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ON THE ONE-DIMENSIONAL SINGULAR ABREU EQUATIONS
YOUNG HO KIM

ABSTRACT. Singular fourth-order Abreu equations have been used to approximate mini-
mizers of convex functionals subject to a convexity constraint in dimensions higher than or
equal to two. For Abreu type equations, they often exhibit different solvability phenomena
in dimension one and dimensions at least two. We prove the analogues of these results for
the variational problem and singular Abreu equations in dimension one, and use the approx-
imation scheme to obtain a characterization of limiting minimizers to the one-dimensional
variational problem.

1. INTRODUCTION AND THE STATEMENT OF MAIN RESULTS

In this note, we consider a class of singular fourth-order Abreu equations in dimension
one. In dimensions higher than or equal to two, singular Abreu equations have been used by
various authors in the approximation of minimizers of convex functionals with a convexity
constraint. We will briefly recall these results below. On the other hand, for Abreu type
equations, they often exhibit different solvability phenomena in dimension one and dimen-
sions at least two. We prove the analogues in dimension one, and find a characterization
of limiting minimizers to a one-dimension variational problem by using this approximation
scheme.

Suppose 2 and 2y are bounded, smooth, convex domains in R" with Qy € €. Let
¢ € C5(Q) be a given convex function, and F = F(x,z,p) : R” x R x R® — R be a smooth
Lagrangian that is convex in the variables z € R and p € R". Consider the variational
problem

(1.1) inf /Q F(x,u(x), Du(z)) dz

u€S[p, Q0]

over the competitors u with a convexity constraint given by

(1.2) S|, Q] = {u:Q — R convex, u= ¢ on Q\ Qp}.

Because of the convexity constraint, variational problems of this type are not easy to handle,
especially in numerical schemes [2, 13]. When n > 2 and the Lagrangian F' = F(x, z) does
not depend on the gradient variable p, Carlier and Radice [4] introduced an approximation
scheme for minimizers of the problem (1.1)—(1.2). Le [8] extended this result to cover the case
when the Lagrangian F' could be split into F(x, z,p) = F°(z, z) + F(x, p) with appropriate
conditions on F¥ and F!, and this result was followed by many other works including those
of Le [9, 10] and of Le-Zhou [11]. One example of a problem of the type (1.1)-(1.2) is the
Rochet-Choné model [14] for the monopolist problem. For this problem, the Lagrangian is

2020 Mathematics Subject Classification. 35B45, 35B65, 35J40.
Key words and phrases. Singular Abreu equation, fourth-order equation, a priori estimate, characteriza-
tion of minimizers, second boundary value problem.
1



2 YOUNG HO KIM

given by F(x,z,p) = (Ip|/q — x - p + 2)no(x), where ¢ € (1,00) and 7, is a nonnegative
Lipschitz function.
The scheme introduced by Carlier and Radice in [4] for the functional

(1.3) Jo(v):/Q F(z,v(x))dx

is to use uniformly convex solutions, for € > 0, to the second boundary value problem

eUY Dyjw, = f. = aa—];(x, U)Xy + %(u6 —P)xa\Q, in €,
(1.4) w, = (det D*u.)™" in
U = ©, We =P on 012,
where UY = (det D*u.)(D?u.)~" is the cofactor matrix of the Hessian matrix D?u., in

approximating minimizers of the variational problem (1.1)—(1.2). Here xg denotes the char-
acteristic function of the set E. The first two equations in (1.4) arise as critical points of the
approximate functional

(1.5) Jo(v) + 1 / (v— ) de — 5/ log det D*v dz,
2e Jonay a

and the boundary conditions correspond to the prescribed boundary values of the function
u. and its Hessian determinant det D?u.. Due to these boundary conditions, (1.4) is called
a second boundary value problem. In the more general case when F(z,z,p) = F°(x,2) +
Fl(z,p), Le [8] uses the same approximation scheme with f. in (1.4) replaced by

1

OF0 0 [OF"
(1'6) f€ - {W(l}ug - 8—$2 (8—1)2(va7%>) } XQo + g(ue - SO)XQ\QO’

The first two equations
(17) UeijDing = 8_1f5, We = (det Dzue)_l

form a fourth-order nonlinear equation of Abreu type [1] that arises in the problem of finding
Kéhler metrics of constant scalar curvature for toric manifolds [6]. The divergence term

Ox; \ Op;
when wu,. is convex; hence (1.4) is called a singular Abreu equation.

We recall how the approximation was used in Carlier-Radice [4] and Le [8, 9]. First, an
arbitrary uniformly convex solution to the equation (1.4) (with f. given by (1.6) in [8, 9]) is
shown to satisfy a priori W** estimates for all s € (n,00); then the Leray-Schauder degree
theory and the a priori estimates yield the existence of solution to the equation. Next, it is
proved that after extracting a subsequence ¢, — 0, solutions (u., ) are shown to converge
uniformly on compact subsets of €2 to a minimizer of the variational problem (1.1)—(1.2).

The previously mentioned results study the case when n > 2; we will focus on the one-
dimensional case in problem (1.9) in this note, and it is not clear if similar results hold. The
reason is as follows. The one-dimensional Abreu equation

(18) (1/u//)// — Uz’jDijw — f

was studied by Chau and Weinkove in [5, Proposition 3.2] in the case when the right-hand
side f is a function of only the spatial variable. For solutions for the second boundary value
problem to (1.8) to exist, f should satisfy a “stability” condition (see [5, (3.2)]); this is

2 (a—Fl(:c, Du€)> added for f. in the general case (1.6) is only guaranteed to be a measure
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different from the case when n > 2, where the second boundary value problem for the Abreu
equation has a solution if f € L*(Q2), t > n, as proved by Le in [7].

