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Neuromuscular diseases pose significant health and economic challenges, necessitating
innovative monitoring technologies for personalizable treatment. Existing devices detect
muscular motions either indirectly from mechanoacoustic signatures on skin surface or
via ultrasound waves that demand specialized skin adhesion. Here, we teport a wireless
wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally
placed on the neck for continuously measuring movements of underlying muscles.
The system uses near-infrared (INIR) light that features deep-tissue penetration and
strong interaction with myoglobin to capture muscular locomotion. The incorporated
inertial measurement unit sensor further decouples the superposition of signals from
NIR recordings. Integrating a multimodal Al-boosted algorithm based on recurrent
neural network, the system accurately classifies activities of physiological events. An
adaptive model enables fast individualization without enormous data sources from the
target user, facilitating its broad applicability. Long-term tests and simulations suggest
the potential efficacy of the LaHMo platform for real-world applications, such as mon-
itoring disease progression in neuromuscular disorders, evaluating treatment efficacy,
and providing biofeedback for rehabilitation exetcises. The LaHMo platform may serve
as a general noninvasive, user-friendly solution for assessing neuromuscular function
beyond the anterior neck, potentially improving diagnostics and treatment of various
neuromuscular disorders.

neuromuscular diseases | wearable near-infrared spectroscopy | Al | hardware Al

Neuromuscular diseases (NMDs), characterized by progressive muscle function deterio-
ration, pose significant healthcare challenges worldwide. They profoundly impact patient
mobility, quality of life, and economic burden, especially in the postpandemic era (1, 2).
Managing NMDs is costly, encompassing financial costs, lost productivity, and psycho-
logical toll on patients and families (3—5). Muscle-tracking technology, combining bio-
sensors and analytical algorithms, has emerged as a promising solution for real-time
monitoring of specific muscular units (6, 7). This field holds immense potential for creating
innovative treatments for NMDs and advancing the development of user-friendly cyber-
netic interfaces (8, 9). The anterior neck region comprises both intrinsic and extrinsic
laryngeal muscles, each with distinct physiological roles (10—13). The intrinsic muscles,
including the thyroarytenoid and cricothyroid muscles, are primarily responsible for mod-
ulating tension and length of the vocal cords, facilitating phonation. In contrast, the
extrinsic muscles, such as the sternohyoid and thyrohyoid, are involved in positioning
and stabilizing the larynx during swallowing and respiration. Dysfunction in these muscle
groups can manifest as conditions like dysphonia, which often stems from intrinsic muscle
impairment affecting vocal cord vibration, and dysphagia, which may involve a complex
interplay of both intrinsic and extrinsic muscle dysfunction affecting the coordination of
swallowing (14, 15). Additionally, abnormal activity in these muscles can be associated
with persistent post-COVID dry cough, where monitoring muscle function can provide
insights into the extent and impact of these symptoms (16, 17). Moreover, the frequent
and involuntary occurrence of throat clearing, and dry cough can be indicative of dystussia,
a cough dysfunction characterized by an impaired cough reflex or coordination, potentially
leading to ineffective airway clearance and respiratory complications. Monitoring these
symptoms with precision could be crucial for the early detection and management of
dystussia, thus enhancing patient outcomes (18). A nuanced examination of the intrinsic
and extrinsic laryngeal muscle groups is essential for accurate diagnoses and therapeutic
interventions, as well as for evaluating the progression and treatment of post-COVID
conditions.

Existing muscle tracking technologies primarily rely on ultrasonic sensors (19-21),
near-infrared spectroscopy (NIRS) (22—24), electromyography (EMG) (25-27), inertial
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measurement units (IMU) (28, 29), and mechanoacoustic (MA)
sensors (30-32), which have several limitations. Ultrasonic sensots
typically necessitate a specialized adhesive layer to effectively trans-
mit ultrasound waves, which can be inconvenient for long-term
monitoring. Signals collected from EMG sensors have limited
spatial resolution due to inherent noise from electrode crosstalk,
electromagnetic interference, and electrocardiographic artifacts.
IMU-based muscle trackers suffer from signal drift over time and
require sophisticated algorithms to interpret complex muscle move-
ments. MA sensors require a high computational load for signal
analysis and are not ideal for large-area, spatially resolved signal
detection. NIRS sensors rely on strong attachment between the
sensor and the skin to ensure LED-tissue coupling, thus making
them prone to motion artifacts and compromising the wearing
comfort. However, there is potential in that ultrasonic and NIRS
sensors collect signals in the temporal domain capable of monitor-
ing short- and long-term muscle activities, such as swallowing and
static exercises, along with IMU, EMG, and MA sensors collecting
signals in the frequency domain capable in distinguishing dry
cough, talking, and dynamic exercises. Integrating these sensors
into a single platform may hold great promise via an Al algorithm
in leveraging their respective capabilities while mitigating the
limitations.

