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ON THE ONE-DIMENSIONAL SINGULAR ABREU EQUATIONS

YOUNG HO KIM

Abstract. Singular fourth-order Abreu equations have been used to approximate mini-

mizers of convex functionals subject to a convexity constraint in dimensions higher than or

equal to two. For Abreu type equations, they often exhibit different solvability phenomena

in dimension one and dimensions at least two. We prove the analogues of these results for

the variational problem and singular Abreu equations in dimension one, and use the approx-

imation scheme to obtain a characterization of limiting minimizers to the one-dimensional

variational problem.

1. Introduction and the Statement of Main Results

In this note, we consider a class of singular fourth-order Abreu equations in dimension
one. In dimensions higher than or equal to two, singular Abreu equations have been used by
various authors in the approximation of minimizers of convex functionals with a convexity
constraint. We will briefly recall these results below. On the other hand, for Abreu type
equations, they often exhibit different solvability phenomena in dimension one and dimen-
sions at least two. We prove the analogues in dimension one, and find a characterization
of limiting minimizers to a one-dimension variational problem by using this approximation
scheme.

Suppose Ω and Ω0 are bounded, smooth, convex domains in R
n with Ω0 ò Ω. Let

ϕ * C5(Ω) be a given convex function, and F = F (x, z, p) : Rn × R× R
n ³ R be a smooth

Lagrangian that is convex in the variables z * R and p * R
n. Consider the variational

problem

(1.1) inf
u*S[ϕ,Ω0]

∫

Ω0

F (x, u(x), Du(x)) dx

over the competitors u with a convexity constraint given by

(1.2) S[ϕ,Ω0] = {u : Ω ³ R convex, u = ϕ on Ω \ Ω0}.

Because of the convexity constraint, variational problems of this type are not easy to handle,
especially in numerical schemes [2, 13]. When n g 2 and the Lagrangian F = F (x, z) does
not depend on the gradient variable p, Carlier and Radice [4] introduced an approximation
scheme for minimizers of the problem (1.1)–(1.2). Le [8] extended this result to cover the case
when the Lagrangian F could be split into F (x, z, p) = F 0(x, z) + F 1(x, p) with appropriate
conditions on F 0 and F 1, and this result was followed by many other works including those
of Le [9, 10] and of Le-Zhou [11]. One example of a problem of the type (1.1)–(1.2) is the
Rochet-Choné model [14] for the monopolist problem. For this problem, the Lagrangian is
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2 YOUNG HO KIM

given by F (x, z, p) = (|p|q/q 2 x · p + z)η0(x), where q * (1,>) and η0 is a nonnegative
Lipschitz function.

The scheme introduced by Carlier and Radice in [4] for the functional

(1.3) J0(v) =

∫

Ω0

F (x, v(x)) dx

is to use uniformly convex solutions, for ε > 0, to the second boundary value problem
ù
üüú
üüû

εU ij
ε Dijwε = fε :=

∂F

∂z
(x, uε)χΩ0

+
1

ε
(uε 2 ϕ)χΩ\Ω0

in Ω,

wε = (detD2uε)
21 in Ω,

uε = ϕ, wε = ψ on ∂Ω,

(1.4)

where U ij
ε = (detD2uε)(D

2uε)
21 is the cofactor matrix of the Hessian matrix D2uε, in

approximating minimizers of the variational problem (1.1)–(1.2). Here χE denotes the char-
acteristic function of the set E. The first two equations in (1.4) arise as critical points of the
approximate functional

(1.5) J0(v) +
1

2ε

∫

Ω\Ω0

(v 2 ϕ)2 dx2 ε

∫

Ω

log detD2v dx,

and the boundary conditions correspond to the prescribed boundary values of the function
uε and its Hessian determinant detD2uε. Due to these boundary conditions, (1.4) is called
a second boundary value problem. In the more general case when F (x, z, p) = F 0(x, z) +
F 1(x, p), Le [8] uses the same approximation scheme with fε in (1.4) replaced by

(1.6) fε =

{
∂F 0

∂z
(x, uε)2

∂

∂xi

(
∂F 1

∂pi
(x,Duε)

)}
χΩ0

+
1

ε
(uε 2 ϕ)χΩ\Ω0

.

The first two equations

(1.7) U ij
ε Dijwε = ε21fε, wε = (detD2uε)

21

form a fourth-order nonlinear equation of Abreu type [1] that arises in the problem of finding
Kähler metrics of constant scalar curvature for toric manifolds [6]. The divergence term
∂
∂xi

(
∂F 1

∂pi
(x,Duε)

)
added for fε in the general case (1.6) is only guaranteed to be a measure

when uε is convex; hence (1.4) is called a singular Abreu equation.
We recall how the approximation was used in Carlier-Radice [4] and Le [8, 9]. First, an

arbitrary uniformly convex solution to the equation (1.4) (with fε given by (1.6) in [8, 9]) is
shown to satisfy a priori W 4,s estimates for all s * (n,>); then the Leray-Schauder degree
theory and the a priori estimates yield the existence of solution to the equation. Next, it is
proved that after extracting a subsequence εk ³ 0, solutions (uεk)k are shown to converge
uniformly on compact subsets of Ω to a minimizer of the variational problem (1.1)–(1.2).

The previously mentioned results study the case when n g 2; we will focus on the one-
dimensional case in problem (1.9) in this note, and it is not clear if similar results hold. The
reason is as follows. The one-dimensional Abreu equation

(1.8) (1/u22)22 = U ijDijw = f

was studied by Chau and Weinkove in [5, Proposition 3.2] in the case when the right-hand
side f is a function of only the spatial variable. For solutions for the second boundary value
problem to (1.8) to exist, f should satisfy a “stability” condition (see [5, (3.2)]); this is
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different from the case when n g 2, where the second boundary value problem for the Abreu
equation has a solution if f * Lt(Ω), t > n, as proved by Le in [7].

In this note, problem (1.9) on the other hand involves a singular term. As we can see in
Theorem 1.1(i), “stability” conditions are not required for solutions to this type of equations
to exist. Contrary to the existence result for equations without singular terms, this result
resembles the higher-dimensional counterpart.