In this note, problem (1.9) on the other hand involves a singular term. As we can see in
Theorem 1.1(i), “stability” conditions are not required for solutions to this type of equations
to exist. Contrary to the existence result for equations without singular terms, this result
resembles the higher-dimensional counterpart.

To formulate the one-dimensional problem, first note that UY D;jw. = w” when n = 1.
Without loss of generality, we can assume that Q = (—1,1) and Qy = (a,b), where —1 <
a < b < 1. Then our second boundary value problem for the singular Abreu equation in
dimension one is given by

( 1

ewy = fo:= Z(Ue = @)X 1\ @)
(19) + (FZO(ZZI',U5> - Fplw(x7 U/é) o Fplp(x7 U,::)'U/g) X (a,b) in (_17 1)7
we = 1/u’ in (—1,1),

| u:(£1) =0, and w.(&£1) = p+ > 0.

Here ¢ is assumed to be smooth on [—1,1], ¢(£1) = 0 and satisfies ¢” > ¢y > 0. The first
two equations of (1.9) arise as critical point of the functional

b 1
1
(1.10)  J.(v) := / F(z,v(z),v'(x)) dz — 5/ logv" (z) dz + — (v — )’ dz,
a 1 2e J(—1a)um)
where the Lagrangian F' is given by
(1.11) F(z,z,p) = F'(x,2) + F'(z,p).

We also assume that FO and F'* satisfy

(F1) F°, F' € C?*([-1,1] x R),

(F2) F° is convex in z,

(F3) F'is convex in p so that F) (z,p) > 0,

or smooth, increasing tunctions n,7; : |0,00) — |0,00) and a positive constant D,

F4) Fi h, i ing f i 0 0 d iti D

we have for all z € [—1,1] and p, z € R,
|FO(x, 2)] + [F2(2, 2)] < n(lz]),  [Fpu(z,p)| < D.(1+|p]), and

One example of a one-dimensional Lagrangian F' = F(z, z, p) satisfying (F1)—(F4) is

(1.12)

2

zmm@:(%—m+am@,

where 7 is a nonnegative smooth function on [—1,1]. Here F' = Fy + Fj, where

Rz 2) = omte) and Fionp) = (G = o) i)

are smooth, convex (in z and p, respectively) functions whose derivatives satisfy the growth
estimate in (1.12). Since 19 > 0, (F1) and (F3) are also satisfied.
Our main result is the following theorem.
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Theorem 1.1. Let —1 < a < b < 1. Assume that ¢ is a smooth, uniformly convex function
on [—1,1] with p(£1) = 0 and ¢” > ¢y > 0. Assume the Lagrangian F' given by (1.11)
satisfies (F1)—(F4) above. Then the following hold.

(i) There is a constant €g = £¢(a, b, Dy, p+, ©,n,m) € (0,1) such that for € € (0,¢q), the
problem (1.9) has a uniformly convex W4 (—~1,1) solution u.. Furthermore, there

is a constant C' = C(a, b, D, px, ¢, n,m1) > 0 such that
(1.13) u’' > Ce in (a,b).

(ii) Let (uc)oce<: be W4 (—1,1) solutions to (1.9). Then, there is a sequence g5, — 0
such that u., converges uniformly on compact intervals in (—1, 1) to a convex function
win (—1,1) that satisfies u = ¢ outside (a, b) and minimizes the functional

(1.14) J(v):/ F(z,v(z),v'(z))dz

over v € S[yp|, where S[yp] is given by
(1.15) Slp] = {v : v is convex on [—1,1] and v = ¢ outside (a,b)}.

(iii) Let ¢ € [1,00) be fixed, and assume that u is given as in (ii). If the Lagrangian F’
also satisfies
(1.16) P (@,2) < m(jz) in [-1,1] x R

for a smooth, increasing function 7, then there is a function w € L9(a,b) which is a
weak limit in L9(a,b) of a subsequence of (ejwy, ), and satisfies

(1.17) w" = F)(z,u) — (F)(z,u)) in (a,b)
in the sense of distributions.

Remark 1.2. For Theorem 1.1(i)—(ii), the proofs are similar to that of Le [8, 9, 10]. Since
U D;;w,. is much simpler in the one-dimensional case (as it is just (1/ul)”), we do not
need to invoke regularity results used in the higher-dimensional case. Moreover, we obtain
W4o(—1,1) estimates in Theorem 1.1(i) instead of the W%* estimates in higher dimensions.
In Theorem 1.1(ii) we need an additional step, as part of the proofs in the higher-dimensional
case do not carry over to the one-dimensional case; see Remark 3.2.

Remark 1.3. The estimate (1.13) is new. It is not known if a similar estimate holds in
higher dimensions for solutions to (1.4) with f. given by (1.6).

Remark 1.4.

(1) Theorem 1.1(iii) is related to the result of Lions [12]. Suppose €y C R"™ is an open,
bounded, smooth and strongly convex domain. Then, Lions showed that the mini-
mizer u of the functional

1
(1.18) / {—|Du|2 — fu+ fiDju| dz
Q L2

over all convex functions u € H}(£2) satisfies, in the sense of distributions,
(1.19) —Au— f = D;f; = Djjpi
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where (fij)1<ij<n 15 & symmetric nonnegative matrix of Radon measures. Also see
Carlier [3].

