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Neuromuscular diseases pose significant health and economic challenges, necessitating 
innovative monitoring technologies for personalizable treatment. Existing devices detect 
muscular motions either indirectly from mechanoacoustic signatures on skin surface or 
via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless 
wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally 
placed on the neck for continuously measuring movements of underlying muscles. 

The system uses near-infrared (NIR) light that features deep-tissue penetration and 
strong interaction with myoglobin to capture muscular locomotion. The incorporated 
inertial measurement unit sensor further decouples the superposition of signals from 

NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent 
neural network, the system accurately classifies activities of physiological events. An 
adaptive model enables fast individualization without enormous data sources from the 

target user, facilitating its broad applicability. Long-term tests and simulations suggest 

the potential efficacy of the LaHMo platform for real-world applications, such as mon- 
itoring disease progression in neuromuscular disorders, evaluating treatment efficacy, 
and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve 

as a general noninvasive, user-friendly solution for assessing neuromuscular function 
beyond the anterior neck, potentially improving diagnostics and treatment of various 
neuromuscular disorders. 

neuromuscular diseases | wearable near-infrared spectroscopy | AI | hardware AI 

 

Neuromuscular diseases (NMDs), characterized by progressive muscle function deterio- 
ration, pose significant healthcare challenges worldwide. They profoundly impact patient 
mobility, quality of life, and economic burden, especially in the postpandemic era (1, 2). 
Managing NMDs is costly, encompassing financial costs, lost productivity, and psycho- 
logical toll on patients and families (3–5). Muscle-tracking technology, combining bio- 

sensors and analytical algorithms, has emerged as a promising solution for real-time 
monitoring of specific muscular units (6, 7). This field holds immense potential for creating 

innovative treatments for NMDs and advancing the development of user-friendly cyber- 
netic interfaces (8, 9). The anterior neck region comprises both intrinsic and extrinsic 
laryngeal muscles, each with distinct physiological roles (10–13). The intrinsic muscles, 
including the thyroarytenoid and cricothyroid muscles, are primarily responsible for mod- 
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ulating tension and length of the vocal cords, facilitating phonation. In contrast, the   
extrinsic muscles, such as the sternohyoid and thyrohyoid, are involved in positioning 

and stabilizing the larynx during swallowing and respiration. Dysfunction in these muscle 
groups can manifest as conditions like dysphonia, which often stems from intrinsic muscle 
impairment affecting vocal cord vibration, and dysphagia, which may involve a complex 
interplay of both intrinsic and extrinsic muscle dysfunction affecting the coordination of 
swallowing (14, 15). Additionally, abnormal activity in these muscles can be associated 

with persistent post-COVID dry cough, where monitoring muscle function can provide 
insights into the extent and impact of these symptoms (16, 17). Moreover, the frequent 
and involuntary occurrence of throat clearing, and dry cough can be indicative of dystussia, 
a cough dysfunction characterized by an impaired cough reflex or coordination, potentially 
leading to ineffective airway clearance and respiratory complications. Monitoring these 
symptoms with precision could be crucial for the early detection and management of 
dystussia, thus enhancing patient outcomes (18). A nuanced examination of the intrinsic 
and extrinsic laryngeal muscle groups is essential for accurate diagnoses and therapeutic 

interventions, as well as for evaluating the progression and treatment of post-COVID 
conditions. 

Existing muscle tracking technologies primarily rely on ultrasonic sensors (19–21), 
near-infrared spectroscopy (NIRS) (22–24), electromyography (EMG) (25–27), inertial 
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Significance 

Neuromuscular diseases 

significantly impact health and 

quality of life globally, creating a 

need for advanced monitoring 

technologies. Our research 

presents an AI-boosted, wireless 

sensing system Laryngeal Health 

Monitor (LaHMo) that uses 

near-infrared light and motion 

sensors to monitor muscle 

activity in the neck continuously. 

