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ABSTRACT: The Maryland Mesonet project will construct a network of 75 surface observing stations with aims that in-
clude mitigating the statewide impact of severe convective storms and improving analyses of records. The spatial configura-
tion of mesonet stations is expected to affect the utility newly provided observations will have via data assimilation, making
it desirable to study the effects of mesonet configuration. Furthermore, the impact associated with any observing system
configuration is constrained by errors inherent to the prediction systems used to generate forecasts, which may change with
future advances in data assimilation methodology, physical parameterization schemes, and resource availability. To address
such possibilities, we perform sets of observing system simulation experiments using a high-resolution regional modeling
system to assess the expected impact of four candidate mesonet configurations. Experiments cover seven 18-h case study
events featuring moist convective regimes associated with severe weather over the state of Maryland and are performed us-
ing two versions of our experimental modeling system: a “standard-uncertainty” configuration tuned to be representative
of existing convective-allowing prediction systems and a “constrained-uncertainty” configuration with reduced boundary
condition and model error that reflects a possible trajectory for future prediction systems. We find that the assimilation
of mesonet data produces definitive improvements to analysis fields below 1000 m that are mediated by modeling system
uncertainty. Conversely, mesonet impact on forecast verification is inconclusive and strongly variable across verification
metrics. The impact of mesonet configuration appears limited by a saturation effect that caps local analysis improvements
past a minimal density of observing stations.

SIGNIFICANCE STATEMENT: The Maryland Mesonet project will construct 75 surface observing stations to im-
prove the analysis of records for Maryland’s surface weather conditions as well as predictions for severe weather events.
The spatial placement of sensors is expected to influence the utility of a mesonet, making it desirable to optimize meso-
net layouts. The utility provided by a mesonet may also be impacted by errors in prediction systems used to generate
analyses and forecasts, which are themselves subject to change given future advances in prediction methods and resour-
ces. This study uses observing system simulation experiments (OSSEs)}which comprehensively simulate numerical
weather prediction for a known “truth state” }to characterize improvement we may expect from mesonet observations
and evaluate four potential mesonet configurations.

KEYWORDS: Severe storms; In situ atmospheric observations; Sensitivity studies; Mesoscale forecasting;
Regional models

1. Introduction

The forecast skill offered by numerical weather prediction
(NWP) systems has improved in tandem with advances in ob-
serving strategies, model physics, and data assimilation (DA)
methodology, combined with increases in computing capac-
ity and observational coverage. Furthermore, the widespread
adoption of ensemble modeling over the past two decades has
yielded a coherent basis for analyzing the sources of error
that impact practical predictability. Given the rate of such ad-
vances, there is a need for resources to be organized in a way
that considers the future trajectories of NWP system compo-
nents. Carefully structured observing system simulation ex-
periments (OSSEs) may be used to evaluate}and potentially
optimize}the NWP utility that can be expected from an ob-
serving system given existing NWP systems while providing
insight on how afforded utility may evolve under future NWP

systems that feature improvements such as more accurate model
parameterization schemes, better constrained initial and bound-
ary conditions, and alternative DA strategies. The present study
adopts this strategy to evaluate the potential impacts of a new
mesonet network to be established in the state of Maryland. The
new network aims to improve analyses and numerical predic-
tions for high-impact weather events, with a specific emphasis on
hazards associated with severe convective storms.

a. Maryland Mesonet project

The Maryland Mesonet (MM) project will oversee the
placement of 75 state-of-the-art, in situ surface observing sta-
tions, with the goal of improving climate records, producing
more accurate regional analyses and forecasts, and mitigating
the impact of severe weather events across the state. It will
join other similarly motivated mesonet systems that exist
across the country, such as the pioneering Oklahoma Mesonet
established in 1994. As the definition of a mesonet has histori-
cally been contingent on local requirements (Fiebrich et al.
2020), for our study, we define a mesonet as a network ofCorresponding author: JoshuaMcCurry, jmccurry@umd.edu
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observing stations that collects surface wind velocity, temper-
ature, humidity, etc. with a spatial and temporal frequency
sufficient to capture mesoscale processes and the develop-
ment of severe convective storms. Such observing systems
typically provide information at a granularity beyond the res-
olution available from pre-existing surface observing stations.
The MM will be constructed in two phases. The first 28 sta-
tions will be distributed on a roughly county-by-county basis
with specific locations contingent on the input of local officials
and emergency managers. The second phase of the network
design will place the remaining 47 stations based on an opti-
mization strategy that maximizes network utility. The current
paper outlines the optimization strategy for the second phase
of this project and discusses findings from numerical experi-
ments that were performed for this purpose.

b. Challenges and limitations of assimilating surface
observations for NWP

The effective use of in situ surface data from mesonets
in atmospheric modeling systems is a nuanced problem that
requires consideration of error sources in convective-scale
NWP systems. Subgrid-scale physical parameterization schemes
for components such as land surface, cloud microphysics, and
planetary boundary layer in numerical models may not accu-
rately reflect physical processes involved in moist convection.
Model process error can often be highly correlated, difficult
to estimate, and treated heuristically by inflating background
error covariance during DA. As such, a model error can pro-
duce large biases in estimates of model states and the respec-
tive uncertainty in the state estimate. Furthermore, true error
correlation length scales across point locations for state varia-
bles are nonstationary. They may, for instance, decrease as
large-scale synoptic flow gives way to convective regimes and
vice versa. Multiple factors, including the grid spacing of the
modeling system, ensemble size, model error, and choices of
heuristic DA parameters, such as localization and inflation,
can determine the accuracy with which cross covariances are
dynamically estimated using ensembles (Pannekoucke et al.
2008; Hodyss and Morzfeld 2023). The meso-g- and micro-
scale correlation structures that characterize organized moist
convection could require finer grid spacing and larger ensemble
sizes than presently available in operational contexts (Necker
et al. 2020). Importantly, sampling error associated with unre-
solved variability can translate to biased analysis increments
(Hodyss and Morzfeld 2023) that degrade or fail to improve
state estimates and resulting forecasts. Even where uncertainty
is accurately estimated with ensembles, Gaussian assumptions
made by current DA methods such as ensemble Kalman
filters (EnKFs) and variational methods may introduce errors
in state estimates due to the nonlinearity of moist convective
dynamics and resulting non-Gaussianity of prior probability
distributions (McCurry et al. 2023).

The assimilation of mesonet observations has been the sub-
ject of multiple observing system sensitivity studies, although
the diversity of observing system configurations, modeling
system parameters, case studies, and broader experiment
methodology within this body of research makes it difficult to