To formulate the one-dimensional problem, first note that U ij
ε Dijwε = w22

ε when n = 1.
Without loss of generality, we can assume that Ω = (21, 1) and Ω0 = (a, b), where 21 <
a < b < 1. Then our second boundary value problem for the singular Abreu equation in
dimension one is given by

(1.9)

ù
üüüüüú
üüüüüû

εw22
ε = fε :=

1

ε
(uε 2 ϕ)χ(21,1)\(a,b)

+
(
F 0
z (x, uε)2 F 1

px(x, u
2
ε)2 F 1

pp(x, u
2
ε)u

22
ε

)
χ(a,b) in (21, 1),

wε = 1/u22ε in (21, 1),

uε(±1) = 0, and wε(±1) = ρ± > 0.

Here ϕ is assumed to be smooth on [21, 1], ϕ(±1) = 0 and satisfies ϕ22 g c0 > 0. The first
two equations of (1.9) arise as critical point of the functional

(1.10) Jε(v) :=

∫ b

a

F (x, v(x), v2(x)) dx2 ε

∫ 1

21

log v22(x) dx+
1

2ε

∫

(21,a)*(b,1)

(v 2 ϕ)2 dx,

where the Lagrangian F is given by

F (x, z, p) = F 0(x, z) + F 1(x, p).(1.11)

We also assume that F 0 and F 1 satisfy

(F1) F 0, F 1 * C2([21, 1]× R),
(F2) F 0 is convex in z,
(F3) F 1 is convex in p so that F 1

pp(x, p) g 0,
(F4) For smooth, increasing functions η, η1 : [0,>) ³ [0,>) and a positive constant D7,

we have for all x * [21, 1] and p, z * R,

(1.12)
|F 0(x, z)| + |F 0

z (x, z)| f η(|z|), |F 1
px(x, p)| f D7(1 + |p|), and

|F 1
p (x, p)|+ |F 1

pp(x, p)| f η1(|p|).

One example of a one-dimensional Lagrangian F = F (x, z, p) satisfying (F1)–(F4) is

F (x, z, p) =

(
p2

2
2 px+ z

)
η0(x),

where η0 is a nonnegative smooth function on [21, 1]. Here F = F0 + F1, where

F0(x, z) = zη0(x) and F1(x, p) =

(
p2

2
2 px

)
η0(x)

are smooth, convex (in z and p, respectively) functions whose derivatives satisfy the growth
estimate in (1.12). Since η0 g 0, (F1) and (F3) are also satisfied.

Our main result is the following theorem.
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Theorem 1.1. Let 21 < a < b < 1. Assume that ϕ is a smooth, uniformly convex function
on [21, 1] with ϕ(±1) = 0 and ϕ22 g c0 > 0. Assume the Lagrangian F given by (1.11)
satisfies (F1)–(F4) above. Then the following hold.

(i) There is a constant ε0 = ε0(a, b,D7, ρ±, ϕ, η, η1) * (0, 1) such that for ε * (0, ε0), the
problem (1.9) has a uniformly convex W 4,>(21, 1) solution uε. Furthermore, there

is a constant C̃ = C̃(a, b,D7, ρ±, ϕ, η, η1) > 0 such that

(1.13) u22ε g C̃ε in (a, b).

(ii) Let (uε)0<ε<1 be W 4,>(21, 1) solutions to (1.9). Then, there is a sequence εk ³ 0
such that uεk converges uniformly on compact intervals in (21, 1) to a convex function
u in (21, 1) that satisfies u = ϕ outside (a, b) and minimizes the functional

(1.14) J(v) =

∫ b

a

F (x, v(x), v2(x)) dx

over v * S[ϕ], where S[ϕ] is given by

(1.15) S[ϕ] = {v : v is convex on [21, 1] and v = ϕ outside (a, b)}.

(iii) Let q * [1,>) be fixed, and assume that u is given as in (ii). If the Lagrangian F
also satisfies

(1.16) |F 0
zz(x, z)| f η2(|z|) in [21, 1]× R

for a smooth, increasing function η2, then there is a function w * Lq(a, b) which is a
weak limit in Lq(a, b) of a subsequence of (εkwεk)k, and satisfies

(1.17) w22 = F 0
z (x, u)2 (F 1

p (x, u
2))2 in (a, b)

in the sense of distributions.

Remark 1.2. For Theorem 1.1(i)–(ii), the proofs are similar to that of Le [8, 9, 10]. Since
U ij
ε Dijwε is much simpler in the one-dimensional case (as it is just (1/u22ε)

22), we do not
need to invoke regularity results used in the higher-dimensional case. Moreover, we obtain
W 4,>(21, 1) estimates in Theorem 1.1(i) instead of the W 4,s estimates in higher dimensions.
In Theorem 1.1(ii) we need an additional step, as part of the proofs in the higher-dimensional
case do not carry over to the one-dimensional case; see Remark 3.2.

Remark 1.3. The estimate (1.13) is new. It is not known if a similar estimate holds in
higher dimensions for solutions to (1.4) with fε given by (1.6).

Remark 1.4.

(1) Theorem 1.1(iii) is related to the result of Lions [12]. Suppose Ω0 ¢ R
n is an open,

bounded, smooth and strongly convex domain. Then, Lions showed that the mini-
mizer u of the functional

(1.18)

∫

Ω0

[
1

2
|Du|2 2 fu+ fiDiu

]
dx

over all convex functions u * H1
0 (Ω0) satisfies, in the sense of distributions,

(1.19) 2∆u2 f 2Difi = Dijµij
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where (µij)1fi,jfn is a symmetric nonnegative matrix of Radon measures. Also see
Carlier [3].
The constraint for our variational problem (1.14)–(1.15) is that each competitor

function has a convex extension that agrees with a given convex function ϕ outside Ω0.
In addition to the Dirichlet boundary condition u = ϕ on ∂Ω0, this puts an additional
restriction on the gradient of the minimizer at the boundary ∂Ω0. Therefore, the
result of Lions cannot be easily applied.
We instead use the approximation scheme in Theorem 1.1(i)–(ii) to show that

(1.17) holds, where w is an Lq function instead of being just a measure.
(2) As we use the approximation scheme in Theorem 1.1(i)–(ii), in Theorem 1.1(iii)

we can only characterize minimizers to (1.14)–(1.15) given by limits of solutions to
(1.9). In certain cases (for instance, if the minimizer is unique), all solutions can be
approximated, but this is not guaranteed in general. It would be interesting to know
if there is a characterization for minimizers that are not limits of solutions to (1.9).