The constraint for our variational problem (1.14)—(1.15) is that each competitor
function has a convex extension that agrees with a given convex function ¢ outside €.
In addition to the Dirichlet boundary condition u = ¢ on 02, this puts an additional
restriction on the gradient of the minimizer at the boundary 0€)y. Therefore, the
result of Lions cannot be easily applied.

We instead use the approximation scheme in Theorem 1.1(i)—(ii) to show that
(1.17) holds, where w is an L7 function instead of being just a measure.

(2) As we use the approximation scheme in Theorem 1.1(i)—(ii), in Theorem 1.1(iii)
we can only characterize minimizers to (1.14)—(1.15) given by limits of solutions to
(1.9). In certain cases (for instance, if the minimizer is unique), all solutions can be
approximated, but this is not guaranteed in general. It would be interesting to know
if there is a characterization for minimizers that are not limits of solutions to (1.9).

The rest of the note is organized as follows. In Section 2, we prove two estimates satisfied
by the solutions to (1.9); one is the a priori estimate used to prove the first part of Theorem
1.1(i), the other is the estimate in (1.13). This proves Theorem 1.1(i). In Section 3, we prove
Theorem 1.1(ii) and in Section 4, we prove Theorem 1.1(iii). The final section, Section 5
contains summary of the note and some possible directions for future research.

2. ESTIMATES AND EXISTENCE OF SOLUTIONS

In this section, we prove Theorem 1.1(i). The first statement can be proved using degree
theory and the a priori W** estimate in Proposition 2.1 below. For this, we will mostly
follow Le [10, Section 2], but since we are working with a simpler equation, some steps can
be simplified. We will prove the second estimate (1.13) in the process of proving the W%
estimate.

In the following, we will always assume that e satisfies 0 < & < g9 < 1.

Proposition 2.1 (A priori W% estimate). Suppose u, is a uniformly convex W4>(—1,1)
solution to (1.9), where the Lagrangian F' satisfies (F1)—(F4). If 0 < ¢ < g9, where ¢y is a
small number depending only on a, b, D,, p+, ¢, n, 11, then there is C(e) > 0 such that

(2.1) [uellwace(—1,1) < C(E)-

Throughout the section, u. will denote a uniformly convex W*°(—1, 1) solution to (1.9),
and we will use numbered constants C,, and D,, to denote positive constants that do not
depend on the solution u. but only on a, b, D,, the boundary values py, and the functions
©, n, m1. We will write C,, and D,, for constants that do not depend on €, while for constants
that depend on ¢ the dependency will be explicitly stated.

We start by getting an L* bound for u,.

Lemma 2.2. If ¢ < gy where g9 = ¢o(a, b, D, p+, ¢, n,m) is small, then
(22) ||u€||Loo(_171) < C13 = Cg(a, b> D*> P+, ¥, 1, 771)

Proof. If ¢ is a C? function on [—1, 1] satisfying (1) = 0, then we can multiply the first
equation in (1.9) by ¥ and integrate by parts to get

/_11 feiﬂdx:e/_llwgiﬁdx:e ([w;qp]l_l _/_llwf:wldfb’) _ _5/_11wf:¢/d36’-
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Dividing by ¢ and integrating by parts again gives
1 1 1
(23) S e =t [ v
g J1 -1
Setting ¥ = u. — ¢ in (2.3) and substituting f. from (1.9), we find that the left-hand side
of (2.3) becomes

(2.4) L b —l/bf( _p)de+ — (ue — ) d
) 5_1533_5@6%%0‘%52 U — @)~ dx,

(—=1,a)U(b,1)

where

1 L
2 ttu= o =2 [ e = ) ds

1 b 1 b
- _/ Fpp (,up) (ue — ) dov — —/ o (z,ul)ul (u. — o) dz.

9 9

For ¢ = u. — ¢, the right-hand side of (2.3) becomes

1
—[wew']l_le/ w)" dx
(2.6) - )

= —pyul(1) + p_ul(=1) + pry'(1) — p-¢/(=1) + / we(uf — ¢") du.
~1

Since w. = 1/u”, we have
1 1 " 1
(2.7) / wa(ug—go”)dx:/ 1—%0&:2— (p—d:)s
-1 -1 Ue —1uf

Because u. < 0in (—1,1) and u.(£1) = 0, we get u.(1) > 0 > u ( 1). Therefore, as py > 0,
—psul(1l) + p_ul(—1) < 0. Using (2.4)-(2.7), we rewrite (

1 "
1
Sdrt (ue — @) d + = / fe(u
ol (—1,a)U(b,1)

= —piug(1) + p-ul(=1) + p1¢'(1) — p-¢'(=1) +2
<psd'(1) = p-¢'(=1) +2 = Cl-
Now, we consider the following cases as in Le-Zhou [11, pp.27-28].

Case 1. u-(x) > ¢(z) for some x € (a,b). Then, as u. is a negative convex function with
us(—1) = 0, we have

(2.8)

y+1

2
ue)| < L e @)] < el 1y fory € (2 1),

We can also get a similar bound when y € (=1, z). Putting these together, we conclude that
the L norm of u, is bounded independent of ¢, as desired.
Case 2. u. < ¢ in (a,b). First, we note that as Fplp >0, u. < and u? > 0,

1 b
(2.9) g/ Fo (x,ul)ul (u. — o) dz < 0.
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Next, by the convexity of F° and (1.12), we have

1 b 0 1 b 0 -
(2.10) _E/Q F2 (@, ue)(ue — p) do < —g/a F (v, 0)(ue — @) dx

a
< nllell oo -1, (el oo 1.1y + 101l poo (2 1.1))-

Because u. is convex and u.(£1) = 0, for any interval (¢;,¢2) contained in (—1,1) we have
the gradient bound

