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Receipt of publication: 

Image resolution and field-of-view in far-field optical 1 

microscopy are often inversely proportional to one 2 

another due to digital sampling limitations imposed by 3 

the magnification of the system and the pixel size of the 4 

sensor. We present a method including a spatial shifting 5 

mechanism and a reconstruction algorithm that bypasses 6 

this tradeoff by shifting the sample to be imaged by 7 

subpixel increments, before registering the images via 8 

phase correlation and combining the resulting registered 9 

images using the shift-and-add approach. Importantly, 10 

this method requires no specific optical components that 11 

are uncommon to commercially available or custom-built 12 

microscope systems. The findings of the presented study 13 

demonstrate an improvement to spatial resolution of 14 

~42% while maintaining the system’s field-of-view (FOV), 15 

leading to a more than 2-fold improvement to the system’s 16 

space-bandwidth product. 17 

In traditional far-field optical microscopy, the space-bandwidth 18 

product (SBP) is often used as a qualitative ratio to determine the 19 

information-carrying capacity of an image, often defined as 𝐹𝑂𝑉/20 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛2 [1]. However, achieving a large FOV comes with the 21 

tradeoff of resolution, as reducing the magnification to increase the 22 

FOV may reduce the achievable resolution when the full-width at 23 

half maximum (FWHM) of the point spread function (PSF) is no 24 

longer properly sampled by the effective sampling rate considering 25 

the Nyquist-Shannon Sampling Theorem, described as:  26 
𝑃𝑆𝐹𝐹𝑊𝐻𝑀

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑒𝑓𝑓

≥ 2 (𝟏) 27 

In the case where Equation 1 does not hold true, resulting in 28 

undersampled images, improvements to the PSF will not improve 29 

the achievable resolution, as the digital sampling rate is insufficient 30 

to capture any such improvement [2]. In this context, improving the 31 

SBP of an undersampled imaging system requires increasing the 32 

digital sampling rate while preserving the system’s original FOV. 33 

While methods have been developed to increase the spatial 34 

sampling rate by means of subpixel sampling, the reconstruction 35 

quality depends highly on the precision of step size used in the 36 

system [3,4]. Another method, Fourier ptychography [5], modulates 37 

the illumination pathway to induce phase differences across the 38 

sample before computationally improving resolution while 39 

maintaining FOV, but this is impractical for systems where the 40 

illumination pathway is inextricable from the imaging method, such 41 

as confocal [2, 6] and light-sheet microscopy [4, 7-9]. In addition, 42 

while image stitching is a commonly used method of increasing the 43 

spatial bandwidth of the final image by fusing a set of images 44 

constrained by the SBP in the aforementioned methods, the 45 

stitching process can often induce artifacts along the boundaries of 46 

the individual images  [10]. Finally, our proposed strategy is a feed-47 

forward method, in contrast to iterative refinement based on a high-48 

quality ground truth dataset used in content-aware and deep 49 

learning methods. This approach minimizes the data variation and 50 

experimental bias that may result from a cross modality 51 

setting  [11]. Thus, a non-iterative method to improve the spatial 52 

sampling rate without compromising the system’s FOV, while 53 

remaining independent of the illumination pathway and 54 

stage/motor precision during translation, is an unmet need.  55 

In this Letter, we report a method that includes a 56 

subpixel shifting mechanism along with its reconstruction 57 

algorithm to improve spatial resolution by ~42% while 58 

preserving the FOV of the undersampled system, resulting in 59 

a greater than 2-fold improvement to the effective SBP. We 60 

imaged a USAF 1951 target (R1DS1N, ThorLabs) using a 61 

home-built microscope configured for widefield use [8, 9], 62 

whose detection objective’s NA is 0.25. The system’s 63 

magnification was 3.2X and the binning was 4x4, such that 64 

the effective sampling rate was 8 μm, representing an 65 

undersampled system. To improve the SBP, we increased the 66 

spatial sampling rate through sample shifting by subpixel 67 

increments (e.g. 1/16, 1/8, 3/16, etc. of our system’s 68 