The rest of the note is organized as follows. In Section 2, we prove two estimates satisfied
by the solutions to (1.9); one is the a priori estimate used to prove the first part of Theorem
1.1(i), the other is the estimate in (1.13). This proves Theorem 1.1(i). In Section 3, we prove
Theorem 1.1(ii) and in Section 4, we prove Theorem 1.1(iii). The final section, Section 5
contains summary of the note and some possible directions for future research.

2. Estimates and Existence of Solutions

In this section, we prove Theorem 1.1(i). The first statement can be proved using degree
theory and the a priori W 4,> estimate in Proposition 2.1 below. For this, we will mostly
follow Le [10, Section 2], but since we are working with a simpler equation, some steps can
be simplified. We will prove the second estimate (1.13) in the process of proving the W 4,>

estimate.
In the following, we will always assume that ε satisfies 0 < ε < ε0 < 1.

Proposition 2.1 (A priori W 4.> estimate). Suppose uε is a uniformly convex W 4,>(21, 1)
solution to (1.9), where the Lagrangian F satisfies (F1)–(F4). If 0 < ε < ε0, where ε0 is a
small number depending only on a, b,D7, ρ±, ϕ, η, η1, then there is C(ε) > 0 such that

(2.1) ‖uε‖W 4,>(21,1) f C(ε).

Throughout the section, uε will denote a uniformly convex W 4,>(21, 1) solution to (1.9),
and we will use numbered constants Cn and Dn to denote positive constants that do not
depend on the solution uε but only on a, b, D7, the boundary values ρ±, and the functions
ϕ, η, η1. We will write Cn and Dn for constants that do not depend on ε, while for constants
that depend on ε the dependency will be explicitly stated.

We start by getting an L> bound for uε.

Lemma 2.2. If ε < ε0 where ε0 = ε0(a, b,D7, ρ±, ϕ, η, η1) is small, then

(2.2) ‖uε‖L>(21,1) < C3 = C3(a, b,D7, ρ±, ϕ, η, η1).

Proof. If ψ is a C2 function on [21, 1] satisfying ψ(±1) = 0, then we can multiply the first
equation in (1.9) by ψ and integrate by parts to get

∫ 1

21

fεψ dx = ε

∫ 1

21

w22
εψ dx = ε

(
[w2

εψ]
1
21 2

∫ 1

21

w2
εψ

2 dx

)
= 2ε

∫ 1

21

w2
εψ

2 dx.
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Dividing by ε and integrating by parts again gives

(2.3)
1

ε

∫ 1

21

fεψ dx = 2[wεψ
2]121 +

∫ 1

21

wεψ
22 dx.

Setting ψ = uε 2ϕ in (2.3) and substituting fε from (1.9), we find that the left-hand side
of (2.3) becomes

(2.4)
1

ε

∫ 1

21

fεψ dx =
1

ε

∫ b

a

fε(uε 2 ϕ) dx+
1

ε2

∫

(21,a)*(b,1)

(uε 2 ϕ)2 dx,

where

(2.5)

1

ε

∫ b

a

fε(uε 2 ϕ) dx =
1

ε

∫ b

a

F 0
z (x, uε)(uε 2 ϕ) dx

2
1

ε

∫ b

a

F 1
px(x, u

2
ε)(uε 2 ϕ) dx2

1

ε

∫ b

a

F 1
pp(x, u

2
ε)u

22
ε(uε 2 ϕ) dx.

For ψ = uε 2 ϕ, the right-hand side of (2.3) becomes

(2.6)

2[wεψ
2]121 +

∫ 1

21

wεψ
22 dx

= 2ρ+u
2
ε(1) + ρ2u

2
ε(21) + ρ+ϕ

2(1)2 ρ2ϕ
2(21) +

∫ 1

21

wε(u
22
ε 2 ϕ22) dx.

Since wε = 1/u22ε , we have

(2.7)

∫ 1

21

wε(u
22
ε 2 ϕ22) dx =

∫ 1

21

12
ϕ22

u22ε
dx = 22

∫ 1

21

ϕ22

u22ε
dx.

Because uε < 0 in (21, 1) and uε(±1) = 0, we get u2ε(1) > 0 > u2ε(21). Therefore, as ρ± > 0,
2ρ+u

2
ε(1) + ρ2u

2
ε(21) < 0. Using (2.4)–(2.7), we rewrite (2.3) as

(2.8)

∫ 1

21

ϕ22

u22ε
dx+

1

ε2

∫

(21,a)*(b,1)

(uε 2 ϕ)2 dx+
1

ε

∫ b

a

fε(uε 2 ϕ) dx

= 2ρ+u
2
ε(1) + ρ2u

2
ε(21) + ρ+ϕ

2(1)2 ρ2ϕ
2(21) + 2

< ρ+ϕ
2(1)2 ρ2ϕ

2(21) + 2 =: C1.

Now, we consider the following cases as in Le-Zhou [11, pp.27–28].
Case 1. uε(x) g ϕ(x) for some x * (a, b). Then, as uε is a negative convex function with

uε(21) = 0, we have

|uε(y)| f
y + 1

x+ 1
|uε(x)| f

2

1 + a
‖ϕ‖L>(21,1) for y * (x, 1).

We can also get a similar bound when y * (21, x). Putting these together, we conclude that
the L> norm of uε is bounded independent of ε, as desired.

Case 2. uε f ϕ in (a, b). First, we note that as F 1
pp g 0, uε f ϕ and u22ε > 0,

(2.9)
1

ε

∫ b

a

F 1
pp(x, u

2
ε)u

22
ε(uε 2 ϕ) dx f 0.
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Next, by the convexity of F 0 and (1.12), we have

(2.10)
2
1

ε

∫ b

a

F 0
z (x, uε)(uε 2 ϕ) dx f 2

1

ε

∫ b

a

F 0
z (x, ϕ)(uε 2 ϕ) dx

f
b2 a

ε
η(‖ϕ‖L>(21,1))(‖uε‖L>(21,1) + ‖ϕ‖L>(21,1)).

