

Data Availability Statement

Our [Mandates Data Policy](#) requires data to be shared and a Data Availability Statement, so please enter one in the space below. Sample statements can be found [here](#). Please note that this statement will be published alongside your manuscript, if it is accepted for publication.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1 CHUP1 restricts chloroplast movement and effector-triggered immunity in epidermal cells

2
3 Alexander O. Nedo^{1,2,3}, Huining Liang⁴, Jaya Sriram^{1,2}, Md Abdur Razzak^{1,2}, Jung-Youn Lee^{1,2,3}, Chandra
4 Kambhamettu⁴, Savithramma P. Dinesh-Kumar^{5*}, and Jeffrey L. Caplan^{1,2,3*}

5
6 ¹Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716 USA

7 ²Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713 USA

8 ³Department of Biological Sciences, University of Delaware, Newark, DE, 19716 USA

9 ⁴Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716 USA

10 ⁵Department of Plant Biology and The Genome Center, College of Biological Sciences, University of
11 California, Davis, CA, 95616 USA

12 *Co-corresponding authors: jcaplan@udel.edu; spdineshkumar@ucdavis.edu

13 ORCID

14 Alexander O. Nedo [0000-0002-0824-315X](https://orcid.org/0000-0002-0824-315X)

15 Huining Liang [0009-0000-9781-2651](https://orcid.org/0009-0000-9781-2651)

16 Md Abdur Razzak [0000-0002-2576-8142](https://orcid.org/0000-0002-2576-8142)

17 Jung-Youn Lee [0000-0003-4604-7974](https://orcid.org/0000-0003-4604-7974)

18 Chandra Kambhamettu [0000-0001-5306-3994](https://orcid.org/0000-0001-5306-3994)

19 Savithramma P. Dinesh-Kumar [0000-0001-5738-316X](https://orcid.org/0000-0001-5738-316X)

20 Jeffrey L. Caplan [0000-0002-3991-0912](https://orcid.org/0000-0002-3991-0912)

Total word count (excluding summary, references and legends):	7009	No. of Figures:	8 (all in color)
Summary:	192	No. of Tables	0
Introduction:	1282	No. of Embedded Videos	11
Materials and Methods:	958	No. of Supporting Information Files	1 (Fig. S1-S9; Table S1-S4)
Results:	3089		
Discussion:	1680		
Acknowledgements:	28		

24 **Summary**

25 • Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast
26 avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research
27 showed silencing *CHUP1* induced chloroplast stromules and amplified effector-triggered
28 immunity (ETI); however, the underlying mechanisms remain largely unknown.

29 • CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated
30 actin (cp-actin) filaments for blue light-induced movement. To determine which function is
31 critical for ETI, we developed an approach to quantify chloroplast anchoring and movement
32 in epidermal cells. Our data show that silencing *NbCHUP1* in *Nicotiana benthamiana* plants
33 increased epidermal chloroplast de-anchoring and basal movement, but did not fully
34 disrupt blue-light induced chloroplast movement.

35 • Silencing *NbCHUP1* auto-activated epidermal chloroplast defense (ECD) responses
36 including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast
37 response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide
38 (H_2O_2). These findings show chloroplast anchoring restricts a multi-faceted ECD response.

39 • Our results also show that the accumulated chloroplastic H_2O_2 in *NbCHUP1*-silenced plants
40 was not required for the increased basal epidermal chloroplast movement, but was
41 essential for increased stromules and enhanced ETI. This finding indicates that chloroplast
42 de-anchoring and H_2O_2 play separate but essential roles during ETI.

43

44

45 **Key words:** Chloroplast movement, stromules, effector triggered immunity (ETI), epidermal chloroplast
46 defense (ECD), reactive oxygen species, epidermal chloroplast response (ECR), Chloroplast Unusual
47 Positioning 1 (CHUP1), phototropin 2 (phot2)

48

49

50

51 **Introduction**

52 Plant leaves are complex organs consisting of two mesophyll layers and a vascular system enveloped by
53 an epidermis that typically consists of guard cells, trichomes, and mostly epidermal pavement cells
54 (herein, epidermal cells) (Pyke & López-Juez, 1999). In dicot plant leaves, the main plastids in mesophyll
55 and epidermal cells are chloroplasts and they differ vastly in their size, shape, regulation, and function
56 (Barton *et al.*, 2016). There are more chloroplasts in mesophyll cells that are generally larger with an
57 extensive system of thylakoid stacks, called grana, that contain the photosynthetic light-harvesting
58 machinery (Mustárdy & Garab, 2003; Kunz *et al.*, 2023). These well-developed grana are the site of
59 many light reactions that are essential for mesophyll cells to carry out their primary function,
60 photosynthesis (Andersson & Anderson, 1980; Pyke, 2009). For a long time, it was thought that in most
61 plants, epidermal pavement cells do not have chloroplasts (Pyke, 2009). However, more recent studies
62 show that in the model plants, *Nicotiana benthamiana* and *Arabidopsis thaliana*, there are epidermal
63 chloroplasts that contain chlorophyll, but they are much smaller, with fewer grana, when compared to
64 mesophyll chloroplasts (Barton *et al.*, 2016). There is growing evidence that these epidermal
65 chloroplasts have evolved to become “sensory” organelles with a primary function in receiving and
66 sending signals rather than photosynthesis (Caplan *et al.*, 2008; Trotta *et al.*, 2014; Caplan *et al.*, 2015;
67 Barton *et al.*, 2016; Beltran *et al.*, 2018; Dopp *et al.*, 2021; Irieda & Takano, 2021).

68

69 Chloroplasts can sense changes in the environment, including biotic stresses like pathogen ingress. To
70 this end, chloroplasts act as primary producers of defense-related compounds, like reactive oxygen
71 species (ROS), such as hydrogen peroxide (H_2O_2), and salicylic acid (SA) (Yang *et al.*, 2021). The
72 generation of ROS has been implicated in different types of innate immune responses, however, with
73 some key differences between them. A rapid singular burst of ROS occurs during pattern-triggered
74 immunity (PTI) in response to recognition of pathogen-associated molecular patterns (PAMPs) by cell
75 surface localized pattern recognition receptors (PRRs) (Yu *et al.*, 2017). In comparison, during effector-
76 triggered immunity (ETI) initiated by recognition of pathogen encoded effectors by nucleotide binding
77 leucine rich repeat (NLR) class of immune receptors, there is a first rapid ROS burst and then a second,
78 sustained burst (Torres, 2010). This sustained ROS burst, along with an increase in SA, has been shown
79 to induce a downstream signaling cascade, that often leads to a hypersensitive response, a type of
80 programmed cell death (HR-PCD) (Balint-Kurti, 2019). The sustained ROS burst during ETI is generated
81 through chloroplasts (Liu *et al.*, 2007; Kachroo *et al.*, 2021). We and others have shown that chloroplast-
82 generated ROS can change chloroplast behavior through inducing stroma-filled tubules called stromules,

83 which play a role in either signal transmission or regulating chloroplast movement (Gray *et al.*, 2012;
84 Brunkard *et al.*, 2015; Caplan *et al.*, 2015; Meier *et al.*, 2023).

85

86 Chloroplasts change positioning in response to environmental stimuli, and the vast majority of these
87 studies have been on mesophyll chloroplasts' response to light (Sakai *et al.*, 2001; Kagawa & Wada,
88 2002; Oikawa *et al.*, 2008; Kadota *et al.*, 2009; Luesse *et al.*, 2010; Whippo *et al.*, 2011; Gotoh *et al.*,
89 2018). To efficiently collect light for photosynthesis, mesophyll chloroplasts accumulate on the pericinal
90 surface under low light conditions, but will move to the anticinal walls under high light conditions to
91 avoid photodamage (Kasahara *et al.*, 2002). Mesophyll chloroplast movement has been extensively
92 studied, revealing the role and significance of various major players in this accumulation and avoidance
93 response. Photoreceptors phototropin 1 (phot1) and 2 (phot2) trigger these light-based responses
94 (Jarillo *et al.*, 2001; Kagawa *et al.*, 2001; Sakai *et al.*, 2001), as well as light-based responses in other
95 tissue types, such as stomatal opening and closing and leaf expansion during plant growth (Kinoshita *et*
96 *al.*, 2001; Takemiya *et al.*, 2005). Epidermal chloroplasts also respond to blue light, and the studies on
97 epidermal chloroplast positioning have focused on their role in nuclear avoidance movement (Higa *et*
98 *al.*, 2014; Suetsugu *et al.*, 2015; Suetsugu *et al.*, 2016).

99

100 During ETI, epidermal chloroplasts send out stromules that connect to nuclei, and this leads to
101 perinuclear clustering of chloroplasts, potentially increasing the transmission of chloroplast-generated
102 defense signals, as we were able to observe movement of chloroplastic N-receptor interacting protein 1
103 (NRIP1) being transported into the nucleus from the chloroplasts (Caplan *et al.*, 2015). Formation of
104 stromules is dependent on calponin homology domain containing kinesin (KIS1), with its microtubule-
105 binding motor domain being required for stromule formation while its Calponin homology domain is
106 required for actin binding and perinuclear clustering of chloroplasts (Meier *et al.*, 2023). Perinuclear
107 clustering is not specific to ETI, but occurs under other environmental stress and has been implicated
108 more generally in retrograde signaling and inter-organelle communication (de Souza *et al.*, 2017; Ding *et*
109 *al.*, 2019). Epidermal chloroplasts have also been shown to reposition in response to infection by fungi
110 and oomycetes. During *Phytophthora infestans* infection, chloroplasts with stromules accumulate
111 around haustoria (Savage *et al.*, 2021). Upon infection by non-adapted fungi, *Arabidopsis* plants initiate
112 a non-host response (NHR) that invokes an epidermal chloroplast response (ECR) during which
113 chloroplast reposition to the surface of the cell (Irieda & Takano, 2021). Collectively, the emerging

114 evidence points to chloroplast likely having a robust sensing and signaling role in epidermal cells across a
115 wide range of responses.

116

117 A major breakthrough in understanding mechanistic basis of mesophyll chloroplasts repositioning was
118 the discovery of Chloroplast Unusual Positioning 1 (CHUP1), which is required for blue light-based
119 accumulation and avoidance responses (Oikawa *et al.*, 2003; Oikawa *et al.*, 2008; Kong *et al.*, 2013).
120 These studies also show that CHUP1 plays a role in mesophyll chloroplast anchoring because in *chup1*
121 mutants there is an increase in the aggregation of chloroplasts. The *chup1* mutant was found in a
122 genetic screen by examining light transmission through leaves, which changes during the accumulation
123 and avoidance responses. That general screening approach was fruitful, and discovered other key
124 players in chloroplast positioning, including KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST
125 MOVEMENT 1 (KAC1) and 2 (KAC2) (Suetsugu *et al.*, 2010), PLASTID MOVEMENT IMPAIRED1 (PMI1) and
126 2 (PMI2) (DeBlasio *et al.*, 2005), J-domain protein required for chloroplast accumulation response 1
127 (JAC1) (Suetsugu *et al.*, 2005), and THRUMIN 1 (Whippo *et al.*, 2011). Beyond improper blue light-based
128 accumulation and avoidance, these mutants have other similarities, such as a general increase in the
129 aggregation of chloroplasts in *chup1* and *kac1* mutants, indicating that they play a significant role in
130 chloroplast anchoring (Oikawa *et al.*, 2008; Suetsugu *et al.*, 2010). Mechanistic studies discovered that
131 CHUP1 generates the motive force by playing a critical role in the recruitment of actin to the leading
132 edge of chloroplasts outer membrane (cp-actin) in mesophyll cells (Kadota *et al.*, 2009; Kong *et al.*,
133 2024) and in epidermal cells for nuclear movement (Higa *et al.*, 2014; Suetsugu *et al.*, 2016). This
134 recruitment of cp-actin and organization of actin microfilaments has been further associated with other
135 movement related players, such as THRUMIN1, implying that CHUP1 is a critical part of a larger complex,
136 driving chloroplast movement as an actin polymerization factor in mesophyll cells (Dwyer & Hangarter,
137 2021; Kong *et al.*, 2024).

138 Much less is known about the role of CHUP1 in epidermal cells during plant innate immunity. Here, we
139 show that in epidermal cells, CHUP1's main role is in chloroplast anchoring because silencing of *CHUP1*
140 increases rather than decreases chloroplast movement and repositioning. This increase in chloroplast
141 movement is independent of phot2 photoreceptor and cp-actin, indicating that a novel mechanism(s) is
142 involved in epidermal chloroplast movement compared to mesophyll chloroplasts. Our findings
143 described here further show that *CHUP1*-mediated anchoring is important for proper regulation of
144 epidermal chloroplast movement and epidermal chloroplast defense (ECD) during immunity.

145 **Materials and Methods**

146

147 ***Agrobacterium*-based transient expression**

148 *Agrobacterium tumefaciens* transient expression was conducted as described in (Caplan *et al.*, 2015;
149 Kumar *et al.*, 2018). Constructs were transformed into *Agrobacterium* strains GV2260 or GV3101 and
150 grown on LB plates with antibiotic selection (Supplemental Table S1). *Agrobacterium* was suspended in
151 infiltration media containing 10 mM MgCl₂, 10 mM 2-Morpholinoethanesulfonic acid (MES) and 200 µM
152 acetosyringone and diluted to a final OD₆₀₀ of 0.5. The *Agrobacterium* was incubated for a minimum of 3
153 hours prior to infiltration into the 5th or 6th leaves of *Nicotiana benthamiana* using a 1 mL needleless
154 syringe. See Supporting Information (Methods S1) for plant growth conditions. Plants were left at room
155 temperature for 16-24 hours under ambient light conditions before being placed back into the growth
156 chamber. Standard agroinfiltration expression of fluorescent protein fusions were imaged 48- or 72-
157 hours post infiltration (Table S1).

158

159 **Virus-induced gene silencing**

160 *N. benthamiana* transgenic plants expressing the N NLR immune receptor were used for *Tobacco rattle*
161 virus (TRV)- based virus-induced gene silencing (VIGS) experiments as described in (Liu *et al.*, 2002;
162 Dinesh-Kumar *et al.*, 2003). *Agrobacterium* containing TRV1 was mixed with cultures containing TRV2
163 empty vector, TRV2:*NbCHUP1*, TRV2:*Nbphot2*, TRV2:*NbCHUP1Nbphot2*, TRV2:*Nbphot1*, and
164 TRV2:*NbCHUP1Nbphot1* in a 1:1 ratio adjusting the final OD₆₀₀ to 0.5 in infiltration media. Three week-
165 old plants were infiltrated and imaged 13 days post infiltration. VIGS efficiency was measured by
166 quantitative real-time PCR (Supporting Information Methods S2 and Table S2).