sampling rate) thereby capturing sets of up to 8 SBP-69 

constrained images within one shift range, respectively. The 70 

phase correlation (PC) and shift-and-add (SAA) techniques were 71 

used to reconstruct high-resolution, large-FOV images before 72 

deblurring via Richardson-Lucy deconvolution, which is known to 73 

remove artifacts and noises [12]. The deblurring step removes the 74 

discrete motion blur artifact caused by sample shifting and image 75 

fusion. The reconstruction algorithm, coined PC + SAA, 76 

requires that the sample to be imaged is laterally shifted in 77 

intervals smaller than the effective sampling rate, with an 78 

image being captured after each consecutive shift. The 79 

physical sample is translated using subpixel shifts of size 80 

(∆𝑥, ∆𝑦), as demonstrated in Figure 1a. While the values of  81 



1 
Fig 1. Effect of subpixel shifting on data acquisition and data fusion. (a) 2 

Above: Schematic depicting the sample shift by amounts (∆𝑥, ∆𝑦), 3 

which need not be exact. Below: The resulting effect on the phase data 4 

in the frequency domain after each shift. (b) Left: Images depicting the 5 

intensity variations caused by subpixel shifts. Right: Zoomed-in portions 6 

of note with accompanying intensity plots for comparison of different 7 

groups on the USAF target. (c) Schematic of the pixel intensities of Group 8 

6, Element 3, shifted to match relative position. Above: considered as 9 

separate trends. Below: considered as a single continuously sampled 10 

trend. GT: ground truth. 11 

(∆𝑥, ∆𝑦) can be approximated from the input motor step size [3,4], 12 

the inherent imprecision of the system’s motors compound during 13 

shifting, producing approximations of (∆𝑥, ∆𝑦) whose tolerance 14 

multiplicatively deviates from the intended shift size with each 15 

applied shift. This translation produces significant intensity 16 

variations, highlighted by the representative yellow, cyan, and 17 

purple-bordered sections of the images in Figure 1b. These 18 

variations occur due to several factors, including desired variations 19 

caused by the changing alignment of the sample within the sensor 20 

matrix, as well as the relationship between the spatial sampling rate 21 

and the frequencies present in the sample, and undesired variations 22 

caused by noise contributions and motor imprecision. Though the 23 

system cannot resolve below 7.8 μm in a single image, the subpixel 24 

shifts allow for the fulfillment of Nyquist-Shannon guidelines by 25 

increasing the spatial sampling rate, allowing for a higher-resolution 26 

reconstruction. Thus, the importance of these intensity variations is 27 

revealed in Figure 1c, which plots the intensities captured from the 28 

shifted images containing unique intensity variation patterns with 29 

respect to Group 6, Element 3 of a USAF 1951 target, which 30 

corresponds to a resolution of 6.2 μm. Given the system’s best 31 

achieved resolution of 7.8 μm, it is infeasible that this portion of the 32 

USAF target could be resolved within a single image, a limitation 33 

imposed by the Nyquist-Shannon Sampling Theorem. This is 34 

visualized by none of the individual trendlines being able to display 35 

all three bars of the underlying signal of the target (Figure 1c, 36 

above). However, if these intensities are plotted sequentially, rather 37 

than independently, regarding the relative pixel shift given it, the 38 

resulting trend approximates the ideal function that is found in 39 

Group 6, Element 3 (Figure 1c, below). 40 

After capturing a series of subpixel-shifted images, the images 41 

are then upscaled using pixel duplication, to preserve the original 42 

captured signal, before being post-processed by the reconstruction 43 

algorithm, which registers, upscales, shifts, and merges the low-44 

resolution base images into a cohesive, high-resolution image, 45 

elaborated in Figure 2. The PC algorithm [11-14] registers each 46 

image in reference to the first image, estimating the shifting 47 

parameter needed to align the shifted image with the reference  48 

image, using the Fourier Shift Theorem, defined as: 49 

𝑓2(𝑥, 𝑦) = 𝑓1(𝑥 − ∆𝑥, 𝑦 − ∆𝑦) (𝟐) 50 

𝐹2(𝑢, 𝑣) = 𝐹1(𝑢, 𝑣)𝑒−𝑗(𝑢∗∆𝑥+𝑣∗∆𝑦) (𝟑) 51 

where 𝑓2(𝑥, 𝑦) represents the shifted function 𝑓1(𝑥, 𝑦) after being 52 

shifted by (∆𝑥, ∆𝑦), 𝐹1(𝑢, 𝑣) and 𝐹2(𝑢, 𝑣) are the Fourier 53 

Transforms of 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦), (𝑥, 𝑦) are spatial coordinates 54 