Because uε is convex and uε(±1) = 0, for any interval (t1, t2) contained in (21, 1) we have
the gradient bound

(2.11) |u2ε(x)| f
|uε(x)|

min(x2 (21), 12 x)
f

‖uε‖L>(21,1)

min(t1 + 1, 12 t2)
for x * (t1, t2).

Finally, from (2.11) (with t1 = a and t2 = b) and (1.12), we have

(2.12)

1

ε

∫ b

a

F 1
px(x, u

2
ε)(uε 2 ϕ) dx

f
b2 a

ε
D7(1 + ‖u2ε‖L>(a,b))(‖uε‖L>(21,1) + ‖ϕ‖L>(21,1))

f
1

ε
(b2 a)D7

(
1 +

‖uε‖L>(21,1)

min(a + 1, 12 b)

)
(‖uε‖L>(21,1) + ‖ϕ‖L>(21,1)).

Putting (2.9), (2.10) and (2.12) together with (2.8) and (2.5) yields

(2.13)
c0

∫ 1

21

1

u22ε
dx+

1

ε2

∫

(21,a)*(b,1)

(uε 2 ϕ)2 dx < C1 2
1

ε

∫ b

a

fε(uε 2 ϕ) dx

f
C2

ε
(‖uε‖

2
L>(21,1) + 1).

Here, we used the assumption that ε < ε0 < 1 to absorb the C1 term into C2

ε
. Thus, C2 will

depend on ε0. However, as ε0 depends on the same set of variables a, b,D7, ρ±, ϕ, η, η1 as the
constants Cn do (stated at the beginning of the section), we can still denote the constant by
C2.

Now, we are ready to obtain the uniform L> bound for uε. Suppose that uε attains its
minimum on t * (21, 1), so that

|uε(t)| = ‖uε‖L>(21,1) .

Because 21 < a < b < 1, we either have t < b or t > a. If t < b, as uε is a negative convex
function with uε(1) = 0,

|uε(x)| g
12 x

12 t
|uε(t)|

g
12 x

2
‖uε‖L>(21,1) in (b, 1).
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Therefore, we have

(2.14)

∫ 1

b

(uε 2 ϕ)2 dx g
1

2

∫ 1

b

u2ε 2 2ϕ2 dx

g
1

2

(
‖uε‖

2
L>(21,1)

∫ 1

b

(
12 x

2

)2

dx2 2(12 b) ‖ϕ‖2L>(21,1)

)

=
1

2

(
(12 b)3

12
‖uε‖

2
L>(21,1) 2 2(12 b) ‖ϕ‖2L>(21,1)

)
.

On the other hand, suppose t > a. Following the same argument, we obtain

(2.15)

∫ a

21

(uε 2 ϕ)2 dx g
1

2

(
(a + 1)3

12
‖uε‖

2
L>(21,1) 2 2(a+ 1) ‖ϕ‖2L>(21,1)

)
.

Hence, if ε is small enough, then combining (2.13) with (2.14) when t < b (or (2.15) if t > a)

and
∫ 1

21
1
u22

ε
dx > 0, we obtain the L> bound of uε on (21, 1) independent of ε. �

Now, we use the gradient bound (2.11) with t1 = a and t2 = b. Combining it with the L>

bound (2.2), we get the following estimate.

Corollary 2.3. If x * (a, b) and ε < ε0 for ε0 = ε0(a, b,D7, ρ±, ϕ, η, η1) small, then we have

(2.16) |u2ε(x)| f
C3

min(a+ 1, 12 b)
=: D1.

From (2.13) and (2.2), we also have

(2.17) c0

∫ 1

21

1

u22ε
dx+

1

ε2

∫

(21,a)*(b,1)

(uε 2 ϕ)2 dx f
C4

ε
, where C4 := C2(C

2
3 + 1).

Next, we show a lower bound for wε (or equivalently, an upper bound for u22ε).

Lemma 2.4. If ε < ε0 where ε0 = ε0(a, b,D7, ρ±, ϕ, η, η1) is small, then

(2.18) wε(x) g C5(ε), thus u22ε(x) f C21
5 (ε) if x * (21, 1).

Proof. From the L> bound (2.2), we have

(2.19) |fε| f
1

ε

(
‖uε‖L>(21,1) + ‖ϕ‖L>(21,1)

)
f

1

ε

(
C3 + ‖ϕ‖L>(21,1)

)
outside (a, b).

In (a, b), we have

fε = F 0
z (x, uε)2 F 1

px(x, u
2
ε)2 F 1

pp(x, u
2
ε)u

22
ε f F 0

z (x, uε)2 F 1
px(x, u

2
ε)

f η(‖uε‖L>(21,1)) +D7(1 + ‖u2ε‖L>(a,b)) f η(C3) +D7(1 +D1).

Therefore, setting

M =M(ε) :=
1

ε
max

{
1

ε
(C3 + ‖ϕ‖L>(21,1)), η(C3) +D7(1 +D1)

}
,

we get

M g
1

ε
fε = w22

ε .

Hence,
v = logwε 2Muε
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satisfies

(2.20) v22 =
w22

ε 2M

wε
2

(
w2

ε

wε

)2

f 0.

As the boundary values for v are

v(±1) = logwε(±1)2Muε(±1) = log ρ±,

(2.20) implies that

v(x) g min{v(1), v(21)} = min{log ρ+, log ρ2}.

As a result,

logwε(x) = v(x) +Muε(x) g min{log ρ+, log ρ2} 2M(ε)C3,

which completes the proof of (2.18) for C5(ε) := emin{log ρ+,log ρ2}2M(ε)C3 . �

Now we prove the following lemma, which implies the estimate (1.13).

Lemma 2.5. There is a constant D3 = D3(a, b,D7, ρ±, ϕ, η, η1) > 0 independent of ε such
that if ε < ε0 where ε0 = ε0(a, b,D7, ρ±, ϕ, η, η1) is small, we have

(2.21) wε f
D3

ε
in (a, b).