This system integrates a dual- 

modality algorithm for precise 

event classification and adapts 

quickly to individual users. By 

enabling real-time, noninvasive 

monitoring of conditions like 

dysphagia and dysphonia, 

LaHMo offers possibilities for 

tracking disease progression, 

evaluating treatment efficacy, 

and aiding rehabilitation. 
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measurement units (IMU) (28, 29), and mechanoacoustic (MA) 
sensors (30–32), which have several limitations. Ultrasonic sensors 
typically necessitate a specialized adhesive layer to effectively trans- 

mit ultrasound waves, which can be inconvenient for long-term 
monitoring. Signals collected from EMG sensors have limited 
spatial resolution due to inherent noise from electrode crosstalk, 
electromagnetic interference, and electrocardiographic artifacts. 

IMU-based muscle trackers suffer from signal drift over time and 
require sophisticated algorithms to interpret complex muscle move- 
ments. MA sensors require a high computational load for signal 

analysis and are not ideal for large-area, spatially resolved signal 
detection. NIRS sensors rely on strong attachment between the 

sensor and the skin to ensure LED-tissue coupling, thus making 
them prone to motion artifacts and compromising the wearing 
comfort. However, there is potential in that ultrasonic and NIRS 
sensors collect signals in the temporal domain capable of monitor- 

ing short- and long-term muscle activities, such as swallowing and 
static exercises, along with IMU, EMG, and MA sensors collecting 
signals in the frequency domain capable in distinguishing dry 
cough, talking, and dynamic exercises. Integrating these sensors 
into a single platform may hold great promise via an AI algorithm 
in leveraging their respective capabilities while mitigating the 
limitations. 

Here, we report a wireless, wearable, multimodal 
muscle-tracking system, named Laryngeal Health Monitor 
(LaHMo). The device features four NIRS sensors, to track muscle 
activity during various physiological events, and a synchronized 
IMU sensor, to audit device global motion serving as a reference 
for counteracting motion artifacts. The hybrid sensing approach 

is enhanced with an AI-driven platform and a wireless data col- 
lection system, offering improved portability and instantaneous 
data analysis capabilities. This integration of AI models surpasses 
traditional methods by providing more accurate predictions and 
comprehensive insights into muscle behavior, thus enabling more 
precise monitoring and treatment strategies. A Monte Carlo sim- 
ulation and two simultaneous gold standard tests based on EMG 
and videostroboscopy validate the NIRS technology in tracking 
muscles of the anterior neck area, visualizing the penetration 

depth of the sensor (33, 34). Long-term on-body tests demon- 
strate the capability of LaHMo in continuously monitoring 
laryngeal muscle activity during various physiological events, 
including deep breathing, coughing, swallowing, and exercise. 
High-level physiological indicators, including respiratory health 

and exercise intensity, draw real-time LaHMo measurements into 
instant clinically relevant feedback via the AI models, thus offer- 

ing advanced point-of-care diagnostics. These tests showcase its 
potential for real-world applications, such as tracking disease 
progression, evaluating treatment efficacy, and providing bio- 
feedback for physical rehabilitation and sports performance mon- 
itoring related to deep muscular tissue (35, 36). The LaHMo 
platform may establish a broadly applicable solution for contin- 
uous, noninvasive monitoring of muscular locomotion, with the 
potential to improve the diagnosis and treatment for a broad 
range of NMDs. 

 

Results 

Design Concept of LaHMo Platform. Fig. 1A illustrates the 
utility of a LaHMo. The ergonomic design of the LaHMo patch 
allows conformal attachment onto the anterior neck region with 
minimal discomfort. The patch transmits data to a cloud server 
capable of real-time AI analysis. The analysis of LaHMo signals 
could enable continuous monitoring of long-COVID symptoms 

of coughing, dysphagia, and dysphonia. Those collected data 

streaming in real-time inform clinicians and caregivers for 
deeper interpretations and informed decisions for personalized 
therapeutics. Fig. 1B provides an exploded view of a LaHMo 
patch which features a flexible design for both ergonomic fit and 
integrated functionality. The LaHMo patch uses two stretchable 
serpentine hinges to connect two smaller daughter islands with 
its main island that contains arrays of small holes for good air 
permeability (SI Appendix, Fig. S1). The sensors on the main island 
include i) an IMU module (LSM6DSOX, STMicroelectronics) 
for motion tracking, which features a detect range of ±16 g for 
acceleration and ±2,000 degree per second (dps) for angular 
rate, at a sample rate of 1.6 kHz, ii) two NIRS sensors, each 
consisting of one NIR light emitting diode (LED) (SFH 4043, 
Osram) and one photodiode (PD) (VEMD1060X01, Vishay) for 
muscle activity monitoring. Injection of NIR light into the skin 
allows absorption and scattering primarily from the muscle tissue 
beneath the sensor, as myoglobin richly contained in muscles 
shows strong absorption in NIR. Part of the backscattered light 
post to the light–tissue interaction can reach a nearby PD which 
generates corresponding signals that reflect muscular modulation. 