within functions 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦), and (𝑢, 𝑣) are frequency 55 

coordinates within functions 𝐹1(𝑢, 𝑣) and 𝐹2(𝑢, 𝑣) [11-14]. This 56 

relation specifies that the effect of the spatial shift (∆𝑥, ∆𝑦) is solely 57 

present in the phase information in the Fourier domain and can be 58 

extracted by determining the value of the phase difference between 59 

the two functions, 𝑒−𝑗(𝑢∗∆𝑥+𝑣∗∆𝑦). This phase difference can be 60 

isolated in the Fourier domain by calculating the Cross Power 61 

Spectrum (CPS), given by: 62 

𝑒−𝑗(𝑢∗∆𝑥+𝑣∗∆𝑦) =
𝐹1(𝑢, 𝑣)𝐹2

∗(𝑢, 𝑣) 

|𝐹1(𝑢,  𝑣)𝐹2
∗(𝑢, 𝑣)|

 (𝟒) 63 

where the asterisk (*) denotes the complex conjugate. It is 64 

noteworthy that PC is intensity-invariant, relying solely on phase 65 

data to achieve registration  [13], allowing versatility for both high 66 

and low-photon budget applications. In addition, by filtering the 67 

two frequency spectra with an ideal high-pass filter, we further 68 

refine the precision and robustness of the correlation, emphasizing 69 

edge-based features preserved between images. Alternatively, 70 

other filters including Gaussian and Butterworth filters could be 71 

used to reject noise contributions from impeding registration 72 

accuracy. The CPS is then converted back into the spatial domain 73 

via the Inverse Fourier Transform (IFT), where the resulting 74 

Inverse Cross Power Spectrum (ICPS) isolates the pixel-precision 75 

shift (𝛿𝑥, 𝛿𝑦) based on the coordinates of the maximum correlation 76 

value, modeled as a unit impulse function in the discrete 77 

domain  [13], as seen in Figure 2a. Since traditional PC is only 78 

precise to the region of a pixel, the centroid-based method is utilized 79 

in this algorithm to estimate the subpixel-precision shift. The 80 

centroid-based method is a localized center of mass calculation 81 

weighted by the correlation value of the main peak and surrounding 82 

sub-peaks of the ICPS, defined as: 83 

(∆𝑥̃ =
∑ 𝑚𝐼𝑖𝑐𝑝(𝑚, 𝑛)𝛿𝑥+𝑐

𝑚=𝛿𝑥−𝑐

∑ 𝐼𝑖𝑐𝑝(𝑚, 𝑛)𝛿𝑥+𝑐
𝑚=𝛿𝑥−𝑐

, ∆𝑦̃ =
∑ 𝑛𝐼𝑖𝑐𝑝(𝑚, 𝑛)𝛿𝑦+𝑐

𝑛=𝛿𝑦−𝑐

∑ 𝐼𝑖𝑐𝑝(𝑚, 𝑛)𝛿𝑦+𝑐
𝑛=𝛿𝑦−𝑐

) (𝟓) 84 

where (∆𝑥̃, ∆𝑦̃) are the centroid-estimated coordinates around the 85 

pixel-precision spatial coordinates of the ICPS, (𝛿𝑥, 𝛿𝑦), 𝑚 and 𝑛 are 86 

general spatial coordinates in the ICPS, 𝐼𝑖𝑐𝑝  refers to the correlation 87 

intensity of the ICPS, and 𝑐 is an arbitrary boundary parameter. In 88 

our experience, a 𝑐 value of 5 allowed for acceptable precision for 89 

our sample and shifting amount. After calculating the centroid-90 

estimated shift (∆𝑥̃, ∆𝑦̃), these registered images are then 91 

combined using the SAA method [15, 16], which shifts the relative 92 

position of data within the image by (∆𝑥̃, ∆𝑦̃), then adds the image 93 

to a cumulative sum of images until the entire registered stack is 94 

combined, as shown in Figure 2b. Thus, the process of acquisition, 95 

image capture, upsampling, phase correlation, and data fusion are 96 

summarized by Figure 2c.  97 

To demonstrate the effectiveness of PC + SAA, a 1951 USAF 98 

target was imaged using subpixel shifting before being 99 

reconstructed. The images shown in Figure 3a have had a sample 100 

shift of 3/16 of a pixel in the x and y-directions before being 101 