(2.11) |u’ (z)| < |ue ()] HUEHLOO(_Ll)

f € (ty,t2).
y T min(x — (=1),1—2) T min(t; + 1,1 —t5) or @ € (f1,12)

Finally, from (2.11) (with t; = a and t, = b) and (1.12), we have

R
. / FL (2, (us — @) da
b—a ,
(2.12) < D.(1+ HusHLoo(a,b))(Hue||Lo<>(—1,1) + HSOHLoo(—1,1))

£

A
™ | =

HueHLoo(—l 1)
(b—a)D, (1 + min(a + 1,1 —b) (||u€||L°°(—1,1) + ||SOHL<><>(—1,1))-

Putting (2.9), (2.10) and (2.12) together with (2.8) and (2.5) yields

1 b
co/ — :B+— (ue—gp)2dx<01——/ fe(ue — @) dx
(213) (_lva)U(bvl) € a

Cy
< E(HUEHLOO 11)+1)

Here, we used the assumption that € < ¢y < 1 to absorb the C; term into £2. Thus, Cy will
depend on ;. However, as g9 depends on the same set of variables a, b, D*7 pi, ©,m, M as the
constants C,, do (stated at the beginning of the section), we can still denote the constant by
Cs.

Now, we are ready to obtain the uniform L* bound for u.. Suppose that u. attains its
minimum on ¢ € (—1,1), so that

Jue(t)] = lluell oo 11y -

Because —1 < a < b < 1, we either have t < bort > a. If t < b, as u. is a negative convex
function with u.(1) =0,

1—=z
€ > — et
[ue(2)] 2 T us(t)]
1—

x :
> 5 HueHLoo(—l,l) in (b, 1).
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1

§/u—2gp dx

1 Lr1—a2\° )
L2 /( )dx—Q(l—b)llwlloo_
2<5L(11)b 2 Lee(—-1,1)
1

2

L=0)7*, o )
_ < o el e 1.1y = 200 = B) el ) -

On the other hand, suppose t > a. Following the same argument, we obtain

Therefore, we have

/ (e — @) da >

v

v

(2.14)

¢ 1 /(a+1)>?
e1) [ erarz (U ey - 2t D bl )
-1
Hence, if € is small enough, then combining (2.13) with (2.14) when ¢t < b (or (2.15) if t > a)
and f > 1,, dx > 0, we obtain the L* bound of u. on (—1,1) independent of . O

Now, we use the gradient bound (2.11) with ¢; = a and ¢, = b. Combining it with the L>
bound (2.2), we get the following estimate.

Corollary 2.3. If z € (a,b) and € < g¢ for €9 = €¢(a, b, D., p+, @, n,n1) small, then we have
Cs

. ! < =: Ds.
(2.16) uz(@)] < min(a + 1,1 —b) !
From (2.13) and (2.2), we also have
2 C'4 2
(2.17) CQ/ — dx + — (ue — ) de < —, where Cy := Cy(C5 + 1).
€% J(“Layu.) €

Next, we show a lower bound for w. (or equivalently, an upper bound for /).
Lemma 2.4. If € < g9 where g = e¢(a, b, D., p+, @, n,m1) is small, then
(2.18) w.(z) > Cs(e), thus u’(z) < C5'(e) if v € (—1,1).
Proof. From the L*™ bound (2.2), we have
219) £l < 2 (el + Iolliean) < 2 (Cot el ) ontside (a,6)
In (a,b), we have
fo = F2(z,u.) — Fplx(:c,u ) — F1 (x uul < FOz,u.) — Fplm(x, ul)
< 0(lluellpo—11)) + DL+ [l poopy) < 1(C5) + Du(l + Dy).
Therefore, setting
M = M) = L {2C+ ellm ) 1(C) + (14 D)

we get

Hence,
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satisfies

" I\ 2
(2.20) o= e =M (w—) <.

We We

As the boundary values for v are
v(£1) =logw.(+1) — Mu.(+1) = log px,
(2.20) implies that
v(xz) > min{v(1),v(—1)} = min{log p1,log p_}.
As a result,
logw.(x) = v(x) + Mu.(z) > min{log py,logp_} — M(e)Cs,
which completes the proof of (2.18) for Cj(e) := emin{logp+:logp—}=M()Cs O
Now we prove the following lemma, which implies the estimate (1.13).

Lemma 2.5. There is a constant D3 = Ds(a,b, Dy, p+,,n,m) > 0 independent of ¢ such
that if € < g9 where g = e¢(a, b, D., p+, @, n,m1) is small, we have

D
(2.21) w. < ?3 in (a,b).

Proof. From (1.9), we have

(2.22) (ewl + F)(z,ul)) = ew? + F) (z,ul) + F) (z,ul)u! = F2(x,u.) in (a,b).
Let us define

(2.23) A= sup (ewl(z)+ F;(:c,u'e(x))) .

From (1.12) and (2.2), |F2(z,u.)| < n(C3). Therefore, we have
ewl(x) + F)(z,ul(z)) > A —n(Cs3)(b—a) for z € (a,b).
We also have, from (1.12) and (2.16),
|E)(z,ul)| <m(Dy)  for z € (a,b).

Therefore, for all z € (a,b), we have

Now, as w. = 1/u? > 0, (2.17) gives us
C4 !

b
—d:c>/ cw.(x) dz

2.25) //sw t)dtdx
// (A= C) dtdx

= 2 (/\ Ce).
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Therefore, we have

2 Oy
< — =: Ch.
(2.26) A< b= a) + Cs =: C7
This implies the estimate
/ 1 / 1
we(r) < A+ m(lu(@))) < Z(A+m(Dh))

(2.27)

—

< - (07 +m(Dy)).