167

168 **Imaging of chloroplast and stromule dynamics**

169 Images for stromule and chloroplast movement dynamics were collected using super-resolution fast
170 Airyscan on a Zeiss LSM880 laser scanning confocal microscope with a C-Apochromat 40X water
171 immersion objective lens [numerical aperture (NA)=1.2]. In the low and high intensity blue light
172 experiments, the same leaf sample was first imaged with only low intensity (3.70 µW) 514 nm green
173 laser, and then after 9 minutes, the leaf sample was exposed to additional high intensity (24 µW) 458
174 nm blue light laser for an additional 9 minutes. For *Arabidopsis thaliana* experiments, the duration of
175 images was cut in half to 4 minutes and 30 seconds and for examining the effects of red light the blue
176 light laser was exchanged for a red-light laser, all other conditions were kept the same (See Table S3 for

177 power levels). In experiments inducing ETI, different leaf slices were imaged individually without any
178 blue light laser present. Airyscan images were processed using Zen Black version 3.0 (Carl Zeiss).
179 Maximum intensity projections (MIPs) were created using Fiji, a version of ImageJ (Schindelin *et al.*,
180 2012). Fiji was used to correct instances of field of view drift in processed Airyscan images using the
181 plugin "Linear Stack Alignment with SIFT" (Lowe, 2004). Lifeact-TagRFP (actin), mTalin-GFP (actin)
182 (Dyachok *et al.*, 2014), and RBCS1a_{cTP}-mNG (chloroplasts and stromules) were imaged under high
183 intensity blue light on an Andor Dragonfly 600. Borealis total internal reflection fluorescence (BTIRF)
184 microscopy was conducted with a HC PlanApochromat 63x TIRF oil immersion lens (NA 1.47) cTP-mNG
185 was imaged using a 488nm laser and Lifeact-TagRFP was imaged with a 561 nm laser. Spinning disk
186 confocal microscopy was conducted using a Leica HC Plan Apochromat CS2 40X water immersion
187 objective lens (NA 1.1). Datasets which experienced uncorrectable image drift or showed cellular
188 damage or death caused by infiltration were discarded. See Supporting Information for detailed
189 methods of image analysis (Methods S3), a description of metrics (Table S4), and the analyzed datasets
190 (Table S5).

191

192 **Confocal Imaging of cytoplasmic streaming**

193 Cytosolic streaming was visualized in *N. benthamiana* using transient expression of p35S::Citrine and in
194 *A. thaliana* using 2 µM concentrations of 5-Chloromethylfluorescein diacetate (Green CMFDA). CMFDA
195 was then infiltrated into a leaf and mounted in a NUNC chamber for 10-15 minutes prior to imaging.
196 Cytochalasin D treatments were performed as previously described (Kumar *et al.*, 2018; Methods S4).
197 Spinning disk images were deconvolved, drift corrected, and bleach corrected using Huygens software
198 (Scientific Volume Imaging).

199

200 **Measurement of H₂O₂ with HyPer7 sensor**

201 HyPer7 ratiometric measurements of H₂O₂ were collected on a Andor Dragonfly 600 spinning disk
202 confocal microscope (Oxford Instruments) using a Leica HC Plan Apochromat CS2 40X water immersion
203 objective lens (NA 1.1). Excitation laser powers with the 405 nm and 488 nm lasers were optimized to
204 induce no additional ROS during imaging (Supplemental Table S3). Ratiometric measurements of
205 fluorescence emission (521/38nm bandpass filter) using 488 nm excitation and 405 nm excitation were
206 calculated in FIJI. Ratiometric images using a "fire" lookup table in FIJI were created for visual display.

207

208 **Statistical analysis**

209 Statistical analysis was performed using Prism 7 or 9 (Graphpad). For normally distributed data such
210 stromule induction, frequency of chloroplast movement, # of chloroplast per nucleus, ECR, and
211 frequency of SDM and Chl-Chl movement, Student's t-test with Welch's correction was performed when
212 comparing two groups, while a Welch's analysis of variance (ANOVA) with Dunnett's T3 multiple
213 comparison test was performed when comparing multiple groups. For non-normally distributed data
214 such as maximum stromule length, maximum change in stromule length, stromule tip velocity,
215 chloroplast body velocity, snake curvature, snake length and HyPer7 ratio were calculated using a Mann-
216 Whitney U-test for comparing two groups and a Kruskal-Wallis with Dunn's multiple comparisons test
217 for comparing data sets with more than two groups. Different letters signify significant difference and
218 groups with and without the prime symbol (') were compared separately. For all data containing HyPer7
219 ratios, a minimum of three biological plant replicates were used for each condition. For all other data,
220 there were a minimum of eight biological plant replicates unless otherwise stated. All data is comprised
221 from at least three experimental replicates unless otherwise stated. In data represented as percentages
222 or ratios the N values are the number of leaf sections. For Hyper7, chloroplast velocity, stromule tip
223 velocity, and stromule length graphs the N values are individual chloroplasts or stromules.

224

225 **Results**

226 ***CHUP1*-silencing promotes increased chloroplast movement in epidermal pavement cells**

227 In a prior study, we discovered that knockdown of *CHUP1* expression using TRV-based VIGS in *N.*
228 *benthamiana* and knockout of *CHUP1* in *Arabidopsis* resulted in an increase in the amount of chloroplast
229 stromules in epidermal cells and enhanced HR-PCD during ETI (Caplan *et al.*, 2015). Since *CHUP1* is
230 required for chloroplast movement in mesophyll cells (Oikawa *et al.*, 2003), we posited that the increase
231 in stromules may be caused by a change in chloroplast movement. To study this, we silenced *CHUP1*
232 (Fig. S1) and quantified basal chloroplast movement, chloroplast movement that is not induced by light.
233 For all experiments, we used upper leaves that had more efficient silencing (Fig. S1), similar TRV
234 transcript levels as the VIGS control (Fig. S2a), and no TRV symptoms (Fig. S2c). Silencing *CHUP1* nearly
235 tripled the percentage of chloroplasts moving and increased their velocity in epidermal cells (Fig. 1a-b).
236 To examine this further, we quantified the number of chloroplasts that had connected chloroplast-to-
237 chloroplast (Chl-Chl) movement. When chloroplast anchoring is disrupted, chloroplasts will aggregate
238 and two or more chloroplasts will associate with each other and move together (Oikawa *et al.*, 2008;
239 Yang *et al.*, 2011; Suetsugu *et al.*, 2012; Savage *et al.*, 2021). Connected Chl-Chl movement was greatly
240 increased in epidermal cells of *CHUP1*-silenced plants compared to the control (Fig. 1c).

241
242 Alternatively, CHUP1 may only be required for chloroplast movement in epidermal cells in response to
243 high intensity light similar to chloroplast avoidance response in mesophyll cells. Therefore, we
244 quantitated chloroplast movement and velocity in epidermal cells under low intensity light (LL) and high
245 intensity blue light (HL) in wild-type and *CHUP1*-silenced plants. In the control plants, the percentage of
246 moving epidermal chloroplasts and their velocity increased in response to HL (Fig. 1d-e; Video 1, Video
247 2). However, in *CHUP1*-silenced plants, the percentage of moving epidermal chloroplasts was higher
248 with or without HL, which was similar to control plants with HL (Fig. 1d-e; Video 1, Video 3). In terms of
249 velocity, there was additional increase in response to HL compared to LL (Fig. 1f). Next, to determine if
250 *Arabidopsis chup1* mutants exhibit similar phenotypes, we performed these experiments in *Atchup1*
251 plants. Similar to *CHUP1*-silenced *N. benthamiana* plants, we found increased basal epidermal
252 chloroplast movement under LL conditions in *Atchup1* compared to wild-type Col-0 plants (Fig. 1g).
253 Furthermore, we found an increase in the percent of chloroplasts moving and chloroplast velocity under
254 HL when compared to LL in *Atchup1* (Fig. 1g-h). In comparison, silencing *CHUP1* in *N. benthamiana* did
255 not increase in the percent of chloroplasts moving and a lower increase in chloroplast velocity (Fig. 1e-f).
256
257 To determine if this was a blue light-induced response and not simply due to an increase in
258 photosynthetic activity, we repeated the experiments using high red light. High red light did not further
259 increase chloroplast movement or velocity in the *NbCHUP1*-silenced or *Atchup1* plants (Fig. S3). We
260 observed a slight decrease in velocity in Col-0 when exposed to high intensity red light, but no
261 statistically significant change in *Atchup1* mutant (Fig. S3b). These results suggest that there is a CHUP1
262 independent pathway for blue light-induced chloroplast movement in epidermal cells.
263
264 In mesophyll cells, the chloroplast avoidance response requires blue light photoreceptor, phot2, and to
265 lesser extent phot1 (Jarillo *et al.*, 2001; Kagawa *et al.*, 2001; Sakai *et al.*, 2001; Luesse *et al.*, 2010).
266 Therefore, we silenced *PHOT1* and *PHOT2* in *N. benthamiana* (Fig. S1) and then examined basal and
267 light-induced epidermal chloroplast movement. Silencing *PHOT2* disrupted the HL-induced increased in
268 epidermal chloroplast movement and velocity (Fig. 1d-f; Video 1, Video 4). Silencing *PHOT1* had no
269 effect on HL-induced chloroplast movement (Fig. 1d-e), but increased HL-induced epidermal chloroplast
270 velocity (Fig. 1f). These data are in agreement with studies in *Arabidopsis phot1* mutants that have a
271 faster mesophyll chloroplast avoidance response (Ichikawa *et al.*, 2011), and indicate that similar to
272 mesophyll cells, HL-induced epidermal chloroplast movement primarily requires phot2.

273

274 Next, we tested if this constitutive movement in *CHUP1*-silenced plants is dependent on *phot2*. Co-
275 silencing *CHUP1* with *PHOT2* or *PHOT1* did not disrupt the increased chloroplast movement and
276 chloroplast velocity caused by *CHUP1*-silencing (Fig. 1d-f; Fig. S1; Video 1, Video 4), indicating that the
277 *CHUP1*-silencing effect is dominant and overrode the disruption of chloroplast movement by *PHOT2*
278 silencing. Together, these results indicate that *CHUP1* is not required for increased epidermal
279 chloroplast movement in response to HL, and rather, more likely functions during chloroplast anchoring.

280

281 **Cytoplasmic streaming partially contributes to chloroplast movement in an actin dependent manner**
282 In mesophyll cells, light-induced chloroplast movement has been shown to be dependent on actin
283 microfilaments, with accumulation of cp-actin filaments playing a critical role in the blue light avoidance
284 response (Kadota *et al.*, 2009; Suetsugu *et al.*, 2016; Wada & Kong, 2018; Dwyer & Hangarter, 2021;
285 Dwyer & Hangarter, 2022). We were unable to observe cp-actin filaments on epidermal chloroplasts
286 showing phototrophic movement in response to HL using total internal reflection fluorescence
287 microscopy (Fig. S4a) or spinning disk confocal microscopy (Fig. 2a-b, Fig. S4b-d; Note S1; Video 5, Video
288 6, Video 7), suggesting alternative modes of chloroplast movement. Since we were unable to observe
289 cp-actin in epidermal cells, we next examined the role of cytoplasmic streaming during basal and blue
290 light induced chloroplast movement. For these experiments, we marked the cytoplasm by transiently
291 expressing free Citrine in *N. benthamiana* or using a green tracer dye, CMFDA, in *A. thaliana*. First, we
292 examined blue light movement in wild-type *N. benthamiana* and *Arabidopsis* plants. We identified
293 instances in which chloroplasts were stationary and anchored under low light, but rapidly moved with a
294 cytoplasmic stream under high light (Fig. 3a, Video 8). We categorized chloroplast movement that
295 directly correlates with cytoplasmic streams as a form of rapid linear movement. Next, we examined the
296 effect of *CHUP1* silencing. In the VIGS control, we again observed chloroplasts moving with cytoplasmic
297 streaming under high light conditions (Fig. S5a, Video 9). In the *CHUP1*-silenced plants, we observed
298 partial correlation of chloroplast movement with cytoplasmic streaming with low or high light
299 conditions. For example, we observed an instance of a chloroplast first moving within a cytoplasmic
300 stream before moving away from the stream and eventually released, moving independently from
301 cytoplasmic streaming (Fig. 3b; Fig. S5a, Video 9). These data suggest that when chloroplasts are de-
302 anchored, increased chloroplast movement is partially correlated with movement in cytoplasmic
303 streaming.

304

305 Next, we disrupted cytoplasmic streaming using an actin polymerization inhibitor, cytochalasin D (CD),
306 and examined chloroplast movement. Cytochalasins have been used previously to disrupt and study
307 cytoplasmic streaming (Foissner & Wasteneys, 2007; Poulsen *et al.*, 2013; Holzinger & Blaas, 2016). CD
308 completely abolished cytoplasmic streaming in *N. benthamiana* (Fig. 3c, Video 9) and Arabidopsis plants
309 (Video 10). CD also inhibited chloroplast movement as we observed previously (Kumar *et al.*, 2018).
310 Quantification showed that CD reduced basal chloroplast movement and eliminated light-induced
311 chloroplast movement in both *N. benthamiana* (Fig. 3d, Video 9) and Arabidopsis (Fig. 3e, Video 10).
312 Furthermore, CD disrupted the increase of basal chloroplast movement in *CHUP1*-silenced (Fig. 3d) and
313 *Atchup1* plants (Fig. 3e). To quantify chloroplast movement that was heavily correlated and potentially
314 driven by cytoplasmic streaming, we counted the proportion of chloroplasts which exhibited rapid linear
315 movement in cytoplasmic streams (see representative examples in Fig. 3a and Fig. S5). CD completely
316 abolished this type of chloroplast movement in *CHUP1*-silenced and *Atchup1* plants (Fig. S6), but did not
317 abolish all chloroplast movement (Fig. 3d,e). These findings suggest chloroplast anchoring prevents
318 chloroplasts from moving in cytoplasmic streams and de-anchoring chloroplasts with high blue light or
319 disrupting *CHUP1* function allows chloroplasts to partially move with cytoplasmic streaming in
320 epidermal cells.

321

322 ***CHUP1*-silencing increases chloroplast stromule dynamicity**

323 Next, we performed a more detailed examination of stromules to determine if they play a role in the
324 constitutive increase in chloroplast movement caused by either *CHUP1* silencing or HL. First, we
325 confirmed that *CHUP1* silencing induces stromules (Fig. 4a-b) as we and others have previously reported
326 (Caplan *et al.*, 2015; Irieda & Takano, 2021). We then examined if epidermal chloroplasts follow the
327 direction of stromules, which is a type of movement previously described as stromules directed
328 movement (SDM) of chloroplasts (Fig. S7). In *CHUP1*-silenced plants, there was no increase in the
329 percentage of stromule movement events causing SDM (Fig. 4c). Since there was an overall increase in
330 chloroplast movement, SDM represented a lower percentage of total chloroplast movement (Fig. 4d).
331 These data indicate that the observed increased chloroplast movement in *CHUP1*-silenced plants was
332 not due to SDM.

333 Next, a custom stromule tracking program in MATLAB was developed and used to quantify various
334 stromule movement characteristics under LL and HL in various silenced plants (Fig. S7b-c). We observed
335 increased stromule velocity, length, and max length change in *CHUP1*-silenced plants (Fig. 4e-g) and
336 there was no further change in response to HL (Fig. S8b-c). There was no change in the amount of

337 stromule extensions or retractions in *CHUP1*-silenced plants compared to the control silenced plants
338 (Fig. S9). Furthermore, the stromule quantity, tip velocity, and length did not change in response to HL in
339 the silencing control plants and in *PHOT2*-silenced plants (Fig. S8a-c). Interestingly, silencing *PHOT1*
340 increased stromule tip velocity in response to HL (Fig. S8b) and constitutively increased the length of
341 stromules even in LL (Fig. S8c). In *CHUP1PHOT1*-silenced plants there was a further increase in stromule
342 tip velocity in response to HL (Fig. S8b), but there was no further increase in stromule length (Fig. S8c).
343 Therefore, it is possible that *phot1* inhibits stromule movement in response to HL via the same
344 mechanism that it inhibits chloroplast movement in mesophyll chloroplasts (Ichikawa *et al.*, 2011).
345 Together, our results indicate that stromule movement, like chloroplast movement, is more dynamic in
346 *CHUP1*-silenced plants, suggesting chloroplast anchoring may inhibit stromules dynamicity.