Proof. From (1.9), we have

(2.22) (εw2
ε + F 1

p (x, u
2
ε))

2 = εw22
ε + F 1

px(x, u
2
ε) + F 1

pp(x, u
2
ε)u

22
ε = F 0

z (x, uε) in (a, b).

Let us define

(2.23) λ := sup
x*(a,b)

(
εw2

ε(x) + F 1
p (x, u

2
ε(x))

)
.

From (1.12) and (2.2), |F 0
z (x, uε)| f η(C3). Therefore, we have

εw2
ε(x) + F 1

p (x, u
2
ε(x)) g λ2 η(C3)(b2 a) for x * (a, b).

We also have, from (1.12) and (2.16),

|F 1
p (x, u

2
ε)| f η1(D1) for x * (a, b).

Therefore, for all x * (a, b), we have

(2.24) εw2
ε(x) g λ2 η(C3)(b2 a)2 η1(D1) =: λ2 C6.

Now, as wε = 1/u22ε > 0, (2.17) gives us

(2.25)

C4

c0
g

∫ 1

21

ε

u22ε
dx g

∫ b

a

εwε(x) dx

g

∫ b

a

∫ x

a

εw2
ε(t) dt dx

g

∫ b

a

∫ x

a

(λ2 C6) dt dx

=
(b2 a)2

2
(λ2 C6).
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Therefore, we have

(2.26) λ f
2

(b2 a)2
C4

c0
+ C6 =: C7.

This implies the estimate

(2.27)
w2

ε(x) f
1

ε
(λ+ η1(|u

2
ε(x)|)) f

1

ε
(λ+ η1(D1))

f
1

ε
(C7 + η1(D1)) .

Repeating the argument for infx*(a,b)
(
εw2

ε(x) + F 1
p (x, u

2
ε(x))

)
, we get

(2.28) w2
ε(x) g 2

1

ε
(C7 + η1(D1)) .

Hence, from (2.27) and (2.28), for x * (a, b), we have

(2.29) |w2
ε(x)| <

D2

ε
, where D2 = η1(D1) + C7.

This gives |wε(x)2 wε(y)| f
(b2a)D2

ε
for x, y * (a, b), and thus from (2.25)

C4

c0ε
g

∫ b

a

wε(y) dy g (b2 a)wε(x)2

∫ b

a

|wε(x)2 wε(y)| dy

g (b2 a)wε(x)2
(b2 a)2D2

ε
.

Using this, we establish (2.21) for D3 = (b2 a)D2 +
C4

c0(b2a)
. This completes the proof of the

lemma. �

Now we can prove the desired a priori estimate in Proposition 2.1.

Proof of Proposition 2.1. From (2.16) and (2.18), we easily obtain

(2.30) ‖u2ε‖L>(21,1) f D1 + 2C21
5 (ε).

If x * (a, b), from (1.12) and the bounds on uε, u
2
ε and u

22
ε we have

|fε(x)| f |F 0
z (x, uε)|+ |F 1

px(x, u
2
ε)|+ |F 1

pp(x, u
2
ε)| ‖u

22
ε‖L>(21,1)

f η(C3) +D7(1 +D1) + η1(D1)C
21
5 (ε).

Combining this with (2.19) yields

(2.31) |w22
ε (x)| =

1

ε
|fε(x)| f C8(ε) for x * (21, 1).

This implies that

|w2
ε(x)2 w2

ε(y)| f C8(ε)|x2 y| f 2C8(ε) for x, y * [21, 1].

As wε(±1) = ρ±, for x * [21, 1] we have

|ρ+ 2 ρ2| =

∣∣∣∣
∫ 1

21

w2
ε(y) dy

∣∣∣∣ g 2|w2
ε(x)| 2

∫ 1

21

|w2
ε(y)2 w2

ε(x)| dy

g 2|w2
ε(x)| 2 4C8(ε).
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Therefore, we have

(2.32) ‖w2
ε‖L>(21,1) f 2C8(ε) +

1

2
|ρ+ 2 ρ2| =: C9(ε).

Combining this with w2
ε = 2u

(3)
ε /(u22ε)

2 and (2.18) yields

(2.33)
∥∥u(3)ε

∥∥
L>(21,1)

f ‖w2
ε‖L>(21,1) ‖u

22
ε‖

2
L>(21,1) f C9(ε)C

22
5 (ε) =: C10(ε).

Similarly, expanding w22
ε = (2u

(3)
ε /(u22ε)

2)2 and combining it with the previous estimates

(2.18), (2.21), (2.31), (2.33) on u22ε , w
22
ε and u

(3)
ε , we get

(2.34)
∥∥u(4)ε

∥∥
L>(21,1)

f C11(ε).

We have obtained a priori bounds for uε and all of its derivatives up to the fourth-order.
The proof of the proposition is complete. �

Finally, we prove Theorem 1.1(i).

Proof of Theorem 1.1(i). The first part, the existence of uniformly convex W 4,>(21, 1) so-
lutions to (1.9), follows from the a priori estimate in Proposition 2.1 by using the Leray-
Schauder degree theory as in Le [8, pp.2275–2276]. The second part, the estimate (1.13),
follows from Lemma 2.5 as u22ε = w21

ε . �

3. Convergence of Solutions to a Minimizer

In this section, we prove Theorem 1.1(ii) on the convergence of solutions for (1.9) to a
minimizer of the variational problem (1.14)–(1.15). We will mostly follow Le [8, 9]. The
main difference is the following lemma, which gives refined asymptotic behaviors of u2ε at
±1. An analogous result is not necessary in the higher-dimensional case; a weaker result is
sufficient. (See Remark 3.2 for a detailed comparison.)

Lemma 3.1. If (uε)ε>0 are W 4,>(21, 1) solutions to (1.9), then we have

(3.1) εu2ε(±1) ³ 0 as ε ³ 0.

Proof. It suffices to show by contradiction that εu2ε(1) ³ 0 as ε ³ 0. The same argument
can be used to show εu2ε(21) converges to 0 as ε³ 0, from which the Lemma follows.

Assume, on the contrary, that there are m > 0 and a sequence εn ³ 0 such that

(3.2) u2εn(1) >
m

εn
.