Repeating the argument for 1nfxe (@b) (Ewl(z) + FX(z,ul(z))), we get

€

(2.28) wi(w) > == (Cr + m(Dy)).
Hence, from (2.27) and (2.28), for = € (a,b), we have
(2.29) lwl(z)| < %, where Dy = n,(Dy) + Cx.
This gives |we(z) — w-(y)| < @ for x,y € (a,b), and thus from (2.25)
G [uwar= o= - [ o) - wt)l iy
zw—waw—ﬁéﬁ%.
Using this, we establish (2.21) for D3 = (b — a) Dy + —*—. This completes the proof of the
lemma. O

Now we can prove the desired a priori estimate in Proposition 2.1.
Proof of Proposition 2.1. From (2.16) and (2.18), we easily obtain
(2.30) el poo 1,1y < D1 +2C57 ().
If x € (a,b), from (1.12) and the bounds on u., u. and u” we have
|fo(@)] < F2 (2 ue)| + | Epe (s wl)| + [ Fpp () |l oo 11y
< n(Cs) + Du(1+ Dy) + m(D1)C5 ' (e).
Combining this with (2.19) yields
(2.31) 0 ()] = L[ £.(0)] < Cs(e) for w € (~1,1)
This implies that
lw(z) — we(y)| < Cs(e)lr —y| < 2Cs(e)  for w,y € [-1,1].
As w.(£1) = py, for x € [—1, 1] we have

p|—'/_1 y)dy

> 2wl (x)| = [ |wily) —wi(z)|dy

-1

> 2|w(z)] — 4Cs(e).
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Therefore, we have
(232 ol 1y < 205(0) + los — -] == Col).
Combining this with w’ = —u® /(u”)? and (2.18) yields

(2.33) H“E:B)HLOO(_M) < Hw;HLOO(—l,l) Hu/e,H2L°°(—1,1) < Cy(e)C572(e) =: Crole).
"

Similarly, expanding w” = (—uf’)/ (u”)?) and combining it with the previous estimates
(2.18), (2.21), (2.31), (2.33) on !, w” and u'?, we get

(2.34) Hug‘l) HLoo(—l,l) < Cufe).

We have obtained a priori bounds for u, and all of its derivatives up to the fourth-order.
The proof of the proposition is complete. O

Finally, we prove Theorem 1.1(i).

Proof of Theorem 1.1(i). The first part, the existence of uniformly convex W%°°(—1,1) so-
lutions to (1.9), follows from the a priori estimate in Proposition 2.1 by using the Leray-
Schauder degree theory as in Le [8, pp.2275-2276]. The second part, the estimate (1.13),
follows from Lemma 2.5 as u? = w_ . l

3. CONVERGENCE OF SOLUTIONS TO A MINIMIZER

In this section, we prove Theorem 1.1(ii) on the convergence of solutions for (1.9) to a
minimizer of the variational problem (1.14)—(1.15). We will mostly follow Le [8, 9]. The
main difference is the following lemma, which gives refined asymptotic behaviors of u. at
+1. An analogous result is not necessary in the higher-dimensional case; a weaker result is
sufficient. (See Remark 3.2 for a detailed comparison.)

Lemma 3.1. If (u.).~q are W**°(—1,1) solutions to (1.9), then we have

(3.1) eul(£1) -0 ase — 0.

Proof. 1t suffices to show by contradiction that eul(1) — 0 as ¢ — 0. The same argument
can be used to show eul(—1) converges to 0 as € — 0, from which the Lemma follows.
Assume, on the contrary, that there are m > 0 and a sequence &,, — 0 such that

(3.2) u. (1) > -

First, by (2.17) and the Cauchy—Schwarz inequality, if b <z <y <1,

/: w!(t) dt‘ < (/: ldt) v </: w! (t)? dt) v
< (y—a)'? (/bl L}—Q(u - @)} 2 dt) N

< Ci/2€_3/2|{17 _ y|1/2.

wi(z) —wily)l =
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Therefore, if z,y € (1 —¢, 1), then |w.(z) —w.(y)| < C’i/za_l. Recalling that w. = 1/u? > 0,
we have

pi> )= w12 = [ uit)dy

> [ wtwar- [ o) - wtlay

> cwl(z) — C)? forz>1—c.
This yields
wi(z) < (C7 + p)e™ foraz e (1—¢,1).
Now, let § > 0 be a fixed small constant (independent of €) that satisfies

d<1 and % > 6(Cy + py).
For x € (1 — dg,1), we have, for some z* € (x,1),

w-(z) = py — (1 — 2)wl(z*) > py — de X (C'i/2 +pp)et > %, or equivalently,
(3.3) ., 9
ul(x) < —.
P+

Choose n large so that ¢, is small enough to satisfy

2 m
4 5 n-—__ < a_
(3.5) 2—55n—5i/4>1
2—de, 2
(3.6) 1—6e, —e/* > b, and
mo
(3.7) (den + 554) ||S0/||Loo(—1,1) < ]