draw firm conclusions on their practical utility for improving
analyses and forecasts for severe events in the context of op-
erational, limited-area NWP systems. Results from Stensrud
et al. (2009) demonstrate the utility of mesonet observations
in terms of improving the depiction of cold pools and storm
wind structures in state estimates. Ha and Snyder (2014) like-
wise showed reduced low-level moisture and temperature
biases and improved estimates for the location and structure
of frontal boundaries. For the latter study, error reductions
for wind and temperature were seen to extend vertically into
the midtroposphere, and forecasts initialized with mesonet
data outperformed verification scores from a control run on
several metrics}including accumulated precipitation}even
6-h postinitialization. We note that both of the preceding
studies used coarse (.10 km) grid spacing and infrequent as-
similation intervals (.1 h), with no assimilation of Doppler
wind observations in areas of storm activity. Studies using
higher-resolution modeling systems that are perhaps more rel-
evant for convective-scale data assimilation have shown
mixed results for utility gained from assimilating mesonet ob-
servations. When performing hourly data assimilation for a
convective-allowing modeling system using conventional sur-
face and airborne observations from National Oceanic and
Atmospheric Administration (NOAA) Global Systems Divi-
sion Meteorological Analysis and Data Ingest System
(MADIS; Miller et al. 2005), Knopfmeier and Stensrud (2013)
found no significant difference between verification scores of
state estimates produced using all possible mesonet observa-
tions and those from data denial experiments that assimilated
only 25% of available mesonet observations. Sobash and
Stensrud (2015) assimilated MADIS mesonet observations
along with other real surface observation types in a modeling
system with 3-km grid spacing and found that the addition of
mesonet observations improved model timing of convective
initiation by reducing surface biases for temperature and dew-
point, but only when observations were assimilated at a 5-min
frequency. Sobash and Stensrud (2015) also noted limitations
in the ability of surface observations to improve state esti-
mates of quantities above the boundary layer, which contrib-
uted to limited mesonet utility for an event featuring a strong
capping inversion. This issue also appears in Marquis et al.
(2014), which evaluated a mobile mesonet system for real
cases using a modeling system with 500-m grid spacing that
also assimilated Doppler radar observations. The authors
noted that surface observations provided by the mobile
mesonet did not produce significant change to state esti-
mates above a near-surface cold pool layer 2–3 km in depth.
Although both Knopfmeier and Stensrud (2013) and Sobash
and Stensrud (2015) examined the impact of mesonet obser-
vations separately from METAR and other conventional
surface observations, no study so far has comparatively
evaluated the impact associated with distinct spatial confi-
gurations of mesonet systems. Due to a relative lack of com-
prehensive OSSEs experiments involving modeling system
uncertainty, it is also not well understood how factors like
model process error and boundary condition error mediate in-
formation available to modeling systems from surface observ-
ing networks. It is conceivable, for instance, that reductions in
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uncertainty from improved model physics parameterizations
and boundary conditions that remove synoptic-scale errors
may isolate error sources associated with mesoscale dynamics
to the point where surface observing systems can help inform
state estimates for the free atmosphere in the vicinity of se-
vere storms. Alternatively, improved error covariance esti-
mates for surface-based mesoscale features like cold pools
and horizontal convergence zones may allow surface observa-
tions to inform model representations of such phenomena at
finer scales and therefore produce more accurate forecasts
even without reducing analysis error above the near-surface
environment.

c. Observing system simulation experiments

OSSEs are a commonly used method for numerically esti-
mating the impact that may be expected from changes applied
to any component of an NWP system, including changes
to the type and density of observations ingested during the
DA process. All OSSEs involve the creation of a nature
run}a single model integration defined as the benchmark
“truth” from which errors may be unambiguously defined.
“Synthetic” observations are then generated from the nature
run and assimilated by a modeling system that produces initial
conditions and forecasts. OSSEs provide a natural framework
for investigating the impact of nonexistent observing systems
such as the Maryland Mesonet and also offer flexibility in tun-
ing modeling system error structures against a reference state.
Our study makes use of the latter property of OSSEs to
comparatively evaluate the utility of four candidate networks
for a “standard-uncertainty” modeling system configuration
representative of contemporary limited-area, convective-
permitting NWP systems and a “constrained-uncertainty”
modeling system configuration imitating future NWP systems
with improved model physics and well-constrained boundary
conditions. Although alternative methods exist for optimizing
observing networks, such as the adaptive observation frame-
work mentioned in Khare and Anderson (2006), our choice
of a simple comparative evaluation of pregenerated mesonet
configurations avoided assumptions for sampling and model
error that may complicate such approaches.

2. Methodology

a. Case event selection

Our experiments simulated seven 18-h real event cases
featuring warm-season moist convection within the state of
Maryland. Cases were chosen from within the archival range
for forecast data from the High-Resolution Rapid Refresh
(HRRR) model (James et al. 2022), spanning 2018–22 at the
time of our experiments. Our selection process emphasized
events featuring multiple Storm Prediction Center (SPC) storm
reports within state boundaries, with further filtering based
on storm severity within the densely populated Baltimore–
Washington metropolitan area. Severity in this context was
judged by available observations of composite reflectivity and
accumulated event precipitation. Limiting events to those
that impacted densely populated areas allows human impact

factors to play an implicit role in the evaluation of mesonet
configurations without dividing our verification region into
smaller subdomains that may suffer from issues of sampling
error related to the spatial distribution of impact from a lim-
ited number of test cases. We chose initial conditions for our
test case events so that the peak of convective activity occurs
after the beginning of forecast initiation following a 5-h
spinup period of sequential DA.

b. Modeling system and data assimilation

For the analysis and forecasting component of our OSSE
framework}from which initial conditions and forecasts
are produced for later comparative evaluation against a na-
ture run}we implemented a modeling system similar to the
Warn-on-Forecast System (WoFS) developed by the NOAA
National Severe Storms Laboratory (Wheatley et al. 2015;
Jones et al. 2016; Lawson et al. 2018) and previously applied
for experiments evaluating non-Gaussian data assimilation
methods in moist convective regimes (McCurry et al. 2023).
All experiments were performed with the Advanced Re-
search version of WRF (version 4.2) (Skamarock et al. 2019)
and implemented data assimilation using the DA Research
Testbed (DART) software package (Anderson et al. 2009).
The domain size was set at 900 3 900 km2, with 50 vertical
levels and a 3-km horizontal grid spacing, which is sufficient to
explicitly resolve meso-g-scale convective features in numerical
experiments. The domain was centered on Winchester Regional
Airport (KOKV) for all experiments, providing full coverage of
the state of Maryland and extending several hundred kilometers
into surrounding states located to the north, south, and west
(Fig. 1). In Table 1, we specify model physical parameterization
options used in OSSE experiments. With the exception of
ensemble size}which we set at 40 members}and the micro-
physical scheme}which is experimentally varied}selected

FIG. 1. Mid-Atlantic domain used for OSSE experiments. Colored
shading shows the nature run composite reflectivity from 5 to 80 dBZ
at 1800 UTC for one of the selected events on 16 Jul 2022.
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options were motivated by validation experiments performed
at NSSL for the WoFS (Jones et al. 2018; Potvin et al. 2020).

Initial ensemble members and lateral boundary conditions
for our modeling system were generated by perturbing output
from HRRR analyses and forecasts with spatially correlated
Gaussian noise for horizontal wind, potential temperature,
and moisture fields. After a 1-h spinup period intended to
develop flow-dependent ensemble covariance, we performed
14 h of sequential DA, with an assimilation frequency of 15 min.
Hourly updates were applied to lateral boundary conditions
for each member during DA, to reflect solutions from the
posterior ensemble and HRRR forecasts. To cope with under-
dispersion in the ensemble, we also used additive inflation
at 15-min intervals near areas of high observed reflectivity
(Dowell and Wicker 2009). We initialized 180-min, 20-member
ensemble forecasts at 30-min intervals starting 5 h after the
first DA cycle, giving a total of 19 ensemble forecasts per
experiment.

c. Nature runs and generation of synthetic observations

Nature runs were produced for each event by performing
single 18-h WRF integrations from corresponding initial con-
ditions. This integration length was sufficient to encompass
the period of sequential DA and resulting forecasts produced
by our modeling system. As with initial ensemble members,
nature run initial and lateral boundary conditions were inter-
polated from HRRR analysis output but were not perturbed
with spatially correlated Gaussian noise. Given the 3-km grid
spacing specified for our modeling system, we chose a finer
nature run grid spacing of 1 km to induce a source of repre-
sentativeness error in synthetic observations. Physical para-
meterization schemes in nature runs were maintained from
those used by our modeling system configurations (Table 1),
with the exception of microphysics for which we specified the
NSSL 2-moment variable density (NVD) scheme. The NVD
scheme is notable for its fully double-moment representation
of all hydrometeor classes and the inclusion of graupel density
as a diagnosable parameter (Mansell 2010), which offers a
comparatively high degree of complexity that may be useful
for OSSE experiments simulating the effect of missing physi-
cal processes.