First, by (2.17) and the Cauchy–Schwarz inequality, if b f x < y f 1,

|w2
ε(x)2 w2

ε(y)| =

∣∣∣∣
∫ y

x

w22
ε (t) dt

∣∣∣∣ f
(∫ y

x

1 dt

)1/2(∫ y

x

w22
ε (t)

2 dt

)1/2

f (y 2 x)1/2

(∫ 1

b

[
1

ε2
(uε 2 ϕ)

]2
dt

)1/2

f C
1/2
4 ε23/2|x2 y|1/2.
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Therefore, if x, y * (12 ε, 1), then |w2
ε(x)2w2

ε(y)| f C
1/2
4 ε21. Recalling that wε = 1/u22ε > 0,

we have

ρ+ > wε(1)2 wε(12 ε) =

∫ 1

12ε

w2
ε(y) dy

g

∫ 1

12ε

w2
ε(x) dy 2

∫ 1

12ε

|w2
ε(y)2 w2

ε(x)| dy

g εw2
ε(x)2 C

1/2
4 for x g 12 ε.

This yields

w2
ε(x) f (C

1/2
4 + ρ+)ε

21 for x * (12 ε, 1).

Now, let δ > 0 be a fixed small constant (independent of ε) that satisfies

δ < 1 and
ρ+
2

g δ(C
1/2
4 + ρ+).

For x * (12 δε, 1), we have, for some x7 * (x, 1),

(3.3)

wε(x) = ρ+ 2 (12 x)w2
ε(x

7) g ρ+ 2 δε× (C
1/2
4 + ρ+)ε

21 g
ρ+
2
, or equivalently,

u22ε(x) f
2

ρ+
.

Choose n large so that εn is small enough to satisfy

(3.4) δεn
2

ρ+
f

m

2εn
,

(3.5)
22 δεn 2 ε

1/4
n

22 δεn
g

1

2
,

(3.6) 12 δεn 2 ε1/4n > b, and

(3.7) (δεn + ε1/4n ) ‖ϕ2‖L>(21,1) f
mδ

8
.

Considering (3.2), (3.3) and (3.4), we get for x * (12 δεn, 1),

u2εn(x) = u2εn(1)2

∫ 1

x

u22εn(t) dt g
m

εn
2 δεn ×

2

ρ+

g
m

2εn
.

Thus, from uεn(1) = 0,

(3.8) uεn(12 δεn) f 2
m

2εn
δεn = 2

mδ

2
.

We now use the convexity of uεn, (3.5)–(3.8) and uεn(±1) = 0 to estimate ‖uεn 2 ϕ‖L2(b,1)

to get a contradiction. For x * (12 δεn 2 ε
1/4
n , 12 δεn), we define (see Figure 1)

A = (21, 0), B = (x, 0), C = (12 δεn, 0),

D = (12 δεn, uεn(12 δεn)), E = (x, uεn(x)), and F = BE +AD.
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Because uεn is convex, its graph is below AD and therefore, F is on the line segment BE.
As the triangles ABF and ACD are similar, we have

(3.9)
BF

CD
=
AB

AC
.

We also know that

(3.10) BF < BE = |uεn(x)|, AC = 22 δεn, AB = x+ 1 g 22 δεn 2 ε1/4n ,

and by (3.8),

CD = |uεn(12 δεn)| g
mδ

2
.(3.11)

A

D

E

CB

F

x 12 δεn

uεn

21 1

Figure 1. Construction of the points A–F

Therefore, from (3.5) and (3.9)–(3.11), we have

(3.12)
|uεn(x)| > BF =

AB

AC
CD g

(22 δεn 2 ε
1/4
n )

22 δεn

mδ

2

g
1

2

mδ

2
=
mδ

4
.

Also, from (3.7) and ϕ(1) = 0, for x * (12 δεn 2 ε
1/4
n , 12 δεn) we get

(3.13)

|ϕ(x)| f

∫ 1

x

|ϕ2(t)| dt f (12 x) ‖ϕ2‖L>(21,1)

f (δεn + ε1/4n ) ‖ϕ2‖L>(21,1)

f
mδ

8
.

Putting (3.12) and (3.13) together yields

|uεn 2 ϕ| g
mδ

8
in (12 δεn 2 ε1/4n , 12 δεn).

Therefore, we conclude from (3.6) that

(3.14) ‖uεn 2 ϕ‖2L2(b,1) g

∫ 12δεn

12δεn2ε
1/4
n

|uεn(x)2 ϕ(x)|2 dx g

(
mδ

8

)2

ε1/4n .
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However, (2.17) gives the bound

‖uεn 2 ϕ‖L2(b,1) f C
1/2
4 ε1/2n ,

which contradicts (3.14) for small values of εn. This completes the proof of the Lemma. �

Now, we prove Theorem 1.1(ii).

Proof of Theorem 1.1(ii). By (2.2), the family (uε) ofW
4,>(21, 1) solutions to (1.9) satisfies

(3.15) ‖uε‖L>(21,1) f C

for C independent of ε. Furthermore, for any interval I = [t1, t2] compactly supported in
(21, 1), we can combine (3.15) with the gradient bound (2.11) to obtain

(3.16) ‖u2ε‖L>(I) f C̃(t1, t2) = C̃(I).

Here, C̃ does not depend on ε but on the distance of the set I to the exterior of (21, 1).
From (3.15) and (3.16), by passing to a subsequence εk ³ 0, we have

(3.17)
uεk ³ u weakly in W 1,2(a, b), and

uεk ³ u uniformly on compact intervals in (21, 1),

for some convex function u in (21, 1). From (2.17), we have

(3.18)

∫

(21,a)*(b,1)

(uεk 2 ϕ)2 dx f C4εk ³ 0 as k ³ 0.

Therefore, from (3.17), we have u = ϕ outside (a, b) and hence u * S[ϕ]. As in Le [8, 9] we
will prove that u minimizes the functional J given by (1.14) over S[ϕ] defined by (1.15) by
the following steps.

Step 1. We show that

(3.19) lim inf
k³>

J(uεk) g J(u).