Here, we report a wireless, wearable, multimodal
muscle-tracking system, named Laryngeal Health Monitor
(LaHMo). The device features four NIRS sensors, to track muscle
activity during various physiological events, and a synchronized
IMU sensor, to audit device global motion serving as a reference
for counteracting motion artifacts. The hybrid sensing approach
is enhanced with an Al-driven platform and a wireless data col-
lection system, offering improved portability and instantaneous
data analysis capabilities. This integration of Al models surpasses
traditional methods by providing more accurate predictions and
comprehensive insights into muscle behavior, thus enabling more
precise monitoring and treatment strategies. A Monte Catlo sim-
ulation and two simultaneous gold standard tests based on EMG
and videostroboscopy validate the NIRS technology in tracking
muscles of the anterior neck area, visualizing the penetration
depth of the sensor (33, 34). Long-term on-body tests demon-
strate the capability of LaHMo in continuously monitoring
laryngeal muscle activity during various physiological events,
including deep breathing, coughing, swallowing, and exercise.
High-level physiological indicators, including respiratory health
and exercise intensity, draw real-time LaHMo measurements into
instant clinically relevant feedback via the AI models, thus offer-
ing advanced point-of-care diagnostics. These tests showcase its
potential for real-world applications, such as tracking disease
progression, evaluating treatment efficacy, and providing bio-
feedback for physical rehabilitation and sports performance mon-
itoring related to deep muscular tissue (35, 36). The LaHMo
platform may establish a broadly applicable solution for contin-
uous, noninvasive monitoring of muscular locomotion, with the
potential to improve the diagnosis and treatment for a broad
range of NMDs.

Results

Design Concept of LaHMo Platform. I'ig. 1.1 illustrates the
utility of a LaHMo. The ergonomic design of the LaHMo patch
allows conformal attachment onto the anterior neck region with
minimal discomfort. The patch transmits data to a cloud server
capable of real-time Al analysis. The analysis of LaHMo signals
could enable continuous monitoring of long-COVID symptoms
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of coughing, dysphagia, and dysphonia. Those collected data
streaming in real-time inform clinicians and caregivers for
deeper interpretations and informed decisions for personalized
therapeutics. Fig. 1B provides an exploded view of a LaHMo
patch which features a flexible design for both ergonomic fit and
integrated functionality. The LaHMo patch uses two stretchable
serpentine hinges to connect two smaller daughter islands with
its main island that contains arrays of small holes for good air
permeability (ST Appendix, Fig. S1). The sensors on the main island
include i) an IMU module (LSM6DSOX, STMictroelectronics)
for motion tracking, which features a detect range of +16 g for
acceleration and +2,000 degree per second (dps) for angular
rate, at a sample rate of 1.6 kHz, ii) two NIRS sensors, each
consisting of one NIR light emitting diode (LED) (SFH 4043,
Osram) and one photodiode (PD) (VEMD1060X01, Vishay) for
muscle activity monitoring. Injection of NIR light into the skin
allows absorption and scattering primarily from the muscle tissue
beneath the sensor, as myoglobin richly contained in muscles
shows strong absorption in NIR. Part of the backscattered light
post to the light—tissue interaction can reach a nearby PD which
generates corresponding signals that reflect muscular modulation.
The on-board distance between each pair of PD and LED is set
to 3.5 mm, which has shown optimized sign correspondence and
signal-to-noise ratio (6, 33). The key integrated circuits (ICs)
on the main island include i) a Bluetooth Low Energy (BLE)
microcontroller unit (MCU) (ESP32-C3FH4, Espressif) to
support data acquisition from the sensors, computation tasks,
and wireless communication capabilities, ii) an analog-to-digital
converter (ADC) (ADS1115, Texas Instruments) featuring a 16-
bit resolution for 4 channels to handle data coming from the
photodiodes before transmitting to the MCU, iii) two operational
amplifiers (Op Amp, TLV9002IDSGT, Texas Instruments) that
act as transimpedance amplifiers to preprocess the photovoltages
output by the photodiodes, iv) two low dropout (LDO) linear
regulators (ADP7118 ACPZN-R7, Analog Devices) for power
noise removal. Furthermore, the two daughter islands also consist
of one NIRS sensor each.

The flexible serpentine hinges are designed to ensure not only
the continuity of the electrical connectivity between the islands
but also a flexible fit that conforms to the neck’s profile while
maintaining structural integrity (ST Appendix, Fig. S2). A remov-
able lithium-ion battery (Engpow, 150 mAh) is used to power the
whole patch, and it can support the device running for 4 h or
longer if using intermittent sleep mode (ST Appendix, Fig. S3)
(37). Fig. 1C displays an actual device worn by a subject on the
anterior neck to demonstrate the true-to-size perspective of the
LaHMo patch. The compact and unobtrusive design shows that
the patch can be used in everyday settings without hindering the
normal activities of the user. A detailed block diagram illustrating
the operational mechanism of the proposed LaHMo platform
appears in Fig. 1D. The biosensor section of the LaHMo platform
serves as the foundation for data acquisition and initial processing.
This includes the communication between the microcontroller
and other on-board sensors. Specifically, the LEDs are pro-
grammed through the programmable analog outputs of the MCU,
while the NIRS signal is sent to the external ADC module before
reaching the Inter-Integrated Circuit (I?C) interface of the MCU,
together with the data from the IMU, which is then processed
through a Madgwick filter (ST _Appendix, Note S1). The Al analysis
section outlines the algorithms and computational processes that
interpret the collected data. First, a BLE client, which can be either
a smattphone/watch or a personal computet, acquites the wite-
lessly transmitted data and presents the processed data in an
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Fig. 1. Design concept of the LaHMo. (4) Schematic illustration of a LaHMo patch deployed onto the laryngeal anterior area for muscular monitoring, symptom
tracking, and recovery evaluation. Right diagram: working flowline of the LaHMo on the laryngeal anterior area and the targeted applications. The LaHMo platform
features onsite continuous muscle tracking over the laryngeal anterior area and wireless communication coupled with Al boosted predicting analysis that
classifies neck movement, swallow behavior, respiratory symptoms, and others, serving as diagnostic basis for clinical decision-making and precision treatment.