reconstructed. This quantity equals 1.5 ± 0.25 μm, as our digital 102 

sampling rate is 8 μm for this demonstration. With image 103 

registration being provided by PC, image enlargement using pixel  104 
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Fig 2. PC + SAA algorithm overview. (a) Flowchart of the phase-4 

correlation process, which yields the subpixel precision shifting 5 

coordinates (∆𝑥̃, ∆𝑦̃). (b) Schematic of the SAA procedure, where 6 

the shifted image (blue) is shifted by (∆𝑥̃, ∆𝑦̃) to align with the 7 

reference image (red), before being added to the reference 8 

image to create a composite of the two. (c) Overview of the PC + 9 

SAA method, wherein the translated sample is captured, 10 

upsampled, phase correlated, shifted by (∆𝑥̃, ∆𝑦̃), and additively 11 

merged into a coherent, high-resolution image. 12 

duplication, and image merging using SAA, the intensity differences 13 

between subsequent subpixel shifted images allow for substantial 14 

resolution improvement, as is demonstrated in Figure 3. 15 

Previously, Group 6, Element 1 was the best resolvable element, 16 

corresponding to a digital resolution of 7.8 μm, but our PC + SAA 17 

algorithm was able to resolve down to Group 6, Element 3, 18 

corresponding to a digital resolution of 6.2 μm, resulting in an 19 

improvement of ~26% (Figure 3b). After 100 iterations of 20 

deblurring, the resolving power increased to reliably elucidate 21 

Group 6, Element 4, denoting a digital resolution of 5.5 μm and equal 22 

to a ~42% improvement (Figure 3c) and (Visualization 1). It is 23 

notable that the FOV is preserved across the low-resolution images 24 

and the high-resolution reconstruction, maintaining its original  25 

~4mm × 4mm physical size despite the improvement to resolution. 26 

This preservation results in an improvement to the SBP of 1.58-fold 27 

with PC + SAA alone, and 2.01-fold after deblurring. Resolution was  28 

 29 

Fig 3. Resolution improvement from subpixel-shift sampling and PC + 30 

SAA reconstruction. (a) An example image captured by the system, with 31 

zoomed in portions representing the areas of interest in the under-32 

sampled image (red), as well as post-processed PC + SAA (magenta) and 33 

PC + SAA + Deblurring (green) images. (b) Line profiles taken from 34 

Group 6, Element 3 rows (left) and columns (right). (c) Line profiles 35 

taken from Group 6 Element 4 rows (left) and columns (right). 36 

determined using the Rayleigh criterion, wherein a valley-to-peak 37 

ratio of no more than 80% demonstrated a resolved set of 38 

elements  [19]. 39 

The resolution improvement exhibited by the PC + SAA 40 

method is a function of the shifting size and the number of images 41 

captured. Shifting size determines the distance between sequential 42 

sub-sampled points, affecting the spatial sampling rate, and the 43 

latter represents the number of shifts captured, determining the 44 

total number of sub-sampled points considered. The trends in 45 

Figure 4 imply an optimal value for both parameters, in that each 46 

shifting increment achieves the same minimum resolution after ~ 47 
𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒

𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
 images. Figure 4a highlights the benefit of 48 

deblurring, as even though it failed to converge to the maximum 49 

achieved resolution after 8 images, the deblurring algorithm 50 

produced significantly improved results after 5 images. Figure 4b 51 

presents the first shifting parameter that converges to its best 52 

achieved resolution after 8 images. However, as the PC+SAA 53 

sampling method increases the imaging time for a sample 54 

multiplicatively per image, it is necessary to minimize the number 55 

of shifts, and therefore images, while still reliably achieving the 56 

optimal resolution improvement. For example, the 1/2-pixel shift 57 

case (Figure 4f) recovers the minimum achieved resolution after 2 58 

images, but the standard deviation of achieving this is ±0.34μm 59 

before deblurring and ±0.86μm after. The 3/8-pixel shift case 60 

(Figure 4e) performs similarly at 3 images before deblurring at 61 

±0.39μm but improves after deblurring to ±0.70μm. The 1/4-62 

pixel shift case (Figure 4d) continues this trend with 4 images at 63 

±0.16μm before deblurring and ±0.58 μm after. Finally, the 3/16-64 

pixel shift case (Figure 4c) recreates the minimum resolution after 65 

6 images but does so with a standard deviation of ±0.00μm before 66 

deblurring and ±0.17 μm after, showing an increase in reliability 67 

using smaller shifting parameters. Thus, we present that, for 68 

photostable samples, 4 images with a shifting parameter of 1/4-69 

pixel provides the best opportunity to reliably achieve optimal 70 

resolution improvement, and 2 images with a 1/2-pixel shifting  71 



 1 
Fig. 4. Resolution as a function of the number of images 2 

considered for PC + SAA reconstruction before (black) and after 3 

(red) deblurring with respect to shifting increments of (a) 1/16, 4 

(b) 1/8, (c) 3/16, (d) 1/4, (e) 3/8, and (f) 1/2-pixel incremental 5 

shifts. Dashed lines represent mean values, shaded areas 6 

represent ± standard deviation. Unpaired, one-tail T-tests were 7 

performed against single image data of the respective trends. * 8 

denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001. 9 

parameter provides beneficial results if photo-bleaching or photo-10 

damage is a concern. 11 

In this Letter, we report a subpixel sampling method and novel 12 

reconstruction algorithm using PC registration and SAA image 13 

fusion for a resolution increase of up to ~26% without penalty to 14 

the resulting FOV, increasing the information carrying capacity of an 15 

under-sampled system ~1.58-fold. Additionally, deblurring the 16 

PC+SAA images with a discretized motion-blur kernel via 17 

Richardson-Lucy deconvolution further enhances the resolution by 18 

up to ~42% of the original resolution, thus increasing the system’s 19 

SBP more than 2-fold. By virtue of its feed-forward, non-iterative 20 

design, PC+SAA also demonstrates a reconstruction time of ~60 21 

seconds to process a stack of 16 images each 512x512 pixels in size, 22 

then ~30 seconds for 100 iterations of deconvolution, using a 23 

workstation with a 2.6 GHz CPU and 64 GB DDR4 RAM. The 24 

proposed method, PC + SAA, addresses the effects of digital 25 

sampling on image acquisition with the ability to improve 26 

resolution. By utilizing the PC image registration method, a 27 

computational registration algorithm, the registration precision is 28 

not bound by the translational precision of the system, and using the 29 

SAA image fusion method, a computational fusion algorithm, aligns 30 

the effects of intensity variations across subpixel shifts. Though 31 

image quality enhancement from optical resolution is not expressly 32 

addressed by this method, established methods that aim to correct 33 

optics-limited resolution can be applied to the reconstructed image 34 

to address image degradation further. Since PC + SAA and optics-35 

oriented reconstruction methods address different limitations of 36 