From nature run output, we generated synthetic observa-
tions corresponding to several observation types typically as-
similated by operational NWP systems. Radar observations
were created for radar reflectivity and radial velocity of Next
Generation Weather Radar (NEXRAD), as well as for Multi-
Radar Multi-Sensor (MRMS) system’ zero-reflectivity ob-
servations in areas not experiencing storm activity. Surface
observations were created corresponding to wind and tem-
perature observations available from MADIS. We also pro-
duced synthetic observations of temperature and wind in
the lower troposphere corresponding to observations from
the Aircraft Communications Addressing and Reporting
System (ACARS). Synthetic conventional observations were
generated from nature runs at locations corresponding to real
observations available during the severe weather event of
12–13 August 2020 with the time stamps of these observations
modified to match those from the corresponding case event.
Observations generated in this manner correspond to those
that would be expected from the pre-existing observing
network. To facilitate experiments with new mesonet con-
figurations, we also generated synthetic observations of 2-m
temperature and 10-m wind at candidate network locations.

Since NWP systems typically do not assimilate radar obser-
vations below a threshold value, we used a modified process
to create synthetic radar observations only at locations corre-
sponding to reflectivity at or above a value of 25 dBZ in the
nature run. We first created dummy radar volumes for each
radar station with sweep elevation angles typical of those
from real NEXRAD observations used in part 3. We gener-
ated these volumes at time intervals that were likewise repre-
sentative. These dummy volumes contained nonempty values
at every possible location within the volume, subject to the
same regridding procedure applied to real observations for
our work in part 3. After interpolating truth values from the
nature run, we then removed observations within these vol-
umes that were below the 25-dBZ minimum reflectivity
threshold. Both steps made use of software tools provided by
the Observation Processing and Wind Synthesis (OPAWS)
program (Wicker 2017; Majcen et al. 2008).

In the context of NWP, observation error can be thought of
as the sum of a measurement error term and a representation

TABLE 1. Selected WRF namelist options used for nature run, standard-uncertainty modeling system, and constrained-uncertainty
modeling system (top) and selected DART namelist options used for all OSSE experiments (bottom).

WRF namelist option Nature Standard uncertainty Constrained uncertainty

Grid spacing 1 km 3 km 3 km
Microphysics NSSL (Mansell 2010) Thompson (Thompson et al. 2008) NSSL
Cumulus }

Longwave radiative transfer RRTM (Iacono et al. 2008)
Shortwave radiative transfer Dudhia (Chen and Dudhia 2001)
Land surface RUC (Smirnova et al. 2016)
Surface layer physics Monin–Obukhov (Jiménez et al. 2012)
Planetary boundary layer YSU (Ghonima et al. 2017)

DART namelist option Standard uncertainty Constrained uncertainty
Localization radius (surface obs) 30 km
Localization function Gaspari–Cohn (Gaspari and Cohn 1999)
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term consisting of contributions from 1) unresolved scales,
2) forward operator error, and 3) preprocessing error (Janjić
et al. 2017). Although some degree of error from unresolved
scales was implicitly included from the interpolation of syn-
thetic observations between the 1-km nature run grid and the
3-km modeling system grid, we accounted for measurement
error and the remainder of the representation error term by
adding Gaussian noise to the values of synthetic observations in
a manner similar to Errico et al. (2013) but using posterior root
mean departure from observations as the tuning parameter.

d. MM configurations

Our OSSE framework considered four candidate configura-
tions of 75 mesonet stations to be constructed as part of the
MM project. These configurations differ in aspects including
geographic uniformity of station density, locus of maximum
density for nonuniform configurations, as well as consider-
ation of surface observations provided by the pre-existing
observation network. We note that 28 of these stations have
fixed locations as part of the first phase of construction, leav-
ing 47 stations with spatial locations that may vary between
configurations. Candidate networks were generated using
a method based on simulated annealing (Bertsimas and

Tsitsiklis 1993) that maximizes equidistance between stations
subject to constraints and forcing terms that impact the final
distribution of station placement. A summary of station con-
figurations and the specific constraints used by the simulated
annealing method is provided in Table 2. All networks
were required to place stations within the state of Maryland
and on land surfaces only. The west-centered (WEST) and
population-centered (POP) MM configurations included forc-
ing terms that increased station density in favored areas: near
western boundaries}coastal or state administrative}upstream
of climatological storm propagation for the former case and in
densely populated regions of the Washington and Baltimore
metropolitan areas for the latter. Forcing terms are not
provided for the equidistant (EQD) or modified equidistant
(EQD1) configurations, and these configurations therefore
produce a more uniform spatial density of candidate stations
within state boundaries. Only MM stations were considered
by the simulated annealing method, with the sole exception
of the EQD1 configuration which also considered pre-
existing (non-MM) surface observing stations when maxi-
mizing equidistance.

Specific geographic locations of individual surface observ-
ing stations within each network are shown in Fig. 2. For the

TABLE 2. Configurations evaluated by OSSE experiments and parameters used in their generation by a synthetic annealing algorithm.

Configuration parameters EQD EQD1 WEST POP

Geographic constraints Within the state of Maryland
Surface constraints Land surface only
Geographic forcing } } Western boundaries BWI metro area
Equidistance maximized for MM MM and non-MM surface MM MM

FIG. 2. OSSE candidate MM configurations: (a) network placed to preserve equidistance between MM stations,
(b) network placed to preserve equidistance between MM and pre-existing (non-MM) stations, (c) network with
greater density in the Appalachian Plateau region of western Maryland, (d) network with greater density in heavily
populated areas of the Washington, D.C., and Baltimore metropolitan areas. Configuration-specific candidate
locations are indicated by red marks. Predetermined locations for new MM stations are indicated by blue marks.
Non-MM surface stations with frequent reporting intervals are indicated by purple marks.
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EQD1 configuration, pre-existing stations were taken as ob-
serving locations that report surface-level measurements of
temperature, wind, and humidity to NOAA’s Meteorological
Assimilation Data Ingest System at a frequency of at least
one measurement every 30 min. In addition to the four candi-
date networks, our experiments also consider a default or
“no-build” observation network without new mesonet sta-
tions. The no-build configuration provides the baseline from
which all MM configurations will be compared.

e. Simulations of mesonet impact with approximations
for current and future modeling system uncertainty

To accurately represent the impact of assimilating MM ob-
servations in both contemporary and future NWP systems, we
performed two separate sets of OSSE experiments using con-
figurations that appropriately simulated modeling system un-
certainty. For standard-uncertainty experiments simulating
the capabilities of contemporary NWP systems, we ran our
forecast model using the double-moment Thompson micro-
physics scheme (Thompson et al. 2008). This choice induces a
model process error in the sense that our parameterization
for clouds differs from the NSSL scheme used by the nature
run, acting in addition to model error induced by scale dis-
crepancy between our 3-kmmodeling system and 1-km nature
run. In an effort to realistically approximate the uncertainty
that is introduced to limited-area modeling systems by parent
global models via initial and boundary condition error, we
added an additional error source in the form of low wave-
number Gaussian noise applied to initial and lateral boundary
conditions used by our modeling system. This additive noise
has a wavelength roughly double that of our domain size and
simulates the impact that may be expected from synoptic-
scale error structures found in global model output. Using
forecast output for a case occurring on 13 April 2020, we
tuned the amount of added noise in an iterative process and
chose the amplitude that produced a 90-min fractions skill
score closest to that produced by our modeling system configura-
tion for the same case event when assimilating real observations.
For tuning process results, see Fig. A1 in the appendix.