The on-board distance between each pair of PD and LED is set 
to 3.5 mm, which has shown optimized sign correspondence and 

signal-to-noise ratio (6, 33). The key integrated circuits (ICs) 
on the main island include i) a Bluetooth Low Energy (BLE) 

microcontroller unit (MCU) (ESP32-C3FH4, Espressif) to 
support data acquisition from the sensors, computation tasks, 

and wireless communication capabilities, ii) an analog-to-digital 

converter (ADC) (ADS1115, Texas Instruments) featuring a 16- 
bit resolution for 4 channels to handle data coming from the 
photodiodes before transmitting to the MCU, iii) two operational 
amplifiers (Op Amp, TLV9002IDSGT, Texas Instruments) that 
act as transimpedance amplifiers to preprocess the photovoltages 
output by the photodiodes, iv) two low dropout (LDO) linear 

regulators (ADP7118ACPZN-R7, Analog Devices) for power 
noise removal. Furthermore, the two daughter islands also consist 
of one NIRS sensor each. 

The flexible serpentine hinges are designed to ensure not only 
the continuity of the electrical connectivity between the islands 
but also a flexible fit that conforms to the neck’s profile while 
maintaining structural integrity (SI Appendix, Fig. S2). A remov- 

able lithium-ion battery (Engpow, 150 mAh) is used to power the 
whole patch, and it can support the device running for 4 h or 
longer if using intermittent sleep mode (SI Appendix, Fig. S3) 
(37). Fig. 1C displays an actual device worn by a subject on the 

anterior neck to demonstrate the true-to-size perspective of the 
LaHMo patch. The compact and unobtrusive design shows that 
the patch can be used in everyday settings without hindering the 
normal activities of the user. A detailed block diagram illustrating 
the operational mechanism of the proposed LaHMo platform 
appears in Fig. 1D. The biosensor section of the LaHMo platform 
serves as the foundation for data acquisition and initial processing. 
This includes the communication between the microcontroller 

and other on-board sensors. Specifically, the LEDs are pro- 
grammed through the programmable analog outputs of the MCU, 
while the NIRS signal is sent to the external ADC module before 

reaching the Inter-Integrated Circuit (I2C) interface of the MCU, 
together with the data from the IMU, which is then processed 
through a Madgwick filter (SI Appendix, Note S1). The AI analysis 
section outlines the algorithms and computational processes that 
interpret the collected data. First, a BLE client, which can be either 
a smartphone/watch or a personal computer, acquires the wire- 
lessly transmitted data and presents the processed data in an 
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Fig. 1. Design concept of the LaHMo. (A) Schematic illustration of a LaHMo patch deployed onto the laryngeal anterior area for muscular monitoring, symptom 

tracking, and recovery evaluation. Right diagram: working flowline of the LaHMo on the laryngeal anterior area and the targeted applications. The LaHMo platform 

features onsite continuous muscle tracking over the laryngeal anterior area and wireless communication coupled with AI boosted predicting analysis that 

classifies neck movement, swallow behavior, respiratory symptoms, and others, serving as diagnostic basis for clinical decision-making and precision treatment. 

(B) Exploded view of a LaHMo patch. The patch uses a serpentine hinge to enable mechanical foldability, facilitating both ergonomic fit and function. The hinge 

connects the main and daughter islands into a single flexible printed circuit board (fPCB), with the former running integrated circuits, including a microcontroller, 

an analog-to-digital converter, an operational amplifier, two of the four NIRS sensors, and an IMU, while the latter hosts the other two NIRS sensors. (C) Image 

of a LaHMo patch deployed onto the neck. (D) Block diagram showing the operational flow of the LaHMo system. A BLE client (e.g., a smartphone) receives 

wirelessly transmitted data from a LaHMo patch and presents it in an accessible format for immediate review. The data is further analyzed with a pretrained 