(8) Exploded view of a LaHMo patch. The patch uses a serpentine hinge to enable mechanical foldability, facilitating both ergonomic fit and function. The hinge
connects the main and daughter islands into a single flexible printed circuit board (fPCB), with the former running integrated circuits, including a microcontroller,
an analog-to-digital converter, an operational amplifier, two of the four NIRS sensors, and an IMU, while the latter hosts the other two NIRS sensors. (C) Image
of a LaHMo patch deployed onto the neck. (D) Block diagram showing the operational flow of the LaHMo system. A BLE client (e.g., a smartphone) receives
wirelessly transmitted data from a LaHMo patch and presents it in an accessible format for immediate review. The data is further analyzed with a pretrained
RNN designed to detect and classify physiological events indicative of laryngeal health. This Al-powered analysis can be conducted in embedded systems or
cloud servers. Finally, the users utilize the analyzed data for various medical and health applications. The LaHMo platform could facilitate a bidirectional flow
of dynamic and effective interactions between caregivers and receivers.

PNAS 2024 Vol. 121 No.51 e2410750121 https://doi.org/10.1073/pnas.2410750121 3 of 11


http://www.pnas.org/

Downloaded from https://www.pnas.org by UNIVERSITY OF NORTH CAROLINA CHAPEL HILL on July 28, 2025 from IP address 152.23.237.187.

4 of 11

accessible format for immediate review. Then, further data analysis
relies on a pretrained recurrent neural network (RNN) classifica-
tion system. This Al-powered analysis can occur either on the edge
via embedded systems or in the cloud, with the latter providing
the computational power needed for more complex interpreta-
tions. Finally, the human interface section shows the core of the
LaHMo platform, emphasizing its practical application in vatious
scenarios ranging from muscle tracking, swallow training, vocal
training, surgical recovery monitoring, and others. For patients
with neck injuries at home, the LaHMo platform monitors recov-
ery progress and offers suggestions for laryngeal muscle training
and rehabilitation optimization based on the determination from
the clinic end. In a clinical setting, the LaHMo platform provides
healthcare professionals with smart diagnosis capabilities based
on the comprehensive statistics acquired from the patient in real
time. This bidirectional flow of information fosters a dynamic
interaction between patients and clinicians, promoting a more
engaged and informed healthcare experience with personalized
precision.

Data Preprocessing Approaches at Various Physiological Events.
Data preprocessing improves visualization of muscle activity
and prepares for continuous condition classification, both in
real time. Here, we make use of a multiprocessing strategy to
analyze, visualize, and store acquired data in real time (Fig. 2,
and Movie S1). Fig. 24 demonstrates the strategic placement of
the NIRS sensors on the neck, highlighting the top left, top right,
central, and bottom positions. These locations are chosen for their
proximity to key laryngeal muscles, including the sternohyoid
muscle and mylohyoid muscle, involved in various physiological
functions (swallowing, cough, speech, respiration, and others).
Fig. 2B details the orientation axes—pitch, yaw, and roll—utilized
in the data collection process, providing a three-dimensional
perspective on how neck movements are recorded. Fig. 2C

A ar ‘D’J

$ &

Dry cough

showcases a LaHMo patch highlighting the relative locations of
respective sensors, which correlates with the sensing areas shown
in Fig. 2A.

The ST Appendix, Fig. S4 illustrates the sequential flow of data
processing concurrent with the detection of signals by the LaHMo
patch. The initialization stage includes three processes storage,
analysis, and visualization. The storage process creates a tabular
database upon instantiation and prepates to receive and store setial
data according to a known set of keys. The analysis process starts
acquiring serial data and stores new data in a temporary buffer.
The acquisition of data is accomplished using a custom software
and user interface, named BTViz, to handle Bluetooth connection
events, store acquired data in a buffer, and visualize acquired data.
At each minute interval, this temporary buffer stores a tabular
database in the storage process for filtering. These preprocessed
data are then sent to a visualization process to be plotted in real
time using BTViz for further analyzing and visualization. Fig. 2D
presents a comprehensive analysis of physiological events across a
spectrum of laryngeal muscle motion frequencies, each row cot-
responding to a specific sensor location and each graph demon-
strating the signal detected during the activity at each location.
The left four columns represent the low-frequency activities we
desire to investigate: deep breathing, swallowing, dry coughing,
and throat clearing. The right two columns are the high-frequency
activities, categorized as aerobic and anaerobic workouts, that we
aim to decouple from the low-frequency activities. enabling the
identification of unique signal patterns associated with various
neck activities, allowing for further differentiation between vol-
untary movements and involuntary muscle activity.

Neural Network Classification of Preprocessed Windows. Necural
network classification of preprocessed windows is designed to
decode natural physiological activities engaging the anterior
neck muscle group, often accompanied by head motions. The
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Fig. 2. Signal preprocessing and representative correlation with physiological events. (4) Schematic illustration indicating the corresponding sensing locations of
the NIRS sensors in a LaHMo patch, highlighted with the central area (blue), bottom area (light blue), Top Left area (orange), and Top Right area (red), respectively.