347

348 ***CHUP1*-silencing amplifies immunity associated chloroplast responses**

349 It is now well established that chloroplasts are an integral part of the plant innate immune system,
350 playing multifaceted roles during the defense against pathogens (Kumar *et al.*, 2018; Park *et al.*, 2018;
351 Kachroo *et al.*, 2021; Irieda, 2022). We previously showed that silencing *CHUP1* or knocking out *Atchup1*
352 amplifies the hypersensitive response type of PCD during ETI (Caplan *et al.*, 2015), and, the data
353 presented above suggests that *CHUP1* silencing disrupts chloroplast anchoring. Therefore, we examined
354 three key components of the epidermal chloroplasts defense (ECD) in *CHUP1*-silenced plants. *CHUP1*
355 silencing constitutively induced stromules to a level similar to stromule induction during ETI in control
356 plants (Fig. 5a). In *CHUP1*-silenced plants there was no further increase in stromules during ETI (Fig. 5a).
357 Similarly, in *CHUP1*-silenced plants, there was a constitutive increase in stromule tip velocity, maximum
358 length, and maximum length change, and no further significant increase during ETI (Fig. 5b-d). Silencing
359 *PHOT2* had a no effect on stromule dynamics during ETI (Fig. S10a-c), but silencing *PHOT1* disrupted any
360 increased stromule velocity during ETI, which was restored by co-silencing with *CHUP1* (Fig. S10a-b).
361 Taken together with the increase in stromule length and tip velocity in *PHOT1*-silenced plants observed
362 in the light intensity experiments (Fig. S8b-c), it is possible that *phot1* may negatively regulate stromules
363 by an unknown mechanism.

364

365 Next we examined perinuclear chloroplast clustering. During ETI, epidermal chloroplasts move towards
366 nuclei, resulting in perinuclear clustering (Kumar *et al.*, 2018; Meier *et al.*, 2023). Furthermore, *CHUP1*
367 has been implicated in chloroplast-driven nuclear movement and an increase in perinuclear clustering in
368 *Atchup1* mutant has been reported (Higa *et al.*, 2014; Suetsugu *et al.*, 2016). In *CHUP1*-silenced plants,

369 perinuclear chloroplast clustering was constitutively induced (Fig. 5e-f). The level of clustering in *CHUP1*-
370 silenced plants was higher than the level induced during ETI in the control silenced plants (Fig. 5f).
371 Furthermore, we found that expression of *CHUP1* RNA is increased rather than decreased during ETI
372 (Fig. S11), suggesting that the *CHUP1* controlled de-anchoring occurs post-transcriptionally.

373

374 Lastly, we examined the ECR, which was first described as a non-host response during fungal infection
375 and was shown to be increased in *Atchup1* mutant (Irieda & Takano, 2021). ECR has not been studied
376 during ETI, and here, we show that ECR is also induced during ETI (Fig. 6a-b). Silencing *CHUP1*
377 constitutively increased ECR similar to the level induced during ETI (Fig. 6a-b). ECR was further increased
378 during ETI in *CHUP1*-silenced plants (Fig. 6a-b). Together, all three of the ECD responses examined were
379 constitutively activated in *CHUP1*-silenced epidermal cells, and then further amplified during ETI. The
380 ECD responses are not simply a result of increased random epidermal chloroplast movement, since the
381 percentage of moving chloroplasts did not increase during ETI and there is just a minor increase in
382 chloroplast velocity (Fig. 6c-d, Fig. S10d-e). Our findings indicate that the general, constitutive
383 amplification of ECD may lead to a priming of ETI, explaining the previously reported increased rate of
384 ETI-induced cell death in *CHUP1*-silenced or *Atchup1* knockout plants (Caplan *et al.*, 2015).

385

386 ***CHUP1*-silencing increases epidermal chloroplastic ROS that is responsible for stromule induction and
387 enhanced cell death during ETI**

388 The results described above established that ECD responses related to chloroplast positioning and
389 stromule movement are increased in *CHUP1*-silenced epidermal cells. To explore if defense signals are
390 also elevated in *CHUP1*-silenced epidermal chloroplasts, we focused on H₂O₂ because of its well-
391 established role as a ROS signal during ETI (Shapiguzov *et al.*, 2012; Caplan *et al.*, 2015; Jwa & Hwang,
392 2017). To quantitate chloroplastic H₂O₂, we targeted the genetically-encoded H₂O₂ biosensor, HyPer7
393 (Pak *et al.*, 2020), to the chloroplast stroma by fusing it to Arabidopsis Ribulose Bisphosphate
394 Carboxylase Small Chain 1a (RBCS1a) transit peptide (cTP-HyPer7). As previously reported using the
395 original HyPer sensor (Caplan *et al.*, 2015), cTP-HyPer7 detected an increase in H₂O₂ during ETI, as
396 indicated by the increased ratio of 488 nm to 405 nm excited fluorescence (Fig. 7a-b). In *CHUP1*-silenced
397 epidermal cells, chloroplastic H₂O₂ levels were slightly elevated, but did not increase during ETI to the
398 same level observed in the silencing control plants (Fig. 7b). To determine if this increase in H₂O₂
399 requires light, we dark adapted the plants 20-22 hours prior to imaging. H₂O₂ levels were lower in the
400 dark adapted *CHUP1*-silenced and silencing control plants compared to plants kept under light (Fig. S12).

401 Furthermore, we no longer observed the increased level of H₂O₂ in *CHUP1*-silenced plants, suggesting it
402 is light dependent. To determine if other disruptions in light regulated chloroplast positioning elevated
403 H₂O₂, we examined H₂O₂ in *PHOT2* and *PHOT2CHUP1*-silenced plants and found similar light-dependent
404 increases in H₂O₂ (Fig. S12).

405

406 Next, to determine if the elevated levels of H₂O₂ contributed to the enhanced PCD during ETI observed
407 in *CHUP1*-silenced plants, we scavenged chloroplastic H₂O₂ by expressing cytosolic ascorbate peroxidase
408 (APX) in the chloroplast stroma. This approach has been used extensively to decrease chloroplastic H₂O₂
409 by overexpressing native stromal, thylakoid, or cytosolic APX targeted to chloroplasts (Yabuta *et al.*,
410 2002; Badawi *et al.*, 2004; Exposito-Rodriguez *et al.*, 2017; Dopp *et al.*, 2023). Here, a RBCS1a
411 chloroplast transit peptide was placed on the N-terminus of a cytosolic *Arabidopsis* APX1 and the
412 fluorescent protein mKate2 was placed on the C-terminus to mark epidermal chloroplasts transiently
413 expressing APX (herein cTP-APX; Fig. S13). Epidermal chloroplasts expressing cTP-APX had a lower level
414 of H₂O₂ prior to ETI and the increase of H₂O₂ was mostly, but not completely, quenched during ETI (Fig.
415 7c). To examine the effect of silencing *CHUP1* and cTP-APX on PCD, we induced ETI and quantitated it via
416 an ion leakage assay (Hatsugai & Katagiri, 2018). *CHUP1*-silenced plants had elevated levels of ion
417 leakage prior to ETI and an enhanced amount of ion leakage during ETI compared to the silencing
418 control (Fig. 7d; Methods S5). The ion leakage assay showed that overexpression of chloroplast-targeted
419 APX reduced PCD during ETI, and in *CHUP1*-silenced plants, the PCD during ETI was lowered to a level
420 similar to silencing control without APX (Fig. 7d-e). These results indicate that silencing of *CHUP1*
421 increases epidermal chloroplastic ROS production during ETI and this in turn is required for stromule
422 induction and enhanced PCD during ETI.

423

424 **Epidermal chloroplast movement is independent of chloroplastic ROS**

425 To determine if chloroplastic H₂O₂ is required for other changes in *CHUP1*-silenced plants, we examined
426 the effect of overexpressing chloroplast targeted APX on two key phenotypes, increased chloroplast
427 movement and stromules. Overexpression of cTP-APX did not disrupt the increased chloroplast
428 movement phenotype of silencing *CHUP1* (Fig. S14), suggesting elevated H₂O₂ levels are not required to
429 disrupt anchoring. However, expression of cTP-APX resulted in a partial decrease in stromule induction
430 in *CHUP1*-silenced plants, but had little effect on the stromule induction in the silencing control (Fig. 8a).
431 To further explore the role of H₂O₂ during ETI, we used HL to induce H₂O₂, which has been used
432 previously with HyPer7 to examine redox dynamics and ROS scavenging in epidermal chloroplasts (Dopp

433 *et al.*, 2023). Plants expressing HyPer7 were exposed to HL and changes in H₂O₂ were measured over 10
434 minutes (Fig. 8b; Fig. S15; Video 11). This experimental approach made it possible to examine the
435 maximum H₂O₂ scavenging ability in the chloroplast stroma and to further examine the interplay
436 between ETI-induced and HL-induced changes in epidermal chloroplast dynamics. In the silencing
437 control plants, H₂O₂ levels during ETI were higher at the beginning (T=0) and rapidly peaked to very high
438 levels (T=~1.5 min) with HL (Fig. 8b, yellow arrow). The same rapid increase was observed in *CHUP1*-
439 silenced plants during ETI, but it did not peak at the same level as the silencing control during ETI (Fig.
440 7b, purple arrow). We hypothesize that the constitutive induction of H₂O₂ by silencing *CHUP1* may cause
441 chloroplasts to compensate by increasing their H₂O₂ scavenging capacity. Even without ETI in *CHUP1*-
442 silenced plants, H₂O₂ levels were higher at the beginning of light induction and peaked around the same
443 level (Fig. 8b). To verify that H₂O₂ scavenging affects H₂O₂ levels, we overexpressed cTP-APX and found
444 that the H₂O₂ levels remained relatively low, and had similar response curves to light induction, but at a
445 much lower level (Fig. 8b). The intensity of light we used for this experiment was comparable to the
446 light-induced chloroplast movement experiments shown in Fig. 1. Therefore, we tested the effect of
447 chloroplast-targeted APX on chloroplast movement and stromules under LL and HL. Chloroplast-
448 targeted APX did not disrupt the increased chloroplast movement in *CHUP1*-silenced plants (Fig. 8c).
449 Stromules are not induced by HL, but scavenging H₂O₂ with cTP-APX partially disrupts stromule induction
450 in *CHUP1*-silenced plants with or without HL (Fig. 8d). These results firmly establish that the stromule
451 induction caused by silencing *CHUP1* is at least partially due to an increase in chloroplastic H₂O₂, but the
452 increased chloroplast movement caused by silencing *CHUP1* or HL in epidermal cells is independent of
453 chloroplastic H₂O₂.

454

455 **Discussion**

456 Our data shows that silencing *CHUP1* leads to an increase in basal chloroplast movement in epidermal
457 cells and points to a differential function of *CHUP1* in epidermal and mesophyll cells. Prior studies
458 examined the epidermal chloroplast avoidance response indirectly through the movement of nuclei
459 (Higa *et al.*, 2014; Suetsugu *et al.*, 2015; Suetsugu *et al.*, 2016). Here, we directly show that epidermal
460 chloroplasts, despite not being used primarily for energy production, do respond to HL and the induced
461 movement is dependent on phot2. This suggests light-regulated chloroplast movement responses are
462 partially conserved between mesophyll and epidermal chloroplasts. However, our study reveals a major
463 difference during ETI. *CHUP1* or cp-actin is not required for basal chloroplast movement or chloroplast
464 repositioning during ETI, suggesting *CHUP1*'s primary function in epidermal cells during ETI is in

465 chloroplast anchoring rather than providing the motive force for chloroplast movement and
466 repositioning. In light of this major finding, we did a detailed analysis on the effect of disrupting
467 chloroplast anchoring. We mainly took a cell biology approach that leveraged the advantages of live-cell
468 confocal microscopy to quantify how silencing *CHUP1* changes epidermal chloroplast movement,
469 stromules, and chloroplastic ROS during plant innate immunity. Our findings show that silencing *CHUP1*
470 auto-activates ECD responses, including stromule induction, perinuclear chloroplast clustering, ECR, and
471 chloroplastic H₂O₂. Our results from using cTP-APX to scavenge H₂O₂ shows that chloroplastic H₂O₂ is
472 essential for ETI and related stromule induction, but not required for chloroplast movement.

473

474 There is an emerging theory that chloroplasts should be divided into two categories: photo-harvesting
475 chloroplasts and sensory chloroplasts. Both types may retain partial functionality of either type, but
476 have become specialized for specific functions. Our study in the widely-used model system, *N.*
477 *benthamiana*, highlights the need to clearly define which type of chloroplasts are being studied. As we
478 show here, what may be essential for a photo-harvesting chloroplasts in mesophyll cells may not be for
479 sensory chloroplasts in epidermal cells. Our study on epidermal sensory chloroplasts focuses on two of
480 the most critical players for HL-induced movement, *CHUP1* and *phot2*. Our results show that silencing
481 *CHUP1* disrupted the control of anchoring and de-anchoring by *phot2*. Key to this conclusion was our
482 ability to partially distinguish between epidermal chloroplast anchoring (% moving) and movement
483 (velocity) using advanced time-lapse confocal imaging and chloroplast tracking analysis. The
484 development of this approach opens up the possibility for numerous other future studies on other
485 players in HL-induced movement, such as *THRUMIN1*, *KAC1/2*, *JAC1*, and *PMI1/2*, and how they function
486 to regulate sensory epidermal chloroplasts (DeBlasio *et al.*, 2005; Suetsugu *et al.*, 2005; Suetsugu *et al.*,
487 2010; Whippo *et al.*, 2011).

488

489 Our study suggests that epidermal chloroplasts may not use cp-actin filaments for basal chloroplast
490 movement, such as stromule-directed movement, or repositioning for ECD responses. Instead,
491 cytoplasmic streaming may play a more prominent role during basal chloroplast movement. Cytoplasmic
492 streaming has been extensively studied in the alga *Chara* and an early study showed that it is disrupted
493 by cytochalasin B (Williamson, 1972; Tominaga & Ito, 2015). We previously showed that the actin
494 inhibitor, CD, completely stops chloroplast movement and also alters chloroplast dynamics (Kumar *et*
495 *al.*, 2018), but we did not examine cytoplasmic streaming. Here, we directly imaged cytoplasmic
496 streaming by marking the cytosol with a fluorescent protein or tracer dye. We then used fast, time lapse

497 volumetric imaging which allowed us to examine the relationship of cytoplasmic streaming and
498 chloroplast movement. We observed numerous examples of correlated chloroplast movement and
499 cytoplasmic streaming that were disrupted by CD. However, CD will also stop numerous other biological
500 processes that require actin microfilaments. Targeting myosin XIs might be a more specific way to
501 disrupt cytoplasmic streaming, but it also has been implicated in cytoskeletal modeling, stromule
502 formation, innate immunity, and a multitude of other biological processes (Avisar *et al.*, 2008; Natesan
503 *et al.*, 2009; Sattarzadeh *et al.*, 2009; Cai *et al.*, 2014; Tominaga & Ito, 2015; Wang *et al.*, 2024). As such,
504 examining specific changes in cytoplasmic streaming and how those changes influence basal and blue
505 light-induced chloroplast movement is a promising, but challenging area of future research.

506

507 Another intriguing finding from our studies is that an increase in blue light-induced chloroplast
508 movement velocity still occur in *CHUP1*-silenced *N. benthamiana* and *Atchup1* mutant plants, which also
509 showed an increase in the percent of chloroplasts moving. Surprisingly, our silencing experiments
510 suggests this does not require *PHOT1* or *PHOT2*, suggesting an unknown pathway is responsible for HL-
511 induced epidermal chloroplast movement in *CHUP1*-silenced plants. Alternatively, it is possible that the
512 *phot1* and *phot2* are compensating for each other. Our findings show that silencing *PHOT1* further
513 enhanced chloroplast movement velocity, which agrees with previous reports that *phot1* can inhibit
514 *phot2*-dependent responses and disrupting *phot2* allows *phot1* to briefly respond to HL in mesophyll
515 cells (Ichikawa *et al.*, 2011; Łabuz *et al.*, 2022). The increase in chloroplast velocity by *PHOT2*-silencing
516 only occurred when co-silenced with *CHUP1*, indicating that chloroplast de-anchoring was required for
517 subsequent increase in chloroplast movement velocity. In the future, it will be interesting to examine
518 the mechanistic basis of chloroplast movement in epidermal cells in the absence of *CHUP1*, including
519 how the light is perceived and the molecular machinery that operates in movement.