RNN designed to detect and classify physiological events indicative of laryngeal health. This AI-powered analysis can be conducted in embedded systems or 

cloud servers. Finally, the users utilize the analyzed data for various medical and health applications. The LaHMo platform could facilitate a bidirectional flow 

of dynamic and effective interactions between caregivers and receivers. 
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accessible format for immediate review. Then, further data analysis 
relies on a pretrained recurrent neural network (RNN) classifica- 

tion system. This AI-powered analysis can occur either on the edge 
via embedded systems or in the cloud, with the latter providing 
the computational power needed for more complex interpreta- 
tions. Finally, the human interface section shows the core of the 
LaHMo platform, emphasizing its practical application in various 
scenarios ranging from muscle tracking, swallow training, vocal 
training, surgical recovery monitoring, and others. For patients 
with neck injuries at home, the LaHMo platform monitors recov- 
ery progress and offers suggestions for laryngeal muscle training 
and rehabilitation optimization based on the determination from 
the clinic end. In a clinical setting, the LaHMo platform provides 
healthcare professionals with smart diagnosis capabilities based 
on the comprehensive statistics acquired from the patient in real 
time. This bidirectional flow of information fosters a dynamic 
interaction between patients and clinicians, promoting a more 
engaged and informed healthcare experience with personalized 
precision. 

 
Data Preprocessing Approaches at Various Physiological Events. 

Data preprocessing improves visualization of muscle activity 
and prepares for continuous condition classification, both in 
real time. Here, we make use of a multiprocessing strategy to 
analyze, visualize, and store acquired data in real time (Fig. 2, 
and Movie S1). Fig. 2A demonstrates the strategic placement of 
the NIRS sensors on the neck, highlighting the top left, top right, 
central, and bottom positions. These locations are chosen for their 
proximity to key laryngeal muscles, including the sternohyoid 
muscle and mylohyoid muscle, involved in various physiological 
functions (swallowing, cough, speech, respiration, and others). 
Fig. 2B details the orientation axes—pitch, yaw, and roll—utilized 

in the data collection process, providing a three-dimensional 
perspective on how neck movements are recorded. Fig. 2C 

showcases a LaHMo patch highlighting the relative locations of 
respective sensors, which correlates with the sensing areas shown 
in Fig. 2A. 

The SI Appendix, Fig. S4 illustrates the sequential flow of data 
processing concurrent with the detection of signals by the LaHMo 
patch. The initialization stage includes three processes storage, 
analysis, and visualization. The storage process creates a tabular 
database upon instantiation and prepares to receive and store serial 
data according to a known set of keys. The analysis process starts 
acquiring serial data and stores new data in a temporary buffer. 
The acquisition of data is accomplished using a custom software 
and user interface, named BTViz, to handle Bluetooth connection 
events, store acquired data in a buffer, and visualize acquired data. 
At each minute interval, this temporary buffer stores a tabular 
database in the storage process for filtering. These preprocessed 
data are then sent to a visualization process to be plotted in real 
time using BTViz for further analyzing and visualization. Fig. 2D 
presents a comprehensive analysis of physiological events across a 
spectrum of laryngeal muscle motion frequencies, each row cor- 
responding to a specific sensor location and each graph demon- 
strating the signal detected during the activity at each location. 

The left four columns represent the low-frequency activities we 
desire to investigate: deep breathing, swallowing, dry coughing, 

and throat clearing. The right two columns are the high-frequency 
activities, categorized as aerobic and anaerobic workouts, that we 

aim to decouple from the low-frequency activities. enabling the 
identification of unique signal patterns associated with various 
neck activities, allowing for further differentiation between vol- 
untary movements and involuntary muscle activity. 

Neural Network Classification of Preprocessed Windows. Neural 
network classification of preprocessed windows is designed to 
decode natural physiological activities engaging the anterior 
neck muscle group, often accompanied by head motions. The 

 

 
 

Fig. 2. Signal preprocessing and representative correlation with physiological events. (A) Schematic illustration indicating the corresponding sensing locations of 

the NIRS sensors in a LaHMo patch, highlighted with the central area (blue), bottom area (light blue), Top Left area (orange), and Top Right area (red), respectively. 