(B) Schematic illustration indicating dimensional parameters acquired from the embedded IMU, including the yaw (purple), pitch (pink), and roll (gray) Euler
angles, respectively. (C) Image of a LaHMo patch showing the corresponding position of the NIRS sensors. (D) Representative preprocessed data from a repetitive
test, on physiological events including deep breath, swallowing, dry cough, throat clearing, aerobic workout, and anaerobic workout. The preprocessed data

feed into Al models for further analysis.
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integration of IMU and NIRS sensors harnesses a comprehensive
view, capturing both muscle activities (MA) and head motions
(HM). This dual modality is central to the development of
our classification algorithm, aiming to extract MA and HM
information against the backdrop of ambient signals. Recurrent
neural networks (RNNs) are known to be good at grasping the
trend and making predictions based on the development of the
temporal slices (38, 39). Here we develop a dual-channel RNN
based on gated recurrent units (GRU), named dual-GRU, allowing
for dedicated processing of IMU and NIRS data, enhancing its
ability to stand against motion artifacts and extract relevant features
(ST Appendix, Note 5). ST Appendix, Fig. S5 shows the comparison
between the LaHMo signals acquired for a cough event while
standing still and walking, demonstrating the system capability
to filter out motion-induced artifacts during walking. While
NIRS data show increased noise during walking due to physical
motion, the IMU data capture characteristic patterns of movement
that the dual-GRU model utilizes to isolate and remove those
artifacts. We have carried out a systematic comparison between
the developed dual-GRU and various other RNN architectures
based on fully recurrent neural networks (FRNN), long short-term
memory (LSTM), and gated recurrent units (GRU) along with
their bidirectional variants (BIFRNN, BiLLSTM, and BiGRU) that
connect two hidden layers of opposite directions, to demonstrate
the enabling capabilities offered by the dual-GRU.

Here, the preprocessed data (Fig. 2D) is used to construct the
dataset used for training and validating the models. Fig. 3.4 elu-
cidates the performance difference between the proposed
dual-channel RNN (dual-RNN) and a normal monochannel
RNN (mono-RNN). In a mono-RNN architecture, the preproc-
essed data [with a dimension of (1, 3000, 7)] will be sent directly
to the hidden layer [with a dimension of (1, 3000, 140)] that
updates for every time point. The hidden layer is then sent to a
fully connected (FC) layer (1, 5) before finally outputting the
result via a SoftMax (SM) layer. Generally, to gain the best per-
formance of the neural network, this method requires normaliza-
tion in the preprocessing to avoid a biased weight toward one of
the two types of sensors. This not only brings more parameters to
fine-tune but also reduces the universality and robustness of the
model. Conversely, the dual-RNN architecture employs two par-
allel hidden layers, each dedicated to processing data from one of
the two distinct sensor types. Specifically, the collected seven-
channel data are first divided into the four-channel for photovolt-
age signals and the three-channel for Euler-angle information
before being processed individually through the two designated
RNN layers. The outputs of these two RNN layers are then con-
catenated and sent to the FC and SM layers. Fig. 3 B—D showcases
the representative results of the trained RNNs. To emphasize the
significance of combining the IMU and NIRS data, the results of
the biased model utilizing data from one of the sensors, are also
displayed, as PV-biased and IMU-biased, to compare segregated
and integrated data (Fig. 3B). Furthermore, the performances of
FRNN, LSTM, and GRU and their bidirectional variants
(BiFRNN, BiLLSTM, and BiGRU) are also discussed for the opti-
mization of the architecture, with the loss and accuracy curves of
their training and testing datasets presented by ST Appendix,
Fig. S6. Finally, to prevent the potential training bias that comes
from the way the involved dataset is selected from the whole data
pool during the training process, a k-fold cross-validation is imple-
mented to validate the model statistically. Fig. 3 B—G shows a
series of evaluations on 24 different RNN architectures based on
FRNN, LSTM, and GRU, with a particular focus on the
dual-GRU model. Fig. 3B shows the reduction of the cross-entropy
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loss of all eight types of GRU models (PV-biased GRU, PV-biased
BiGRU, IMU-biased GRU, IMU-biased BiGRU, mono-GRU,
mono-BiGRU, dual-GRU, and dual-BiGRU), and the training
performances for FRNN and LSTM are shown in ST Appendix,
Fig. S7. During a 400-epoch training process, all eight models
show a typical reduction-converge shape, and a good eatly stopping
(ES) point can be observed at epoch = 200. The trends of the plots
show a significant difference between the sensor-biased models and
the comprehensive models that make use of both modalities of the
LaHMo patch. Specifically, the mono- and dual-RNNs display a
much steeper learning curve and converge points better than their
competitors, who use only one modality (ST Appendix, Fig. S8).
This observation promotes the advantage of synergizing NIRS and
IMU detectors, compared to using only one of the two types of
sensors. However, the bidirectional feature does not bring about
much of a difference in the learning rate and the final loss function.
Fig. 3Chighlights the accuracy development among the train and
test datasets between dual-GRU and dual-BiGRU. The results
show that dual-GRU has a higher accuracy for both train and test
datasets compared to dual-BiGRU, and the overfit problem is more
severe for dual-BiGRU. This observation confirms that the bidi-
rectional RNNSs offer performance comparable with the conven-
tional RNNs. Fig. 3D and ST Appendix, Figs. S9-S11 show the
confusion matrices of the dual-GRU and other networks in the
preprocessed data. For dual-GRU, it achieves accuracies of 1.00
for deep breathing, 0.92 for dry coughing, 0.92 for throat clearing,
0.90 for swallowing, 1.00 for acrobic exercising, and 0.91 for anaer-
obic exercising, with these events respectively represented by labels
0-5 in the confusion matrix.