For constrained-uncertainty experiments simulating the po-
tential capabilities of future NWP systems, we used a model-
ing system configuration with the same NSSL microphysical
scheme as in our nature runs, removing the approximated
source of physical parameterization error. To simulate im-
proved constraints on the synoptic-scale environment associ-
ated with future global NWP systems, we did not add low
wavenumber Gaussian noise to model initial and boundary
conditions. Given the short wavelengths of Gaussian noise
added to maintain ensemble spread, boundary conditions
used for constrained-uncertainty experiments may be thought
of as perfect on the synoptic scale. The relatively high fidelity
of initial conditions produced under these conditions further
allowed us to halve the amplitude of additive noise used to
maintain spread during sequential DA without significantly
degrading model spread during convective initiation. Because
additive inflation methods can themselves act as sources of
sampling error that induce bias in state estimates (Sobash and

Wicker 2015), this modification further imitated hypothetical
improvements in sampling characteristics of future NWP
systems.

f. Verification metrics for evaluation of MM
configurations

We evaluated the performance of candidate MM configura-
tions by generating verification scores for forecasts and analy-
ses that may be compared against those expected from the
pre-existing observing system. Scores were produced with two
primary metrics, the first of which was a root-mean-square er-
ror (RMSE) for ensemble-mean wind and potential tempera-
ture fields at various levels of interest. RMSE is evaluated
using gridpoint locations within a verification region corre-
sponding to the state of Maryland, which are regridded to
6-km resolution and then compared to similarly regridded
nature run values at corresponding locations. For our second
metric, we chose fractions skill score (FSS) (Roberts and
Lean 2008), a spatial verification metric that may better repre-
sent the qualitative performance of forecasts. FSS considers
the ratio of modeled and observed occurrence of events for
defined “neighborhoods” of grid points. In doing so, it does
not overly penalize small displacement errors in forecasts of
discrete weather features, including convective cells and pre-
cipitation maxima. We chose two verifying events for these
metrics: the occurrence of composite radar reflectivity over
25 dBZ, to correspond with areas of convection and severe
storm activity, as well as the occurrence of precipitation rates
more than 0.625 mm h21. Calculations for FSS considered
only grid points within a neighborhood window centered on a
single gridpoint location. Spatially averaged values were then
found by centering a window at each grid point within the ver-
ification region}taken again as the state of Maryland}and
normalizing the resulting sum. We chose a neighborhood
length scale of 15 km, which provides a balanced metric in-
formed by both the resolution of discrete storm structures as
well as more general performance characteristics such as pre-
cipitation bias.

In addition to RMSE and FSS, we make occasional use
of three other event-based metrics: probability of detection
(POD), false alarm (FA) rate, and critical success index
(CSI), which are given by the following relations:

FA 5
FP

FP 1 TN
, (1)

POD 5
TP

FN 1 TP
, (2)

CSI 5
TP

FN 1 FP 1 TP
, (3)

where TP and FP indicate the number of true and false posi-
tives, respectively, within the verification region and FN and
TN likewise indicate the number of false negatives and true
positives, respectively. These metrics provide qualitative in-
formation on forecast behavior beyond that available from
our primary metrics.

WEATHER AND FORECAS T ING VOLUME 391854

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 07/28/25 02:23 PM UTC



3. Impact of MM observations on the fidelity of analysis
fields and derived quantities

Results for standard-uncertainty and constrained-
uncertainty OSSE configurations

Accurate model analyses and derived, diagnostic quantities
are crucial for forecaster decision-making alongside numerical
forecast output. To gauge the utility of assimilating MM ob-
servations on the accuracy of state estimates, we examined
prior and posterior quantities over the duration of sequential
DA. In Fig. 3, we present several related plots that characterize
the spatial distribution of mesonet impact for potential tempera-
ture during experiments with our standard-uncertainty model-
ing system. Corresponding plots for zonal wind speed are shown
in Fig. 4. All plots presented consider averages for all forecast
initialization times across cases and are stratified columnwise
by applied MM configuration. The gray lines in Figs. 3d and 4d
depict the vertical structure of MM impact on initial condition
error, using the first 20 members of the analysis ensemble.
The impact is calculated as a percentage improvement in
ensemble-mean RMSE over the no-build case and averaged
longitudinally and meridionally within the boundaries of the
state of Maryland. Results across MM configurations indicate
maximal improvements of 6%–7% for potential temperature
and 3%–4% for zonal wind speed that decline with elevation.
Improvement is mostly constrained to a vertical range extend-
ing from the surface to roughly the height of the planetary
boundary layer, with impact becoming negligible above roughly
1000 m. Besides a slight advantage for near-surface zonal wind
speed shown for the modified equidistant MM configuration,

there is little difference in impacts produced by candidate
networks.

We extend this vertical stratification by examining the
geographic distribution of MM configuration impact on
analysis-mean quantities, considering only a layer roughly
below 330 m}corresponding to the five lowest eta levels in
our WRF configuration}that appears most strongly affected
by mesonet observations (Figs. 3c and 4c). We subsequently
refer to impacts averaged over this layer as “near-surface-
averaged.” Resulting fields show geographically heterogeneous
impact distributions for both temperature and zonal wind, with
all MM configurations producing benefits that are roughly con-
centrated within the state boundaries of Maryland and yielding
roughly equivalent areas of improvement and degradation in
neighboring states. With few exceptions, zones of contiguous
improvement are located near MM observation sites, well
within the 30-km localization radius of MM observations. The
location of maximum near-surface-averaged improvement to
analysis means over the default observation network varies with
MM configuration, occurring in southern Maryland and the
northwestern portion of the Delmarva Peninsula for the two
equidistant type configurations. For the west- and population-
centered networks, these maxima occur in southern Maryland
and in the north-central portion of the state. Near-surface-
averaged improvements near these maxima are on the order
of 15%–20% of the posterior RMSE values associated with
the default observation network for potential temperature
and 10%–15% for zonal wind, with potential temperature
showing more consistent and geographically contiguous im-
provements throughout the state.

FIG. 3. (a) Near-surface-averaged MM configuration change in analysis increment magnitude for potential temperature, (b) near-
surface-averaged MM configuration impact on prior-mean RMSE difference for potential temperature, (c) near-surface-averaged MM
configuration impact on analysis-mean RMSE difference for potential temperature, and (d) vertical profile of MM configuration impact
on the initial condition and forecast-mean RMSE for potential temperature. Results for standard-uncertainty OSSE.
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Plots of MM configuration-mediated changes to analysis in-
crement magnitude (DInc) (Figs. 3a and 4a) reveal a notable
correlation with local site density for most regions outside of
central Maryland, with higher configuration site densities pro-
ducing locally enhanced DInc. Since site density also tends to
correlate positively with analysis impact in these regions, this
suggests that Kalman gains for near-surface variables are rea-
sonably unbiased in such areas leading to positive marginal
utility of additional observations. A strong example of this ef-
fect can be seen in the northwestern Delmarva Peninsula,
where the west- and population-centered MM configurations
place comparatively few stations compared to the equidistant
MM configurations and are in turn associated with signifi-
cantly smaller changes to analysis increments and positive
analysis error impact for both potential temperature and
zonal wind speed. Conversely, regions of central Maryland
between Washington, D.C., and Baltimore, Maryland, metro-
politan areas, and portions of northeastern Maryland show no
distinguishable correlations between site density and DInc,
and the correlation between site density and positive analysis
error impact is greatly muted. We note that these regions cor-
respond rather well with areas where high average densities
[251 observations (100 km)21] of pre-existing, non-MM surface
observations are assimilated in our experiments (Fig. A4).

