(—ey + [b°1,) + My(—e; — [b¥]L),

(24)

[4]. Here, for b = (by,...,by) € ZV, set [b], :=(cy,...,cy) € ZN where ¢; := b; if +b; > 0 and
¢; 1= 0 otherwise.
We fix a subset inv C [1, N]\ex corresponding to frozen variables that will be inverted.

Definition 2.4. The quantum cluster algebra A (M, B,inv) is the AZZ-subalgebra of F, gener-
ated by all cluster variables M ;(e i), J € [1,N] of quantum seeds (M (’Z, B’) mutation equivalent to
(Mq, B) and by the inverses Mq(ej)_1 for j e ti.

The upper quantum cluster algebra U (M, B, inv) is defined as the intersection over quantum

seeds (M é, B~ (M q,E) of all A}/ *_subalgebras of F,, of the form

1/2

Ag

(M;(el-),M;(ej)’l |ie[1,N], j €exuinv).
These subalgebras of 7, are called mixed quantum tori.

The quantum Laurent phenomenon states that
Aq(Mq,E, inv) C Uq(Mq,E, inv).

Berenstein and Zelevinsky [4] proved this in the case when all frozen variables are inverted, that
is, when inv = [1, N]\ex. The general case was proved in [25, Theorem 2.5], where the result is
stated over C(g*'/2) but the proof works over Aclliz.

The exchange graphs of a cluster algebra A(X, B) and a quantum cluster algebra A,(M,, B) are
the labeled graphs with vertices corresponding to seeds mutation-equivalent to (X, B), respectively,

My, B), and edges given by seed mutation and labeled by the corresponding mutation number.



10 of 47 | NGUYEN ET AL.

Those graphs will be denoted by E(B) and Eq(AMq,E). A map between two labeled graphs is a
graph map that preserves labels of edges. Berenstein and Zelevinsky [4] proved that there is a
(unique) isomorphism between the exchange graphs Eq(AMq,E) and E(B) obtained by sending

the vertex corresponding to seed (%, B) to that of (M, q,§). Obviously, the exchange graphs do not
depend on the choice of inverted set inv.

3 | ROOT OF UNITY QUANTUM CLUSTER ALGEBRAS AND
ELEMENTARY PROPERTIES

In this section, we define root of unity quantum cluster algebras and describe their elementary
properties that are similar to those for quantum cluster algebras. We furthermore prove that all of
them are PI algebras.

3.1 | Construction

Let # be a positive integer. For a matrix C € M,,,,,,(Z) denote its image in M,,,,(Z/¢) by C. Let
¢!/2 € C be a primitive Zth root of unity and set

AP = 767, (3.1)

Note that in the case of # odd, ¢ is also a primitive #th root of unity and Z[¢'/2] = Z][¢].
By abuse of notation, for a skew-symmetric bilinear form A : ZN x zN — 7 /¢ we will denote
by the same letter its matrix (A(e;, e j)) € My(Z/¢). For such a bilinear form define the root of

unity based quantum torus T,(A) to be the Ag/ 2-algebra with an A;/ % basis {X/'| fezN}and
multiplication given by

X X9 = MNID2XT+9 where  f,g € 7.

Hence, X/ X9 = ¢A.9)x9X/ . The bilinear form A can be recovered from the based quantum torus
by

AS9)/2 — XfXgX_f_g, Vf,g € 7N
by using the assumption that ¢ is a primitive #th root of unity.

Definition 3.1. A root of unity toric frame M, of a division algebra F, over Q(¢'/?) is a map
M, : ZN — F. such that there is a skew-symmetric matrix A € My(Z/¢) satisfying the following
conditions.

(1) Thereisan A;/ 2-algebra embedding ¢ : T.(A) & F. with ¢(X/) = M_(f) forall f € ZN.
(2) F, ~ Fract(T(A)).

The matrix A € My (Z/¢) is uniquely reconstructed from the root of unity toric frame M,. It
will be called matrix of the frame M, and we will denote Ay 1= A.
Fix a subset of ex C [1, N].
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Definition 3.2. Let B € My,x(Z) and A = (4;;) € My(Z/¢) be skew-symmetric. The pair (A, B)
will be called £-compatible if there exists a diagonal matrix D := diag(d;, j € ex) with d; € Z,
such that

(1) the principal part B of B is skew-symmetrized by D; that is DB is skew-symmetric;
2 Zgzl Bkj/lkl- = 5ij3j (mod #) for all i € [1,N], j € ex; that is ATB = [ﬂ , where 0 denotes

the zero matrix of size ([1, N]\ex) X ex.

We will not require any conditions on d j» S0 the matrix B need not have full rank like in the
case of quantum cluster algebras.

Similar to the generic case, we define the mutation in direction k € ex of #-compatible pairs to
be

~ =T — =
(A, B) 1= (Es AES,ESBFS> for a choice of sign s.
The proof of the following proposition is analogous to [4, Propositions 3.4 and 3.6].

Proposition 3.3. The pair (A, B) is independent of the choice of sign s. If the pair (A, B) is ¢-
compatible with respect to a diagonal matrix D, then the pair w, (A, B) is also £-compatible with
respect to the same diagonal matrix D. Mutation . of ¢-compatible pairs is an involution.

Definition 3.4. We will call a pair (M., B) a root of unity quantum seed if

(1) M, is a root of unity toric frame of 7.,
2 BeM Nxex(Z) and (AME,E) is an #-compatible pair.

Proposition 3.5. Suppose M, is a root of unity toric frame, k € [1,N], and g = (ny,...,ny) € ZV
is such that Ay (g,e;) =0 (mod £) for j # k and ny. = 0. Then for each s = +, there is a unique

automorphism pz/ﬁ of ., such that

M(ep) + M (e, +sg) ifj=k

3.2
Ms(ej) lf] # k. ( )

P (M, (e)) = {

Our argument is similar to [25, Lemma 2.8] but we spell out the details because they will be
needed later.

Proof. Denote Fract(7;(M,)) by F,. We have a homomorphism p ; : 7.(M,) — F, because
(M, (&) + M (e, + sg)M,(e;) = )M, (e))(M,(e,) + M, (e, + 59))
for j # k. On the Ai/ % basis {M_.(f)}, one calculates that

M., .
P M(f) ifm, >0

P,sM(f)) = _
' (PME’_m") M) ifm, <0

9,8,—
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for f = (my,...,my) € ZN, where

My
P?f;z" = H (1 + Eis(zp_l)AMe(9’ek)/2ME(sg)) for my, > 0.
p=1

Let G := AY2[M,(s)]\{0} C T.(M.,). Note that G - M,(f) = M.(f) - G for any f € ZV, and
hence G is an Ore set. Moreover, as im(p, ) C T.(M,)G™!, we may consider Pyt Te(M,) —
T.(M_)G™'. As g has n; = 0, the map P,,s acts by the identity on G. We can clearly extend the
map to an endomorphism o, : T.(M)G™! = T.(M_)G™".

We can similarly construct an algebra endomorphism p’g 5" T.(M,)G™' - T.(M.)G~" defined
by

pMel _IME() if j = k
o (M.(e)) = (Pizi) M it

M,(e j) ifj#k
Clearly, p,, ; and p; , are inverse to each other and are automorphisms of T.(M,)G™L. In particu-
lar, they are injective and can be extended to automorphisms of F.. Uniqueness follows because

M. (e j) are skew-field generators of F,. O

Similar to the generic case, we define mutation of a root of unity quantum seed (M,, B) in the
direction of k € ex by

(M, B) := <pbkaSM5ES,ESBFS>. (3.3)
The proof of the following proposition is analogous to [4, Propositions 4.7 and 4.10].

Proposition 3.6. Given a root of unity quantum seed (M., B), the following hold.

(1) Fork € ex and eithersign s = +:
P M Ey(e)) = Mc(e;) for j # k,
M E k k
‘obk s MgEs(ek) = Mg(_ek + [b ]+) + Mg(_ek - [b ]—)

In particular, mutation does not depend on the sign used.
(2) u (M., B) is also a root of unity quantum seed.

Moreover, mutation is an involution.
We consider the equivalence classes under finite sequences of mutations of root of unity quan-

tum seeds. Fix a subset inv C [1, N]\ex corresponding to frozen variables that we will set as
invertible.

Definition 3.7. Given a root of unity quantum seed (M,, B), we define the quantum cluster algebra
at a root of unity A.(M,, B,inv) as the Ag/ 2-suba.lgebra of . generated by all cluster variables of
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quantum seeds (M E’ B’) mutation equivalent to (M o B) and by the inverses of the frozen variables
corresponding to inv,

1/2
€

A.(M_,B,inv) := A" (M(e;),M,(e;)" | i € [I,N], j € inv,(M[,B) ~ (M, B)).

We have associated to each skew-symmetric bilinear form A a based quantum torus. Given sub-

sets ex and inv, we can also associate an algebra in between the corresponding skew-polynomial
algebra and the quantum torus,

T.(A), i= A§/2< X, X' i€ [LN], j € exu inv> C T.N). (3.4)

We call this a mixed based quantum torus. Equivalently, it is the algebra
A;/Z—Span{Xf | f e Zg} with the product X/ X9 = r92xI+9 vf g e Zg,
where
Zg ={f =(f1,r fN)EZN | f; 20, Vi g exLlinv}. (3.5)
We similarly define
T.(M,), :=(M.(e;), M(e)"" | i €[1,N], j € exuinv) C T,(M,).

Definition 3.8. Given a root of unity quantum seed (M., B) and specified subsets ex and inv,

we define the upper quantum cluster algebra at a root of unity U.(M,, B,inv) as the intersection
of mixed quantum tori corresponding to quantum seeds mutation equivalent to (M, B),

U.(M,, B,inv) :=[ J.(M)),.
(M,,B)~(M!,B")

Remark 3.9. In the case when €'/2 = 1 (i.e., # = 1), a root of unity quantum cluster algebra can
be identified with a classical cluster algebra (of geometric type)

Al(M19 E: inv) = A((Ml(e1)9 ey Ml(eN))9 Ey inv)a
and similarly a root of unity upper quantum cluster algebra with an upper cluster algebra

U,(M;, B,inv) = U((M,(e,), ..., M;(ey)), B, inv).