Fig. 3E shows the event recognition during a continuous dry
cough scenario, with the top half of the plot showing the NIRS
readings, and the bottom half of the plot showing the IMU meas-
urements. The green markers show the manually labeled MA
events. The crosses and dots are manually labeled samples in the
train and test datasets in one possible split, respectively. The red
crosses label the recognized MA events by the trained GRU model.
ST Appendix, Fig. S12 provides more related examples of other
MA and HM events. Dry coughs were one such MA event, with
the PD responses from various coughing patterns, including con-
tinuous, random, and separate, differentiated by the interval
between cough events, successfully visualized (ST Appendix,
Figs. S13-S15). Swallowing, another experimental MA event, was
tested under various conditions, including after different numbers
of chews, various time intervals between swallows, and different
liquids swallowed. The LaHMo system successfully visualized the
photovoltage data from the various test conditions, demonstrating
a clear distinction between the MA of swallowing under different
circumstances (S Appendix, Figs. S16-S18). Another MA event
used for visualization testing was the performance of different
vowel phonemes. The LaHMo system was found to be capable of
not only visualizing but also differentiating between 11 different
vowel phonemes (ST Appendix, Figs. S19-830). ST Appendix,
Fig. 831 presents the LaHMo data during the subject’s production
of different pitches, ranging from G4 to C3, along with the cor-
responding audio segments. ST Appendix, Fig. S32 extends the
analysis by comparing head and chest voice production at G4,
and further shows the LaHMo data for whispered and loud sounds
at C3, all with their respective audio recordings. HM events were
used the LaHMo’s PD response to motion and the subsequent
visualization of the response. Test subjects moved their heads such
that their cranial pitch angles were altered, with the LaHMo
system successfully detecting and visualizing these motions

(ST Appendix, Fig. $33).
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Fig. 3. Neural network (NN) classification of the preprocessed windows. (4) Flow diagram of Al models highlighting three candidate architectures of RNN. Their
distinguishment resides in utilizing mono- and dual-variants (represented by mono-RNN and dual-RNN respectively) of three different RNN architectures, including
FRNN, LSTM, and GRU, respectively. For FRNN and GRU, there is only a hidden state ( h,) in every hidden layer cell; for LSTM, there is a hidden state ( h,) and a cell
state () in each hidden layer cell. Four NN layers are demonstrated, with the dimension labeled underneath each diagram block. The preprocessed input and
the output of a 1-s sample are displayed at the start and end of the flow diagram. (B) Loss curves comparison over the course of 400 epochs (performance of
GRU) among training of the eight RNNs, including PV-biased RNN, PV-biased BiRNN, IMU-biased RNN, IMU-biased BiRNN, mono-RNN, mono-BiRNN, dual-RNN,
and dual-RNN. (¢) Accuracy curves of training and testing over the course of 400 epochs for the dual-GRU and dual-BiGRU networks. (D) Confusion matrix of the
dual-GRU and other networks in the preprocessed data. (F) Representative test on physiological events detection, involving continuous dry coughing. Green circles
label dry cough events in the test set. Green crosses label dry cough in the training set. Red crosses label predicted events with the dual-GRU model. Legends
of sensor units: C: Central, B: Bottom, TL: Top Left, TR: Top Right, Y: Yaw, P: Pitch, R: Roll. (F) SD of the accuracy curves of the dual-GRU and dual-BiGRU networks
for the training dataset over 400 epochs. (G) The P-values and t-statistics of the null hypothesis (i.e., the dual-GRU does not outperform the dual-BiGRU during
the training process) over 400 epochs. Within the shaded area, as the training approaches the ES point, the p-values of the hypotheses for both the testing and
training datasets drop to the rejection region (at a significance level of 0.05). As such, at the training ES point, statistical analysis suggests a rejection of the null
hypothesis, due to the dual-GRU being more robust when encountering different inputs.
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To demonstrate the independence of the dual-GRU model in
the selection of the training and test sample, a k-fold cross-validation
(k = 5) is implemented during the training of the models. The
validation is visualized by tracking the STDs of the loss and accu-
racy of both the training and the testing datasets (the shaded area
in Fig. 3 Band C). A large STD around the training ES point
would suggest a poor reproducibility of the model. Fig. 3F shows
the development of the accuracy STD of dual-GRU and
dual-BiGRU in the 5 folds of training, and the accuracy STD and
loss STD plots of other mentioned models can be found in
ST Appendix, Fig. S34. The STD tracking plot shows a significant
reduction for both models, suggesting an increase in prediction
robustness. Both models also show a steady and low STD around
the 200th epoch, suggesting this point is a decent ES point. To
compare the performance of the two models, a statistical exami-
nation over various data splits (Fig. 3G) shows the trajectory of
the P-value and t-statistic of the null hypothesis, indicating that
the dual-GRU shows consistent performance with the dual-BiGRU
during the training process. As seen in the shaded area, as the
training approaches the ES point, the P-values of the hypotheses
for both the training and testing datasets drop to the rejection
region (at a significance level of 0.05). Therefore, at the training

ES point, it is statistically confirmed that the dual-GRU is more
robust when encountering different divisions of inputs, with the
data ultimately rejecting the null hypothesis.