Considering (3.2), (3.3) and (3.4), we get for x € (1 — de,, 1),

1
2
il (z) =, (1) / Wt = ey x 2

En P+

m

>

- 2¢,

Thus, from u,, (1) =0,

m mo
3.8 e (1 —=de,) < ——deg, = ——.
(35) e (1= 850) S = o = =

We now use the convexity of ue,, (3.5)-(3.8) and u.,(£1) = 0 to estimate |[u, — ¢| 2,1
to get a contradiction. For z € (1 — de, — &/*, 1 — d¢,,), we define (see Figure 1)
A=(-1,0), B=(z,0), C=(1-0de,0),
D = (1-dey,u., (1 —9e,)), E=(v,u.,(x)), and FF= BENAD.
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Because u,, is convex, its graph is below AD and therefore, F' is on the line segment BE.
As the triangles ABF and AC'D are similar, we have

(3.9) BE_AB
CD  AC
We also know that
(3.10) BF < BE = |u.,(z)|, AC=2-6e,, AB=2+412>2— s, —c"/*
and by (3.8),
b
(3.11) CD = |u., (1 — d2,)| > %

F1GURE 1. Construction of the points A-F

Therefore, from (3.5) and (3.9)—(3.11), we have

_ _ . 1/a
(3.12) AC 5 o, 5
1md md
> =
-2 2 4

Also, from (3.7) and (1) =0, for z € (1 — de,, — e/t — den) we get

1
(@) < / W (0ldt < (1= 2) |l g1y

(3.13) < (Ben+ e 1€ | ooy
mo
< —.
=73

Putting (3.12) and (3.13) together yields

5
|te, — | > % in (1 —de, — /41— dey).

n

Therefore, we conclude from (3.6) that

2 oo 2 md\” 1/4
B el > [ o) —e@de > () e

—den—Ex
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However, (2.17) gives the bound

1/2
e, — 90HL2(b,1) < C'4/ 5&/27

which contradicts (3.14) for small values of €,. This completes the proof of the Lemma. [
Now, we prove Theorem 1.1(ii).

Proof of Theorem 1.1(ii). By (2.2), the family (u.) of W**°(—1,1) solutions to (1.9) satisfies

(3.15) ||u€||L°°(—1,1) <C

for C' independent of . Furthermore, for any interval I = [t;,t5] compactly supported in
(—1,1), we can combine (3.15) with the gradient bound (2.11) to obtain

(3.16) letllpoery < Clta,t2) = C(D).

Here, C does not depend on ¢ but on the distance of the set I to the exterior of (—1,1).
From (3.15) and (3.16), by passing to a subsequence ¢ — 0, we have
u., — u  weakly in W?(a,b), and

(3.17) . . :
ue, — v uniformly on compact intervals in (—1, 1),

for some convex function w in (—1,1). From (2.17), we have
(3.18) / (us, —0)?dr < Cyep, — 0 ask — 0.
(—La)u(b,1)

Therefore, from (3.17), we have u = ¢ outside (a,b) and hence u € S[p]. As in Le [8, 9] we
will prove that u minimizes the functional J given by (1.14) over S[y] defined by (1.15) by
the following steps.

Step 1. We show that

(3.19) lilgn inf J(ue,) > J(u).

From the convexity of F° in z and F'! in p, we have

H) — J(a)

- / [FO(2, ue, (2) — FO(z,u(x))] do + / [F'(z,ul, (x)) — F'(z,u/(2))] do
b b

> / F(z,u(z))(ue, — u)da —I—/ Fpl(:z, u'(x))(ul, (v) —u'(x)) du.

By (3.17) and |F?(z,u(z))| < n(Cs), the right-hand side converges to 0 as k — oo, and the
desired inequality (3.19) holds.

Step 2. Suppose v € S[p] is given by v = v; 4 ve, where v; is convex and vy € C*([—1,1])
satisfies v§ > o > 0. We show that

(3.20) J(v) > J(u.) — A(e), where A() >0 ase— 0.

We approximate v by smooth functions using mollifiers. Let p > 0 be smooth, supported on
(—1,1), and satisfy f_ll pdr = 1. Extend ¢ to be C® and uniformly convex on a neighborhood
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of [-1,1], and also extend v by setting v = ¢ outside [—1,1]. For 6 > 0 sufficiently small
define vs = v * ps, where ps(z) = 6 'p(6~1x). Then, as § — 0, we have

vs — v in[-1,1], v5 =" ae. in[-1,1], and
v((;k) — o™ =® in [~1,a) U (b,1] for k < 2.
Recall from (1.10) that for w € C*(—1,1),

(3.21)

1
1
(3.22) J(w) = J(w) — 5/ log w” dx + % (w — @)? dz.
-1 € J(-La)u(v,)

From the convexity of F° and F*,
J(vs) — J (ue)

b b
= / [FO(z,v5(x)) — F°(z,u-(2))] do +/ [F!(z,v5(x)) — F'(z,ul(2))] dz
oy 2 [ P w)de+ [ Eeal)0e) - ) do

b
0
~ (B = s+ [ [ R - 3 (B 0t(o) | 05— s
b
= [F) (z, ul)(vs — ue)]h + / ew! (vs — u) dz.
As x — 2? is convex, we have
1 2 1 2
- Vs — dr — — Ue — @ dx
2e (—l,a)U(b,l)( ) 2e (—l,a)U(b,l)( )
1
(3.24) > - / (e — @) (vs — ) da
€ J(-1,0u,1)

= / ew” (vs — u.) dz.
(—1,0)U(b,1)

As x — log z is concave, we have

1 1
5/ logu” dox — 5/ log v§ dx
-1 -1

1 1
6/ 7(’6’—05)dx:5/ we(ul —vy) dx
-1 Ug -1

1

= (fwetet = o = Rt =ty 4 [ o =)o)

-1

(3.25)

A%

We also have

—/ — )% — (vs d:)s>——/ (vs — ¢)*dz, and
1,a)U(b,1) 1,a)U(b,1)