520

521 Our initial impetus for this study was to determine how stromules are induced in *CHUP1*-silenced plants
522 (Caplan *et al.*, 2015). Since knockout of *Atchup1* prevented chloroplast movement, we posited that a
523 disruption of chloroplast movement by *CHUP1*-silencing allowed stromules to stay extended. However,
524 our data showing an increase in chloroplast movement in *CHUP1*-silenced plants in this study quickly
525 disproved that hypothesis. This led us to do a more in-depth analysis of stromule movement dynamics.
526 We used machine learning to find the stromules and MATLAB program to track the tips of stromules.
527 This analysis revealed that silencing *CHUP1* leads to an increased stromule tip velocity, maximum length,
528 and maximum length change. These findings suggest that stromules are induced in *CHUP1*-silenced

529 plants because they extend faster, making them longer. The amount of extension and retraction
530 remained unchanged, suggesting that stromule induction was more dependent on changes in velocity
531 and length that stochastically leads to a higher persistence of stromules. Stromules can direct
532 movement (Kumar *et al.*, 2018), but the amount of SDM did not increase in *CHUP1*-silenced plants,
533 suggesting that stromules are not causing the increase in chloroplast movement. Therefore, the kinesin
534 required for inducing stromules 1 (KIS1) (Meier *et al.*, 2023) is unlikely to be required for the chloroplast
535 movement, and instead, an unknown molecular motor is more likely to drive chloroplast movement.
536 That motor is unlikely to be a myosin, since there is no evidence that chloroplasts use myosins for
537 movement (Wada & Kong, 2018). Since both KIS1 and KAC1/2 belong to kinesin family 14, future
538 research into other kinesin-14s will determine if one of them is the unknown motor for chloroplast
539 movement in epidermal cells.

540

541 In this study, we coined the term epidermal chloroplast defense (ECD) as a more general term to
542 describe changes in sensory epidermal chloroplasts during immunity. A hallmark of ECD is stromule
543 induction, which precedes another ECD response, perinuclear chloroplast clustering (Caplan *et al.*,
544 2015). Here we show that silencing *CHUP1* increases these ECD responses and could be the reason for
545 previously observed enhanced PCD during ETI in *CHUP1*-silenced or knockout plants (Caplan *et al.*,
546 2015). Disruption of *CHUP1* was previously reported to induce ECR, which is the repositioning of
547 epidermal chloroplasts to the cell surface during non-host resistance (NHR) (Irieda & Takano, 2021). The
548 molecular mechanisms for NHR can widely vary, but depending on the plant-pathogen interaction, ETI
549 may be involved (Panstruga & Moscou, 2020). Here, we confirm that silencing *CHUP1* constitutively
550 induces ECR, but also show that ECR more generally occurs during ETI. Both ECR and perinuclear
551 clustering require chloroplast de-anchoring before they can reposition and our data points to *CHUP1* as
552 being involved in the de-anchoring process.

553

554 Another ECD response is the induction of H₂O₂ in chloroplasts during PTI and ETI (Liu *et al.*, 2007;
555 Shapiguzov *et al.*, 2012), and like all the other ECD responses we examined, it is increased in *CHUP1*-
556 silenced epidermal chloroplasts. Using APX to quench chloroplastic H₂O₂, we show that it is required for
557 the enhanced PCD in *CHUP1*-silenced plants and partially required for stromule induction. These
558 complement prior studies showing an increase in chloroplastic H₂O₂ during ETI, and that exogenous
559 application of H₂O₂ is sufficient to induce stromules (Brunkard *et al.*, 2015; Caplan *et al.*, 2015). It
560 remains unknown why the loss of *CHUP1* causes an increase in chloroplastic H₂O₂ production. One

561 possibility is improper chloroplast positioning leads to amplification of H₂O₂ caused by photodamage
562 (Kasahara *et al.*, 2002). This is unlikely, due to the flat shape of epidermal cells and it is unlikely that any
563 type of repositioning could avoid HL, however our data does show that it requires light. Another
564 possibility is that silencing *CHUP1* alters a signaling pathway that induces chloroplastic H₂O₂ or more
565 generally alters the redox state of the cell. Studies show that the H₂O₂ scavenging system in the
566 chloroplasts and cytosol are linked, and disruption of cytosolic APX1 cause a collapse of chloroplastic
567 H₂O₂ scavenging system (Kasahara *et al.*, 2002; Exposito-Rodriguez *et al.*, 2017). The HyPer7 sensor was
568 used previously to examine nonphotochemical quenching (NPQ) H₂O₂ scavenging system in different
569 types of epidermal cells (Dopp *et al.*, 2023). We took a similar approach here and found that chloroplast-
570 targeted APX greatly increased NPQ, preventing both HL-induced and ETI-induced H₂O₂. Interestingly,
571 we found that the response to HL was bimodal, suggesting contributions between two different pools of
572 NPQ scavenging. The contribution of different NPQ pools and the exact reasoning behind the induction
573 of H₂O₂ caused by *CHUP1*-silencing remain unclear and are promising areas of future examination. In
574 general, our study further reinforces the central role of chloroplastic H₂O₂ in stromule induction and PCD
575 during ETI while also illustrating that chloroplast movement is dependent on other signaling
576 mechanisms which allow for proper regulation of chloroplastic H₂O₂ based signaling. Furthermore, our
577 study places *CHUP1* and its role in chloroplast anchoring, as a key regulator of ECD and PCD induced
578 during ETI.

579

580 **Acknowledgements**

581 We thank Dr. John McDonald for his guidance with statistical analysis of the data. We also would like to
582 thank Dr. Elison Blancaflor for the mTalin-GFP construct. This work was funded by the National Institutes
583 of Health R01 grant GM132582 to SPDK, JLC, and CK. This work is also funded partially by the National
584 Science Foundation grant IOS 2054685 to JYL and JLC. Microscopy equipment was acquired with shared
585 instrumentation grants (S10 OD030321 and S10 OD016361) and microscopy access was supported by
586 the NIH-NIGMS (P20 GM103446), the NIGMS (P20 GM139760), and the State of Delaware. This research
587 benefitted from the BioStore data management resource at the University of Delaware Bioinformatics
588 Data Science Core [RRID:SCR_017696] supported by an NIH shared instrumentation grant (NIH S10
589 OD028725).

590

591 **Competing interests**

592 The authors declare no competing of financial interests.

593

594 **Author contributions**

595 AON, SPDK, and JLC conceived the experimental designs. AON and JLC conducted all the microscopy
596 experiments. AON conducted the conductivity assays and JS conducted the RT-PCR. HL, CK, and JLC
597 developed the MATLAB code for stromule analysis. MAR and JYL created and validated the cTP-APX-
598 mKate2 construct. AON, JS, SPDK, and JLC wrote the manuscript with the input from all the authors. JLC
599 and SPDK supervised the project. AON, JS, SPDK, and JLC critically revised the manuscript. SPDK, JLC, CK,
600 and JYL received funding for the project. All authors have reviewed the final version of the manuscript
601 and approved it and therefore are equally responsible for the integrity and accuracy of its content.

602

603 **Data availability**

604 The analyzed datasets can be found in the Supporting Information Table S5. Raw data that support the
605 findings of this study are available from the corresponding author upon reasonable request.

606

607 **Figure Legends**

608 **Fig. 1. Silencing CHUP1 increases epidermal chloroplast movement.** In all the experiments, the
609 chloroplast transit peptide (cTP) of RBCS1a was fused to mNeonGreen (RBCS1a_{cTP}-mNG) and transiently
610 expressed in *Nicotiana benthamiana* plants (a-f), or by visualizing chlorophyll autofluorescence in
611 *Arabidopsis thaliana* (g-h). RBCS1a_{cTP}-mNG localizes to the stroma, marking both the body of chloroplasts
612 and stromules. (a) Moving epidermal chloroplasts were counted and divided by the total number of
613 chloroplasts per image and displayed as percentages in virus-induced gene silencing (VIGS) vector control
614 (-) and *CHUP1*-silenced plants. N=12 and 10 for respective columns. (b) The epidermal chloroplast body
615 velocities in VIGS vector control (-) and *CHUP1*-silenced plants were tracked and quantitated. N=418 and
616 276 for respective columns. (c) The number of two or more chloroplasts connected and moving together
617 (Chl-Chl) were counted in the VIGS vector control (-) and *CHUP1*-silenced plants, divided by the total
618 number of chloroplasts, and displayed as percentages. N=12 and 10 for respective columns. (d)
619 Representative Airyscan confocal images of tracked epidermal chloroplasts in response to low (left
620 column) and high (right column) intensity blue light in the VIGS vector control, *CHUP1*-, *PHOT2*-,
621 *CHUP1PHOT2*-, *PHOT1*, and *CHUP1PHOT1*-silenced plants (see Video 1-4). Chloroplasts tracks are color
622 coded by time and were generated by Imaris spot detection. Purple t=0 seconds (s) and red t=536
623 seconds. Scale bar = 10 μ m. (e) Moving chloroplasts under low (L) and high (H) intensity blue light were
624 counted and divided by the total number of chloroplasts per image and displayed as percentages from
625 the vector control, *PHOT2*-, *PHOT1*-, *CHUP1*-, *CHUP1PHOT2*-, or *CHUP1PHOT1*-silenced plants. N=12 for
626 silencing control and N=10 for all other columns. (f) The average chloroplast velocities were quantitated
627 under low (L) and high (H) intensity blue light from the vector control, *PHOT2*-, *PHOT1*-, *CHUP1*-,
628 *CHUP1PHOT2*-, or *CHUP1PHOT1*-silenced plants. N=418, 540, 326, 337, 458, 545, 276, 347, 340, 277, 528,
629 and 593 respective columns. (g) Moving chloroplasts under low (L) and high (H) intensity blue light were
630 counted and divided by the total number of chloroplasts per image and displayed as percentages from
631 the control *Arabidopsis* Col-0 and *Atchup1* mutant. N=24 for each column. (h) The average chloroplast
632 velocities were quantitated under low (L) and high (H) intensity blue light from the control Col-0 or
633 *Atchup1* mutant. N=438, 533, 543 and 526 for respective columns. For each treatment presented in a, b,
634 and d-h, between 8 to 12 plants were analyzed and one excised leaf sample was analyzed per plant. For
635 each treatment in g and h, 21-24 plants were analyzed and one excised leaf sample was analyzed per
636 plant. In b, e the chloroplast movement was quantitated using Imaris tracking software. In h and j
637 chloroplast movement was tracked by Fiji manual tracking plugin. Data in a,c,d and g were counted
638 manually. In a, b, d-c, the data is displayed as the mean \pm SEM. In a, c, e, g, statistical analysis was
639 conducted on ratios and then converted to percentages for display. Statistically significant difference
640 determined by a Student's t-test with Welch's correction (a, c) or by a Mann-Whitney test (b). Groups
641 were analyzed between low light and high light treatment (e, f), as well as paired analysis within silencing
642 conditions, determined by a Welch's ANOVA with Dunnett's T3 multiple comparison test (e) or a Kruskal-
643 Wallis test with Dunn's multiple comparison test (f). Statistical significance for g and h was determined by
644 a Kruskal-Wallis test with Dunn's multiple comparisons test. Different letters signify significant difference
645 (p<0.05). * = p<0.05, ** = p<0.01, *** = p<0.001 and **** = p<0.0001.

646

647 **Fig. 2. Light-induced cp-actin detected on mesophyll but not epidermal chloroplasts.**

648 *Nicotiana benthamiana* leaves expressing the chloroplast transit peptide (cTP) of RBCS1a fused to
649 mNeonGreen (RBCS1a_{cTP}-mNG; green) and actin marker Lifeact-tagRFP (magenta) were imaged by

650 spinning disk confocal microscopy. (a) Epidermal chloroplasts were exposed to high intensity blue light
651 and three chloroplasts were manually tracked (white lines). (b) Enlarged image of boxed region in (a).
652 Chloroplast associated actin (cp-actin) was not detected on the leading edge of a moving chloroplast
653 (arrowhead). Cp-actin was not detected on a leading small protrusion (bottom arrow) or near the base
654 of a stromule (top arrow) guiding stromule directed movement (SDM). (c) Mesophyll chloroplasts were
655 exposed to the same amount of high intensity blue light as in a, b in order to induce chloroplast
656 movement. Chloroplasts moved from the periclinal position towards the anticlinal position and three
657 chloroplasts were manually tracked (white line). (d) Enlarged image of boxed region in C. Cp-actin was
658 observed on the leading edge of mesophyll chloroplasts (arrowhead) and on their protrusions (arrows).
659 In a and c, scale bar equals 10 μ m. In b and d, scale bar equals 2 μ m.
660

661 **Fig. 3. Chloroplast movement partially correlates with cytoplasmic streaming and is reduced by the**
662 **inhibition of actin polymerization with cytochalasin D.**

663 (a-d) Free Citrine fluorescent protein was transiently expressed in *N. benthamiana* leaves and imaged
664 under low light and high blue light conditions by spinning disk confocal microscopy. (a-b) White lines
665 show the cumulative manual tracking of chloroplasts (red) over 270 seconds (s) in relation to the front of
666 cytoplasmic streams (light cyan line) marked with Citrine (yellow). (a) Chloroplast movement and
667 cytoplasmic streaming in plants without silencing under low light (left panel) and high light (right
668 panels). (b) In a *CHUP1*-silenced plant, a chloroplast was observed moving with a cytoplasmic stream,
669 pulling away from the cytoplasmic stream (arrow) and then moving independently of cytoplasmic
670 streaming. (c) Representative maximum intensity projections of confocal z-stacks of the cytoplasm of
671 the virus-induced gene silencing (VIGS) control or VIGS *CHUP1* plants after treatment with the 0.1%
672 DMSO control or 10 μ M cytochalasin D. White arrowheads indicate some of the cytoplasmic streams. (d)
673 Percent of moving chloroplast in VIGS control (-) or *CHUP1*-silenced *N. benthamiana* plants after
674 treatment. N=11 plants for each combination of treatment and VIGS. (e) Percent of moving chloroplasts
675 in Col-0 or *chup1* Arabidopsis plants after treatment. N=8 plants used for each combination of
676 treatment and plant line. (d,e) One image was taken per plant and N equals the number of plants over
677 two experimental replicates. Data is displayed as the mean \pm SEM. Statistical analysis was conducted on
678 ratios and then converted to percentages for display. Statistical significance is determined by a Welch's
679 ANOVA with Dunnett's T3 multiple comparison test between data sets with the same inhibitor
680 treatment. Different letters signify significant difference (p<0.05).