We repeat the preceding analysis for our constrained-
uncertainty modeling system configuration and present cor-
responding figures for potential temperature (Fig. 5) and
zonal wind speed (Fig. 6a). Although the vertical distribution
of impact on initial condition error appears quite similar to
results for the standard-uncertainty OSSE when considering
potential temperature (Fig. 5d), the same results for zonal
wind speed show stark differences below 1000 m, with maxi-
mal improvements over the no-build configuration reaching

only 2%–3% (Fig. 6d) near the surface. While the geographi-
cal distribution of impact retains improvement maxima in re-
gions of southern Maryland and the eastern shore indicated
for the standard-uncertainty OSSE, there are distinct reduc-
tions in analysis-mean improvement for both variables in the
central Maryland region and potential temperature in the
southern Chesapeake Bay. For zonal wind speed, there is a
large increase in the extent of regions suffering analysis-
mean degradation compared to the standard-uncertainty ex-
periments (Figs. 5c and 6c). Interestingly}despite shifts in
the geographical distribution of analysis-mean impact}the
corresponding distribution of MM mediated DInc appears
quite close to that from the standard-uncertainty OSSE
(Figs. 5a and 6a), which suggests that subdued analysis-mean
improvement in the constrained-uncertainty experiments is
mediated by other factors.

To investigate temporal and case-specific factors affecting
near-surface-averaged MM impact on analysis error, we exam-
ined smaller sets of analysis means aggregated in 2-h intervals,
commencing 3 h after ensemble initialization and for potential
temperature only (Fig. A2). We indicate the presence of com-
posite reflectivity above 25 dBZ within these temporal intervals
with cross-hatching. Results strongly suggest that the impact of
MM observations achieves the greatest amplitude, positive or
negative, only after a given local region has been impacted by
moist convection, regardless of event setup. It also appears that
the majority of statewide reduction to analysis-mean RMSE
can be attributed to particular cases and even intervals within
specific events. Events centered on 12 August 2020 and
16 July 2022 benefit the most from MM assimilation, with
the latter showing an especially positive impact after the
passage of a quasilinear convective system (QLCS) across the
Chesapeake Bay as shown in Figs. A2d–f. Conversely, cases

FIG. 4. As in Fig. 3, but for zonal wind speed.
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centered on 13 April 2020 and 3 September 2020 produce the
least benefit from MM assimilation, even after convection has
spread throughout the state. Both of these cases feature strong
synoptic-scale convective forcing driven by frontal passages,
in contrast to other cases where convection is either airmass-

driven or else forced as part of a mesoscale convective system
(MCS). For experiments using a constrained-uncertainty model-
ing system configuration (Fig. A3), the aforementioned syn-
optically driven cases show even less improvement relative to
other events. Although the airmass-driven event centered on

FIG. 5. (a) Near-surface-averaged MM configuration change in analysis increment magnitude for potential temperature, (b) near-
surface-averaged MM configuration impact on prior-mean RMSE difference for potential temperature, (c) near-surface-averaged MM
configuration impact on analysis-mean RMSE difference for potential temperature, and (d) vertical profile of MM configuration impact
on the initial condition and forecast-mean RMSE for potential temperature. Results for constrained-uncertainty OSSE.

FIG. 6. As in Fig. 5, but for zonal wind speed.
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12 August 2020 retains the large improvements demonstrated
in standard-uncertainty experiments, analyses for the 16 July
2022 case no longer show especially large improvements asso-
ciated with the QLCS passage occurring toward the end of
this case.

Although ensemble-mean RMSE is a powerful metric for
quantifying the accuracy of a given field, differences in RMSE
between sets of initial conditions contain contributions from
errors that are more or less important for forecast evolutions,
which may be concentrated in regions containing information
directly relevant to the development of localized convective
storms. To directly evaluate the representation of dynamically
relevant structures within our OSSE framework, we calcu-
lated CSI scores}averaged across initial members of all col-
lected forecast ensembles}for the detection of reduced virtual
potential temperature (uy) indicative of developing cold pools
or sea breezes and also for the detection of elevated horizontal
convergence at the lowest model level indicative of colliding
cold pool gust fronts and other mass boundaries that favor
forced convection. The uy threshold for cold pool detection was
dynamically set based on environmental means following Torri
et al. (2015), while for horizontal convergence, we chose to use
the 90th percentile of convergence present in the nature run at
the corresponding time stamp. We calculated these average
scores across all cases and for both the standard-uncertainty
and constrained-uncertainty modeling system configurations,
with results presented in terms of the case-averaged difference
between each candidate MM configuration and the no-build
configuration (Fig. 7). Contrast is evident between scores for
cold pool identification and the identification of elevated hori-
zontal convergence, with the former showing robust benefit
from MM assimilation for all MM configurations and the latter
showing only modest median improvement with values for
lower quartiles showing degraded member representation of
convergence zones. Results therefore suggest that the assimila-
tion of MM observations provides utility in improving the reso-
lution of near-surface thermodynamic features but is much less

helpful in refining model depiction of mesoscale frontal bound-
aries. We note that with the possible exception of cold pool
scores for equidistant configurations, there is remarkably little
difference in CSI scores associated with individual MM
configurations.

As a specific example that highlights how changes to small-
scale structures may occur in analyses from the assimilation of
MM observations, we examined density-current structures}
inclusive of both convectively generated cold pools and sea
breezes but referred to here as “cold pools” for simplicity}
identifiable at a single time stamp during the 12 August 2020
case event. We again used a threshold uy to identify the presence
of these features in the nature run, before applying the same
thresholding technique to the analysis means produced by our
standard-uncertainty OSSE ensemble both with the default
observation network and when assimilating the equidistant
MM configuration. Focusing on a region of interest centered
on the Baltimore–Washington metropolitan area, we plot the
outlines of cold pools identifiable in the nature run along with
those identifiable from both observation network configura-
tions, as well as prevailing 10-m winds from all three sources
(Fig. 8). Assimilating MM observations produces cold pool
boundaries that are a closer match to the nature run across
central and northeastern Maryland when compared to bound-
aries placed with the default observation network. This im-
provement stems primarily from an increase in analysis mean
uy at the edge of cold pool regions with the effect of reducing
their overall extent. While slight improvements to 10-m wind
vectors are noted from assimilating MM observations, these
occur haphazardly and do appear concentrated near outflow
boundaries.