(B) Schematic illustration indicating dimensional parameters acquired from the embedded IMU, including the yaw (purple), pitch (pink), and roll (gray) Euler 

angles, respectively. (C) Image of a LaHMo patch showing the corresponding position of the NIRS sensors. (D) Representative preprocessed data from a repetitive 

test, on physiological events including deep breath, swallowing, dry cough, throat clearing, aerobic workout, and anaerobic workout. The preprocessed data 

feed into AI models for further analysis. D
o

w
n
lo

ad
ed

 f
ro

m
 h

tt
p

s:
//

w
w

w
.p

n
as

.o
rg

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 N
O

R
T

H
 C

A
R

O
L

IN
A

 C
H

A
P

E
L

 H
IL

L
 o

n
 J

u
ly

 2
8
, 
2
0

2
5

 f
ro

m
 I

P
 a

d
d

re
ss

 1
5
2
.2

3
.2

3
7
.1

8
7
. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2410750121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2410750121#supplementary-materials
http://www.pnas.org/


PNAS 2024 Vol. 121 No. 51 e2410750121 https://doi.org/10.1073/pnas.2410750121 5 of 11  

integration of IMU and NIRS sensors harnesses a comprehensive 
view, capturing both muscle activities (MA) and head motions 
(HM). This dual modality is central to the development of 
our classification algorithm, aiming to extract MA and HM 
information against the backdrop of ambient signals. Recurrent 
neural networks (RNNs) are known to be good at grasping the 
trend and making predictions based on the development of the 

temporal slices (38, 39). Here we develop a dual-channel RNN 

based on gated recurrent units (GRU), named dual-GRU, allowing 
for dedicated processing of IMU and NIRS data, enhancing its 
ability to stand against motion artifacts and extract relevant features 
(SI Appendix, Note 5). SI Appendix, Fig. S5 shows the comparison 
between the LaHMo signals acquired for a cough event while 
standing still and walking, demonstrating the system capability 

to filter out motion-induced artifacts during walking. While 
NIRS data show increased noise during walking due to physical 
motion, the IMU data capture characteristic patterns of movement 

that the dual-GRU model utilizes to isolate and remove those 
artifacts. We have carried out a systematic comparison between 

the developed dual-GRU and various other RNN architectures 
based on fully recurrent neural networks (FRNN), long short-term 
memory (LSTM), and gated recurrent units (GRU) along with 
their bidirectional variants (BiFRNN, BiLSTM, and BiGRU) that 
connect two hidden layers of opposite directions, to demonstrate 

the enabling capabilities offered by the dual-GRU. 
Here, the preprocessed data (Fig. 2D) is used to construct the 

dataset used for training and validating the models. Fig. 3A elu- 
cidates the performance difference between the proposed 
dual-channel RNN (dual-RNN) and a normal monochannel 

RNN (mono-RNN). In a mono-RNN architecture, the preproc- 
essed data [with a dimension of (1, 3000, 7)] will be sent directly 
to the hidden layer [with a dimension of (1, 3000, 140)] that 
updates for every time point. The hidden layer is then sent to a 
fully connected (FC) layer (1, 5) before finally outputting the 
result via a SoftMax (SM) layer. Generally, to gain the best per- 
formance of the neural network, this method requires normaliza- 
tion in the preprocessing to avoid a biased weight toward one of 
the two types of sensors. This not only brings more parameters to 

fine-tune but also reduces the universality and robustness of the 
model. Conversely, the dual-RNN architecture employs two par- 
allel hidden layers, each dedicated to processing data from one of 

the two distinct sensor types. Specifically, the collected seven- 

channel data are first divided into the four-channel for photovolt- 
age signals and the three-channel for Euler-angle information 
before being processed individually through the two designated 
RNN layers. The outputs of these two RNN layers are then con- 
catenated and sent to the FC and SM layers. Fig. 3 B–D showcases 
the representative results of the trained RNNs. To emphasize the 
significance of combining the IMU and NIRS data, the results of 
the biased model utilizing data from one of the sensors, are also 

displayed, as PV-biased and IMU-biased, to compare segregated 
and integrated data (Fig. 3B). Furthermore, the performances of 
FRNN, LSTM, and GRU and their bidirectional variants 
(BiFRNN, BiLSTM, and BiGRU) are also discussed for the opti- 
mization of the architecture, with the loss and accuracy curves of 
their training and testing datasets presented by SI Appendix, 
Fig. S6. Finally, to prevent the potential training bias that comes 
from the way the involved dataset is selected from the whole data 