681 **Fig. 4. Silencing *CHUP1* induces stromule amount, velocity, and length.** (a) Representative Airyscan
682 confocal images of epidermal chloroplast stromules (red arrowheads) marked with the chloroplast
683 transit peptide (cTP) of RBCS1a fused to mNeonGreen (RBCS1a_{cTP}-mNG) in the virus-induced gene
684 silencing (VIGS) vector control and *CHUP1*-silenced *Nicotiana benthamiana* plants. Scale bar = 10 μ m. (b)
685 The number of stromules was normalized to the number of chloroplasts per image and displayed as a
686 ratio of stromules to chloroplasts in the vector control and *CHUP1*-silenced plants, N=12 and 10 for
687 respective columns. (c-d) Stromule directed movement (SDM) was calculated as correlated movement
688 (>0.6) between the angle of chloroplast movement and the angle of the stromule. SDM counts were
689 normalized to the number of total movement events of chloroplasts with stromules, N=12 and N=10 for
690 respective columns (c) or the total number of moving chloroplasts, N=11 (d), and displayed as
691 percentages. (e) The stromule tip velocity was tracked and quantitated for each stromule, N=689 and
692 487 for respective columns. (f) The maximum length was calculated for individual stromule during the
693 time lapse datasets from VIGS vector control (-) and *CHUP1*-silenced plants N=688 and 171 for

694 respective columns. (g) The maximum change in length for individual stromule during a single time point
695 in VIGS vector control (-) and *CHUP1*-silenced plants, N=686 and 486. For each treatment presented in
696 the Fig., between 8 to 12 plants were analyzed and one excised leaf sample was analyzed per plant. Data
697 in b were counted manually. Stromule movement in c-g was calculated using a custom MATLAB tracking
698 program. In b-g, the data is displayed as the mean \pm SEM. In, c-d, statistical analysis was conducted on
699 ratios and then converted to percentages for display. Statistically significant difference determined by a
700 Student's t-test with Welch's correction (b, c, d) or by a Mann-Whitney test (e-g). * = p<0.05, ** =
701 p<0.01, *** = p<0.001, **** = p<0.0001, and ns = no significance.

702

703 **Fig. 5. Silencing *CHUP1* auto-activates chloroplast associated innate immune responses.** All the
704 experiments were conducted in leaf epidermal cells of transgenic *Nicotiana benthamiana* with N
705 nucleotide-binding leucine-rich repeat (*NLR*) immune receptor except in (e). Effector-triggered immunity
706 (ETI) was induced using the p50 effector from *Tobacco mosaic virus* (TMV-p50). (a) The number of
707 stromules was normalized to the number of chloroplasts per image and displayed as a ratio of stromules
708 to chloroplasts in the virus-induced gene silencing (VIGS) vector control (-) and *CHUP1*-silenced plants
709 with (+) and without (-) ETI induction, N= 13, 16, 16 and 12 for each respective column. (b) The stromule
710 tip velocity was tracked and quantitated for each stromule in the vector control (-) and *CHUP1*-silenced
711 plants with (+) and without (-) ETI induction, N=171, 254, 328 and 225 for each respective column. (c)
712 The maximum length was calculated for each individual stromule during the time lapse datasets from
713 VIGS vector control (-) and *CHUP1*-silenced plants with (+) and without (-) ETI induction, N=563, 625, 803
714 and 541 for each respective column. (d) The maximum change in length for each individual stromule
715 during a single time point in VIGS vector control (-) and *CHUP1*-silenced plants with (+) and without (-)
716 ETI induction, N=563, 625, 802 and 541. (e) Representative confocal microscopy images showing
717 perinuclear chloroplast clustering in vector control (-) and *CHUP1*-silenced transgenic *N. benthamiana*
718 plants expressing chloroplast stroma marker, NRIP1-Cerulean. Red arrowheads point to the nuclei. Scale
719 bar = 10 μ m. (f) The number of chloroplasts surrounding the nucleus were counted in the VIGS vector
720 control (-) and *CHUP1*-silenced plants with (+) and without (-) ETI induction. In a-d, two samples were
721 analyzed per plant for 5 plants for each combination of treatment. In a-d, f, the data is displayed as
722 mean \pm SEM. Different letters signify significant difference (p<0.05) determined by Brown-Forsythe and
723 Welch's ANOVA tests with Dunnette's T3 multiple comparisons test (a, f) or Kruskal-Wallis test (p<0.05)
724 with Dunn's multiple comparison test (b, c, d). p50-HA was used to induced ETI for all data, at 24 hours
725 for a-d while at 30 hours for f.

726

727 **Fig. 6. Epidermal chloroplast response is induced during ETI and by *CHUP1* silencing.** (a) Representative
728 images for epidermal chloroplast response (ECR) in virus-induced gene silencing (VIGS) vector control (-)
729 and *CHUP1*-silenced *Nicotiana benthamiana* plants. Effector-triggered immunity (ETI) using the p50
730 effector from *Tobacco mosaic virus* (TMV-p50) for 30 hours. Confocal microscopy of chloroplasts
731 autofluorescence (red) was used to determine their position and then overlaid on transmitted light
732 images for display (grayscale). Cells walls are marked with black dashed lines and cells with ECR (yellow
733 text) or no ECR (black text) are labeled. Scale bar equals 20 μ m. (b) ECR was quantitated by calculating
734 the percentage of epidermal pavement cells which contain chloroplasts at the surface of the leaf from
735 images shown in A. 2 leaf sample were imaged between 4 plants for each treatment over two
736 experimental replicates, N=41, 40, 37 and 40 for each respective column. (c) Moving chloroplasts were
737 counted and divided against the total number of chloroplasts per image in vector control (-) and *CHUP1*-

738 silenced plants with (+) and without (-) ETI induction. N=13, 16, 16, and 12 for each respective column
739 (d) The chloroplast body velocities in vector control (-) and *CHUP1*-silenced plants were tracked and
740 quantitated with (+) and without (-) ETI induction. N=349, 329, 334, and 280. In c, d two samples were
741 analyzed per plant for 9 and 5 plants respectively for each combination of conditions. In b, c, and d, the data
742 analysis was conducted on ratios and then converted to percentages for display. In b, c, and d, the data
743 is displayed as mean \pm SEM. Different letters signify significant difference (p<0.05) determined by
744 Brown-Forsythe and Welch's ANOVA tests with Dunnette's T3 multiple comparisons test (b, c) or
745 Kruskal-Wallis test (p<0.05) with Dunn's multiple comparison test (d). p50-HA was used to induce ETI for
746 all data at 30 hours for a, b and at 24 hours for c, d.

747

748 **Fig. 7. Hydrogen peroxide is required for enhanced PCD in *CHUP1*-silenced plants.** The chloroplast
749 transit peptide of RBCS1a was fused to the hydrogen peroxide (H_2O_2) sensor HyPer7 (RBCS1a_{cTP}-HyPer7),
750 mKate2-tagged ascorbate peroxidase (cTP-APX-mKate2), or the control mKate2 (cTP-mKate2) and
751 transiently expressed in *Nicotiana benthamiana* with N nucleotide-binding leucine-rich repeat (*NLR*)
752 immune receptor. H_2O_2 levels were measured as the ratio of RBCS1a_{cTP}-HyPer7 fluorescence excited
753 with 488 nm or 405 nm laser light on a confocal microscope. RBCS1a_{cTP} abbreviated to cTP in graphs.
754 Effector-triggered immunity (ETI) was induced using the p50 effector from *Tobacco mosaic virus* (TMV-
755 p50). (a) Representative ratiometric images of H_2O_2 levels detected by RBCS1a_{cTP}-HyPer7 in epidermal
756 chloroplasts of the virus-induced gene silencing (VIGS) control and *CHUP1*-silenced plants with and
757 without ETI induction. Scale equals 20 μ m. (a-c) For two experimental replicates, ratiometric HyPer7
758 measurements of H_2O_2 in VIGS silencing control (-) and *CHUP1*-silenced plants with (+) and without ETI (-)
759) induction and either with the RBCS1a_{cTP}-mKate2 control, N=2872, 1843, 2649 and 2563, (b) or
760 RBCS1a_{cTP}-APX-mKate2, N=2933, 1838, 2893 and 1585 (c). ETI was induced using XVE::p50-tRFP using 30
761 μ M estradiol for six hours (h). 10-20 images were collected for six plants in one experiment. (d-e) ETI-
762 induced cell death was quantitated by measuring the conductivity of ion leakage from leaf tissue.
763 Conductivity measurements were taken from leaf samples of VIGS vector control and *CHUP1*-silenced
764 plants with and without ETI induction and either with the RBCS1a_{cTP}-mKate2 control (d) or RBCS1a_{cTP}-
765 APX-mKate2 (e). ETI was induced with XVE::p50-3xHA in two different plants with three leaf sections
766 from each, N=6. In b and c, data is displayed as the mean \pm SEM. In d and e, data is displayed as the
767 mean at each time point. Different letters signify significant difference (p<0.05) determined by Kruskal-
768 Wallis test (p<0.05) with Dunn's multiple comparison test.
769

770

770 **Fig. 8. Hydrogen peroxide is required for stromule induction but not chloroplast movement.** The
771 chloroplast transit peptide of RBCS1a was fused to the hydrogen peroxide (H_2O_2) sensor HyPer7
772 (RBCS1a_{cTP}-HyPer7) or mKate2-tagged ascorbate peroxidase (cTP-APX), or the control mKate2 (cTP-
773 mKate2) and transiently expressed in *Nicotiana benthamiana* with N NLR immune receptor. Effector-
774 triggered immunity (ETI) was induced using the p50 effector from *Tobacco mosaic virus* (TMV-p50). (a)
775 The number of stromules was normalized to the number of chloroplasts per image and displayed as a
776 ratio of stromules to chloroplasts in the virus-induced gene silencing (VIGS) vector control (-) and
777 *CHUP1*-silenced *N. benthamiana* plants with (+) or without (-) ETI induction and with (+) or without (-)
778 RBCS1a_{cTP}-APX-mKate2, N=26, 24, 22, 22, 29, 22, 27 and 25 for each respective column. (b) In plants
779 transiently expressing HyPer7, hydrogen peroxide (H_2O_2) was induced with a high laser intensity (28 μ W)
780 on a confocal microscope, and changes in H_2O_2 were quantitated over 10 minutes (min) with ratiometric
781 HyPer7 measurements. Line graph showing changes in ratiometric HyPer7 measurements of H_2O_2

782 accumulation by high intensity light in the VIGS vector control (-) and *CHUP1*-silenced plants with ETI
783 (+ETI) or without ETI (-Control) induction and with the RBCS1a_{cTP}-mKate2 expression control (solid lines),
784 N=5, or RBCS1a_{cTP}-APX-mKate2 (dashed lines), N=2. Colored arrows indicate peaks of matching color
785 lines. (c-d) The number of moving chloroplasts (c) and stromules (d) was normalized to the number of
786 chloroplasts per image and displayed as percentage (c) or a ratio (d). These measurements were made in
787 the VIGS vector control (-) and *CHUP1*-silenced plants with low (L) or (H) high intensity blue light
788 induction and with (+) or without (-) RBCS1a_{cTP}-APX. Statistical analysis was performed between shared
789 silencing treatment and light treatments, N=20, 20, 19, 19, 13, 13, 18 and 18 for each column. For a, c
790 and d, data is displayed as the mean \pm SEM. For b, data is displayed as the mean for each time point.
791 Different letters signify significant difference ($p < 0.05$) determined by Brown-Forsythe and Welch's
792 ANOVA tests with Dunnette's T3 multiple comparisons test.

793

794 **Video Legends**

795 **Video 1. Montage of light induced chloroplast movement in *CHUP1*, *PHOT2*, and *CHUP1PHOT2* 796 silenced plants.** Chloroplast movement with low and high light levels. The montage shows side-by-side 797 comparison of all chloroplast movement in the VIGS and light treatments shown in Fig. 1c and Videos 1- 798 3. The chloroplast transit peptide of RBCS1a was fused to mNeonGreen (RBCS1a_{CTP}-mNG) and transiently 799 expressed in *Nicotiana benthamiana* plants. RBCS1a_{CTP}-mNG expressing chloroplast (grey) were 800 identified with Imaris spot detection and tracks are color coded by time. Scale bar = 10 μ m.

801 **Video 2. High blue light induced movement.** Chloroplast movement under low and high levels of blue 802 light. Final time point shown in Fig. 1c, column 1. The chloroplast transit peptide of RBCS1a was fused to 803 mNeonGreen (RBCS1a_{CTP}-mNG) and transiently expressed in *Nicotiana benthamiana* plants. RBCS1a_{CTP}- 804 mNG expressing chloroplast (grey) were identified with Imaris spot detection and tracks are color coded 805 by time. Scale bar = 10 μ m.

806 **Video 3. *CHUP1* silencing phenotype.** *CHUP1*-silenced plants have increased chloroplast movement 807 under low and high levels of blue light. The chloroplast transit peptide of RBCS1a was fused to 808 mNeonGreen (RBCS1a_{CTP}-mNG) and transiently expressed in *Nicotiana benthamiana* plants. RBCS1a_{CTP}- 809 mNG expressing chloroplast (grey) were identified with Imaris spot detection and tracks are color coded 810 by time. Scale bar = 10 μ m.

811 **Video 4. *PHOT1* and *CHUP1PHOT2* silencing phenotype.** Chloroplast movement under high levels of 812 blue light showing the loss light induced movement in *PHOT2*-silenced and restoration of movement 813 *CHUP1PHOT2*-silenced *Nicotiana benthamiana* plants. The chloroplast transit peptide of RBCS1a was 814 fused to mNeonGreen (RBCS1a_{CTP}-mNG) and transiently expressed in *N. benthamiana* plants. RBCS1a_{CTP}- 815 mNG expressing chloroplast (grey) were identified with Imaris spot detection and tracks are color coded 816 by time. Scale bar = 10 μ m.

817 **Video 5. Blue light induced chloroplast movement in epidermal and mesophyll cells.** *Nicotiana* 818 *benthamiana* leaves expressing RBCS1a_{CTP}-mNG (green) and actin marker Lifeact-tagRFP (magenta) were 819 imaged on a spinning disk confocal microscope. Chloroplasts were manually tracked (white lines) in 820 epidermal cells for 10 minutes (min) and mesophyll cells for 17 minutes. Scale bar = 10 μ m.

821 **Video 6. Blue light induced chloroplast movement in epidermal and mesophyll cell of the same leaf 822 section.** *Nicotiana benthamiana* leaves expressing RBCS1a_{CTP}-mNG (green) and actin marker Lifeact- 823 tagRFP (magenta) were imaged on a spinning disk confocal microscope. Magnified views of the boxed 824 area (yellow) are shown on the left. Epidermal chloroplasts were manually tracked (white lines) for 10 825 minutes (min). Scale bar = 10 μ m.

826 **Video 7. Blue light induced chloroplast movement with mTalin marked actin.** *Nicotiana benthamiana* 827 leaves expressing mTalin-GFP (green) were imaged on a spinning disk confocal microscope. Scale bar = 828 20 μ m. Magnified view of chloroplasts (red), mTalin (green), and the overlay. Chloroplasts were 829 manually tracked (white lines). Time lapse is 270 seconds (sec) long and repeated four times for clarity. 830 Scale bar = 2 μ m.

831 **Video 8. Cytoplasmic streaming in wild-type *N. benthamiana*.** *Nicotiana benthamiana* leaves 832 expressing free Citrine (yellow) were imaged on a spinning disk confocal microscope. A time lapse 833 dataset using low light was first acquired, followed by a time lapse dataset using high blue light. Time

834 lapse datasets are 270 seconds (sec) long and repeated twice for clarity. White boxed areas designate
835 the magnified views. Scale bar = 20 μ m in overview videos and 2 μ m in magnified views.

836 **Video 9. Cytoplasmic streaming in *CHUP1*-silenced *N. benthamiana*.** Free Citrine (yellow) was
837 expressed in virus-induced gene silencing (VIGS) control and *CHUP1*-silenced *N. benthamiana* plants and
838 imaged on a spinning disk confocal microscope. 1 hour prior to imaging, plants were infiltrated with
839 either a DMSO control or 10 μ M cytochalasin D. A time lapse dataset using low light was first acquired,
840 followed by a time lapse dataset using high blue light. Time lapse datasets are 270 seconds long and
841 repeated twice for clarity. White boxed areas designate the magnified views. Scale bar = 20 μ m in
842 overview videos and 2 μ m in magnified views.