4. Impact of MM observations on forecast verifications

a. Results for standard-uncertainty OSSE configuration

Using our standard-uncertainty modeling system configura-
tion, we generated sets of initial conditions and 3-h forecasts

FIG. 7. Case-averaged CSI score differences between each candidate MM configuration and the default observation network for the
identification of near-surface horizontal convergence above nature run 90th percentile values for (a) standard-uncertainty modeling sys-
tem and (b) constrained-uncertainty modeling system. CSI score differences for the identification of uy below a threshold indicative of
cold pool development for (c) standard-uncertainty modeling system and (d) constrained-uncertainty modeling system. Error bars indicate
quartile ranges among considered cases.
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corresponding to sequential assimilation of observations from
each of our four candidate MM configurations, as well as a set
corresponding to assimilation with only the default no-build
observation network. We chose to limit verification for result-
ing forecasts to the earlier defined Maryland verification re-
gion given the steep spatial gradient in near-surface-averaged

mesonet impact to analyze fields of wind and temperature
seen in Figs. 3–6. In Fig. 9a, we present score impacts}
defined as the percentage-wise difference between forecast
FSS of candidate configurations and that of the no-build
configuration}for the occurrence of elevated radar reflectivity
and precipitation indicative of severe storm activity. Median
and quartile score impacts were produced according to lead
time and consider all forecasts produced across case events.
This provides, for every MM configuration, a sample size of
133 discrete forecast verifications at 15-min increments of
lead time starting from initialization. Median score impacts in
this context may be thought of as the effect on verification
scores at a given lead time that may be expected from the as-
similation of a particular MM configuration, with quartiles
acting as an indicator for the variability in improvement (or
degradation) at that lead time across sampled forecasts. For
the prediction of elevated composite reflectivity (251 dBZ),
results are inconclusive and show a highly variable range of
configuration impacts. Although the median differences be-
tween FSS using the no-build configuration and that produced
using the candidate MM configurations is small, the 25th and
75th percentile score impacts from initialization to 45 min of
lead time indicate that a subset of forecasts experience larger
benefits of up to 2% from the assimilation of MM observa-
tions, with comparatively fewer forecasts showing degradation
of similar magnitude. Median results for POD and FA rate
(Figs. 9b,c) show no change in the detectability of events, but
do indicate a 1%–2.5% reduction in false alarm rate at short

FIG. 8. Cold pool boundaries and 10-m wind vectors valid at
2200 UTC 12 Aug 2020 as depicted by nature run (black), standard-
uncertainty OSSE assimilating the default observation network
(blue), and standard-uncertainty OSSE assimilating the EQD MM
configuration (green). Shading shows base-level uy for nature run.
Dotted black lines indicate state and coastal boundaries.

FIG. 9. Network median and quartile percentage score difference from default observation network for (a) forecast FSS, (b) forecast POD,
and (c) forecast FA rate, valid for standard-uncertainty OSSE. (d)–(f) As in (a)–(c), but for constrained-uncertainty OSSE.
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lead times roughly corresponding to the first 1.5 h after
forecast initialization. For the prediction of 15-min accumu-
lated precipitation rates corresponding to moderate rainfall
(0.6251 mm h21), we see no significant impact from the as-
similation of MM observations for any of the aforementioned
measures (data not shown). None of the aforementioned met-
rics showed differences between MM configurations that were
large compared to the interquartile range.

To augment event-based metrics, we examined the percentage-
wise RMSE difference (RMSE impact) between no-build and
candidate configurations for forecast temperature and zonal
wind fields, again averaging these scores within the Maryland
verification region and across all available forecasts. We pre-
sent color-coded vertical profiles of mean RMSE impacts for
wind and temperature fields at lead times from 30 to 180 min
(Figs. 3d and 4d), overlaying corresponding impact profiles
for forecast initial conditions introduced in the previous
section. This figure depicts how forecast error relates to im-
provements afforded to analysis fields, both above and below
the planetary boundary layer. Results for potential temperature
show that}with the exception of the west-centered network}
analysis improvements below 1000 m persist throughout the
180-min forecast period, at which point they have decayed to
roughly 0.5%–1.5% from 5% to 7% present in initial conditions.
For zonal wind speed, improvements decay to near zero within
the same layer by 60–90 min. Neither variable shows robust
forecast improvements above 1000 m at any lead time, indicat-
ing that improvements to analysis fields at lower elevations do
not translate to the free atmosphere during forecasts.

Although we do not break down the geographical distribution
of forecast improvements by lead time, in Figs. 3b and 4b, we
present plots of near-surface-averaged MM configuration im-
pact on prior-mean error for potential temperature and zonal
wind speed. These were produced in the same way as corre-
sponding plots for analysis means (Figs. 3c and 4c) and may be
seen as a proxy for short-term, 15-min forecasts produced by
our modeling system over the course of sequential DA. Com-
parisons with analysis-mean impacts show that for potential
temperature, improvements are preferentially degraded in
western and central Maryland, with stronger persistence for
southeastern regions of the state surrounding the Chesapeake
Bay. For zonal wind, regions of positive analysis impact are
degraded somewhat more evenly though the quickest decay
still occurs for western Maryland.

b. Results for constrained-uncertainty modeling system
featuring perfect physics

To examine how the utility of candidate mesonet configura-
tions would change given advances in physical parameteriza-
tion schemes and limited initial condition uncertainty for
large-scale flow}as depicted by reduced boundary condition
uncertainty}we generated further sets of initial conditions
and forecasts using our constrained-uncertainty modeling
system configuration. As before, we examine fractions skill
score curves for radar reflectivity (Fig. 9d) and precipitation
(not shown) corresponding to aggregated forecast perfor-
mance across events stratified by lead time. For verification

of composite reflectivity above 25 dBZ, we find that the range
of impact from the assimilation of MM observations is smaller
than that for the standard-uncertainty set of experiments,
both in the median and for the interquartile spread of score
impact. This is in part due to an overall increase in FSS at
analysis times associated with reduced model error and im-
proved boundary conditions. Unlike the standard-uncertainty
case, any benefit from the assimilation of MM observations is
limited to the analysis time where it is again present only in a
subset of forecasts contributing to 25th and 75th percentile
score impacts. As before, verification of precipitation rates
above 0.625 mm h21 shows no detectable benefit from MM
observations although the variance of skill-score impact
is also reduced in a manner similar to that for composite
reflectivity.

Vertical profiles of forecast-mean impacts for potential
temperature (Fig. 5d) show similar lead-time progressions to
that for the standard-uncertainty experiments, maintaining
small improvements below 1000 m for the duration of fore-
casts. However, equivalent profiles for zonal-mean wind (Fig. 6d)
show a much sharper lead-time cutoff in terms of useful impact
near the surface, with little improvement remaining past 30 min
for most MM configurations. As before, no forecast improvement
is seen above 1000 m for either potential temperature or zonal
wind. Likewise, the geographical distribution of prior-mean
impacts presented in Figs. 3b and 4b indicates that improve-
ments to analysis accuracy associated with MM observations
are preferentially retained in southeastern Maryland for both
variables.

5. Discussion

a. Findings on the utility of a Maryland Mesonet

Notwithstanding the comparative performance of candidate
MM configurations, we find that the assimilation of MM obser-
vations as a whole leads to clear but localized improvements in
analysis and forecast accuracy. Results show a distinct reduction
in RMSE for near-surface, analysis-mean fields that persists
within corresponding forecast fields for up to 3 h in the case of
temperature and for 30–90 min in the case of zonal wind speed.
The vertical extent of benefit is restricted to a surface-based
layer below 1000 m, roughly corresponding to the convective
boundary layer, with little or no impact seen above. We note
that this is consistent with previous findings in Sobash and
Stensrud (2015) and Marquis et al. (2014) that showed limita-
tions in the ability of surface observations to influence analyses
in the free atmosphere. Geographically, improvement is con-
fined to regions that are directly adjacent to MM site locations,
well within the 30-km localization length scale for surface obser-
vations. This is especially apparent in analyses produced with
the constrained-uncertainty configuration of our modeling
system, where analysis benefits retreat from remote portions
of the southern Chesapeake Bay. Temporally, within the se-
quential cycling period, reduced RMSE for analysis-mean
fields occurs predominately after convective activity has
passed through a given region and is more distinct for MCS
cases than for cases driven by synoptic-scale frontal passages.
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Of our considered analysis variables, potential temperature
appears to benefit to a slightly greater degree than wind
speed for our standard-uncertainty experiments, and this dif-
ference increases significantly for simulations with con-
strained uncertainty. Together, these effects suggest that the
primary effect of MM observations is to improve model rep-
resentation of near-surface outflow structures produced by
convective storms, with limitations imposed by the ability of
mesonet observations to inform spatially distant variables via
cross-covariances. When and where the benefit to analysis-
mean RMSE is present, improvements extend to the identifi-
cation of mesoscale surface-based structures such as cold
pools and gust fronts in individual posterior members.