1
— 5/ log u! dx > —5/ ul dr = —e(ul(l) — ul(—1)).
1 _

1

(3.26)
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Therefore, from (3.23)—(3.26), we have
J(vs) = J(ue) = [Fy (,ul)(vs — ue)l + [ews(ul — v5)]Ly — [ewe(ue —vs)]L,y
(327) 1 2 ! " / /
- — (vs —p)de+e | logusdr —e(u(l) —u.(—1)).
2¢ J(~1,a)u0,1)

-1
We first let § — 0 in (3.27). From (3.21), we get

[, ul) (05— w))) = [} () (v — )]l and

(3.28) ! AN A
[ewe (ul — vg)]y — [ewe(ul — V)]

As v = ¢ outside (a,b) and u.(£1) = p(+1) = 0, from (3.21) we also have
1

—— (vs — p)’dr — 0, and [ew! (u. —v5)]L, =0 asd — 0.
2¢ J(~1,a)u0,1)

(3.29)

Recall that vs = v * ps, and v = vy + vy where vy > . Hence, v§ > o, which yields

(3.30) li%ri)iglf (5 /_11 log vy dz) > 2¢elog a.
By (3.21), J(vs) = J(v) as 6 — 0. Considering (3.27)—(3.30), we get
J(v) = J(u)
330 > [F ()0 — )} + fewn(ul — o)L, + 2= loga — e(ul(1) — w(~1)).
Now, we let ¢ — 0 in (3.31). First, we have
(3.32) [Fo(z,ul)(v—u)]) =0 ase—0

because |F)(z,u.)| < n(Dy), and u.(t) converges to ¢(t) = v(t) as e — 0if t ¢ (a,b). By
Lemma 3.1, we have

(3.33) ew.(+1)ul(+1) = preul(+1) =0, and eul(£l) -0 ase—0

We also have

(3.34) 2¢eloga — 0, and ew.(£1)v'(£1) =epgpv/(£1) =0 ase — 0.

Putting (3.31)—(3.34) together completes the proof of Step 2.

Remark 3.2. The term sw,(#+1)u’(£1) corresponds to €™ ~1/"y_ from the proof of Le [9,

(3.20)]. e™=V/" converges to 0 as € — 0 if n > 2, but this term is a constant when n = 1
and the estimate does not directly imply the result in our case.

Step 3. Finally, we show that J(v) > J(u) for any v € S[p)].

Since v € S[g], vy = M+ (1 — Ny is in S[p]. Also, vy = vy + vy for v; = Av and
ve = (1 — N)g. Recalling that ¢” > ¢q > 0, we find that v satisfies the assumptions in Step
2. Therefore, from (3.19) and (3.20), we get

(3.35) J(vy) > li}in inf(J(ue,) — Alex)) = lilgn inf J(ue, ) > J(u) forall A € (0,1).
—00 —00
By definition, J(vy) — J(v) as A — 1. Therefore, passing to the limit of A — 1 in (3.35), we

conclude that J(v) > J(u). Hence u is a minimizer to the variational problem (1.14)—(1.15).
This completes the proof of Theorem 1.1(ii). O
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4. CHARACTERIZATION OF LIMITING MINIMIZERS
In this section, we prove Theorem 1.1(iii) by establishing (1.17).

Proof of Theorem 1.1(iii). We start with the subsequence (u., ) in (3.17). By the convexity
of u., we have, for any x € (a,b) and small 6 > 0,

“;k (2) < Ue, (x + 5; — U, (:c)

As u,, converges uniformly on compact sets of (—1,1) to the convex function wu,

limsupu (z) < u(z + 5; — u()
k—o0

for all x € (a,b) and small 6 > 0. Letting 6 — 0, we can conclude that

(4.1) limsupu, (z) <u'(x) forxzes,
k—o0

where S is the set of points of differentiability of u in (a,b). Using the same argument on
(te, () — ue, (x — 0))/J, we obtain
(4.2) liminfu, (z) > u'(x) forz € S.

’ k—o0 k
By (4.1) and (4.2), u., converges pointwise to u’ on S. The function u, being convex on the
interval (—1, 1), is Lipschitz on (a, b). Hence, u is differentiable a.e. on (a, b) by Rademacher’s
theorem. Therefore, u_ converges a.e. on (a,b) to u'.

Now we turn our attention to the equation

(4.3) (ew.)" =ew! = F(z,u.) — (F,(z,ul)) in (a,b),

and derive (1.17) by showing the convergence of the two terms separately. First, from (1.16),
the uniform bound on u,., and the uniform convergence of u., to u, we have

(4.4) F(z,u.,) — F2(x,u) uniformly in (a,b).

Next, from the estimate (1.13), epw., = &/ul, is uniformly bounded and hence has a
subsequence EhyWe,, converging weakly in L%(a,b) to a function w € L%(a,b). Hence, we
have

(4.5) (5kjw€kj)” — w” in the sense of distributions.

Finally, from (2.16), |F)} (z,u. )| < n:(D1) and therefore F (x,u., ) is uniformly bounded

) Ve,

in j. This, together with the almost everywhere convergence of u, to u’, the continuity of
J

F}, and the Dominated Convergence Theorem implies that F)) (x,u., ) converges to F) (z, u')
J

strongly in L"(a,b) for 1 < r < oo. This yields

(4.6) (Fpl(x ul ) — (Fp1 (x,u"))" in the sense of distributions.

) Ve,

Hence, passing to the limit along the subsequence (u., ) in (4.3) and applying (4.4)—(4.6),
we obtain

(4.7) w” = F)(x,u) — (F,(z,u'))’ in the sense of distributions.