843 **Video 10. Cytoplasmic streaming in *Arabidopsis* Col-0 and *atchup1* mutants.** Col-0 and *atchup1* leaves
844 were infiltrated with CMFDA tracer dye to mark the cytoplasm and imaged on a spinning disk confocal
845 microscope. 1 hour prior to imaging, plants were infiltrated with either a DMSO control or 10 μ M
846 cytochalasin D. A time lapse dataset using low light was first acquired, followed by a time lapse dataset
847 using high blue light. Time lapse datasets are 270 seconds (sec) long. Scale bar = 20 μ m.

848 **Video 11. Light induced ROS during ETI.** The chloroplast transit peptide of RBCS1a was fused to the H_2O_2
849 sensor HyPer7 (RBCS1a_{CTP}-HyPer7) and transiently expressed in *Nicotiana benthamiana* with N
850 nucleotide binding leucine rich repeat (NLR) immune receptor. Ratiometric videos of H_2O_2 levels
851 detected by RBCS1a_{CTP}-HyPer7 in epidermal chloroplasts of the VIGS silencing control and *CHUP1*-
852 silenced plants with and without effector-triggered immunity (ETI) induction and with and without
853 ascorbate peroxidase (APX). Time lapse datasets are 198 seconds (sec) long. Scale bar = 20 μ m.

854 **References**

855

856 **Andersson B, Anderson JM. 1980.** Lateral Heterogeneity in the Distribution of Chlorophyll-Protein
857 Complexes of the Thylakoid Membranes of Spinach-Chloroplasts. *Biochimica Et Biophysica Acta*
858 **593(2): 427-440.**

859 **Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV. 2008.** Myosin XI-K Is required for rapid
860 trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of *Nicotiana*
861 *benthamiana*. *Plant Physiol* **146**(3): 1098-1108.

862 **Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K. 2004.** Over-expression of
863 ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water
864 deficit. *Physiologia Plantarum* **121**(2): 231-238.

865 **Balint-Kurti P. 2019.** The plant hypersensitive response: concepts, control and consequences. *Mol Plant*
866 *Pathol* **20**(8): 1163-1178.

867 **Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, McKenna JF, Mathe C, Runions J, Van Damme**
868 **D, Mathur J. 2016.** Epidermal Pavement Cells of *Arabidopsis* Have Chloroplasts. *Plant Physiol*
869 **171**(2): 723-726.

870 **Beltran J, Wamboldt Y, Sanchez R, LaBrant EW, Kundariya H, Virdi KS, Elowsky C, Mackenzie SA. 2018.**
871 Specialized Plastids Trigger Tissue-Specific Signaling for Systemic Stress Response in Plants. *Plant*
872 *Physiol* **178**(2): 672-683.

873 **Brunkard JO, Runkel AM, Zambryski PC. 2015.** Chloroplasts extend stromules independently and in
874 response to internal redox signals. *Proceedings of the National Academy of Sciences* **112**(32):
875 10044-10049.

876 **Cai C, Henty-Ridilla JL, Szymanski DB, Staiger CJ. 2014.** *Arabidopsis* myosin XI: a motor rules the tracks.
877 *Plant Physiol* **166**(3): 1359-1370.

878 **Caplan L, Jeffrey, Kumar S, Amutha, Park E, Padmanabhan S, Meenu, Hoban K, Modla S, Czymbek K,**
879 **Dinesh-Kumar P, Savithramma. 2015.** Chloroplast Stromules Function during Innate Immunity.
880 *Developmental Cell* **34**(1): 45-57.

881 **Caplan L, Jeffrey, Mamillapalli P, Burch-Smith TM, Czymbek K, Dinesh-Kumar SP. 2008.** Chloroplastic
882 Protein NRIP1 Mediates Innate Immune Receptor Recognition of a Viral Effector. *Cell* **132**(3):
883 449-462.

884 **de Souza A, Wang JZ, Dehesh K. 2017.** Retrograde Signals: Integrators of Interorganellar Communication
885 and Orchestrators of Plant Development. *Annu Rev Plant Biol* **68**: 85-108.

886 **DeBlasio SL, Luesse DL, Hangarter RP. 2005.** A plant-specific protein essential for blue-light-induced
887 chloroplast movements. *Plant Physiol* **139**(1): 101-114.

888 **Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y 2003.** Virus-induced Gene Silencing.
889 *Plant Functional Genomics*. Methods in Molecular Biology: Humana Press, 287-294.

890 **Ding X, Jimenez-Gongora T, Krenz B, Lozano-Duran R. 2019.** Chloroplast clustering around the nucleus is
891 a general response to pathogen perception in *Nicotiana benthamiana*. *Mol Plant Pathol* **20**(9):
892 1298-1306.

893 **Dong XJ, Ryu JH, Takagi S, Nagai R. 1996.** Dynamic changes in the organization of microfilaments
894 associated with the photocontrolled motility of chloroplasts in epidermal cells of *Vallisneria*.
895 *Protoplasma* **195**(1-4): 18-24.

896 **Dopp IJ, Kalac K, Mackenzie SA. 2023.** Hydrogen peroxide sensor HyPer7 illuminates tissue-specific
897 plastid redox dynamics. *Plant Physiology* **193**(1): 217-228.

898 **Dopp IJ, Yang X, Mackenzie SA. 2021.** A new take on organelle-mediated stress sensing in plants. *New*
899 *Phytologist* **230**(6): 2148-2153.

900 **Dwyer ME, Hangarter RP. 2021.** Light-dependent phosphorylation of THRUMIN1 regulates its
901 association with actin filaments and 14-3-3 proteins. *Plant Physiology* **187**(3): 1445-1461.

902 **Dwyer ME, Hangarter RP. 2022.** Light-induced displacement of PLASTID MOVEMENT IMPAIRED1
903 precedes light-dependent chloroplast movements. *Plant Physiol* **189**(3): 1866-1880.

904 **Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. 2014.** Fluorescent protein-based reporters of the
905 actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain, and promoter
906 considerations. *Cytoskeleton (Hoboken)* **71**(5): 311-327.

907 **Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM. 2017.**
908 Photosynthesis-dependent H₂O(2) transfer from chloroplasts to nuclei provides a high-light
909 signalling mechanism. *Nat Commun* **8**(1): 49.

910 **Foissner I, Wasteneys GO. 2007.** Wide-Ranging Effects of Eight Cytochalasins and Latrunculin A and B on
911 Intracellular Motility and Actin Filament Reorganization in Characean Internodal Cells. *Plant and
912 Cell Physiology* **48**(4): 585-597.

913 **Gotoh E, Suetsugu N, Yamori W, Ishishita K, Kiyabu R, Fukuda M, Higa T, Shirouchi B, Wada M. 2018.**
914 Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass
915 Production. *Plant Physiol* **178**(3): 1358-1369.

916 **Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SK, Newell CA. 2012.** Plastid
917 stromules are induced by stress treatments acting through abscisic acid. *Plant Journal* **69**: 387-
918 398.

919 **Hatsugai N, Katagiri F. 2018.** Quantification of Plant Cell Death by Electrolyte Leakage Assay. *Bio Protoc*
920 **8**(5): e2758.

921 **Higa T, Suetsugu N, Kong S-G, Wada M. 2014.** Actin-dependent plastid movement is required for motive
922 force generation in directional nuclear movement in plants. *Proceedings of the National
923 Academy of Sciences* **111**(11): 4327-4331.

924 **Holzinger A, Blaas K. 2016.** Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances:
925 Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. *Methods Mol Biol*
926 **1365**: 243-261.

927 **Ichikawa S, Yamada N, Suetsugu N, Wada M, Kadota A. 2011.** Red light, Phot1 and JAC1 modulate
928 Phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance
929 movement. *Plant Cell Physiol* **52**(8): 1422-1432.

930 **Irieda H. 2022.** Emerging Roles of Motile Epidermal Chloroplasts in Plant Immunity. *International Journal
931 of Molecular Sciences* **23**(7).

932 **Irieda H, Takano Y. 2021.** Epidermal chloroplasts are defense-related motile organelles equipped with
933 plant immune components. *Nat Commun* **12**(1): 2739.

934 **Ishishita K, Higa T, Tanaka H, Inoue SI, Chung A, Ushijima T, Matsushita T, Kinoshita T, Nakai M, Wada
935 M, et al. 2020.** Phototropin2 Contributes to the Chloroplast Avoidance Response at the
936 Chloroplast-Plasma Membrane Interface. *Plant Physiol* **183**(1): 304-316.

937 **Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR. 2001.** Phototropin-related NPL1
938 controls chloroplast relocation induced by blue light. *Nature* **410**(6831): 952-954.

939 **Jwa NS, Hwang BK. 2017.** Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species
940 Signaling Networks in Plants. *Front Plant Sci* **8**: 1687.

941 **Kachroo P, Burch-Smith TM, Grant M. 2021.** An Emerging Role for Chloroplasts in Disease and Defense.
942 *Annu Rev Phytopathol* **59**: 423-445.

943 **Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada
944 M. 2009.** Short actin-based mechanism for light-directed chloroplast movement in *Arabidopsis*.
945 *Proceedings of the National Academy of Sciences* **106**(31): 13106-13111.

946 **Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M. 2001.**
947 Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance
948 response. *Science* **291**(5511): 2138-2141.

949 **Kagawa T, Wada M. 2002.** Blue light-induced chloroplast relocation. *Plant Cell Physiol* **43**(4): 367-371.

950 **Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. 2002.** Chloroplast avoidance
951 movement reduces photodamage in plants. *Nature* **420**(6917): 829-832.

952 **Ketelaar T, Anthony RG, Hussey PJ. 2004.** Green Fluorescent Protein-mTalin Causes Defects in Actin
953 Organization and Cell Expansion in Arabidopsis and Inhibits Actin Depolymerizing Factor's Actin
954 Depolymerizing Activity in Vitro. *Plant Physiology* **136**(4): 3990-3998.

955 **Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. 2001.** Phot1 and phot2 mediate blue
956 light regulation of stomatal opening. *Nature* **414**(6864): 656-660.

957 **Kong S-G, Arai Y, Suetsugu N, Yanagida T, Wada M. 2013.** Rapid Severing and Motility of Chloroplast-
958 Actin Filaments Are Required for the Chloroplast Avoidance Response in Arabidopsis *The*
959 *Plant Cell* **25**(2): 572-590.

960 **Kong SG, Yamazaki Y, Shimada A, Kijima ST, Hirose K, Katoh K, Ahn J, Song HG, Han JW, Higa T, et al.**
961 **2024.** CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor
962 regulating chloroplast movement. *Plant Cell* **36**(4): 1159-1181.

963 **Kumar AS, Park E, Nedo A, Alqarni A, Ren L, Hoban K, Modla S, McDonald JH, Kambhamettu C, Dinesh-
964 Kumar SP, et al. 2018.** Stromule extension along microtubules coordinated with actin-mediated
965 anchoring guides perinuclear chloroplast movement during innate immunity. *eLife* **7**: e23625.

966 **Kunz J, Ullmann T, Kneisel C, Baumhauer R. 2023.** Three-dimensional subsurface architecture and its
967 influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson
968 Mountains, Northwest Territories, Canada. *Arctic Antarctic and Alpine Research* **55**(1).

969 **Łabuz J, Sztatelman O, Hermanowicz P. 2022.** Molecular insights into the phototropin control of
970 chloroplast movements. *Journal of Experimental Botany* **73**(18): 6034-6051.

971 **Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. 2007.** Chloroplast-generated reactive oxygen
972 species are involved in hypersensitive response-like cell death mediated by a mitogen-activated
973 protein kinase cascade. *Plant Journal* **51**(6): 941-954.

974 **Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP. 2002.** Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are
975 required for N-mediated resistance to tobacco mosaic virus. *Plant Journal* **30**(4): 415-429.

976 **Lowe DG. 2004.** Distinctive image features from scale-invariant keypoints. *International Journal of*
977 *Computer Vision* **60**(2): 91-110.

978 **Luesse DR, DeBlasio SL, Hangarter RP. 2010.** Integration of Phot1, Phot2, and PhyB signalling in light-
979 induced chloroplast movements. *Journal of Experimental Botany* **61**(15): 4387-4397.

980 **Meier ND, Seward K, Caplan JL, Dinesh-Kumar SP. 2023.** Calponin-homology domain containing kinesin,
981 KIS1, regulates chloroplast stromule formation and immunity. *Science Advances* **In press**.

982 **Montes-Rodriguez A, Kost B. 2017.** Direct Comparison of the Performance of Commonly Employed In
983 Vivo F-actin Markers (Lifeact-YFP, YFP-mTn and YFP-FABD2) in Tobacco Pollen Tubes. *Frontiers in*
984 *Plant Science* **8**.

985 **Mustárdy L, Garab G. 2003.** Granum revisited.: A three-dimensional model -: where things fall into
986 place. *Trends in Plant Science* **8**(3): 117-122.

987 **Natesan SKA, Sullivan JA, Gray JC. 2009.** Myosin XI Is Required for Actin-Associated Movement of
988 Plastid Stromules. *Molecular Plant* **2**(6): 1262-1272.

989 **Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A,**
990 **Wada M. 2003.** Chloroplast unusual positioning1 is essential for proper chloroplast positioning.
991 *Plant Cell* **15**(12): 2805-2815.

992 **Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M.**
993 2008. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the
994 plasma membrane and chloroplast movement. *Plant Physiol* **148**(2): 829-842.

995 **Pak VV, Ezeriña D, Lyublinskaya OG, Pedre B, Tyurin-Kuzmin PA, Mishina NM, Thauvin M, Young D,**
996 **Wahni K, Martínez Gache SA, et al. 2020.** Ultrasensitive Genetically Encoded Indicator for
997 Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial
998 Function. *Cell Metabolism* **31**(3): 642-653.e646.

999 **Panstruga R, Moscou MJ. 2020.** What is the Molecular Basis of Nonhost Resistance? *Molecular Plant-*
1000 *Microbe Interactions* **33**(11): 1253-1264.

1001 **Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. 2018.** Plant-microbe interactions: organelles and the
1002 cytoskeleton in action. *New Phytologist* **217**(3): 1012-1028.

1003 **Poulsen CP, Vereb G, Geshi N, Schulz A. 2013.** Inhibition of cytoplasmic streaming by cytochalasin D is
1004 superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged
1005 Golgi components. *Cytometry A* **83**(9): 830-838.

1006 **Pyke K. 2009.** *Plastid biology*: Cambridge University Press.

1007 **Pyke K, López-Juez E. 1999.** Cellular Differentiation and Leaf Morphogenesis in Arabidopsis. *Critical*
1008 *Reviews in Plant Sciences* **18**(4): 527-546.

1009 **Ronneberger O, Fischer P, Brox T. 2015.** U-Net: Convolutional Networks for Biomedical Image
1010 Segmentation. *Medical Image Computing and Computer-Assisted Intervention, Pt Iii* **9351**: 234-
1011 241.

1012 **Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K. 2001.**
1013 Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast
1014 relocation. *Proc Natl Acad Sci U S A* **98**(12): 6969-6974.

1015 **Sakai Y, Takagi S. 2017.** Roles of actin cytoskeleton for regulation of chloroplast anchoring. *Plant*
1016 *Signaling & Behavior* **12**(10): e1370163.

1017 **Sattarzadeh A, Krahmer J, Germain AD, Hanson MR. 2009.** A myosin XI tail domain homologous to the
1018 yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana
1019 benthamiana. *Mol Plant* **2**(6): 1351-1358.

1020 **Savage Z, Duggan C, Toufexi A, Pandey P, Liang Y, Segretn ME, Yuen LH, Gaboriau DCA, Leary AY,**
1021 **Tumtas Y, et al. 2021.** Chloroplasts alter their morphology and accumulate at the pathogen
1022 interface during infection by *Phytophthora infestans*. *The Plant Journal* **107**(6): 1771-1787.