From the convexity of F 0 in z and F 1 in p, we have

J(uεk)2 J(u)

=

∫ b

a

[
F 0(x, uεk(x))2 F 0(x, u(x))

]
dx+

∫ b

a

[
F 1(x, u2εk(x))2 F 1(x, u2(x))

]
dx

g

∫ b

a

F 0
z (x, u(x))(uεk 2 u) dx+

∫ b

a

F 1
p (x, u

2(x))(u2εk(x)2 u2(x)) dx.

By (3.17) and |F 0
z (x, u(x))| f η(C3), the right-hand side converges to 0 as k ³ >, and the

desired inequality (3.19) holds.
Step 2. Suppose v * S[ϕ] is given by v = v1 + v2, where v1 is convex and v2 * C2([21, 1])

satisfies v222 g α > 0. We show that

(3.20) J(v) g J(uε)2A(ε), where A(ε) ³ 0 as ε³ 0.

We approximate v by smooth functions using mollifiers. Let ρ g 0 be smooth, supported on

(21, 1), and satisfy
∫ 1

21
ρ dx = 1. Extend ϕ to be C3 and uniformly convex on a neighborhood
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of [21, 1], and also extend v by setting v = ϕ outside [21, 1]. For δ > 0 sufficiently small
define vδ = v 7 ρδ, where ρδ(x) = δ21ρ(δ21x). Then, as δ ³ 0, we have

(3.21)
vδ ³ v in [21, 1], v2δ ³ v2 a.e. in [21, 1], and

v
(k)
δ ³ v(k) = ϕ(k) in [21, a) * (b, 1] for k f 2.

Recall from (1.10) that for w * C2(21, 1),

(3.22) Jε(w) = J(w)2 ε

∫ 1

21

logw22 dx+
1

2ε

∫

(21,a)*(b,1)

(w 2 ϕ)2 dx.

From the convexity of F 0 and F 1,

(3.23)

J(vδ)2 J(uε)

=

∫ b

a

[
F 0(x, vδ(x))2 F 0(x, uε(x))

]
dx+

∫ b

a

[
F 1(x, v2δ(x))2 F 1(x, u2ε(x))

]
dx

g

∫ b

a

F 0
z (x, uε(x))(vδ 2 uε) dx+

∫ b

a

F 1
p (x, u

2
ε(x))(v

2
δ(x)2 u2ε(x)) dx

= [F 1
p (x, u

2
ε)(vδ 2 uε)]

b
a +

∫ b

a

[
F 0
z (x, uε(x))2

∂

∂x

(
F 1
p (x, u

2
ε(x))

)]
(vδ 2 uε) dx

= [F 1
p (x, u

2
ε)(vδ 2 uε)]

b
a +

∫ b

a

εw22
ε (vδ 2 uε) dx.

As x 7³ x2 is convex, we have

(3.24)

1

2ε

∫

(21,a)*(b,1)

(vδ 2 ϕ)2 dx2
1

2ε

∫

(21,a)*(b,1)

(uε 2 ϕ)2 dx

g
1

ε

∫

(21,a)*(b,1)

(uε 2 ϕ)(vδ 2 uε) dx

=

∫

(21,a)*(b,1)

εw22
ε (vδ 2 uε) dx.

As x 7³ log x is concave, we have

(3.25)

ε

∫ 1

21

log u22ε dx2 ε

∫ 1

21

log v22δ dx

g ε

∫ 1

21

1

u22ε
(u22ε 2 v22δ ) dx = ε

∫ 1

21

wε(u
22
ε 2 v22δ ) dx

= ε

(
[wε(u

2
ε 2 v2δ)]

1
21 2 [w2

ε(uε 2 vδ)]
1
21 +

∫ 1

21

w22
ε (uε 2 vδ) dx

)
.

We also have

(3.26)

1

2ε

∫

(21,a)*(b,1)

[
(uε 2 ϕ)2 2 (vδ 2 ϕ)2

]
dx g 2

1

2ε

∫

(21,a)*(b,1)

(vδ 2 ϕ)2dx, and

2 ε

∫ 1

21

log u22ε dx g 2ε

∫ 1

21

u22ε dx = 2ε(u2ε(1)2 u2ε(21)).
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Therefore, from (3.23)–(3.26), we have

(3.27)

J(vδ)2 J(uε) g [F 1
p (x, u

2
ε)(vδ 2 uε)]

b
a + [εwε(u

2
ε 2 v2δ)]

1
21 2 [εw2

ε(uε 2 vδ)]
1
21

2
1

2ε

∫

(21,a)*(b,1)

(vδ 2 ϕ)2dx+ ε

∫ 1

21

log v22δ dx2 ε(u2ε(1)2 u2ε(21)).

We first let δ ³ 0 in (3.27). From (3.21), we get

(3.28)
[F 1

p (x, u
2
ε)(vδ 2 uε)]

b
a ³ [F 1

p (x, u
2
ε)(v 2 uε)]

b
a, and

[εwε(u
2
ε 2 v2δ)]

1
21 ³ [εwε(u

2
ε 2 v2)]121.

As v = ϕ outside (a, b) and uε(±1) = ϕ(±1) = 0, from (3.21) we also have

(3.29) 2
1

2ε

∫

(21,a)*(b,1)

(vδ 2 ϕ)2dx³ 0, and [εw2
ε(uε 2 vδ)]

1
21 ³ 0 as δ ³ 0.

Recall that vδ = v 7 ρδ, and v = v1 + v2 where v222 g α. Hence, v22δ g α, which yields

(3.30) lim inf
δ³0

(
ε

∫ 1

21

log v22δ dx

)
g 2ε logα.

By (3.21), J(vδ) ³ J(v) as δ ³ 0. Considering (3.27)–(3.30), we get

(3.31)
J(v)2 J(uε)

g [F 1
p (x, u

2
ε)(v 2 uε)]

b
a + [εwε(u

2
ε 2 v2)]121 + 2ε logα2 ε(u2ε(1)2 u2ε(21)).