Despite the aforementioned benefits, the results of our
OSSE experiments are inconclusive in demonstrating that the
assimilation of additional surface observations is itself benefi-
cial to regional forecast skill for moist convective events. We
find only limited forecast improvement associated with MM
observations for simulations with realistic error structures, as
well as for simulations featuring reduced model error and
constrained lateral boundary conditions. When considering
fractions skill scores for the occurrence of elevated composite
reflectivity as well as those for the exceedance of threshold
accumulated precipitation values, median paired skill score
differences between the default observation network and evalu-
ated mesonet configurations are consistently negligible across
OSSE experiments. Although score impacts for false alarm
rate}especially at their 25th percentile}indicate that at least a
subset of forecasts benefit from reduced overprediction of con-
vection, we note that such outliers may be impacted by our
choice of case events and that}on average}the location, tim-
ing, and strength of forecast convective events are not improved
by assimilating additional mesonet data.

We offer two possible explanations for why improvements
to near-surface analysis fields and outflow features do not
translate into significantly increased NWP forecast skill for
simulated moist convective events. The first is an inherent lim-
itation of geographically constrained networks like the MM,
caused by the rapid turnover of information exported from
the domain covered by MM observations and replaced by in-
formation from outside the local vicinity. Indeed, we see evi-
dence of this in the relative absence of near-surface-averaged
improvement to prior-mean fields for wind and potential tem-
perature in western Maryland, where all candidate MM con-
figurations are necessarily thin in the meridional direction,
suggesting that improvements to these fields in posterior
members are washed out of the region completely during the
15-min model advance. Second, we find it highly likely that
the predictability aspects of moist convection act to constrain
the ability of surface observations to correct the dynamic evo-
lution of convective storms even when they result in more ac-
curate model depictions of the near-surface environment.

b. Findings on the importance of station placement within
MM networks

Given inconclusive results for the impact of MM observa-
tions on NWP forecast skill, our evaluation of candidate MM

configurations and the site placement of individual stations
focuses on the effect that these may be expected to have in
improving analysis accuracy. Results for the geographic distri-
bution of analysis impact indicate that there is a generally pos-
itive relationship between the local density of stations placed
by MM configurations and the magnitude of nearby analysis-
mean improvement although this relationship does not hold
in areas of northern and eastern Maryland that coincide with
high concentrations of non-MM surface observations. In line
with the above discussion on limitations for MM observations,
we contend that the marginal utility of additional site density
is positive in so much as uncertainty for nearby variables is
both present and well sampled in the prior ensemble. The ful-
fillment of these conditions depends greatly on the scale of re-
solved uncertainty structures, which in turn may depend on
modeling system configurations, dynamic conditions, and the
particular variables involved. The behavior described here
would explain reductions in positive analysis impact between
standard-uncertainty and constrained-uncertainty experiments
since the former contains large-scale uncertainty features that
are resolvable with our 40-member ensemble, whereas uncer-
tainty structures in the latter experiments are dominated by
meso-g-scale storm structures that may be incorrectly sampled
during data assimilation. Similarly, we may explain the lack of
positive analysis impact in well-observed regions of central and
northeastern Maryland by recognizing that a sufficient density
of observations from pre-existing surface stations would signifi-
cantly constrain large-scale uncertainty structures in prior en-
sembles and therefore cause innovations in these regions to be
drawn from smaller, less resolvable scales. These considerations
should favor a network configuration that maximizes useful in-
formation by maintaining rough equidistance while avoiding
areas where pre-existing observations are capable of restraining
the growth of error structures at scales amenable to operational
DA systems. Of the MM configurations evaluated in this paper,
the modified equidistant configuration best fulfills these require-
ments. However, this is not confirmed by results for analysis
impact}which do not show a clear winner. This is most likely
because we required that pre-existing surface stations report
data at intervals of less than or equal to 30 min in order to in-
fluence site placement in our simulated-annealing algorithm,
which did not account for large numbers of surface stations
reporting data at less frequent}often hourly}intervals. A
network of this type, generated in a manner that accounts for
all pre-existing stations, may show an improved impact on
analysis accuracy beyond that demonstrated for evaluated
MM configurations.

c. Implications for convective-scale DA and future
observing systems

We may extrapolate the results of our OSSE experiments
to provide more generalized insight into factors that drive fore-
cast errors in moist convective regimes and how they may limit
the current and potential utility of assimilating denser networks
of surface observations in limited-area, convective-allowing
NWP systems. From a simplified perspective governed by
Bayesian inference, forecast error arises from a combination of
initial condition and model errors (Privé and Errico 2013), with

M C CURRY AND PO T ER J OY 1861DECEMBER 2024

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 07/28/25 02:23 PM UTC



the interaction of the two depending on the particular nature of
the dynamical system, its discretization, and consequent structure
of both true and modeled phase space trajectories (Shaw 1981).
Although not quite as rigorous as formal sensitivity analysis
(Torn and Hakim 2008), our standard-uncertainty and con-
strained-uncertainty OSSE configurations sampled two possible
permutations of these errors from which to conclude the former
featuring elevated model error from choice of microphysics
scheme and initial conditions degraded by synoptic-scale pertur-
bations to boundary conditions and the latter featuring no such
synoptic-scale forcing and only a small discretization component
of model error. While both cases show reductions in near-surface
initial condition errors attributable to assimilating MM observa-
tions, this improvement does not scale monotonically with station
density in the sense of reductions to squared errors and is insuffi-
cient to improve forecast skill for the prediction of moist convec-
tive events even when forecasts are integrated with near perfect
boundary conditions and physics. Furthermore, residual improve-
ments to near-surface forecast fields of wind and temperature
that exist for lead times below 1 h for our standard-uncertainty
experiments are notably reduced in our latter experiments where
error is predominantly generated in regions of convective activity.
While the lack of improvement to forecast verifications at ex-
tended lead times is undoubtedly consistent with the restricted
spatial extent of the Maryland Mesonet and consequent advec-
tion of information out of the verification domain, that such im-
provements are minimal even at short lead times suggests that
the ability of surface observations to improve model representa-
tions of moist convection may be limited by aspects of intrinsic
predictability.