pool during the training process, a k-fold cross-validation is imple- 
mented to validate the model statistically. Fig. 3 B–G shows a 
series of evaluations on 24 different RNN architectures based on 
FRNN, LSTM, and GRU, with a particular focus on the 

dual-GRU model. Fig. 3B shows the reduction of the cross-entropy 

loss of all eight types of GRU models (PV-biased GRU, PV-biased 
BiGRU, IMU-biased GRU, IMU-biased BiGRU, mono-GRU, 
mono-BiGRU, dual-GRU, and dual-BiGRU), and the training 
performances for FRNN and LSTM are shown in SI Appendix, 

Fig. S7. During a 400-epoch training process, all eight models 
show a typical reduction-converge shape, and a good early stopping 
(ES) point can be observed at epoch = 200. The trends of the plots 
show a significant difference between the sensor-biased models and 
the comprehensive models that make use of both modalities of the 
LaHMo patch. Specifically, the mono- and dual-RNNs display a 
much steeper learning curve and converge points better than their 
competitors, who use only one modality (SI Appendix, Fig. S8). 
This observation promotes the advantage of synergizing NIRS and 
IMU detectors, compared to using only one of the two types of 
sensors. However, the bidirectional feature does not bring about 
much of a difference in the learning rate and the final loss function. 
Fig. 3C highlights the accuracy development among the train and 
test datasets between dual-GRU and dual-BiGRU. The results 
show that dual-GRU has a higher accuracy for both train and test 

datasets compared to dual-BiGRU, and the overfit problem is more 
severe for dual-BiGRU. This observation confirms that the bidi- 
rectional RNNs offer performance comparable with the conven- 
tional RNNs. Fig. 3D and SI Appendix, Figs. S9–S11 show the 
confusion matrices of the dual-GRU and other networks in the 
preprocessed data. For dual-GRU, it achieves accuracies of 1.00 
for deep breathing, 0.92 for dry coughing, 0.92 for throat clearing, 
0.90 for swallowing, 1.00 for aerobic exercising, and 0.91 for anaer- 
obic exercising, with these events respectively represented by labels 
0-5 in the confusion matrix. 

Fig. 3E shows the event recognition during a continuous dry 
cough scenario, with the top half of the plot showing the NIRS 
readings, and the bottom half of the plot showing the IMU meas- 
urements. The green markers show the manually labeled MA 
events. The crosses and dots are manually labeled samples in the 
train and test datasets in one possible split, respectively. The red 
crosses label the recognized MA events by the trained GRU model. 
SI Appendix, Fig. S12 provides more related examples of other 
MA and HM events. Dry coughs were one such MA event, with 
the PD responses from various coughing patterns, including con- 
tinuous, random, and separate, differentiated by the interval 
between cough events, successfully visualized (SI Appendix, 
Figs. S13–S15). Swallowing, another experimental MA event, was 
tested under various conditions, including after different numbers 
of chews, various time intervals between swallows, and different 
liquids swallowed. The LaHMo system successfully visualized the 
photovoltage data from the various test conditions, demonstrating 
a clear distinction between the MA of swallowing under different 
circumstances (SI Appendix, Figs. S16–S18). Another MA event 
used for visualization testing was the performance of different 
vowel phonemes. The LaHMo system was found to be capable of 
not only visualizing but also differentiating between 11 different 
vowel phonemes (SI Appendix, Figs. S19–S30). SI Appendix, 
Fig. S31 presents the LaHMo data during the subject’s production 
of different pitches, ranging from G4 to C3, along with the cor- 
responding audio segments. SI Appendix, Fig. S32 extends the 
analysis by comparing head and chest voice production at G4, 
and further shows the LaHMo data for whispered and loud sounds 
at C3, all with their respective audio recordings. HM events were 
used the LaHMo’s PD response to motion and the subsequent 
visualization of the response. Test subjects moved their heads such 
that their cranial pitch angles were altered, with the LaHMo 
system successfully detecting and visualizing these motions 
(SI Appendix, Fig. S33). 
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Fig. 3. Neural network (NN) classification of the preprocessed windows. (A) Flow diagram of AI models highlighting three candidate architectures of RNN. Their 

distinguishment resides in utilizing mono- and dual-variants (represented by mono-RNN and dual-RNN respectively) of three different RNN architectures, including 