Now, we let ε ³ 0 in (3.31). First, we have

(3.32) [F 1
p (x, u

2
ε)(v 2 uε)]

b
a ³ 0 as ε³ 0

because |F 1
p (x, u

2
ε)| f η(D1), and uε(t) converges to ϕ(t) = v(t) as ε ³ 0 if t /* (a, b). By

Lemma 3.1, we have

(3.33) εwε(±1)u2ε(±1) = ρ±εu
2
ε(±1) ³ 0, and εu2ε(±1) ³ 0 as ε³ 0

We also have

(3.34) 2ε logα³ 0, and εwε(±1)v2(±1) = ερ±v
2(±1) ³ 0 as ε ³ 0.

Putting (3.31)–(3.34) together completes the proof of Step 2.

Remark 3.2. The term εwε(±1)u2ε(±1) corresponds to ε(n21)/nηε from the proof of Le [9,
(3.20)]. ε(n21)/n converges to 0 as ε ³ 0 if n g 2, but this term is a constant when n = 1
and the estimate does not directly imply the result in our case.

Step 3. Finally, we show that J(v) g J(u) for any v * S[ϕ].
Since v * S[ϕ], vλ := λv + (1 2 λ)ϕ is in S[ϕ]. Also, vλ = v1 + v2 for v1 = λv and

v2 = (12 λ)ϕ. Recalling that ϕ22 g c0 > 0, we find that v satisfies the assumptions in Step
2. Therefore, from (3.19) and (3.20), we get

(3.35) J(vλ) g lim inf
k³>

(J(uεk)2 A(εk)) = lim inf
k³>

J(uεk) g J(u) for all λ * (0, 1).

By definition, J(vλ) ³ J(v) as λ³ 1. Therefore, passing to the limit of λ³ 1 in (3.35), we
conclude that J(v) g J(u). Hence u is a minimizer to the variational problem (1.14)–(1.15).
This completes the proof of Theorem 1.1(ii). �
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4. Characterization of Limiting Minimizers

In this section, we prove Theorem 1.1(iii) by establishing (1.17).

Proof of Theorem 1.1(iii). We start with the subsequence (uεk)k in (3.17). By the convexity
of uεk we have, for any x * (a, b) and small δ > 0,

u2εk(x) f
uεk(x+ δ)2 uεk(x)

δ
.

As uεk converges uniformly on compact sets of (21, 1) to the convex function u,

lim sup
k³>

u2εk(x) f
u(x+ δ)2 u(x)

δ

for all x * (a, b) and small δ > 0. Letting δ ³ 0, we can conclude that

(4.1) lim sup
k³>

u2εk(x) f u2(x) for x * S,

where S is the set of points of differentiability of u in (a, b). Using the same argument on
(uεk(x)2 uεk(x2 δ))/δ, we obtain

(4.2) lim inf
k³>

u2εk(x) g u2(x) for x * S.

By (4.1) and (4.2), u2εk converges pointwise to u2 on S. The function u, being convex on the
interval (21, 1), is Lipschitz on (a, b). Hence, u is differentiable a.e. on (a, b) by Rademacher’s
theorem. Therefore, u2εk converges a.e. on (a, b) to u2.

Now we turn our attention to the equation

(4.3) (εwε)
22 = εw22

ε = F 0
z (x, uε)2 (F 1

p (x, u
2
ε))

2 in (a, b),

and derive (1.17) by showing the convergence of the two terms separately. First, from (1.16),
the uniform bound on uε, and the uniform convergence of uεk to u, we have

(4.4) F 0
z (x, uεk) ³ F 0

z (x, u) uniformly in (a, b).

Next, from the estimate (1.13), εkwεk = εk/u
22
εk

is uniformly bounded and hence has a
subsequence εkjwεkj

converging weakly in Lq(a, b) to a function w * Lq(a, b). Hence, we

have

(4.5) (εkjwεkj
)22 ³ w22 in the sense of distributions.

Finally, from (2.16), |F 1
p (x, u

2
εkj

)| f η1(D1) and therefore F 1
p (x, u

2
εkj

) is uniformly bounded

in j. This, together with the almost everywhere convergence of u2εkj
to u2, the continuity of

F 1
p , and the Dominated Convergence Theorem implies that F 1

p (x, u
2
εkj

) converges to F 1
p (x, u

2)

strongly in Lr(a, b) for 1 f r <>. This yields

(4.6) (F 1
p (x, u

2
εkj

))2 ³ (F 1
p (x, u

2))2 in the sense of distributions.

Hence, passing to the limit along the subsequence (uεk) in (4.3) and applying (4.4)–(4.6),
we obtain

(4.7) w22 = F 0
z (x, u)2 (F 1

p (x, u
2))2 in the sense of distributions.

This gives us (1.17) as asserted. The proof of the Theorem is complete. �
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5. Conclusion

The primary focus of this note is the study of fourth-order Abreu-type equations in dimen-
sion one. In dimensions higher than or equal to two, employing an approximation scheme
introduced by Carlier-Radice [4] and extended by Le [8] has enabled authors to use solutions
to the second boundary value problem for Abreu-type equations to approximate minimizers
of convex functionals subject to convexity constraint in the form of (1.1)–(1.2) [4, 8, 9, 10, 11].

In dimension one, Abreu-type equations can exhibit various solvability phenomena, as
highlighted in Chau-Weinkove [5, Proposition 3.2]. In this note, we have demonstrated
that for Abreu-type equations with a singular term, solvability results similar to those in
higher dimensions are achievable; see Theorem 1.1(i)–(ii). Additionally, we obtained a new
estimate in (1.13) for solutions. By combining this estimate with the approximation scheme
in Theorem 1.1(i)–(ii), we have characterized limiting minimizers as stated in Theorem
1.1(iii).

Future research could explore the following issues:

(1) Since our characterization in Theorem 1.1(iii) relies on the approximation scheme, it
only applies to minimizers that can be approximated as limits of solutions to (1.9).
Therefore, it would be interesting to find out whether there are minimizers that
cannot be approximated in this matter, and if so, determine if similar characterization
can be achieved for these minimizers. Also see Remark 1.4.

(2) While the approximation scheme in Theorem 1.1(i)–(ii) is already established in
higher dimensions, estimates similar to (1.13) have not been proved, to the best of
the author’s knowledge. This would be the missing part in obtaining characterizations
similar to Theorem 1.1(iii) in higher dimensions. Determining whether such estimates
hold for solutions to Abreu-type equations in dimensions at least two could be a
direction for further study.
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