Long-Term LaHMo Test. To validate the LaHMo platform’s
efficacy in real-world scenarios, we conducted a 30-min on-body
test during a basketball game. The test subject wore the LaHMo
patch on the anterior neck while performing various activities,
including deep breathing, coughing, anaerobic exercises (e.g.,
shooting the ball), and aerobic exercises (e.g., dribbling and
jogging). Fig. 441 presents a subset of the raw data collected from
this on-body test, with the gray line representing the yaw angle as
the representative Euler angle detected by the IMU sensor and the
red line representing the photovoltage detected by a representative
NIRS sensor. During the 2,000-s recording period, 230 moments
were manually marked as occurrences of coughs (71 occurrences,
green circles) or noncough events (159 occurrences, blue squares).
Fig. 4B presents 3-s intervals of the raw data showcasing the
correspondence with certain activities executed by the subject
during the long-term test, including running, shooting, dribbling,
and attempting a layup. ST Appendix, Figs. S35 and S36 shows
the training performances of the adap-GRU model (40, 41).
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Fig. 4. Deployment and analysis of LaHMo during daily activities. (4) The representative central (red) and yaw (gray) measurements during a 30-min test during
a basketball game. The markers show the manually labeled cough (green circles) and cough-like (blue rectangles) events. The latter contains deep breaths and
aerobic and anaerobic exercises during the long test. After data preprocessing, the fine-tuned adap-GRU model produces a real-time prediction based on the 3 s
slices. (B) Photographs (Top row) and corresponding 3 s slices of preprocessed data (Bottom row) showing the highlighted activities in the classification algorithm.
From Left to Right: deep breath during rest, dry cough, anaerobic workout (shooting ball), and aerobic workout (dribbling and jogging). The black dashed boxes

show the unique features that are considered during the manual label process.

(0) Calculated respiratory health indicator as a function of time. The datapoint

color indicates the number of observed coughs in a 5-s window, that ranges from no cough (green) to 5 coughs per time window (red). (D) Calculated exercise
intensity indicator as a function of time. The datapoint color indicates the number of observed exercise events in a 5-s window, that ranges from no workout

(green) to intensive workouts (red).
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ST Appendix, Figs. S37 and S38 present the performance of the
Al model in action identification over time. These raw predictions
enable the calculation of high-level health indicators (Fig. 4
C and D). Fig. 4C presents the respiratory health indicator,
defined as the average prediction score of cough events within
a 5-s window, accompanied by the number of observed cough
events in that period. Fig. 4D illustrates the exercise intensity
indicator, determined by the combined average prediction scores
of anaerobic and aerobic workouts within a 5-s window, along
with the number of observed workout events. These results allow
us to quantitatively assess the relationship between the subject’s
respiratory health condition and their exercise intensity during
the workout. By comparing the respiratory health indicator with
the exercise intensity indicator, we can evaluate whether increased
exercise intensity correlates with a decline in respiratory health
or vice versa. This quantitative analysis provides valuable insights
into how physical activity impacts respiratory function, helping
to identify potential issues and optimize training and health
monitoring protocols for individuals based on their specific needs
and conditions.

Validation with Gold Standard and Monte Carlo Simulation. To
understand the underlying correspondence between the signals
collected from LaHMo and the muscular movements of the
neck, a time-resolved Monte Carlo (MC) simulation is utilized
to present a view of both internal muscular movements and
corresponding optical modulations in the laryngeal (42—47). In
addition to the simulation, we performed gold-standard validation
using EMG, where LaHMo was compared against EMG
recordings of the thyrohyoid membrane, cricothyroid muscle,
and suprahyoid muscles during controlled swallowing events. This
comparison revealed a high degree of signal alignment, confirming
LaHMo’s ability to track swallowing movements in real time,
corroborating the simulation with physiological measurements.
A videostroboscopy (VSS) test further confirmed the alignment
of the LaHMo data with the activity of vocal folds during the
production of natural musical scales using chest voice and falsetto,
respectively.

In each MC simulation experiment, 107 photon wave packets
are launched into a predefined voxel space, and the trajectory and
weight of each wave packet along all the time steps are recorded
(ST Appendix, Note S2). Fig. 54 shows the laryngeal region with
contour outlines defining the voxel space emulated in the simu-
lation. The image depicts the P of the throat, that defines sensing
areas of the LaHMo patch. Accompanying this is a cross-sectional
model of the layered tissue at the site: the epidermis, dermis,
subcutaneous fat, and skeletal muscle. A close-up video is first
recorded (Movie S2) to show a frame-by-frame profile change of
the laryngeal area. The contour of the laryngeal prominence (LLP)
is manually extracted from the video for every frame and is mod-
eled in the voxel space. Finally, a series of parallel boundaries inside
the voxel space is generated to represent the borders between the
epidermis, dermis, subcutaneous fat, and skeletal muscles. The
LaHMo placement and light emission, both on a tissue surface
and the LP, are respectively represented by ST.Appendix, Figs. S39
and S40. During each physiological activity (deep breath, dry
cough, throat clearing, and swallowing) in this simulation, the
motion will be mainly induced by the vertical and horizontal
displacement of the LP.

Fig. 5B presents a three-dimensional graph of three dependent
variables, describing the neuromuscular activity in the laryngeal
region: the logarithm of the fluence at the LaHMo patch’s CP
(central photodiode), the height of the P (mm), and the vertical
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displacement (mm) of the LLP from a set baseline throughout the
Monte Carlo simulation. The logarithm of the fluence is the cal-
culated brightness of the tissue at the site of the CP during the
simulation. The LP height is the height of the LP’s peak relative
to the baseline set at the surface of the throat. The vertical dis-
placement, finally, is the location of the LP’s peak relative to the
vertical midpoint of the throat. A color bar enables a more stream-
lined interpretation of the figure, indicating the value of the log-
arithm of the fluence corresponding to the colored region on the
three-dimensional graph. The cross-sectional profiles in Fig. 5C
and ST Appendix, Fig. S41 show the locations (blue triangles) and
corresponding emitted near-infrared light (purple extrusions) of
2 LEDs (Central and Bottom ones corresponding to Fig. 2.) from
the deployed LaHMo. Fig. 5C shows three cross-section profiles
of the emitted light per physiological activity, representing the
initiation stage, peak stage, and ending stage, respectively. Fig. 5C
also provides a comparison between the average photovoltage
response of the central and bottom PDs and their simulated coun-
terparts, with the former represented by solid lines and the latter
represented by dashed lines and crosses. Orange vertical dashed
lines on the graphs designate the times lining up with the respec-
tive cross-sectional profiles of the Monte Carlo simulation.