conventional optical microscopy, their interactions do not behave 37 

antagonistically. While the PSF of the system cannot be mitigated by 38 

the PC+SAA technique, this technique is able to increase the spatial 39 

sampling rate by up to twice the system’s previous capability, 40 

leading to the demonstrated resolution improvement. This 41 

threshold marks the frequency where sample peaks can coexist 42 

within a single pixel of the original image, preventing them from 43 

being separable by a low-intensity valley across at least three pixels. 44 

Current limitations to achieving this theoretical limit include 45 

registration precision and additive background signal during image 46 

fusion. We note that the use of centroid localization in our PC 47 

algorithm may present difficulties in achieving this theoretical limit, 48 

prompting the development of a more precise PC registration 49 

algorithm in the future. We demonstrate that the PC+SAA 50 

framework provides much-needed resolution improvements to 51 

otherwise undersampled systems [8, 9], which increases the quality 52 

of images produced with the system and the amount of available 53 

information that can be encoded therein. By decoupling the 54 

reconstruction algorithm from the system’s illumination 55 

pathway and motor stage precision, PC+SAA can be used in a 56 

variety of optical imaging systems and applications. We intend 57 

to extend our work in PC+SAA towards 3D volumetric image 58 

reconstruction of murine, zebrafish, and organoid models. 59 

 60 

Funding. This study was supported by NIH R00HL148493, 61 

R01HL162635, NSF 2326628, and the UT Dallas STARS program. 62 

 63 

Disclosures. The authors declare no conflicts of interest. 64 

 65 

Data Availability. Data underlying the results presented in this 66 

paper are not publicly available at this time but may be obtained 67 

from the authors upon reasonable request.  68 

 69 

REFERENCES: 70 
1.  M. A. Neifeld, Opt. Lett., 23, 1477 (1998). 71 
2.  J. B. Pawley, Handbook Of Biological Confocal Microscopy, 3rd 72 

ed. (Springer US, 2006). 73 
3.  H. Lee, J. Kim, J. Kim, et al., Opt. Express, 29, 29996–30006 74 

(2021). 75 
4.  P. Fei, J. Nie, J. Lee, et al., Adv. Photonics, 1, 1 (2019). 76 
5.  G. Zheng, C. Shen, S. Jiang, et al., Nat. Rev. Phys., 3, 207–223 77 

(2021). 78 
6.  J. Jonkman, C. M. Brown, G. D. Wright, et al., Nat. Protoc., 15, 79 

1585–1611 (2020). 80 
7.  E. H. K. Stelzer, F. Strobl, B.-J. Chang, et al., Nat. Rev. Methods 81 

Prim., 1, 73 (2021). 82 
8.  O. Sodimu, M. Almasian, P. Gan, et al., J. Biophotonics, 16, 83 

e202200278 (2023). 84 
9.  M. Almasian, A. Saberigarakani, X. Zhang, et al., J. Vis. Exp., 205, 85 

e66707 (2024). 86 
10.  J. Chalfoun, M. Majurski, T. Blattner, et al., Sci. Rep., 7, 4988 87 

(2017). 88 
11.  M. Weigert, U. Schmidt, T. Boothe, et al., Nat. Methods, 15, 89 

1090–1097 (2018). 90 
12.  M. Makarkin and D. Bratashov, Micromachines, 12, (2021). 91 
13.  X. Tong, K. Luan, U. Stilla, et al., IEEE J. Sel. Top. Appl. Earth Obs. 92 

Remote Sens., 12, 4062–4081 (2019). 93 
14.  B. S. Reddy and B. N. Chatterji, IEEE Trans. Image Process., 5, 94 

1266–1271 (1996). 95 
15.  A. Alba, J. F. Vigueras-Gomez, E. R. Arce-Santana, et al., Comput. 96 

Vis. Image Underst., 137, 76–87 (2015). 97 
16.  H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image 98 

Process., 11, 188–200 (2002). 99 
17.  W. G. Bagnuolo, Opt. Lett., 10, 200–202 (1985). 100 
18.  S. Farsiu, D. Robinson, M. Elad, et al., Proc. SPIE - Int. Soc. Opt. 101 

Eng., 5203, (2003). 102 
19.  J. Fuenzalida, A. Hochrainer, G. B. Lemos, et al., Quantum, 6, 646 103 

(2020). 104 

  105 



REFERENCES: 1 
1.   M. A. Neifeld, "Information, resolution, and space–bandwidth 2 

product," Opt. Lett. 23, 1477 (1998). 3 
2.   J. B. Pawley, Handbook Of Biological Confocal Microscopy, 3rd 4 

ed. (Springer US, 2006). 5 
3.   H. Lee, J. Kim, J. Kim, P. Jeon, S. A. Lee, and D. Kim, "Noniterative 6 

sub-pixel shifting super-resolution lensless digital 7 
holography," Opt. Express 29, 29996–30006 (2021). 8 