3.2 | The quantum Laurent phenomenon at roots of unity
Theorem 3.10. For any root of unity quantum cluster algebra A_(M,, B, inv)

A.(M,,B,inv) C U.(M,, B, inv).
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Proof. The case when B has full rank is proved analogously to [25, Theorem 2.15]. We deduce the
general case of the theorem from the full rank one as follows.
For simplicity of notation, assume that ex = [1,n] for some integer n < N. Consider the
augmented skew-symmetric bilinear form with matrix
A0
A = NXH] ,
e [Oan 0n><n

where 0, ; denotes the zero matrix of size i X j. Denote the augmented exchange matrix

~ B
Baug ‘= [I ]
n

whose principal part is the same as B. The pair (Aaug,Eaug) is Z-compatible with respect to the
same diagonal matrix D because

ix j

—T

B, o Maug = [B o].

aug

Denote by 7. the skew-field Fract(7;(A,,,)) and consider the toric frame (M,),,, With matrix A,

aug

such that (M,),,4(e;) := X forall k € [N + 1,N + n]. Clearly, ((Mg)aug,ﬁaug) is a root of unity

quantum seed. We have a canonical surjective A;/ 2-algebra homomorphism

' 1
2 T((Maug)y — Te(My)s given by m((Me)agler)) = {1, N<k<N+n

because the elements (M,),4(e;) are in the center of 7,((M,)y,)> for N <k <N +n.
By induction on m > 0 one easily shows that

7 (1, b, (Mang)(@)) = iy b1, (M)

for all k € [1, N]. As the matrix Eaug has full rank, by the validity of the root of unity quantum
Laurent phenomenon in the full rank case we have

M, ...,ul-m((Mg)aug)(ek) € Tg((Ms)aug)z'

Hence, p;, ... 4; (M, )(ex) € T.(M,),, for all k € [1, N], which completes the proof of the theorem
in the general case. L]

3.3 | PI properties of root of unity quantum cluster algebras
Theorem 3.11. All root of unity quantum cluster algebras A.(M., B, inv) and root of unity upper

quantum cluster algebras U,(M, E,E, inv) are PI domains, see, for example, [5, section 1.13] or [33,
chapter 13].
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Proof. By Theorem 3.10, for every toric frame M, of A_(M.,, B, inv) we have the embeddings
A.(M,,B,inv) C U .(M,, B,inv) C T.(M,) = T.(Ay,).

As each root of unity quantum torus 7,(A) is a PI domain, the same is true for the first two algebras

in the chain. ]

4 | CANONICAL CENTRAL SUBRINGS OF ROOT OF UNITY

QUANTUM CLUSTER ALGEBRAS

The main results of this section are the construction of a canonical central subring of a root of

unity quantum cluster algebra A (M., B, inv) and a theorem that it is isomorphic to the classical

cluster algebra A(B, inv).

4.1 | Central embedding of commutative cluster algebras

Lemma 4.1. If (Mé,ﬁ’) is mutation-equivalent to (M,,B), then the element Mé(ej)l €
A.(M_, B,inv) is central for any j € [1,N].

Proof. We only need show that Mg(ej)l EZ(AE(ME,E)) for j € [1,N], as AE(ME,E,inv) =
AE(Mé,E’,inv). Now ME(ej)’ is central in T,(M,) as

M. (e))ML(f) = M(le)M(f) = "I DM ()M (le)) = M(NM(e))"
Thus, it is central in Fract(7,(M,)) and in A,(M,, B, inv). O

For a root of unity quantum seed (M., B) and for j € ex, consider the commutation of elements
M,(—e; + [b/],) and M. (—e) — [b/]_). The relation in the quantum torus is

M, (—¢; — [b/] )M (=e; + [b],) = A& lmertVIlong (e 4 [bT] )M (e, — [b]).
Sett; := A(—e; — [b/]_,—e; + [b/],) for brevity.

Lemma 4.2. Let (M, B) be a root of unity quantum seed, so (Ap,» B) is an £-compatible pair with
respect to a diagonal matrix D = diag(d;, j € ex) withd; € Z,.. Then for j € ex, t; = Hj.

Proof. We have that
t; = A(—e; — [b]_,—e; + [b/],)
= A=, —e)) + A=e;, [b7],) + A=[b]_, —e)) + AC=[b]_, [b],)

= A/ e)) + A(b'],, [b7]2) = d; + A(Ib/],, [bT]).
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To evaluate A([b/],,[b/]_), we note that b/ — [b/], = [b/]_, so
AL, [610) = A1, b7) = AL [6],) = A(ID]4. bY).
AS bjj = 0,

A([bj]+’ [bj]—) = A([bj]+,bj) = Z bl-jA(ei,bj) = Z —bl-jél-,jaj =0.
b;j>0 b;j>0

We will often require the following condition on our root of unity quantum seed (M., B):

. ¢ is an odd integer coprime to d for k € ex, where D = diag(d;, j € ex)
(Coprime) -
is the matrix that skew-symmetrizes the principal part B of B.

The condition (Coprime) only concerns the #th root of unity £ and the compatible pair (Ap,» B),
and not the root of unity toric frame M,.

Remark 4.3. The diagonal matrix D that skew-symmetrizes exchange matrices is invariant under
mutation. Therefore, if a root of unity quantum seed satisfies condition (Coprime), then any
mutation equivalent seed does so as well. So, (Coprime) is a condition on a root of unity quantum

cluster algebra and not on individual seeds.

The main use of Lemma 4.2 is the following result. The formula appearing should be compared
to the mutation relation of (2.1).

Proposition 4.4. Let (M,, B) be a root of unity quantum seed satisfying the condition (Coprime).
Then for k € ex,

M (e) (meMc(e))” = [T Me(ed)P + ] Mele) ).

by >0 b, <0
Proof. Denote
Y := M (—ey + [b*],), Z := M (=, — [b¥]_) € T.(M,).
As ZY = ¢% Y Z (by Lemma 4.2) and ¢4 is an #th primitive root of unity,
Y+2)Y =Y +2°.
Thus,

(weM,(e)) = (M.(=eq + [b¥],) + M,(—e — [bK]L)) = (¥ +2)°

= M.(—e; + [D"1,)" + M (¢, — [p*].)
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= M (~te, + £[b],) + M. (—~¢e, — £[b])

=M.(=tey) [ M.(¢bye)) + M(~te) [ Mc(~¢byey).
by>0 by <0

Example 4.5. The previous proposition does not hold if the condition that # is coprime to the
integers d, is dropped. Consider the following example when £ = 9. Let

/2 = 2mif9 A = 0 1  B= 0 1
-1 0 -3 0

Let F, := Fract(T,(A)) and M, : Z> — F. be the toric frame related to A such that M (f) = X/
and Ay, 1= A. Clearly, (M., B) is a root of unity quantum seed. Here we have

Ba=|? 0.
0 1

In particular, d; = 3 is not coprime to # =9. For Y := M,(—e; + [b'],) = M,(—e;) and Z :=
M, (—e; — [b']_) = M.(—e, + 3e,), by a direct computation one obtains

Y +2)° =Y +3Y°Z3 +3Y320 + 2° £ Y° + Z°,

so the conclusion of Proposition 4.4 fails.

In a similar way, dropping the odd root of unity condition will result in a failure of the statement
of Proposition 4.4. Consider the same choice for A and B,butwithel/2 =i,a primitive fourth root
of unity. Then ¢ = —1 and

Y+2) ' =Y*+Q+e+22++ehHY?22 + 2°
=Y 42v2 22+ 24 £ Y4+ 2

leading once again to a failure of the conclusion of Proposition 4.4. The issue in the even case is
that ¢ is a primitive (¢ /2)th root of unity, not a primitive #th root of unity.

Define the Z-subring
C(M,, B,inv) := z(M!(e,), Ml(e;)™" | (M., B') ~ (M, B),i € [1,N], ] € inv)
of A,(M,, B, inv).

Theorem 4.6. Suppose that (M., B) satisfies condition (Coprime). Then the subring C(M,, B, inv)
of A.(M_, B,inv) is isomorphic to A(B,inv).

Proof. As A({x,, ...,xN},E, @) is constructed as a subalgebra of Q(x,, ..., Xy), consider the iso-
morphism ¢ : Q(xy, ..., Xy) — Fract (Z[M,(e;)’, ..., M(ey)" 1) given by x; - M,(e;)". Proposi-
tion 4.4 gives us that ¢(u;(x;)) = (/vtl-ME(ej))f foralli € ex, j € [1, N]. By induction on the length
of the mutation sequence, ¢(/“‘ik My, (x]-)) = (uik ,uilME(ej))f.
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As the generators of Z(Mé(ei)f | (ML, B')~(M.,B), i € [1,N]) are the images of the generators
of A({xy, ..., Xx}, B, @) under the isomorphism ¢, then we have an isomorphism of Z-algebras.
The more general case, when inv # @, is obtained by adjoining the appropriate inverses of frozen
variables. O

Corollary 4.7. If (M., B) satisfies condition (Coprime), then the A;/ 2-Subalgebm

C.(M,,B,inv) := AY*(M(e))’, M!(e)™" | (M, B') ~ (M., B), i € [L,N], j € inv)

1/2
)

of A,(M,, B,inv) is isomorphic to A Q5 A(B,inv).

4.2 | Exchange graphs of root of unity quantum cluster algebras

For a root of unity quantum cluster algebra A_(M,, B), define its exchange graph E.(M., B) to be
the labeled graph with vertices corresponding to root of unity quantum seeds mutation-equivalent
to (M., B) and with edges given by seed mutation labeled by the corresponding letters.

Theorem 4.8. Let (M., B) be a root of unity quantum seed satisfying condition (Coprime). There
is a unique isomorphism of labeled graphs from the exchange graph E.(M., B) to the exchange graph
E(B) which sends the vertex corresponding to the seed (M., B) to the vertex corresponding to the seed
(X, B), whereX = (M_(e;)’, ..., M.(ex)?).

We will need the following two propositions for the proof of the theorem which are of indepen-
dent interest. Recall that an exchange matrix B is indecomposable if it cannot be represented in a
block diagonal form with blocks of strictly smaller size.

The first proposition establishes a leading term statement for cluster expansions.