To quantitatively assess the agreement between the Monte Carlo
(MC) simulated results and the actual measured signals for the deep
breath event, we performed a cross-correlation analysis using a sliding
window approach. The MC simulated signals and the measured
signals were compared for both the central and bottom channels
(ST Appendix, Fig. $42). In this analysis, the signals from both meas-
urements and MC simulations are first normalized before being
matched on the time axis to compensate for the unit mismatch
between fluence (results of MC simulation) and photovoltage (meas-
urements of PD). The cross-correlation is calculated after the not-
malization and best matching of the segment and the MC simulated
signal. Overall, the central channels for the four activities show
higher best correlations at around zero lag (0.77 for deep breath,
0.80 for dry cough, 0.75 for throat clearing, and 0.63 for swallowing)
indicating a strong similarity. The best correlations (0.79 for dry
cough, 0.29 for dry cough, 0.36 for throat clearing, and 0.50 for
swallowing) for bottom channels are less significant but still ample
to show a similarity. These findings validate the accuracy of the MC
simulation in capturing the underlying muscle activities during dif-
ferent physiological events and support the feasibility of using MC
simulations to investigate the relationship between the detected
signals and the corresponding physiological events.

To validate the LaHMo’s data with gold standard, a simultane-
ous EMG test is performed where the activity patterns of the
thyrohyoid muscle, cricothyroid muscle, and suprahyoid muscles
during a swallowing event are recorded (Fig. 5 D—F). The valida-
tion experiment involved three distinct swallowing events moni-
tored simultaneously by both EMG and LaHMo over a 10-s
interval. The EMG data and LaHMo data are shown in Fig. 5 E
and F, highlighted in orange boxes for each swallow. The results
demonstrate a high level of signal alignment between the EMG
and LaHMo across all monitored muscle groups, confirming that
LaHMo can track the muscle activities associated with swallowing.
To further extend this validation, a proof-of-concept videostro-
boscopy (VSS) experiment is performed that measured LaHMo’s
ability to track vocalization, particularly pitch modulation in chest
voice and falsetto. The VSS recording, presented in ST Appendix,
Fig. S44, was obtained from an authentic external source (48),
and provided a visual confirmation of the vocal fold dynamics.
ST Appendix, Fig. S44 A and C depict LaHMo data as the subject
produced natural musical scales ranging from C3 to C4 using
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Fig. 5. Monte Carlo simulation to validate the correlation between signals collected from LaHMo patch and corresponding muscular movements from the
neck. (4) A photographic depiction of the LP, the targeted sensing area of the LaHMo patch. Video recordings of the anterior neck during various activities (deep
breath, dry cough, throat clearing, and swallowing) yield measurements of its contour movements for comparison with simulation results. Inset: a cross-sectional
model of the layered tissue at the sensing site, which consists of the epidermis, dermis, subcutaneous fat, and skeletal muscle (from outside inward). (8) A 3D
contour plot showing the simulation results on the logarithm of the fluence corresponding to responses from the central photodiode of a LaHMo patch. The
height of the LP (the distance between the LP’s peak and the surface of the throat) and the LP’s vertical displacement (the location of the LP’s peak relative to
the midpoint of the throat) over the experiment. The logarithm of fluence is the calculated brightness of the tissue in the operational area. The LP height and
the vertical displacement are shown on the bottom plane. () Simulation results on the cross-sectional profiles of LED illumination from a LaHMo patch into
the neck and their accompanying measured photovoltage and calculated fluence data during the deep breath and dry cough actions. To facilitate a practical
visualization of the effects of the actions, there are three cross-section profiles per physiological action: at the start point, the point of the greatest change in
the measurement, and the endpoint, respectively. (D) Placement of the electrode of four EMG channels and the reference. (E) Acquired EMG signals at three
different swallow events (highlighted with orange boxes) in a 10-s interval. (F) Acquired LaHMo data at the corresponding time interval.
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chest voice, and C4 to C5 using falsetto. The audio recordings of
these events, shown in ST Appendix, Fig. S44 B and D, correlate
the vocal performance with the muscle activity captured by
LaHMo. ST Appendix, Fig. S44 E—H provides VSS slices during
these vocalizations, showing the distinct movement of the cornic-
ulate cartilages (highlighted by green dashed circles). The VSS
confirms the posterior movement of the corniculate cartilages
during falsetto, which aligns with the optical data recorded by
LaHMo, further validating the platform’s ability to monitor vocal
fold dynamics.

This combination of MC simulations and gold standard meas-
urements, including EMG and VSS, validates the operational
robustness of LaHMo, demonstrating that the device accurately
captures physiological events such as swallowing and vocalization,
while offering insight into both swallowing-related muscular
movements and dynamic changes duting phonation.