1023 **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,**
1024 **Saalfeld S, Schmid B, et al. 2012.** Fiji: an open-source platform for biological-image analysis. *Nat*
1025 *Methods* **9**(7): 676-682.

1026 **Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjarvi J. 2012.** ROS-talk - how the apoplast, the
1027 chloroplast, and the nucleus get the message through. *Front Plant Sci* **3**: 292.

1028 **Suetsugu N, Higa T, Gotoh E, Wada M. 2016.** Light-Induced Movements of Chloroplasts and Nuclei Are
1029 Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis
1030 thaliana. *PLOS ONE* **11**(6): e0157429.

1031 **Suetsugu N, Higa T, Kong SG, Wada M. 2015.** PLASTID MOVEMENT IMPAIRED1 and PLASTID
1032 MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts
1033 and Nuclei. *Plant Physiol* **169**(2): 1155-1167.

1034 **Suetsugu N, Kagawa T, Wada M. 2005.** An auxilin-like J-domain protein, JAC1, regulates phototropin-
1035 mediated chloroplast movement in Arabidopsis. *Plant Physiol* **139**(1): 151-162.

1036 **Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M.**
1037 **2012.** The KAC family of kinesin-like proteins is essential for the association of chloroplasts with
1038 the plasma membrane in land plants. *Plant Cell Physiol* **53**(11): 1854-1865.

1039 **Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M. 2010.** Two kinesin-like
1040 proteins mediate actin-based chloroplast movement in *Arabidopsis thaliana*. *Proc Natl Acad Sci
1041 U S A* **107**(19): 8860-8865.

1042 **Takagi S, Kamitsubo E, Nagai R. 1991.** Light-Induced Changes in the Behavior of Chloroplasts under
1043 Centrifugation in *Vallisneria* Epidermal Cells. *Journal of Plant Physiology* **138**(3): 257-262.

1044 **Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K. 2005.** Phototropins promote plant growth in
1045 response to blue light in low light environments. *Plant Cell* **17**(4): 1120-1127.

1046 **Tominaga M, Ito K. 2015.** The molecular mechanism and physiological role of cytoplasmic streaming.
1047 *Current Opinion in Plant Biology* **27**: 104-110.

1048 **Torres MA. 2010.** ROS in biotic interactions. *Physiol Plant* **138**(4): 414-429.

1049 **Trotta A, Rahikainen M, Konert G, Finazzi G, Kangasjarvi S. 2014.** Signalling crosstalk in light stress and
1050 immune reactions in plants. *Philos Trans R Soc Lond B Biol Sci* **369**(1640): 20130235.

1051 **van der Honing HS, van Bezouwen LS, Emons AM, Ketelaar T. 2011.** High expression of Lifeact in
1052 *Arabidopsis thaliana* reduces dynamic reorganization of actin filaments but does not affect plant
1053 development. *Cytoskeleton (Hoboken)* **68**(10): 578-587.

1054 **Wada M, Kong S-G. 2018.** Actin-mediated movement of chloroplasts. *Journal of Cell Science* **131**(2):
1055 jcs210310.

1056 **Wang B, Zhou Z, Zhou JM, Li J. 2024.** Myosin XI-mediated BIK1 recruitment to nanodomains facilitates
1057 FLS2-BIK1 complex formation during innate immunity in *Arabidopsis*. *Proc Natl Acad Sci U S A*
1058 **121**(25): e2312415121.

1059 **Whippo CW, Khurana P, Davis PA, DeBlasio SL, DeSloover D, Staiger CJ, Hangarter RP. 2011.**
1060 THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. *Curr Biol*
1061 **21**(1): 59-64.

1062 **Williamson RE. 1972.** A light-microscope study of the action of cytochalasin b on the cells and isolated
1063 cytoplasm of the characeae. *Journal of Cell Science* **10**(3): 811-819.

1064 **Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S. 2002.** Thylakoid membrane-bound
1065 ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress.
1066 *The Plant Journal* **32**(6): 915-925.

1067 **Yang F, Xiao K, Pan H, Liu J. 2021.** Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions.
1068 *Front Plant Sci* **12**: 637853.

1069 **Yang Y, Sage TL, Liu Y, Ahmad TR, Marshall WF, Shiu SH, Froehlich JE, Imre KM, Osteryoung KW. 2011.**
1070 CLUMPED CHLOROPLASTS 1 is required for plastid separation in *Arabidopsis*. *Proc Natl Acad Sci
1071 U S A* **108**(45): 18530-18535.

1072 **Yu X, Feng B, He P, Shan L. 2017.** From Chaos to Harmony: Responses and Signaling upon Microbial
1073 Pattern Recognition. *Annu Rev Phytopathol* **55**: 109-137.

1074 **Zuo J, Niu Q-W, Chua N-H. 2000.** An estrogen receptor-based transactivator XVE mediates highly
1075 inducible gene expression in transgenic plants. *The Plant Journal* **24**(2): 265-273.

1076

1077 The following Supporting Information is available for this article:

1078

1079 **Fig. S1** Knockdown of expression of genes by virus-induced gene silencing.

1080 **Fig. S2** *Tobacco rattle virus* characterization in *CHUP1*-silenced *N. benthamiana* plants.

1081 **Fig. S3** Red light does not increase chloroplast movement in *CHUP1*-silenced *N. benthamiana* or
1082 *Arabidopsis chup1* mutant plants.

1083 **Fig. S4** Chloroplast-associated actin was not detectable during light induced chloroplast movement with
1084 fluorescent protein actin markers.

1085 **Fig. S5** Partial correlation of chloroplast movement with cytoplasmic streaming.

1086 **Fig. S6** Quantification of rapid linear chloroplast movement correlated with cytoplasmic streaming.

1087 **Fig. S7** Types of chloroplast and stromule movement measurements and classifications.

1088 **Fig. S8** Quantitation of stromules during low and high intensity blue light.

1089 **Fig. S9** Frequency of stromule extension and retractions.

1090 **Fig. S10** Examination of the effects of and *PHOT1*-silencing on stromules and chloroplasts movement
1091 during effector-triggered immunity.

1092 **Fig. S11** *CHUP1* expression increased during effector-triggered immunity induction.

1093 **Fig. S12** Increase hydrogen peroxide in *CHUP1*-silenced plants is dependent on light.

1094 **Fig. S13** Co-localization of chloroplast-targeted HyPer7 and ascorbate peroxidase.

1095 **Fig. S14** Hydrogen peroxide is required for increased chloroplast movement in *CHUP1*-silenced plants.

1096 **Fig. S15** Light induced hydrogen peroxide during effector-triggered immunity.

1097 **Table S1.** Description of constructs.

1098 **Table S2.** List of primers used in this study.

1099 **Table S3.** Imaging laser power levels.

1100 **Table S4.** Description of metrics.

1101 **Methods S1.** Plant growth conditions.

1102 **Methods S2.** Quantitative real time PCR to assess virus-induced gene silencing efficiency.

1103 **Methods S3.** Image analysis of stromules and chloroplast movement.

1104 **Methods S4.** Actin inhibitor treatments.

1105 **Methods S5.** Measurement of cell death by conductivity assay.

1106 **Note S1.** Interpretation of data using actin markers.

1107

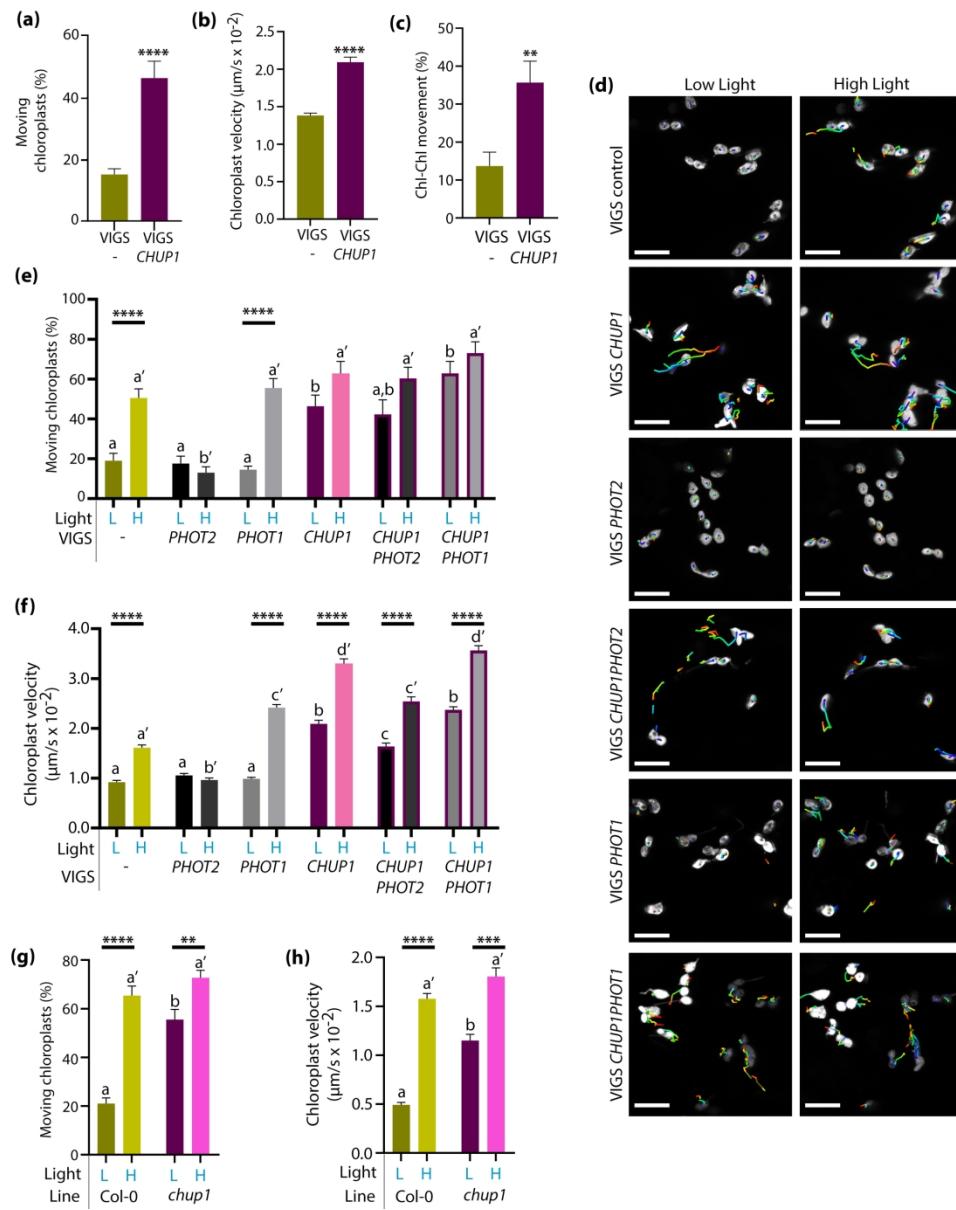


Fig. 1. Silencing CHUP1 increases epidermal chloroplast movement.

194x243mm (300 x 300 DPI)

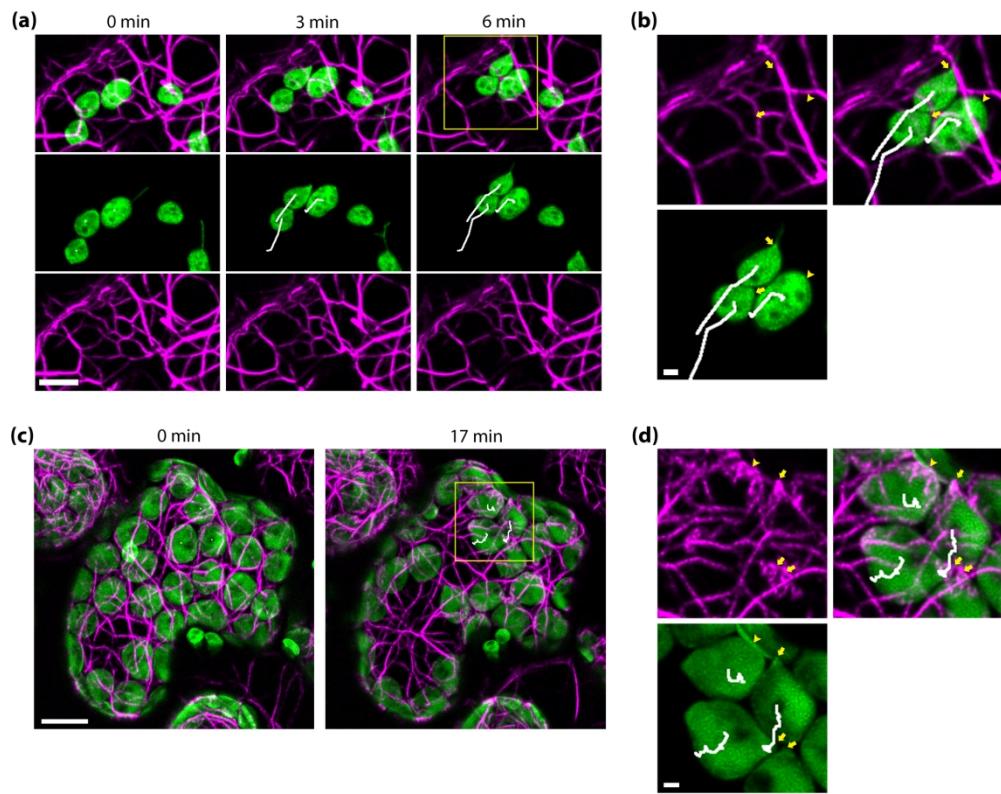


Fig. 2. Light-induced cp-actin detected on mesophyll but not epidermal chloroplasts.

188x149mm (300 x 300 DPI)

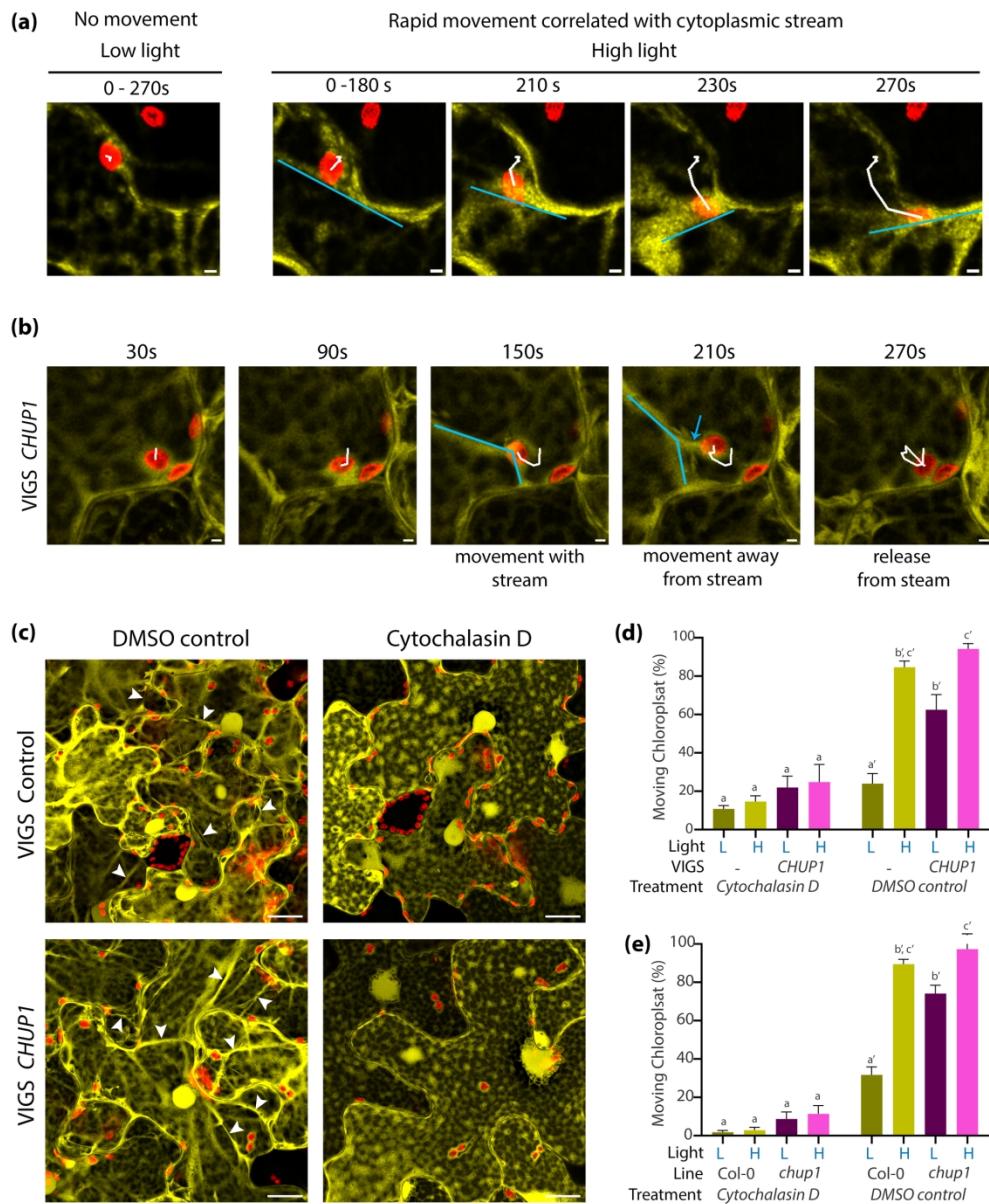


Fig. 3. Chloroplast movement partially correlates with cytoplasmic streaming and is reduced by the inhibition of actin polymerization with cytochalasin D.