Proposition 4.9. Assume that (M., B) and (M - B’) are two seeds of a root of unity quantum cluster
algebra, where B is indecomposable and B # 0. Then for every k € [1,N] there exists a functional
0 : ZN - Z such that

M(e) = M(f) + X, aML(f)

forsomea, € AY? and f, f; € ZV such that 6(f) > 6(f,) for all i.
The statement fails when B = 0, because in that case (M )(ey) = 2M (—ey).

Proof. We prove the proposition by induction on the distance between the vertices in the exchange
graph corresponding to the seeds (M., B) and (MQ,E’ ). The case when the distance equals 1
is trivial because the condition that B is indecomposable and B # 0 implies that u j(ME)(e j) =
M. (f1) + M(f,) for some f, # f, € ZV. ~

Assume the validity of the statement when the distance equals m. Consider two seeds (M., B)
and (M g,ﬁ’ ) whose vertices are at distance m + 1 in the exchange graph. Then there exists a
seed (M",B"") such that (M!,B") = u (M, B) for some j € [1,N] and the distance between the
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vertices of the exchange graph corresponding to the seeds (M, B”") and (M, B') equals m. The
exchange matrices B’ and B are necessarily indecomposable. We have

Mé,(el) = ME(el) for #* j,
M/ (e;) = M(—e; + [b/],) + M (—¢; — [b/]).
By the induction hypothesis, there exists a functional 8" : zN — Z such that

M{(e) = M{'(9) + ¥ a'M(g) (41)

for some a’ € A;/Z and g, g; € Z" such that 6”(g) > 0" (g,) for all i.

Denote by s the sign + for which 6”([b/],) or —0”([b/]_) is minimal. Define the functional
0:7N - Zby

6e;) = 6" (¢, +s[b1).  6(e) = 6"(e)) for 1# .

Let 7A'E(M ) be the completion of the quantum torus 7,(M,) spanned by formal sums of the form

Z cyM.(h — msb’)

m=0

forh € zZN and ¢, € Ai/z. Itis an .Ai/z—algebra on its own. We have —s[b/]_; = s[b/], — sb/. As
M(—e; + [b’],) and M (—e; — [b/]_) skew-commute up to a power of ¢, for all n € Z,

M! (ne;) = (M.(—e; +s[b/])) + M(—e; — s[b/]_)))" (4.2)
= M, (n(—e; + s[b']y)) + Z M, (n(—e; + s[b’];) — msb)
m=1

for some c,,, € A;/z. Denote ZV~! := @, Ze; C ZVN. Forall h € Z~" we have
A”(ej’h) = A(_ej + [b]]+5h) = A(_ej - [bj]—ah')

and thus, by using (4.2) and the definition of root of unity toric frames,

M (ne; + h) = M, (n(—e; + s[b/],) + h) + 2 M, (n(—e; + s[b’],) + h — msb/) (4.3)

m=1

forsomec,, € Ai/z. Write the elements g, g; € ZV in (4.1) in the form g = ne; + h, g; = njej + hy,
forn,n; € Z, h,h; € ZN~1 and apply (4.3) to obtain,

M/(e) = M (n(—e; + s[b’],) + h) + Z M. (n(—e; + s[b’];) + h — msb’)

m=1

+ Z a!’M, (n;(—e; +s[b/]) + h;) + Z ¢ M. (n;(—e; + s[b/],) + h; — msb/)
i

m=1
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forsomec; ,, € A;/ 2, By the root of unity quantum Laurent phenomenon (Theorem 3.10), the sum
in the right-hand side belongs to 7,(M,). Furthermore, the definition of the functional 8 implies
that

8(n(—e; +s[b/])) + h) = 6" (g) > 6" (g;) = B(m;(—e; + s[b],) + hy),

6(sb’) = 6(s[b’],) + 6(s[b/]_) < 0.

Hence, the above expansion of M/(e;) in 7;(M,) has the desired properties with respect to the
functional 6. O

Remark 4.10. The proof of Proposition 4.9 directly translates to the case of quantum cluster
algebras to yield the validity of the obvious analog of it in that situation.

The second auxiliary proposition for the proof of Theorem 4.8 is a recognition statement for
toric frames of root of unity quantum cluster algebras in terms of the #th powers of the cluster
variables in them.

Proposition 4.11. Assume that (M,, B) and (M;,E’) are two seeds of a root of unity quantum
cluster algebra. Then (M!(ey), ..., M!(ey)) is a permutation of (M(e,), ..., M (ey)) if and only if
(M!(e))’, ..., M!(ex)) is a permutation of (M (e,), ..., M (ex)”).

Proof. The forward direction is obvious. For the reverse direction it is sufficient to consider the
case when B is indecomposable. If B = 0, the statement is clear. In the remaining part we assume
that B is indecomposable and B # 0. Suppose that

Mé(ek)’f = ME(eg(k))f for some o€ Sy. (4.4)

Consider a root of unity quantum torus 7,(A) with generators X, ... ,X;—\',l. By using the standard
basis of T.(A), one easily sees that the only solutions of the equation y* = X ]f for y € T,(A) and
1<k < Narey = (¢1/2)"X; for m € [0, ¢). By Theorem 3.10, M/(e;) € T,(M,), and (4.4) implies
thatforalll <k <N

M!(e,) = (/%)™ M, (e,)) forsome my €[0,2).
Proposition 4.9 implies that m; = 0forall1 <k <N, so
M(e;) = M (es)), V1<k<N. 0
Proof of Theorem 4.8. Any map of labeled graphs from E.(M,, B) to E(B) that sends the vertex cor-
responding to the seed (M., B) to the vertex corresponding to the seed (M,(e;), ..., M (ex)"), B)
necessarily sends the vertex y; ... x; (M., B) to the vertex p; ...4; (M.(e;)’, ..., M,(ey)"), B) for

all sequences iy, ..., i,,, in ex. Proposition 4.11 implies that this map is well-defined. It is obviously
surjective. It is injective by Proposition 4.11. O
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4.3 | The full centers of roots of unity quantum cluster algebras

In Corollary 4.7, we constructed a central subalgebra C_(M,, B, inv) of each root of unity quantum
cluster algebra A_(M,, B, inv) satisfying condition (Coprime). We will call it the special central
subalgebra. One can provide a characterization of the full center of the algebra A, (M., B, inv), as
follows. For a skew-symmetric bilinear form A : zN x zZN — 7 /¢ denote

KerA :={f € ZN | A(f,g) = 0,Vg € ZV}.

Proposition 4.12. Let A_(M,, B,inv) be a root of unity quantum cluster algebra. For every seed
(M!,B") ~ (M., B), the center of A,(M,, B,inv) is given by

Z(A (M., B,inv)) = A(M_, B,inv) n A;*>~Span{M(f) | f € KerAy}.
Proof. Using the standard basis of a root of unity quantum torus, one easily shows that
1/2

Z(T.(M0) = AY*~Span{M.(f) | f € KerAy} (45)

The root of unity quantum Laurent phenomenon (Theorem 3.10) implies that
A.(M,,B,inv) C T.(M"). As Fract(A,(M,, B, inv)) = Fract(T,(M))),

Z(Ag(Mz, E, inv)) = AE(M59 E, inv) N Z(,rg(M;))
and the proposition follows from (4.5). O
Remark 4.13. Using the full form of the root of unity quantum Laurent phenomenon (Theo-
rem 3.10), one analogously proves the following stronger (but more technical) description of the
center of A, (M., B, inv):
Z(A.(M,,B,inv)) = A (M, B,inv)n
A P=Span{M,(f) | f = (f1, ., fn) € KerAy, f; > 0,Vi ¢ exLiinv}.
5 | STRICT ROOT OF UNITY QUANTUM CLUSTER ALGEBRAS AND
SPECIALIZATIONS
In this section, we introduce the notion of strict root of unity quantum cluster algebras and show
that, under certain general assumptions, they arise as specializations.
5.1 | Construction
Definition 5.1. Consider a root of unity quantum seed (ME,E), so that (AME,E) is £-compatible

with respect to a diagonal matrix D. We say that this seed is strict if there exists a skew-symmetric
integer matrix A € My(Z) such that
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(1) A=Ay and
(2) the pair (A, B) is compatible with respect to the diagonal matrix D.

Recall that C denotes the image of a matrix C € M,,,,,(Z) in M,,.,,,(Z/¢). Clearly, condition (2)
is stronger than requiring that (AME,E) be #-compatible with respect to D. The choice of matrix
A is not unique.

Proposition 5.2. If (M., B) is a strict root of unity quantum seed with respect to a skew-symmetric
integer matrix A € My(2), then w, (M., B) is also a strict root of unity quantum seed with respect to
the skew-symmetric integer matrix

A =E]AE;

Proof. The pair (E] AE;, E,BF,) is the mutation of the compatible pair of matrices (A, B). By [4,
Proposition 3.4] the first pair is compatible with respect to the matrix D. We have

T = @ —=T——= —
Mgy =E Ay E,=E AE;=A. 0

Definition 5.3. We call a root of unity quantum cluster algebra strict if one, and thus every of its
seeds, is strict.

Remark 5.4. The class of strict root of unity quantum cluster algebras is a proper subset of the class
of root of unity quantum cluster algebras. For example, by Remark 3.9, for # = 1, a root of unity
quantum cluster algebra is the same object as a classical cluster algebra. At the same time, it is easy
to see that a strict root of unity quantum cluster algebra for # = 1 is the same object as a classical
cluster algebra with a compatible Poisson structure in the sense of Gekhtman-Shapiro-Vainshtein
[24].

5.2 | Specialization of quantum tori

Denote the #th cyclotomic polynomial by

®,(1) € Z[1]. (5.1)

We have the isomorphism A;/z/(cpf(ql/Z)): Ai/z given by q1/2,_)81/2‘ This makes
T,(0)/(@,(g"/?)) an Al*-algebra.

Lemma 5.5. There is an isomorphism of A;/ 2—algebras T,(N)/ (@,(q"/?)) =~ T.(A).

Proof of Lemma 5.5. 1t follows that T‘I(A) / (be(ql/ 2)) =~ T.(A) because the free A;/ *_module Tq(A)
and the free A;/ *_module 7,(A) both have the basis {X/ | f € ZV}. O
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Denote the specialization map
K.t Ty(A) > To(N)/(@,(q") = T(A). (5.2)
It is a homomorphism of A;/ 2-algebras, where Acl/ ? acts on T.(A) viathe map q — .