Discussion

In this study, we present the LaHMo platform, a wearable system
that leverages neat-infrared spectroscopy (NIRS) and inertial
measurement unit (IMU) sensors with a dual-modality Al algo-
rithm to continuously monitor laryngeal muscle activity with high
precision. The LaHMo platform exhibits significant potential in
providing a direct assessment of the physiological activities of
extrinsic laryngeal muscles, such as the sternohyoid, thyrohyoid,
and suprahyoid, which are integral to laryngeal positioning and
stabilization. Additionally, it offers indirect insights into the
behavior of intrinsic laryngeal muscles, like the thyroarytenoid
and cricothyroid, which are crucial for vocal fold modulation and
phonation (49). This dual capability enables the platform to
enhance the understanding and treatment of conditions such as
dysphonia, dysphagia, post-COVID dry cough, and dystussia by
offering a comprehensive view of laryngeal muscle function and
its impact on these disorders. The developed dual-GRU model
exhibited supetior performance compared with the other 24 con-
ventional RNN architectures, demonstrating its ability to effec-
tively synergize NIRS and IMU data and accurately classify muscle
activity and head motion events. Both the long-term on-body tests
and Monte Carlo simulations further validate the efficacy of the
LaHMo platform, highlighting its practical potential for real-world
applications. The developed adaptation network (adap-GRU)
allows for AI-model individualization without extensive training
for target users, making the LaHMo platform more accessible and
uset-friendly.

Finally, the LaHMo platform is designed to offer valuable insights
into daily behaviors of laryngeal muscles, such as swallowing and
breathing, by continuously monitoring collective muscle activities
in a noninvasive manner. Its long-term wearability and noninvasive
tracking lead to its promising utility more on preliminary clinical
screening for hospital admission and proactive diagnosis for critical
eatly-stage indicators, but the limited spatial quantification and
structural correspondence in the analyzed signals make the system
less useful for deep mechanistic analysis of a singular muscle func-
tion. Specifically, during the examination of the swallowing process,
the LaHMo platform effectively tracks hyolaryngeal elevation and
tongue movements, and the preliminary evidence from the IDDSI
level tests (S1.Appendix, Fig. S406) also suggests that the platform
can monitor and differentiate tongue movement across various
bolus viscosities, providing valuable real-time biofeedback for initial
clinical screening and rehabilitation tracking. Additionally, for the
respiration, the LaHMo platform cannot comprehensively describe
the complex dynamics of breathing, which primarily involve the
diaphragm and intercostal muscles. Therefore, while it can provide
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insights into basic breathing behaviors, such as distinguishing
between oral and nasal breathing (ST Appendix, Fig. S47), it is not
equipped to offer a comprehensive analysis of respiratory function.
Moreover, while long-term tests and simulations conducted in con-
trolled environments suggest the potential efficacy of the LaHMo
platform for real-world applications these findings are preliminary.
Simulations and lab tests, although useful, cannot fully replicate
the complexities encountered in clinical trials with human subjects,
where factors like patient variability and long-term device perfor-
mance play critical roles. Future studies may focus on validating
the system’s performance in larger and more diverse patient popu-
lations, including those with specific NMDs. Additionally, the
integration of the LaHMo platform with other diagnostic tools and
treatment modalities may hold great promise to improve patient
outcomes and enhance clinical decision-making in treating mus-
cular disorders.

Methods

Device Design and Components. The outline of the three flexible PCB (fPCB)
islands and two serpentine hinges are defined in Autodesk AutoCAD 2023 before
being incorporated into the fPCB design. The fPCB schematic and board layout
are finished using Altium Designer (version 24.1.2). The bill of materials (BOM)
can be found in SI Appendix, Table S1.

Device Fabrication. Panels of fPCB were manufactured according to inter-
national standards 1SO 9001:2005 and IPC. Solder paste is dispensed with a
desktop PCB prototype machine (V-One, Voltera). The components are populated
manually.

Data Collection. The device is secured to make sure the top and bottom
NIRS sensors are above and below the subject’s laryngeal prominent, respec-
tively. Three of the authors participated in one or more of the 4 tests (Details
in S| Appendix, Table S2). The data are collected via BTViz. Additional operating
information can be found in SI Appendix, Note 3. The on-body evaluation of the
LaHMo was performed in compliance with the protocol that was approved by the
institutional review board at the University of North Carolina, Chapel Hill (study
number 22-0163).

Data Analytics. The real-time data preprocessing procedures during the tests
are deployed on a personal computer running Linux (Manjaro), including two
Butterworth filters, one peak finding function, and one slice stacking algorithm.
The detailed calculations can be found in SI Appendix, Note 4. All the above-
mentioned neural networks are built with the PyTorch package (version 2.0.0,
based on CUDA 12.1 platform). The network dimensional parameters of the 24
tested RNN variants and the adap-GRU can be found in SI Appendix, Table S3.
The training and validation were conducted in Visual Studio Code (version 1.86)
environment embedded with Python 3.10.11.

Monte Carlo Simulation. The platform of the MC simulation used in this project
is MCXLAB v2020 (1.8 - Furious Fermion), an open-source light transport simu-
lator. Two MC optical simulations are performed: normal status (NS) and bump
translate (BP). The detailed performances of these simulations can be found in
SI Appendix, Note 2.

EMG Validation Test. The EMG validation test starts by placing 9 electrodes
(Kendall™, CardinalHealth) onto the subject’s neck at the labeled locations. Eight
electrodes are connected to channel 1 to 4 of a Powerlab 16/35 data acquisi-
tion system (ADInstruments), and the last electrode is connected to the external
ground port. The data acquisition is performed by the LabChart 7 software. For
all the input channels, the sample frequency is set to 100 kHz. On all the input
differential amplifiers, a bandpass filter is added, with a 1 Hz low cutoff and a
50 Hz high cutoff. A LaHMo patch is applied after all electrodes are placed. The
subject uses a straw to drink a mouthful of water to prevent redundant mouth
movement before swallowing the liquid naturally.

Data, Materials, and Software Availability. All raw data, analysis code, firm-
ware code data have been deposited in Zenodo (50).
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