4.   P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, 9 
T. Segura, C. M. Ho, D. Zhu, and T. K. Hsiai, "Subvoxel light-sheet 10 
microscopy for high-resolution high-throughput volumetric 11 
imaging of large biomedical specimens," Adv. Photonics 1, 1 12 
(2019). 13 

5.   G. Zheng, C. Shen, S. Jiang, P. Song, and C. Yang, "Concept, 14 
implementations and applications of Fourier ptychography," 15 
Nat. Rev. Phys. 3, 207–223 (2021). 16 

6.   J. Jonkman, C. M. Brown, G. D. Wright, K. I. Anderson, and A. J. 17 
North, "Tutorial: guidance for quantitative confocal 18 
microscopy," Nat. Protoc. 15, 1585–1611 (2020). 19 

7.   E. H. K. Stelzer, F. Strobl, B.-J. Chang, F. Preusser, S. Preibisch, 20 
K. McDole, and R. Fiolka, "Light sheet fluorescence 21 
microscopy," Nat. Rev. Methods Prim. 1, 73 (2021). 22 

8.   O. Sodimu, M. Almasian, P. Gan, S. Hassan, X. Zhang, N. Liu, and 23 
Y. Ding, "Light sheet imaging and interactive analysis of the 24 
cardiac structure in neonatal mice," J. Biophotonics 16, 25 
e202200278 (2023). 26 

9.   M. Almasian, A. Saberigarakani, X. Zhang, B. Lee, and Y. Ding, 27 
"Light-Sheet Imaging to Reveal Cardiac Structure in Rodent 28 
Hearts," J. Vis. Exp. 205, e66707 (2024). 29 

10.   J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, 30 
P. Bajcsy, and M. Brady, "MIST: Accurate and Scalable 31 
Microscopy Image Stitching Tool with Stage Modeling and 32 
Error Minimization," Sci. Rep. 7, 4988 (2017). 33 

11.   M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, 34 
B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-35 
Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, 36 
M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, and E. W. 37 
Myers, "Content-aware image restoration: pushing the limits of 38 
fluorescence microscopy," Nat. Methods 15, 1090–1097 39 
(2018). 40 

12.   M. Makarkin and D. Bratashov, "State-of-the-Art Approaches 41 
for Image Deconvolution Problems, including Modern Deep 42 
Learning Architectures," Micromachines 12, (2021). 43 

13.   X. Tong, K. Luan, U. Stilla, Z. Ye, Y. Xu, S. Gao, H. Xie, Q. Du, S. Liu, 44 
X. Xu, and S. Liu, "Image Registration with Fourier-Based Image 45 
Correlation: A Comprehensive Review of Developments and 46 
Applications," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 47 
12, 4062–4081 (2019). 48 

14.   B. S. Reddy and B. N. Chatterji, "An FFT-based technique for 49 
translation, rotation, and scale-invariant image registration," 50 
IEEE Trans. Image Process. 5, 1266–1271 (1996). 51 

15.   A. Alba, J. F. Vigueras-Gomez, E. R. Arce-Santana, and R. M. 52 
Aguilar-Ponce, "Phase correlation with sub-pixel accuracy: A 53 
comparative study in 1D and 2D," Comput. Vis. Image Underst. 54 
137, 76–87 (2015). 55 

16.   H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase 56 
correlation to subpixel registration," IEEE Trans. Image 57 
Process. 11, 188–200 (2002). 58 

17.   W. G. Bagnuolo, "Image restoration by the shift-and-add 59 
algorithm," Opt. Lett. 10, 200–202 (1985). 60 

18.   S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Robust Shift 61 
and Add Approach to Super-Resolution," Proc. SPIE - Int. Soc. 62 
Opt. Eng. 5203, (2003). 63 

19.   J. Fuenzalida, A. Hochrainer, G. B. Lemos, E. A. Ortega, R. 64 
Lapkiewicz, M. Lahiri, and A. Zeilinger, "Resolution of Quantum 65 
Imaging with Undetected Photons," Quantum 6, 646 (2020). 66 