Construction 5.6. Let (M,,B) be a strict root of unity quantum seed associated to a skew-
symmetric integer matrix A € My(Z). To it we associate the unique quantum seed (Mq,E) of
Fyi= Fract(TLI(A)) such thjlt AMq = A. The compatibility of the pair (A, B) with respect to the
matrix D implies that (M, B) is indeed a quantum seed.

The isomorphisms of quantum tori Tq(M q) ~ T,(A) and T.(M,) =~ T_(A) and the specialization

map (5.2) give rise to the specialization map (an Atll/ 2-algebra homomorphism)
K.+ T(Mg) » T.(M,) (5.3)

with kernel (®,(q'/?)). It is given by k(My(f)) := M(f) for f € ZV.

The next theorem provides a general realization of a root of unity quantum cluster algebra in
terms of the specialization maps (5.3) for toric frames.

Theorem 5.7. Let (M,,B) be a root of unity quantum toric frame associated to a skew-
symmetric integer matrix A € My(Z) and (M, B) be the corresponding quantum toric frame from

Construction 5.6. We have the isomorphism of Ai/ 2—algebms
x.(Ag(My, B,inv)) ~ A (M, B,inv). (5.4)

In the special case g2 =1 (i.e., ¢ = 1), the theorem provides a realization of classical clus-
ter algebras with a compatible Poisson structure (in the sense of [24]) in terms of toric frame
specializations of quantum cluster algebras, recall Remark 3.9.

Proof. As the elements M (e),1 <k <N generate 7,(My) and x, : T,(M,) » T.(M,) is a
surjective ring homomorphism,

Fract(x.(A, (M, B,inv))) ~ Fract(T,(M.)). (5.5)

We claim that the following hold for all quantum seeds (M (’], B") of Aq (M, @ B,inv):

i) (k.M ;,E’ ) is a root of unity quantum seed of x.(A,(M,, B,inv)).
(i) (ngé, B') = (xE(M;’), ux(B")) where M"Z’ is the toric frame of the seed /,lk(M(;, B).

Property (i): k.M :1 is a root of unity quantum toric frame of 7,(M,) because of (5.5) and the fact

1/2
q o~

the matrix of the frame x,M’ and the exchange matrix B’ are #-compatible. Property (ii) follows

from the mutation formulae in Equation (2.4) and Proposition 3.6(1), and once again the fact that

that x, is a homomorphism of .4,/ “-algebras. The compatibility of the pair (AMq ,B’) implies that

fact that x, is an Atll/ 2-atlgebra homomorphism.
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The properties (i)-(ii), the fact that the image KE(Aq(M q,E, inv)) is generated by the elements
.M ;(e ;) for quantum seeds (M, ;,E’ ) ~ (Mg, B),1 < j < N and by the inverses of these elements
for j € inv imply the isomorphism in (5.4). O

5.3 | Generalized specialization

For a commutative ring .4 and an ideal 7 of it, denote the factor ring A’ := A/T.

Lemma 5.8.

(1) For every A-module V we have the short exact sequence of A-modules
0-IV->V->4Q,V -0,

where the third map isv —» 1 Qv forv € V and A’ ® 4 V is made into an A-module via the
surjection A » A’.
(2) Foran A-submodule W C V, the following are equivalent:
(a) theinducedmap A’ @ 4 — : A @ 4 W — A’ ® 4 V is injective,
b) Wn1IV=1IW.

Proof. The first part is well-known, see, for example, [22, Lemma 3.1].
(2) Consider the commutative diagram

lw nw

0 w w AQ W —0
{ 9[ ell
ty Ny ,
0 v 1% AR, V—0

where the horizontal maps are the ones from part (1) and the vertical ones are induced from the
embedding 6 : W & V.

(a) > (b) Let v, € IV and w € W be such that t,(v,) = 8(w). Then 6'ny (w) = 5, 0(w) =
Nty (Vy) = 0. As (a) holds, 9y, (w) = 0, and so w € Im ¢y,

(b) = (a) Let w’ € A’ ® 4 W be such that 6/(w’) = 0. Choose w € W such that w’ = 5y (w).
Because 1,,6(w) = 6'ny,(w) = 0, 0(w) € Im ;. As (b) holds, w = 1y, (w,) for some w, € IW, and
thus w’ = 9yt (w,) = 0.

A special case of the second part of the lemma for principal ideal domains .4, prime ideals 7
and free modules V is stated in [22, Lemma 2.1]. |

The A’-module V /IV ~ A’ ® 4 V is called the (generalized) specialization of V at T; tradition-
ally, specialization deals with the special case when 7 is a principal ideal. The canonical projection

map

Nyt V>V/[IVA®,V
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is called the specialization map. It is a homomorphism of .4-modules. If an .4-submodule W C V
satisfies the equivalent conditions in Lemma 5.8(2), then

W/IW ~n,(W) and ny =nyly.

5.4 | A general specialization result for quantum cluster algebras

Recall from (5.1) that ®,(¢) denotes the #th cyclotomic polynomial and A;/ 2 / (<I>f(q1/ 2)) ~ A;/ 2,
For a quantum cluster algebra A (M, B,inv) denote the corresponding specialization map

Ne + Ag(My, B,inv) » Ay(M,, B,inv)/(@4(q"/2) = A ® 12 Ay(My, B, inv),
q

which is a surjective homomorphism of Az/ *_modules.
Similarly to (3.4), for a quantum seed (M, B') ~ (M, B) denote the subalgebra

1/2

T,(M)), 1= Ay (M;(el-),M(;(ej)_1 |ie[1,N], j € exUinv) (5.6)

of the quantum torus ZJ(M;). It is isomorphic to the mixed (based) quantum torus/skew
polynomial algebra

1/2 - . '
AY*—spanix’ | f € zY}  with the product  X/X¢ = gV 9/2x %9 vf g ez

for Zg as in (3.5). The specialization map . : 7,(M) » T,(M,) = Tq(Mq)/(CIJf(ql/z)) form (5.3)
restricts to the specialization map

K Ty(My), > (M), = Ty(M), /(@,(q"/2), (5.7)

which, by abuse of notation, will be denoted by the same symbol.
The following result gives a general way of constructing root of unity quantum cluster algebras
as specializations from quantum cluster algebras.

Theorem 5.9. Let (M,,A,B) be a root of unity quantum toric frame and (Mq,E) be the
corresponding quantum toric frame from Construction 5.6. If

A (M, B,inv) n (cpf(ql/z)zz(Mq)Z) = ®,(q"/)A,(M,, B, inv), (5.8)

then the root of unity quantum cluster algebra A.(M., B,inv) is a specialization of the quantum
cluster algebra Aq (M, P B,inv):

and the specialization map 0, is a restriction of the specialization map x, : T,(M); - T.(M,), to
A (M, B,inv).
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Verifying the condition (5.8) in concrete cases is difficult. Theorem 5.11 presents another result
of the form that A.(M_, B, inv) is a specialization of A (M,, B,inv) under an assumption that is
stronger but more natural and easier to verify. The proof of Theorem 5.11 uses Theorem 5.9.

Proof of Theorem 5.9. In light of Lemma 5.8(2), the assumption (5.8) implies that
Aq(Mq, E’ inV)/((DK(qlﬂ)) = KE(Aq(Mq’ E’ inv)) and 778 = KE |Aq(Mq,§,inv)‘
Thus, we have the commutative diagram

Aq(Mq,E,inv) —— T4(My)> — Fract(T,(M,))

TE(ME)Z % FraCt(Te(Ms))

The theorem now follows from Theorem 5.7. O

5.5 | Specialization results for quantum cluster algebras

The following is an extension of [22, Proposition 3.5]:

Proposition 5.10. For each prime element p € Aé/ >and k € ex,
Tq(Mq); N (qu(:uqu)g) = (qu(Mq);) N 7;1(/~‘qu)>-

Proof. We follow the line of argument of [22, Proposition 3.5] but include the proof because the
original result in [22] is stated over the base ring k[g*!/2], where k is a field, and for a concrete
choice of p.

Denote by Q(Mq); the subalgebra 7:1(Mq)2 with those generators as in (5.6) such that i, j # k.
Let X : = Mq(ek) and XI’( 1= ,uk(Mq)(ek). Tq(Mq)> is a free (left and right) Q(Mq);—module with
basis {X; | j € Z}:

Ty (My); = D X7, (My):. (59)
jez
For j € Z denote
Q= qu(ek,[bkh)/ZMq([bk]Jr) + q—jA(ek,[bkL)/2Mq(_[bk]_) € T,(M,)’

°.
We have
Q'=X,X, and QX =X,Q 72 Vjez

Ify € T,(My)s N (pTy (i My)5), then

y= D\ Xje;= Y Xd;,

JjEZ JjEZ
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where both sums are finite and ¢; € Tq(Mq);, d; € pT,(M,)3 for all j € Z. The free module
structure (5.9) implies that

¢o = dy
¢;=Q¥..Q%Q'd for j <o,
Q'Q’..Q ¥, =d for j>o.

Therefore, ¢; € p7,(M,)3 for all j <0. For the case j > 0, first note that A;/ 2 /(p) is an inte-
gral domain because p € A(ll/ % s prime. As a consequence, 7,(M,)S/pT,(M,)S is a domain

because it is a subalgebra of a quantum torus with coefficients in A}/ 2 /(p). Ift: Tq(M q); >
7:1(M q); / pZI(M q); denotes the canonical projection, then

(e @) . 7(@)1(Q") = 7(d_y) = 0.

Because Q! & p%(Mq); foralli € Z and T(I(Mq);/qu(Mq); is a domain, ‘r(cj) = 0 and thus ¢; €
pT(I(Mq); for j > 0. Hence, y € qu(Mq)Z' O

Theorem 5.11. Let (M,,A,B) be a root of unity quantum toric frame and (Mq,E) be the
corresponding quantum toric frame from Construction 5.6. If

Aq(Mq,B, inv) = Uq(Mq, B,inv),

then the root of unity quantum cluster algebra A.(M., B,inv) is a specialization of the quantum
cluster algebra A (M, B, inv):

Aq(Mq7 E’ inv)/(Qf(ql/z)) =~ AE(M€7 E’ inv)

and the specialization map 1, is a restriction of the specialization map x. : T,(My)s > T.(M,);
from (5.7) to A (M, B,inv).