177x215mm (300 x 300 DPI)

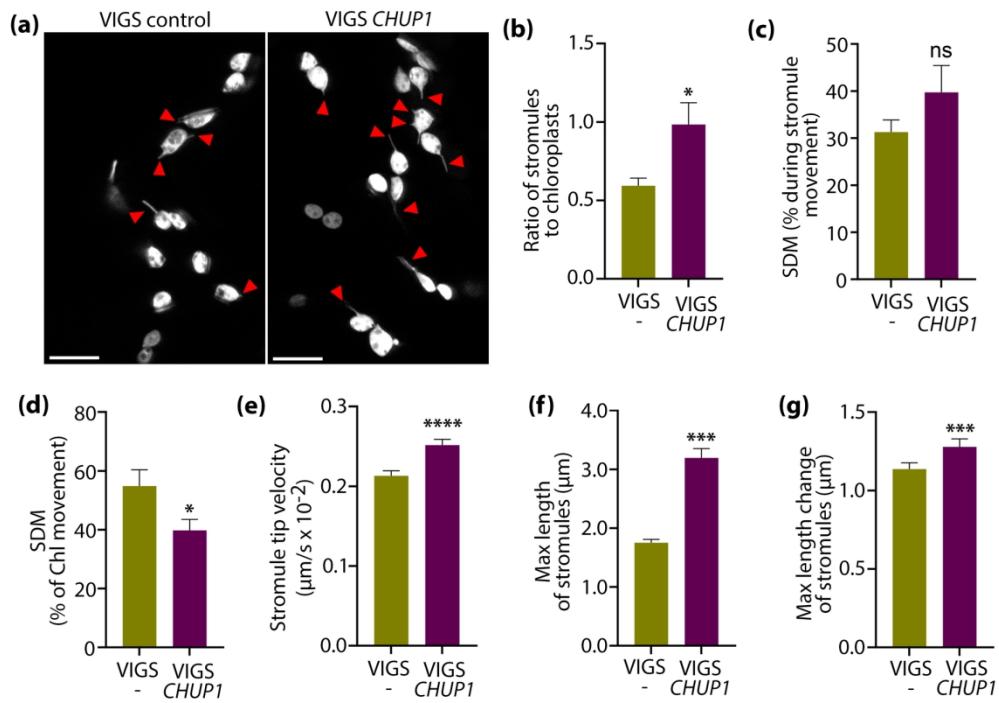


Fig. 4. Silencing *CHUP1* induces stromule amount, velocity, and length.

161x112mm (300 x 300 DPI)

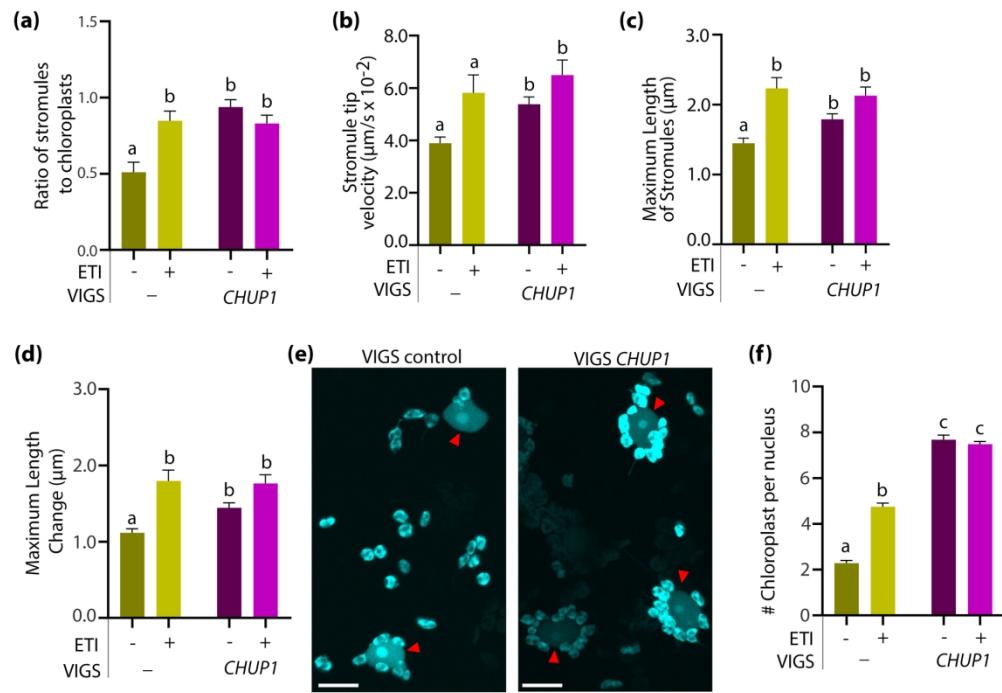


Fig. 5. Silencing *CHUP1* auto-activates chloroplast associated innate immune responses.

179x124mm (300 x 300 DPI)

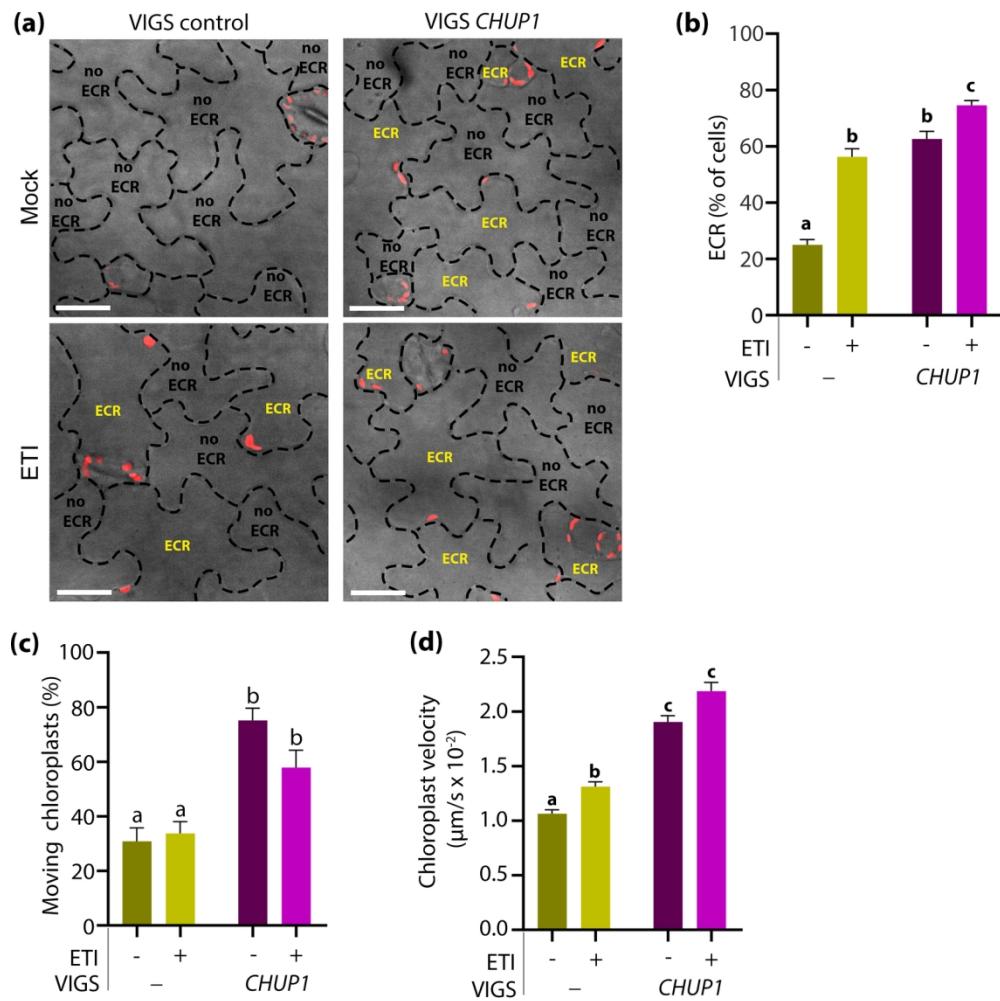


Fig. 6. Epidermal chloroplast response is induced during ETI and by *CHUP1* silencing.

150x150mm (300 x 300 DPI)

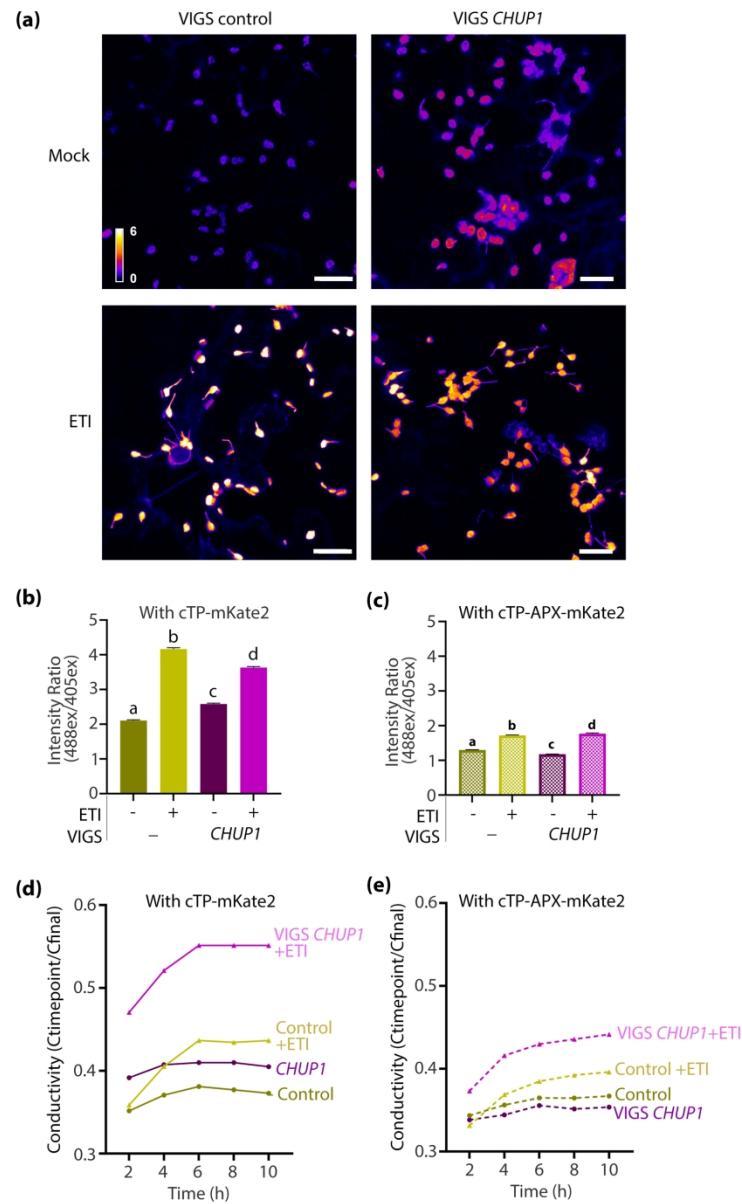


Fig. 7. Hydrogen peroxide is required for enhanced PCD in *CHUP1*-silenced plants.

140x231mm (300 x 300 DPI)

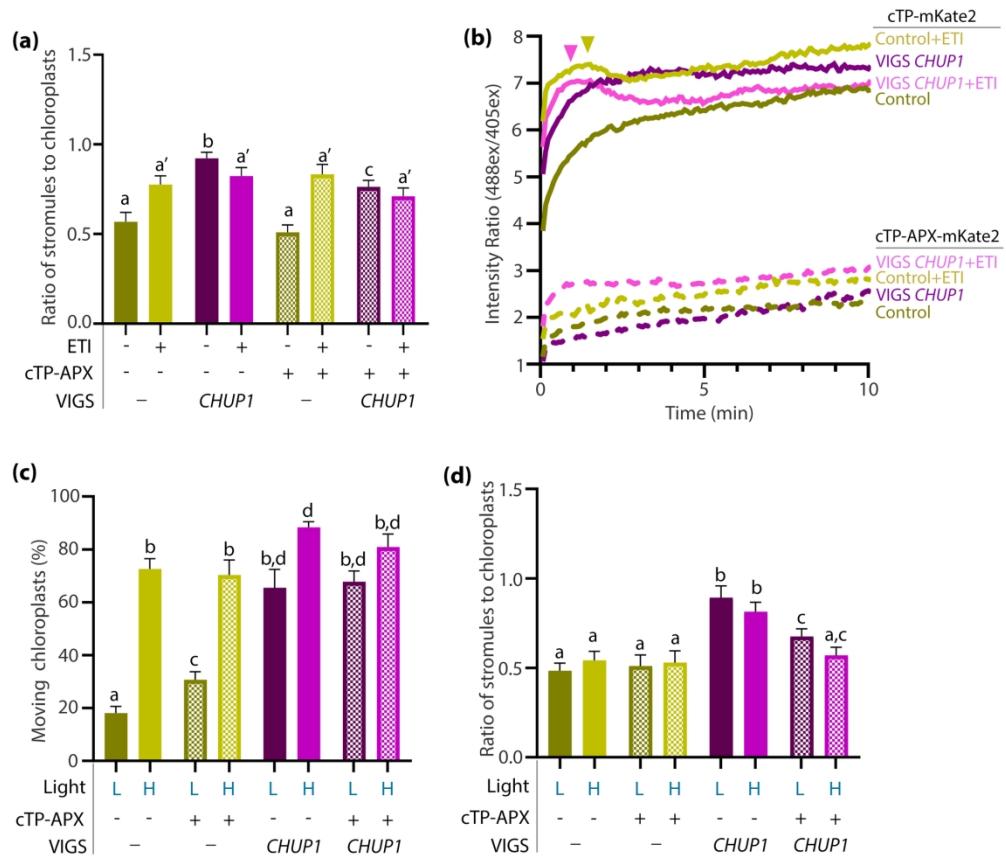


Fig. 8. Hydrogen peroxide is required for stromule induction but not chloroplast movement.

177x152mm (300 x 300 DPI)