Some studies that have taken an analytical approach to
quantifying intrinsic predictability limits of moist convection
(Ramanathan et al. 2019; Ramanathan and Satyanarayana
2021) suggest that storm features near the upper end of the
meso-g scale may retain a degree of predictability for up to
6 h, with further extended predictability possible for highly or-
ganized systems. Though this would appear to leave room for
improvement on practical predictability time scales achiev-
able by NWP systems, the damped-driven dynamics of moist
convective systems may result in a high rate of “information
turnover” compared to synoptic-scale processes. As an exam-
ple motivated by Fig. 7, in situations where convection is
heavily favored at particular locations, it may be unnecessary
to refine the model depiction of outflow boundaries beyond a
certain level of accuracy to obtain a reasonable forecast of
convective activity. Conversely, in weakly sheared, condition-
ally unstable environments where convection is disorganized
and heavily dependent on outflow forcing, noticeably improv-
ing forecast accuracy may require an unachievable amount of
constraint on outflow boundaries. Alternatively, improve-
ments to near-surface analysis fields and even to resolved cold
pool structures may be diluted by poorly resolved processes
occurring above 1000 m}including entrainment, detrain-
ment, and downdraft formation}where surface observations
have little impact. We note that deep moist convective events
occur in a high-dimensional phase space involving thermody-
namic, momentum, and moisture fields over the full height of
the troposphere (Rotunno et al. 1988). In the context of our

experiments, limitations specific to moist convection would be
most evident in the constrained-uncertainty experiment
where “low-hanging fruit” in the form of large-scale initial
condition error leading to downscale error propagation has
been addressed and where indeed we see the least evidence
of persistent RMSE benefit to forecast fields. While the role
of model error in this scenario is less clear, our results suggest
that even drastic improvements to physical parameterizations
are insufficient to significantly increase the utility of surface
observations. This could be the case if dynamical attractors
relevant to moist convection are already reasonably well de-
fined by an imperfect model, making model error less impor-
tant than sampling deficiency and other factors such as
improper assumptions made by data assimilation algorithms.
If predictability aspects of moist convective systems do in fact
reduce the amenability of such regimes to surface data assimi-
lation, then we would expect the marginal utility of additional
surface observations to decrease and reach saturation at lower
density as improvements to global models increasingly reduce
the amplitude of error at synoptic scales.

d. Experiment limitations

Errico and Privé (2018) note that regional OSSEs of the
type used for this study may present issues in terms of accu-
rate representation of boundary conditions and further warn
that ill-posed OSSE frameworks may spuriously indicate utility
for candidate observing systems. We note that although we
do not use a global ensemble for initial and boundary condi-
tion generation, this would not be a factor in our constrained-
uncertainty OSSE configuration that removes lateral boundary
condition (LBC) perturbations larger than the meso-g spatial
scale. Another potential limitation in our experimental frame-
work is the nonconsideration of observation error correlations
that are sometimes parameterized in highly tuned OSSEs for
operational NWP systems. We suspect that given our assimi-
lated observation types, the primary effect of considering these
correlations would be a slightly reduced impact from radar
observations in areas of moist convection. Although this could
feasibly lead to greater benefit from assimilating MM observa-
tions in our standard-uncertainty OSSE, parameterized correla-
tions would likely not hold for future changes to radar networks
or improved statistical techniques to reduce existing error corre-
lations. Furthermore, we note that although humidity observa-
tions are often ingested by NWP systems, we chose to assimilate
only temperature and wind measurements provided by mesonet
stations due to difficulties in properly representing the assimila-
tion of bounded quantities in an OSSE framework. Given the
importance of lower-level moisture in properly simulating con-
ditional instability, it is conceivable that these observations may
mediate yet-undetected NWP benefits from additional surface
observing stations. Finally, we acknowledge that our sample of
warm-season moist convective case events necessarily excluded
other common causes of severe weather. Further study may be
warranted for examining the impact of mesonet observations
for the prediction of winter weather events, particularly
those with convective elements or shear gradients in surface
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precipitation type that may be amenable to the high resolu-
tion possible with mesonets.

6. Summary and conclusions

The current study presents results from a set of observing
system simulation experiments that evaluated the impact of a
new Maryland Mesonet on analyses and forecasts produced
using a convective-allowing model framework. Although the
Maryland Mesonet has wide-ranging aims, this study focused
on implications for the predictability of severe convective
storms due to their prevalence and impact on the local region.
Accordingly, the adopted OSSE framework simulated mesonet
impact for seven moist convective case events, with the final
selection influenced by event severity in densely populated
areas of the state. We hypothesized that additional surface
observations may reduce analysis error for quantities relevant
to the development and propagation of convective storms}
especially near-surface wind and temperature anomalies asso-
ciated with cold pools}and result in lengthier periods of
predictability for moist convective events than if these obser-
vations were not assimilated. We further proposed that such
benefits may be mediated by the spatial configuration of mes-
onet site locations, making it desirable to study and optimize
impacts associated with specific configurations. Initial condi-
tions and forecasts were produced using several candidate
spatial configurations for mesonet site location and then veri-
fied against a “truth state” defined by our nature run using
both continuous and categorical statistics. Simulations also
considered the role of common modeling system errors and
how anticipated improvements to boundary condition con-
straints and model process error may affect the utility of mes-
onet observations in future modeling systems. To answer these
questions in an OSSE framework, we performed two sets of ex-
periments for every set of configurations: one using a “standard
uncertainty” configuration with the simulated model process
and boundary condition error with synoptic-scale structure and
a “constrained uncertainty” configuration with perfect physics
and low-amplitude, high-frequency boundary condition errors.
For analysis uncertainty, we found that assimilation of any of
our mesonet configurations is associated with modest reductions
in analysis error for near-surface temperature and zonal wind
fields that is restricted to a layer below 1000 m, consistent with
previous studies that assimilated similar observing systems.
Analysis error reduction is slightly more enhanced and exten-
sive for experiments with our standard-uncertainty modeling
system compared to those performed with the constrained-
uncertainty configuration, especially for near-surface zonal wind
which we attribute to the relative ease of sampling error struc-
tures induced by large-scale boundary perturbations compared
to errors propagating upscale in moist convective regimes.
While increased accuracy for thermodynamic and wind fields
is maintained in short-term forecasts}most visibly with our

standard-uncertainty modeling system configuration}it does
not translate to detectable improvement in forecast skill for
the occurrence of discrete convective events. This may suggest
limitations in the ability of dense surface observing networks
to extend the practical predictability of moist convective regimes
due to scale-dependent aspects of involved dynamical systems
and the nature of their coupling to surface processes. Although
our results do not show drastic differences in analysis or forecast
improvement between candidate mesonet configurations, we
conclude that optimal improvements to analysis accuracy may
be achieved by roughly equidistant placement that avoids
areas where pre-existing surface data heavily constrain error
structures resolvable by operational DA systems and where
remaining uncertainty pertaining to near-surface variables is
mediated by meso-g-scale structures.
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APPENDIX

OSSE Tuning and Regional Breakdown of
Mesonet Impact

Figure A1 shows a breakdown of binary verification
scores associated with OSSE tuning configurations intended
to simulate the capabilities of contemporary NWP systems.
Scores are calculated from forecasts initialized for the case
event occurring on 13 April 2020.

Figures A2 and A3 show a breakdown of near-surface-
averaged mesonet impact on posterior error for potential
temperature during the period of sequential cycling for
standard-uncertainty and constrained-uncertainty experi-
ments, respectively. Individual panels consider data in 2-h
intervals commencing 3 h after ensemble initialization.

Figure A4 shows the average density of pre-existing sur-
face observations considered in a 15-min assimilation cycle
within our OSSE modeling system.
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FIG. A1. (a) FA rate, (b) POD, and (c) FSS for forecasts with a real test case and for corresponding OSSE forecasts without bias, with
low-amplitude applied bias, and with high-amplitude applied bias.

FIG. A2. Posterior RMSE for near-surface potential temperature field for case events beginning on (a) 13 Apr 2020, (b) 12 Aug 2020,
(c) 3 Sep 2020, (d) 17 Jul 2021, (e) 8 Jun 2022, (f) 2 Jul 2022, and (g) 16 Jul 2022 for 2-h intervals starting (A) 3 h, (B) 5 h, (C) 7 h, (D) 9 h,
(E) 11 h, and (F) 13 h after ensemble initialization. Occurrence of composite reflectivity above 30 dBZ during interval indicated with
cross-hatching. Valid for standard-uncertainty experiments.
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