Proof. Applying Proposition 5.10, one proves that for all quantum seeds (M ;, By~ (M, B,
A (Mg, B,inv) 0 (94(q 2Ty (My),. ) = Uy(My, Brinv) 0 (@,(g"/H7,(M,), )
C @,(q"/ )T (M),
by induction on the distance from (M, @ B)to (M (’], B’) in the exchange graph. Hence
A (M, Binv) 0 (@D, (M), ) € @,(g"/)U, (M, B.inv) = B,(q"/2)A,(M,, B, inv)

and clearly Aq(Mq,E, inv)n ((Df(ql/z)Tq(Mq)Z) ) dbf(qlﬂ)Aq(Mq, B,inv). This verifies the
condition (5.8) and the theorem now follows from Theorem 5.9. O
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5.6 | An example: Quantized Weyl algebras at roots of unity

Let Q = (q; J) € M, (Z) be a skew-symmetric integer matrix and ¢!/2 € C be a primitive #th root

of unity for # > 1. Denote by AQ c the quantized Weyl algebra at the root of unity ¢, which is a
C-algebra generated by x;, y; for l e [1, n] with relations

Yiy; = €y;y; Vi, j, X X; = s”alfx x; fori < j,

Xy =€ Yyx; fori<j, xy;=¢"%yx fori> ],

j-1
xjyj=1l+ey;x;+(—1) Zy,x,
r=1

Note that {x;, (¢ — 1)y; | 1 < i < n} is another set of generators for this algebra. Denote by A9

n,e,Z

the A;/ 2-subalgebra generated by x;, (¢ — 1)y;. Itis an AE/ -form of AQ - The algebra AQ ,isa
specialization of the Acll/ 2-algebra qu _, with generators and relations as in [26, eq. (4.9)]:

Ap =AY 1),

nezZ —

This easily follows by using bases for both algebras.

By [26, Example 4.10] Ag’q,z has a quantum cluster algebra structure of type (A;)" and by [26,
Theorem 4.8] this quantum cluster algebra equals the corresponding upper quantum cluster alge-
bra. Proposition 5.10 implies that ASE , hasastrict root of unity quantum cluster algebra structure.
The root of unity quantum toric frame for its initial seed is given by

ME(ei) = (_l)igl/in’ Mg(ei+n) = (_l)i[xi’ yl] = (_l)l + (_l)l(E - 1) Z xryr
r=1

for 1 < i < n, and the corresponding matrix is

_|Q@ -R
=[5 o)

whose blocks are the n X n integer matrices

a;+1 ifi<j 1 ifi<j
(Q')U- =q—a;—1 ifi>j R);j = aj; ifi>j.
0 ifi=j 0 ifi=j

The set of exchangeable indices is ex = [1, n] and the set of inverted frozen variables is empty,
inv = @. The exchange matrix of the seed is

where the entries of S € M,,(Z) are (S); 41— = 1,(S); ,—; = —1, (S);; = 0 otherwise.
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6 | DISCRIMINANTS OF ROOT OF UNITY QUANTUM CLUSTER
ALGEBRAS

In this section, we prove a general result for the computation of discriminants of root of unity
quantum cluster algebras.

6.1 | Background on discriminants

For an algebraic number field K, consider its trace function tr = trg /o : K — Q obtained from

Tr
the composition K < My (Q) — Q, where the first embedding is obtained from the K-action on
K ~ QN (for some positive integer N) and the second map is the trace map on matrices. The
discriminant of K is defined by

N
Ag = det (tr(y;y;)) i1

where {y;,¥,, ..., Yy} is a Z-basis of the ring of integers Oy of K. The discriminant does not depend
on the choice of basis. More generally, we consider algebras with trace:

Definition 6.1. An algebra with trace is a ring R with a central subring C and a C-linear map
tr : R — C such that

tr(xy) = tr(yx), Vx,y €R.
Such a ring R is naturally a C-algebra.

Example 6.2. Consider aring R which is free and of finite rank N over a central subring C C Z(R).
Choosing a C-basis of R gives rise to a C-module isomorphism R ~ C", and the left action of R on
itself gives rise to an algebra homomorphism R — My (C). The regular trace of R is defined as the
composition

Tr
treg: R > My(C) — C CR,
where the second maps is the trace map on matrices. The trace map tr,., is independent of the
choice of C-basis used to construct the homomorphism R — My(C).

For a commutative ring C, denote by C* its group of units (i.e., invertible elements under the
product operation). Two elements c;, ¢, € C are called associates (denoted ¢; =cx ¢,) if ¢; = uc,
for some u € C*.

Definition 6.3. Assume that R is an algebra with trace tr : R — C such that R is a free and of
finite rank N over the central subring C C Z(R). The discriminant of R over C is defined by

N

- 6.1)

d(R/C) :=cx det (tr(y;y;))
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where {y,,¥,,..., Yy} is a C-basis of R. For different choices of C-bases of R, the right-hand sides
of (6.1) are associates of each other.

6.2 | Nerves and the algebras A (0,inv) and C,(0,inv)

Let A.(M,, B, inv) be a quantum cluster algebra with exchange graph E. (M., B).
For a collection of seeds © in E,(M,, B), let

1) A.(0,inv) be A;/Z—subalgebra of A.(M,,B,inv) generated by M;(ej) for j €[1,N] and
M!(e))~! fori € inv, for all (M!,B") € ©, and

(2) C.(0,inv) be Ai/z—subalgebra of C.(M,,B,inv) generated by Mé(ej)f for j € [1,N] and
M!(e))~* fori € inv, for all (M/, B') € ©.

Thus, C,(0, inv) is in the center of A,(©,inv).

Definition 6.4. A subset of seeds O that satisfies the following conditions is called a nerve:

(1) The subgraph in E,(M,, B) induced by © is connected.
(2) For each mutable direction k € ex, there are at least two seeds in ® mutation equivalent by

I3

The concept of nerves was introduced in [18] for a practical way of specifying a quasi-
homomorphism of a cluster algebra. A basic example of a nerve would be a star neighborhood
in E,(M,, B) of any particular seed.

6.3 | The discriminant of A (0O, inv) over C,(0,inv)

For the proof of the main theorem on discriminants we will need the following lemma. Its proof
was communicated to us by Greg Muller.

Lemma 6.5. If

N
n[]x" € A& B,inv) (6.2)
i=1

forsomea;,n € Z,n #0, then a; > 0 fori & inv.

Proof. 1t is sufficient to prove the statement in the case inv = @ because (6.2) implies that
nIIL, X" [liciny %;" € A, B, @) for some ¢; € N. For the rest of the proof we assume that
inv =0.

Ifi € ex, then a; > 0 because, if a; < 0, then expressing the Laurent monomial in terms of the
cluster variables of the seed 1;(X, B) would contradict the Laurent phenomenon. If i ¢ ex, the

statement follows from [16, Proposition 3.6]. O
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Theorem 6.6. Consider a root of unity quantum cluster algebra A.(M., B, inv) satisfying the con-
dition (Coprime), where '/2 is a primitive ¢th root of unity. Let ® be a collection of seeds which is
a nerve.

1) If A.(0,inv) is a free C.(0,inv)-module, then A.(©,inv) is a finite rank C_(0, inv)-module
of rank ¢~ and its discriminant with respect to the regular trace function is given as a product
of noninverted frozen variables raised to the £th power,

d(A.(0,inv)/C.(©,inV)) =c (@ inv)x N H M_(e;)’%  forsome a; € N.
i€[1,N]\(exUinv)

(2) If A(O,inv) is a free C(©, inv)-module, then A_(O,inv) is a finite rank C(0, inv)-module of
rank N (¢) and its discriminant with respect to the regular trace function is given by

N

3
. . £ IN+1)o(?) A
d(A.(0,inv)/C(0,inv)) =c(,inv)* <W H Ms(ei){c’
HPWP i€[1,N]\(ex Linv)

forsomec; € N.
Proof. Throughout the proof all discriminants are computed with respect to the regular traces of

the algebras that are involved.

(1) For a root of unity quantum frame M/ denote the skew polynomial subalgebra of 7:(M/)

. A
S.(M)) 1= AYVA(Ml(e), 1 <i < N) = AV (Xp, e, X) /(XX — €UX X)),

where l{j = AMé(el-, e j). By [8, Proposition 2.8], the discriminant of S,(M é ) over the central

1/2
€

subalgebra A/ “[M/(e,)" 1Y | is given by

d(S.0mD/ AU B, ) = e N TT (Ml ).
i i€[1,N]

Therefore, the discriminant of its localization
T.(M?) = S.(MDIM(e) 1Y
is given by

2 N
d<TE(Mé)/Ai/ [Mé(ei)if]fiJ Z(Al/Z[Mr(ew]N )X a
€ e\*i i=1

For the rest of the proof assume that (M!,B’) € ®. Applying Theorem 4.6 (using
the assumption that A.(M,, B,inv) satisfies the condition (Coprime)) and the Laurent
phenomenon, we obtain that

C.(0,inv)[M/(e) IV, = AV [M(e,)* 1N ,.
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2)

The root of unity quantum Laurent phenomenon (Theorem 3.10) implies
A(O,inv)[M(e) ™ I}, = T.(M)).

Therefore, the rank of A (©,inv) as an C.(@,inv)-module equals the rank of 7;(M]) as
an Ai/ 2[Mg’(el-)if |¥ -module. As the latter rank equals V¥, A(®,inv) is a finite rank
C.(0,inv)-module of rank #V. Furthermore,

d(AL(0,inv)[M/(e)~ 1\, /CO,inv)[M/(e)™ 1)) =7y N (6.3)
Theorem 4.6 implies that
C.(0,inv) N TL(MLY* C {(AY*) MU(e,)' @ ... MU(en)™ | a; € Z3}. (6.4)

Combining (6.3) and (6.4) gives that for all seeds (M, B)eeo,

d(A.(0,inv)/C.(8,inV)) =c (o inv)* i I (M(e)’)" (6.5)
i€[1,N]

for some integers a; (depending on each seed). We will assume that a; = 0 for i € inv because
M_(e;)’ € C.(0,inv)* fori € inv. Theorem 4.6 and Lemma 6.5 imply that a; > 0 fori & inv.