This gives us (1.17) as asserted. The proof of the Theorem is complete. O
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5. CONCLUSION

The primary focus of this note is the study of fourth-order Abreu-type equations in dimen-
sion one. In dimensions higher than or equal to two, employing an approximation scheme
introduced by Carlier-Radice [4] and extended by Le [8] has enabled authors to use solutions
to the second boundary value problem for Abreu-type equations to approximate minimizers
of convex functionals subject to convexity constraint in the form of (1.1)—(1.2) [4, 8, 9, 10, 11].

In dimension one, Abreu-type equations can exhibit various solvability phenomena, as
highlighted in Chau-Weinkove [5, Proposition 3.2]. In this note, we have demonstrated
that for Abreu-type equations with a singular term, solvability results similar to those in
higher dimensions are achievable; see Theorem 1.1(i)—(ii). Additionally, we obtained a new
estimate in (1.13) for solutions. By combining this estimate with the approximation scheme
in Theorem 1.1(i)—(ii), we have characterized limiting minimizers as stated in Theorem
1.1(ii).

Future research could explore the following issues:

(1) Since our characterization in Theorem 1.1(iii) relies on the approximation scheme, it
only applies to minimizers that can be approximated as limits of solutions to (1.9).
Therefore, it would be interesting to find out whether there are minimizers that
cannot be approximated in this matter, and if so, determine if similar characterization
can be achieved for these minimizers. Also see Remark 1.4.

(2) While the approximation scheme in Theorem 1.1(i)—(ii) is already established in
higher dimensions, estimates similar to (1.13) have not been proved, to the best of
the author’s knowledge. This would be the missing part in obtaining characterizations
similar to Theorem 1.1(iii) in higher dimensions. Determining whether such estimates
hold for solutions to Abreu-type equations in dimensions at least two could be a
direction for further study.

Acknowledgements. The author would like to thank his advisor, Professor N.Q. Le, for
suggesting the problem, and providing helpful guidance and advice throughout the course of
this work.

The author would also like to thank the anonymous referee for providing constructive
feedback, which helped the author in improving this note.

The research of the author was supported in part by NSF grant DMS-2054686.

REFERENCES

[1] Abreu, M.: Kahler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641-651 (1998).
https://doi.org/10.1142/S0129167X98000282

[2] Benamou, J.-D., Carlier, G., Mérigot, Q., Oudet, E. Discretization of function-
als involving the Monge-Ampeére operator. Numer. Math. 134(3), 611-636 (2016).
https://doi.org/10.1007/s00211-015-0781-y

[3] Carlier, G.: Calculus of variations with convexity constraint. J. Nonlinear Convex Anal. 3(2), 125-143
(2002)

[4] Carlier, G., Radice. T: Approximation of variational problems with a convexity con-
straint by PDEs of Abreu type. Calc. Var. Partial Differ. Equ. 58, 170 (2019).
https://doi.org/10.1007/s00526-019-1613-1

[5] Chau, A. Weinkove, B.: Monge-Ampere functionals and the second boundary value problem. Math.
Res. Lett. 22(4), 1005-1022 (2015). https://doi.org/10.4310/MRL.2015.v22.n4.a3

[6] Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289-349 (2002).
https://doi.org/10.4310/jdg/1090950195



ON THE ONE-DIMENSIONAL SINGULAR ABREU EQUATIONS 19

[7] Le, N.Q. W%P  solution to the second boundary value problem of the prescribed
affine mean curvature and Abreu’s equations. J. Differ. Equ. 260(5), 4285-4300 (2016).
https://doi.org/10.1016/j.jde.2015.11.013

[8] Le, N.Q.: Singular Abreu equations and minimizers of convex functionals with a convexity constraint.
Commun. Pure Appl. Math. 73(10), 2248-2283 (2020). https://doi.org/10.1002/cpa.21883

[9] Le, N.Q.: On approximating minimizers of convex functionals with a convexity constraint by singular
Abreu equations without uniform convexity. Proc. R. Soc. Edinburgh Sect. A. 151(1), 356-376 (2021).
https://doi.org/10.1017/prm.2020.18

[10] Le, N.Q.: Twisted Harnack inequality and approximation of variational problems with

a convexity constraint by singular Abreu equations. Adv. Math. 434, 109325 (2023).
https://doi.org/10.1016/j.aim.2023.109325

[11] Le, N.Q., Zhou, B.: Solvability of a class of singular fourth order equations of Monge-Ampere type.

Ann. PDE. 7(2), 13 (2021). https://doi.org/10.1007/s40818-021-00102-5

[12] Lions, P.-L.: Identification du cone dual des fonctions convexes et applications. Comptes

Rendus de D’Académie des Sciences - Series I - Mathematics. 326(12), 1385-1390 (1998).
https://doi.org/10.1016/S0764-4442(98)80397-2

[13] Mirebeau, J.-M.: Adaptive, anisotropic and hierarchical cones of discrete convex functions. Numer.

Math. 132(4), 807-853 (2016). https://doi.org/10.1007/s00211-015-0732-7

[14] Rochet, J.-C., Choné, P.: Ironing, sweeping, and multidimensional screening. Econometrica 66(4), 783~

826 (1998). https://doi.org/10.2307/2999574

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405, USA
Email address: yk89@iu.edu



	1. Introduction and the Statement of Main Results
	2. Estimates and Existence of Solutions
	3. Convergence of Solutions to a Minimizer
	4. Characterization of Limiting Minimizers
	5. Conclusion
	References