Fix k € ex. As © is a nerve, there exists (M!, B’) € © such that w,(M!, B’) € ©. Applying
(6.5) to the two seeds gives

. . N i
d(A.(0,inv)/C.(0,inV)) =c o< " (MUe))™ [  (Mie))"
ie[1,N]\({invLi{k})

N c ¢
=coamvy OV (mMie)) ] (Ml(e)")
i€[1,N]\(invL{k})

for some a;,c; € Z,i € [1, N]\inv. By Proposition 4.4,
#kMé(ek)f = Mé(—ek + [bk]+)f + Mé(—ek — [b*1L)7,
which is not a monomial of the M/(e;)’s for i € [1, N]\(inv U {k}). Hence,
ap = 0= Cr»
a; =c; fori #k.
Because of the connectedness assumption in Definition 6.4(1), for all seeds (M Q,E’ ) € ® and
k e exUinv, g, = 0in (6.5).

For every root of unity quantum frame M/, S.(M]) is a free Z[M, é(el-)f ]fi ,-module of rank
¢No(#). The discriminant of the cyclotomic field extension @(¢!/2) of @ equals

(=1)P/2p9()
IL,, pPO/e-D
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From this one easily deduces that
fN
£IN+Dp(£)
d(S.(MD/ZIM(e) TL,) =2x (

T Mf(e,)fN(f—l)cfa(f)).
¢)/(p—1 ( et
I1,, p?©/ =D J

i€[1,N

Using this formula, the proof of part (2) is carried out using exactly the same arguments as

part (1). O

Remark 6.7. As it is unknown whether C,(0,inv) is a free C(®,inv)-module, part (2) of the
theorem is not a consequence of part (1) and the formula for the discriminants of cyclotomic
field extensions.

6.4 | An example: Discriminants of quantized Weyl algebras at roots of
unity

By the construction in Subsection 5.6,

A ~A.(M_,B,2)

nezZ —

for the toric frame M, and exchange matrix B specified there. The underlying cluster algebra is
of finite type (A;)". Let €!/2 be a primitive Zth root of unity for an odd integer # > 1, A;/ = A,.

Denote

CO = Al (e -1y 1<k <nl.

ne,Z

It is well-known and easy to verify that CSE , is in the center of ASE - We apply Theorem 6.6 for
0 equal to the set of all seeds of the root of unity quantum cluster algebra. It is easy to see that it
has 2" seeds with cluster variables

(tys sty =215 s (=1)'Z;, o, (=1)"2,) where ¢, = (—1)'e"/?x; or t; = (¢ — 1)y,
This implies that C,(M,, B, @) = Cﬁ ez The algebra AS, ez is a free Cr(i E’Z-module with basis

J1

1 ...xil”yinl ...y,T" | Jisees fps Mys s, €10, — 11}

{x
Applying Theorem 6.6 gives that

m g zay,
d(AS L /CO ) =, " gt (6.6)
for some q; € N (here and below discriminants are computed with respect to the regular trace).
To determine the integers a,, consider the filtration of ASE , givenby degx;, = degy, = kfork €
[1, n]. The associated graded is isomorphic to a skew-polynomial algebra with generators given by
the images of x;, (¢ — 1)y, for k € [1, n], which will be denoted by X, (¢ — 1)y;.. The discriminants
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of skew-polynomial algebras are given by [8, Proposition 2.8]:

(e — Dy =" L (e — Dy, ) V7"

d(gerQE L /grc? =4 g2t

naZ) -

Applying [8, Proposition 4.10] to (6.6) gives that a; = --- = a,, = (£ — 1), which proves the
following proposition. It recovers results in [9, 31].

Proposition 6.8. For each root of unity £'/? of odd order ¢, the discriminant of the quantized
Weyl algebra ASE , over its central subalgebra ng , With respect to the regular trace is given

by

m_(f-Den (61"
d( Z/sz) =4 g 0 0,

1 n

7 | QUANTUM GROUPS

In this section, we gather material about quantized universal enveloping algebras of symmetriz-
able Kac-Moody algebras, their integral forms and specializations to roots of unity.

7.1 | Quantized universal enveloping algebras

We will follow the notation of Kashiwara for quantized universal enveloping algebras of sym-
metrizable Kac-Moody algebras, [28]. LetI := [1,r] serve as an index set and (A4, P, II, PV, I1V) be
a Cartan datum composed of the following.

() A symmetrizable, generalized Cartan matrix A = (q;;); j;- In particular, a; =2 fori € I,
a;j € Z, for i # j, and there exists a diagonal matrix D = (d;);; consisting of positive,
relatively prime integers d; such that DA is symmetric.

(ii) A free abelian group P (weight lattice).

(iii) A linearly independent subset IT = {«; | i € I} C P (set of simple roots).
(iv) The dual group P¥ = Hom, (P, Z) (coweight lattice).

(v) Two linearly independent subsets IIY = {h; | i € I} C PV (set of simple coroots), such that
(hi,a;) =qa;; for i,j €1, and {w; |i €I} C P (set of fundamental weights), such that
(hj,w;)=6;;fori,j el

Let P, :={y € P|(h;,y) € Z,,}. Denote the root lattice Q :=P,,; Za; and set Q, :=
Dicr Z-02;. Seth) := Q ®, PY. There is a Q-valued nondegenerate, symmetric bilinear form (-, -)
on h* = Q ®, P that satisfies

2(a;, W)
(e, ;)

(hy, uy = and (o, ;) =2d; forall iel,uebh™

Note that the existence of such a bilinear form is equivalent to the symmetrizability of the
generalized Cartan matrix A. Denote ||u|| := (u, 1) for u € h*.
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Let g be the symmetrizable Kac-Moody algebra over Q associated to this Cartan datum. It is
the Lie algebra generated by §, e;, and f; for i € I with Serre relations for h € hand i, j €1,

b is an abelian Lie subalgebra,
[h,e;] = (h,ay)e;,  [h fi]l = —(h,a;)fi, e, fil =6;h
(ade)!~“ie;) =0, (adf)' "% (f;) =0

Let W be the Weyl group of g, acting on (§*, (-, -)) by isometries. Denote its generators by s; for
i € I. The length function on W will be writtenasl : W — Z,. The Bruhat order will be denoted
by >. Let A, C Q. be the set of positive roots of g.

Let n, and n_ denote the Lie subalgebras of g generated by {e; | i € I} and {f; | i € I}. So,

— ®gia

aeh,

where g* is the root space in g corresponding to . The root spaces are one-dimensional for real
roots; that is roots in W{a; | i € I}. For w € W, we denote the nilpotent Lie subalgebras

n,(w) = @ i

aeA, nw l(-Ay)

If w has a reduced expression w =s; --s; , then n (w) is generated by the root vectors
corresponding to the real roots a,, S (oc ) Siy_ 1(oc ).

Let U,(g) be the corresponding quantlzed unlversal enveloping algebra defined over Q(q),
which is generated by ¢;, f;, and g" for i € I, h € } subject to the relations

=1 ¢"¢"=¢"", qleqh=q"e, q'figh =g,
d.h —d-h:
q 17— q 1'"
le;, fil = 5ij—_1 5
qi - qi
1— —a;j 1- —aij

2 1>S[ ”] o =0 X 1)S[ ”] PO =0 i

for h, W' €Y,i, j € I, where

q' —q"

q; = qdi’ [n]; = l—l_l’ [n];! = [n];...[1];, and [Z] - el

i —4q; [n—sl![s];!

The standard Hopf algebra structure on U,(g) has counit, coproduct, and antipode given by
g =1, ele)=e(f)=0
AN =9"®q" Ae)=e®@1+q"" ®e, AS)=/®q¢ W +1® f.

S(@=q7", S)=—-q %e, S()=-fiq"",
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where h € PY and i € I. The unital subalgebras generated by {e; | i € I}, {g" | h € PV}, and {f; |
i € I} will be denoted by Uq(n+), Uq(f)), and Uq(n_). The algebras Uq(bi) = Uq(ni)Uq(I)) are
Hopf subalgebras of U,(g).

For a U,(g)-module V and u € P, denote the root space V,, :={v € V| q"-v=qg"Mu,Vh e
PV}

Let {T; | i € I} be the standard generators of the braid group of W. For a reduced expression
Si, -8 of we W, let T, :=T; ..T; in the braid group of W (this element is independent on
choice of reduced expression). We use the same notation for Lusztig’s braid group action [32] on
Uq(g) and on integrable Uq(g)-modules (i.e., modules V on which e; and f; act locally nilpotent
forielTandV = & MEPVM)' For u € P, let V(u) be the irreducible highest weight Uq(g)-module
with highest weight u, and v, be a highest weight vector of it. For w € W, denote v, =T L_UIIUM'
In (V (1) )" let & .. be such that (€w s V) = 1. The quantum minors (viewed as functionals on

U,(g)) are defined as the matrix coefficients A, ,,,, 1= €L Vi for u,w € W and u € P_.. Note

that Ay, By oy = Bu(usv)w(ury) DECAUSE TL_UL(UM ®u,) = T;}lvﬂ ® T;}l v,.

7.2 | Hopf pairings and integral forms

Recall that a Hopf pairing between Hopf K-algebras A and H is a bilinear form (-,-) : AXH — K
such that

(1) (ab,h) = (a, hp))(b, h))
(2) (a,gh) = (agy, 9)(ap), h)
(3) (a,1)=¢4(a)and (1, h) = ey (h)

forall a,b € A and g, h € H in terms of Sweedler notation.
Letd € Z, be an integer such that (PY,PV) C %Z. The Rosso-Tanisaki form (-, -)gy : Ug(b_) X

Uy(by) — Q(g'/?) is the Hopf pairing defined by

1

(fi-eprr = 5ijq_1— (qh:qh/)RT = q_(h’h,), (fi-q"rr = 0= (", e)gr

k]

i L

foralli € [1,7] and h € P¥. The Rosso-Tanisaki form has the following useful properties,

(th, yq" )RT = (%, V)rrq” "M,
(Uym_), Ug(ny)) o € QQ), (7.1)
and (Ug(n_)_,, Uy(ny)s)op = O

forx € Uq(n_), yE Uq(n+), and y, § € Q, with y # §, see [27, chapter 6].
Recall (2.2) and denote

|
Aq :=27[g"].



ROOT OF UNITY QUANTUM CLUSTER ALGEBRAS AND DISCRIMINANTS | 37 of 47

The divided power integral forms U, (n.) 4, and Ug(n_) A, of Uy(n,) are the A -subalgebras
generated by

{ek/[kl!lieLkez,} and {ff/[kl!|i€lkez}

The dual integral form Uq(n_); of Uq(n_) is defined as
q

Uq(n_)lq r={xeUyn_)|(x, Uq(n+)Aq)RT C Agh

7.3 | Quantum Schubert cells

Fixing a Weyl group element and a reduced expression w =s; ...s
elements of W

; ., we denote the following
N

1 -1

Wep ©=8; o <« = (wg) ™", and Wik -~ (W)™

ip Si

L w

W[]’k] .= Sij Sik’

where 0 < j <k <N. To each root 3, := wgk_l(ocik) € Q, for k €[1,N], associate the root
vectors

eg, := T;fl (e;) € Uq(n+)Aq and fg = Tl;ll (fi) € Uq(n_)Aq.

<k—1 <k-1

The quantum Schubert cells Uq(n +(w)) and Uq(n_(w)) are defined to be the unital Q(q)-
subalgebras of U,(n_) generated by eg»->eg, and fg ..., fg , respectively. They were defined
by De Concini-Kac-Procesi [12] and Lusztig [32], who considered the anti-isomorphic algebras
U[w] == (Ag(n_(w))). It was proved in [2, 30, 39] that

Ug(ny)) = Ug(ny) n T, (Uy(nz)).
The dual integral form of Uq(n_(w)) is the A -algebra

Uq(n_(w))th 1= Ug(n_(w))n Uq("—)\;tq'
The dual PBW generators of U, (n_(w)) are given by

1

Th = e = @~ 9, € Uy,

for k € [1, N]. Kimura proved [30, Proposition 4.26, Theorems 4.25 and 4.27] that

.....

Uq(n—(w))\;tq = ®m1 my€eN Aq : (f;gl)ml (f%N)mN- (7-2)

7.4 | Quantum unipotent cells

Let Aq(n +), as in [21], denote the subalgebra of the full dual Uq(b )" of elements f that satisfy
the following conditions.

(1) f(rq") = f(y) foranyy € Uy(n,)and h € PV.
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(2) There is a finite subset S C Q,, such that f(x) = 0forall x € Uy(n,), fory € Q,\ S.
Themap ¢ : Uy(n_) — U, (b, )" given by
(U(x),y) =(x,y)pr forall xe Uq(n_), yE Uq(b+)

is an algebra homomorphism because the Rosso-Tanisaki form is a Hopf pairing. The image of ¢ is
contained in A(n ) by the properties listed in (7.1). As the Rosso-Tanisaki form is nondegenerate,
¢ is an isomorphism onto Aq(n +)

t:Ugn) = Ag(ny).

Following Geif3-Leclerc-Schrder [21], define the quantum unipotent cell A (n,(w)) € A (n,)
as the image of Uq(n_(w)) - Uq(n_) under ¢,

L U (n_(w)) — Ay(n, (W) C Ag(n,).

The images of the elements of Uq(n_(w)) in Aq(n +(w)) will be denoted by the same symbols.
We transport the automorphisms T via ¢ to a partial braid group action on Aq(n +(W)). Quantum
unipotent cells also inherit a Q, -grading

A(ny (W), 1= (Uy(n_(w))_,) forall yeQ,. (7.3)

Finally, the dual integral form of Uq(n_(w)) gives rise to an A -integral form of the quantum
unipotent cell Aq(n L)),

Agn, @)y, = o Ugln_(w))Y, )-

The restriction of ¢ gives rise to the A -algebra isomorphism

L1 Uy(n (W), — Ay(n (W), (7.4)

The integral forms Uq(n_)v J Uq(n_(w))th and Aq(n +(w)) 4, are often defined by using the

Kashiwara [28] and Lusztig [32] bilinear forms on U,(n_) instead of the Rosso-Tanisaki form.
However, the corresponding A, -algebras are isomorphic [26, Remark 5.3].

Following [21], define the unipotent quantum minors of Aq(n sw))forue W, ueP, asthe
elements of Aq(n +(w))(u_w)ﬂ such that

<Du,u,wyr th> = <§uw vay)

forally e Uy(n,)and h € PV. The quantum minors Ayywp € Ag(g) only depend on uu and wu
but not on the individual choice of w, u and y, [4, section 9.3]. As the unipotent minors Du#,lw
can be realized as homomorphic images of them [26, section 6.3], the same is true for them. The
minors D, ,,,, g-commute with homogeneous elements with respect to the Q. -grading [26, eq.
(6.9)]:

Dy X = q((w“)/"y)xDu,wu, VueP,,x €A (n,(w),r€Q,. (7.5)
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7.5 | Specialization to roots of unity

Recall (3.1) and denote
A, 1= Z[e].

For every symmetrizable Kac-Moody algebra g and Weyl group element w € W, define the
(integral) quantum unipotent cell at root of unity to be the A,-algebra

A, (W) 4, 1= Ag(n, ()4 /(@().
Denote the canonical projection
ne + Ag(ny (W), > Ac(ny (W) 4, (7.6)
and for j € [1, N] set
1 i= () € Adn @), (7.7)
By Kimura’s result in (7.2) and the isomorphism (7.4), we have

Aa(n+(w))AE = ®m1 ..... myEN A (fgl ) (ng)mN (7.8)
Theorem 7.1 (De Concini—Kac-Procesi [12]). For every symmetrizable Kac-Moody algebra g, Weyl
group element w € W, and primitive £th root of unity € such that ¢ is coprime to{d; | i € I},

,,,,,

is a central A.-subalgebra of A.(n, (w)) 4.

The theorem was proved in [12] in the case when g is finite-dimensional, but the same proof
works for general symmetrizable Kac-Moody algebras. Alternatively, in the case when ¢ is odd,
this theorem also follows by combining Proposition 4.4 and Theorem 8.5 (we note that the proof
of Theorem 8.5 does not use Theorem 7.1).

8 | DISCRIMINANTS OF QUANTUM UNIPOTENT CELLS AT ROOTS
OF UNITY

In this section, we obtain an explicit formula for the discriminant of each (integral) quantum
unipotent cell A (n (w)) 4, Over the central subalgebra C (n (w)) A, for every symmetrizable
Kac-Moody algebra g and Weyl group element w. It is also proved that the algebras A (n  (w)) 4,
possess a strict root of unity quantum cluster algebra structure. In this picture, we give an intrinsic
interpretation of the central subalgebras C,.(n . (w)) A, in cluster algebra terms.

8.1 | Theorem on discriminants of quantum unipotent cells

For a Weyl group element w denote its support S(w) :={i €I |s; < w}.
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It follows from (7.8) and the definition of C.(n_ (w)) A, that A.(n (w)) A, is a free module over
Ce(n,(w)) 4, of rank ¢N with basis

™ (G ™ [ my, e smy €10, - 1]} (8.1)
The corresponding discriminant is given by:

Theorem 8.1. Let g be a symmetrizable Kac-Moody algebra, w be a Weyl group element with a
reduced expressionw = s; ...s; , and £ > 2 be an odd integer which is coprime to d; for alli € S(w).
Let € be a primitive £th root of unity. Then

N N(p_
d( A, @)1 /Ccn @)y ) =ax N T 1Dy o).
ieS(w)

Note that, as C.(n, (w)) 4, isa polynomial algebra over A, C.(n +(w))i = AJ. The theorem is
proved in Subsection 8.5.

8.2 | Cluster structures of the integral forms of quantum unipotent
cells

For the construction of strict root of unity quantum cluster structure on A,(n_ (w)) A, We will use
results from [26, 29] on a quantum cluster algebra structure on

Ay @) vz 1= Ag(n, (WD), B, AL,

Fix a reduced expression w = s; ...s; . In terms of the support of w, it is given by S(w) =
{tel|t=1iforsomek} Let p:[1,N] > [1,N—-1]U{—o0} and s : [1,N] — [2, N] U {o0} be
the predecessor and successor maps given by

p(k) = max{j <k | ij= i} where max @ := —oo,
s(k) = min{j > k | i; = iy} where min @ := co.
The mutable directions in the cluster structure will be given by the subset

ex(w) :={k €[1,N] | ij =1 for j> k}.

It has cardinality |ex(w)| = N — |S(w)| as each ¢t € S(w) in the support will have only one j €
[1, N] such that i; =tand s(j) = co. Let B be the N x ex(w) matrix with entries

L ifj=po
-1, if j = s(k)

ifk < j<s(k)<s(j)

0, otherwise.
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The principal part BY is skew-symmetrizable by the matrix D : = diag(dij ,j € ex(w)). Moreover,
BY is compatible with the skew-symmetric N x N matrix

M)k 1= —((wg; + D@y, (W — 1)wik), for 1<j<k<N,

see [26, Proposition 7.2]. By (7.5), the unipotent quantum minors D x with weight (1 —

Wiy W<k @i
W )w;, , g-commute among themselves:
= q™ikD 1<j<k<N.

Wi Wej Ty, iy Wek Dy B W °

i P Wk @iy

There is a unique toric frame M ;” 7N - Fract(4,(n,(w)) A;/z) =~ Fract(7,(A,)), with corre-

sponding skew-symmetric matrix A, given by

M;”(ek) = qkip . forany k € [1,N]

Wiy W<k @i
where
alj, k] = (w4 — D, I1*/4 € 52. (82)

The above facts show that (Aw,E“’) is a compatible pair and that (M;’,Ew) is a quantum seed.
The following theorem is proved in [26] and in [29] in the case of symmetric Kac-Moody
algebras.

Theorem 8.2. Let g be any symmetrizable Kac—-Moody algebra and w € W a Weyl element with
a reduced expression w = s; ...s; . Then the integral form of the corresponding quantum unipotent
cells has a cluster structure, Aj(n , (w)) L2 Aq(M;U, BY, @).

q

Denote by Ey the subset of the symmetric group Sy consisting of permutations o such that
o([1, k]) is an interval for 1 < k < N. We can combinatorially describe this subset in terms of one-
line notation for the elements of Sy : first move 1 as far right as desired, then move 2 as far right as
desired up to where 1 now is, then moving 3 right possibly up to 2, and so on. The elements of Sy
obtained in this way are precisely those of E,. The following diagram illustrates this with arrows
denoting pairs of elements of E,; obtained from each other by a transposition:

[1234..N] > [2134..N] $ [2314..N] % [2341..N] > ..

+ +
[3214..N] % [3241..N] > ..

+ >

Foreach o € By, [26, Theorem 7.3(b)] constructs a quantum seed of Aq (M ;”, BY, @). Their toric
frames (up to a permutation of the basis as below) have cluster variables

MY (ep) = ¢"¥1D = q“UMT (8.3)

D
W j—1@g Wi @iy Wej—17" @i W k1 P

where j = min{m € o([1,1]) | i,, = i)y}, k = max{m € o([1,1]) | i,, = i,(y} and a[j, k] are given
by (8.2). In particular, M;“i = M;”. The exchange matrices of these seeds will not play a role



42 of 47 | NGUYEN ET AL.

in this paper. By abuse of notation, we will denote by Ey this collection of quantum seeds of
Aq(M;”,Ew, D).
By [26, Theorem 7.3(c)], this collection of quantum seeds of A, (n..(w)) B is linked by muta-
q

tions as follows. Leto, ¢’ € Ey besuch thato’ = (o(k), o(k + 1))oo = go(k,k + 1)fork € [1,N —
1].

If io’(k) + icr(k+1)’ then Mtl;ja’ = M;‘-fo_ . (k’ k + 1);
(8.4)
If lo‘(k) = io-(k+1), then M;jg, e ’uk(M;LjU),

where we use the canonical action of Sy on quantum seeds and toric frames by reordering of basis
elements given by M, - o(ej) = Mq(eg(j)) foroce Syand1<j<N.
The following lemma is simple and is left to the reader:

Lemma 8.3. The collection of quantum seeds Ey of Aq M f]”, BY, @) is a nerve.

8.3 | Root of unity quantum cluster structure on integral quantum
unipotent cells

1/2

Assume that ¢'/< is a primitive Zth root of unity. Denote

A ) 12 1= A, W), ® 4, A

In the case when £ is odd, ¢ is also a primitive #th root of of unity, A;/ ’= A, and A, (n (w)) =

A (n (w)) 4.~ In the case when ¢ is even, ¢ is a primitive (¢/2)th root of unity. Consider the
canonical extension of the specialization (7.6) to a specialization map

Me t Ag(n, (W) 12 > A (W) 172 2 Ag(n, (W) 412/(@(q"/)

such that g'/2 ~ ¢!/2. By [26, Theorem 7.3(a)]

A.(MY A, BY, @) =U,MP, A, B, @),
so we are in a position to apply Theorem 5.11. First, this gives that the maps

MY, i=n.o0My, 7V - Ag(n+(w))A;/z
are toric frames for all w € W and o € Ej;.. Second, we obtain that

A(n, (W) 12 =AM, Ay, B, ).

This leads to the following theorem:

Theorem 8.4. For every symmetrizable Kac—-Moody algebra g, a Weyl group element w with a
reduced expression w = s; ...8; , and a primitive £th root of unity V2 for ¢ e Z,, the following
hold.

iN’
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@) A(n (w)) A2 has the structure of strict root of unity quantum cluster algebra and is isomorphic
to A((MY, A, BY, D).

(2) The root of unity quantum cluster algebra in part (1) has seeds indexed by o € Ey with toric
frames M?_. By abuse of notation, this collection of seeds will be denoted by Ey.

(3) The collectlon of seeds Ey; is a nerve and we have the mutation formulae (8.4) between them with
Mc‘l‘f . replaced by nga.

(4) Under the isomorphism in part (1), A,(n +(w))A§ 2 = A (By, D).

Proof. Parts (1) and (2) are established above.

(3) The mutation formulae (8.4) with M - replaced by M follow from the original formulae
(8.4) by applying the ring homomorphlsm 775 It follows from Lemma 8.3 that Ey is a nerve.

(4) It is clear that, under the isomorphism in part (1), A.(Ey,@) C A, (MZ, A, ,BY, @) =
A (n (w)) R For the inverse inclusion, note that for each k € [1, N], there exists o € E such

that o(1) = Isc For that o we have
1/2
MY, (e) = q;"%(f},)
by combining [26, eq. (3.6), (7.2) and Theorem 7.1(c)], and thus

© )=’

f ’k ) (8.5)

Hence, under the isomorphism in part (1), A, (Ey, @) 2 A.(n (w)) /2> Which completes the proof
of the theorem. : O

8.4 | Identification of central subalgebras

Let € be a primitive #th root of unity such that # is odd and coprime to the symmetrizing integers
d, for the Kac-Moody algebra gand i € S(w), w € W. Choose a square root £!/2 of ¢ such that g1/2

1/2

is also a primitive #th root of unity. Then A, = A_’". By Theorem 8.4, we have the identifications

A W)y, = A (W) 12 = AMZ, A, ,BY, @) = A(E, D).

On the one hand, we have the central subalgebra C.(Ey, @) of A.(Ey, @) constructed by clus-
ter theoretic methods, see Section 6.2. On the other hand, we have the De Concini—-Kac-Procesi
central subalgebra C(n(w)) 4, of A(n . (w)),4_, see Subsection 7.5.

Theorem 8.5. In the setting of Theorem 8.1, the canonical central subalgebra C.(Ey, D)
of A(En,@) =A.(n (w)) A, coincides with the De Concini-Kac-Procesi central subalgebra

Ce(ny(w)) 4,

Proof. It follows from (8.5) that C.(n_ (w)) 4, € C.(Ey, D). To show the reverse inclusion, we need
to show that forallo € Ey and j € [1,N], M;‘fg(j)f S CE(n+(w))AE. By (8.3), this is equivalent to

Wej_1@;

e (D’f . wgkwik) eC.n,w),, YVI<j<k<N with i =i. (8.6)
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We prove (8.6) by induction on k — j. The case k — j = 0 is trivial because

(D ) = dy /2
Ne Wk—1 Dl - Wik Dy, _Eik

1
fﬁk

by (8.5). Now assume that k — j =t for some t € Z and that the statement holds for pairs 1 <
J' <K < Nwithk’ — j" < t.Asi; = iy, j < p(k) and s(j) < k. Consider the following elements of

CINE:
c=[j+1,..,k—1,j,k,k+1,..,N,1...,j—1] and
o =[j+1,.,k—1,k,j,k+1,.N,1,..,j—1]l=0ck—j,k—j+1)
in the two line notation for elements of Sy. By (8.4), Méf’o, = ;M. From [25, Theorem 6.6]

we have that the (k — j)th column of the exchange matrix of the root of unity quantum seed of
A (n (w)) 2 corresponding to ¢ has the form (by, ..., by)T with

bk—j+1 = —1, bp(k)—j =-1 if ] < p(k),
b;>0 for i <k—j,i#p(k)—j,
b, =0 otherwise.

Combining this with Proposition 4.4 gives

Mgo-/(ek—j)f = (M2 ()" = MY (ep_) ™" (Mga(ek—jﬂ)fo + H MZ}(%Y)
i<k—j,b;>0

where

M = MY (epgo—;)' > if j < p(k)
' 1, otherwise.

It follows from (8.3) that MY (e,_;4,)" = Us(Di<j,1w

.0 i, Wl T

. ) )and that M (e, _ ) and Mgfa(ei)f
T Wy, )forpairs 1 < j/ < k' < Nwithk/ — j' <k —j.
The induction assumption implies that

fori < k — j are of the form 7,(DZ,

7 (Df ) € Fract(C,(n () ) N Ac(n, (W), -

Wej—1%) Wk @iy

It remains to prove that

Fract(C,(n, (w)) 4 ) N A, (n, (W) 4, = Co(n, (W) 4 . (8.7)
Let

P = Py SR e (PR Q= Y iy (P )™ ()™
and

R= Dy (Fp ) (Ff O™,
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be such that P = RQ. As f/;, are in the center of A,(n (w)) 4 ,

..........

.....

divisible by #. This proves (8.7). O

8.5 | Proof of Theorem 8.1

1/2 1/2

As in the previous subsection, we chose a square root €*/“ of € such that €'/ is also a primitive

;/ 2, By Theorems 8.4 and 8.5, we have the identifications

¢th root of unity. In particular, A, = A
As(n-}—(w))AE = Ag(n-{-(w))Al/z = AE(M;U,Aw’Ew, @) = AE(EN’ @) and

C.EN, @) = Cc(n (W) -

As we are requiring that # is coprime to all d; for 1 <k < N, the root of unity quantum seeds of
A(MY, Ay, BY, @) satisfy condition (Coprime). Its frozen variables are

M¥(e,) = Ea[l,k]m(Dw%

i Wk @i

k) = ga[l’k]nE(Dwik,ww[k) for k€ [1,N]\ex,

where the last equality holds because w w; = ww; fork € [1, N]\ex. By the definitions of the
sets ex and S(w), up to terms in A;, the frozen variables are

Ne(Dy) for i€ Sw).

Theorem 6.6 implies that

d( A @)y, /Cn @) ) =5 £V T 1Dy (8.38)
ieS(w)

for some n; € N. Equation (6.1) and the fact that (8.1) is a basis ofAE(n+(w))AE over Cg(n+(w))A£
imply that with respect to the Q, -grading (7.3) of A.(n_ (w)) A

degd(A(n, (W), /Ccn, @)y ) = 2 Y, deg((F5)™ . (FR ™)  (89)

osm<£—-1
=N -1y + - + By)-

For k € [1, N]\ex, let r, is the maximal integer such that p"t(k) # —oo. Iterating the identity
W@, = ng_l(wij - ocl-j) = Wep() @i, — B;j, Vj € [1,N] gives

ﬁpmk(k) + .-+ ﬁk = (1 - wsk)wik = (]. - W)Wik.
Therefore,

B+ +By= 2 By + - +Bi) = Z 1 - w)wm;. (8.10)

ke[1,N]\ex ieS(w)
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Combining (8.8)-(8.10) and using that deg ng(Dwi’wwi) = (1 — w)w,; leads to

A-w) Y (- -1N)=o.

ieS(w)

This implies that n; = (£ — 1)¢N for all i € S(w) because (1 — w) is nondegenerate on Span{w; |
i e S(w)
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