FRNN, LSTM, and GRU, respectively. For FRNN and GRU, there is only a hidden state ( ht ) in every hidden layer cell; for LSTM, there is a hidden state ( ht ) and a cell 

state ( t ) in each hidden layer cell. Four NN layers are demonstrated, with the dimension labeled underneath each diagram block. The preprocessed input and 

the output of a 1-s sample are displayed at the start and end of the flow diagram. (B) Loss curves comparison over the course of 400 epochs (performance of 

GRU) among training of the eight RNNs, including PV-biased RNN, PV-biased BiRNN, IMU-biased RNN, IMU-biased BiRNN, mono-RNN, mono-BiRNN, dual-RNN, 

and dual-RNN. (C) Accuracy curves of training and testing over the course of 400 epochs for the dual-GRU and dual-BiGRU networks. (D) Confusion matrix of the 

dual-GRU and other networks in the preprocessed data. (E) Representative test on physiological events detection, involving continuous dry coughing. Green circles 

label dry cough events in the test set. Green crosses label dry cough in the training set. Red crosses label predicted events with the dual-GRU model. Legends 

of sensor units: C: Central, B: Bottom, TL: Top Left, TR: Top Right, Y: Yaw, P: Pitch, R: Roll. (F) SD of the accuracy curves of the dual-GRU and dual-BiGRU networks 

for the training dataset over 400 epochs. (G) The P-values and t-statistics of the null hypothesis (i.e., the dual-GRU does not outperform the dual-BiGRU during 

the training process) over 400 epochs. Within the shaded area, as the training approaches the ES point, the P-values of the hypotheses for both the testing and 

training datasets drop to the rejection region (at a significance level of 0.05). As such, at the training ES point, statistical analysis suggests a rejection of the null 

hypothesis, due to the dual-GRU being more robust when encountering different inputs. 
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To demonstrate the independence of the dual-GRU model in 

the selection of the training and test sample, a k-fold cross-validation 
(k = 5) is implemented during the training of the models. The 
validation is visualized by tracking the STDs of the loss and accu- 
racy of both the training and the testing datasets (the shaded area 
in Fig. 3 B and C). A large STD around the training ES point 
would suggest a poor reproducibility of the model. Fig. 3F shows 

the development of the accuracy STD of dual-GRU and 

dual-BiGRU in the 5 folds of training, and the accuracy STD and 
loss STD plots of other mentioned models can be found in 
SI Appendix, Fig. S34. The STD tracking plot shows a significant 
reduction for both models, suggesting an increase in prediction 
robustness. Both models also show a steady and low STD around 
the 200th epoch, suggesting this point is a decent ES point. To 
compare the performance of the two models, a statistical exami- 
nation over various data splits (Fig. 3G) shows the trajectory of 

the P-value and t-statistic of the null hypothesis, indicating that 

the dual-GRU shows consistent performance with the dual-BiGRU 
during the training process. As seen in the shaded area, as the 

training approaches the ES point, the P-values of the hypotheses 
for both the training and testing datasets drop to the rejection 
region (at a significance level of 0.05). Therefore, at the training 

ES point, it is statistically confirmed that the dual-GRU is more 
robust when encountering different divisions of inputs, with the 
data ultimately rejecting the null hypothesis. 

Long-Term LaHMo Test. To validate the LaHMo platform’s 

efficacy in real-world scenarios, we conducted a 30-min on-body 
test during a basketball game. The test subject wore the LaHMo 
patch on the anterior neck while performing various activities, 
including deep breathing, coughing, anaerobic exercises (e.g., 
shooting the ball), and aerobic exercises (e.g., dribbling and 
jogging). Fig. 4A presents a subset of the raw data collected from 

this on-body test, with the gray line representing the yaw angle as 
the representative Euler angle detected by the IMU sensor and the 
red line representing the photovoltage detected by a representative 

NIRS sensor. During the 2,000-s recording period, 230 moments 
were manually marked as occurrences of coughs (71 occurrences, 
green circles) or noncough events (159 occurrences, blue squares). 

Fig. 4B presents 3-s intervals of the raw data showcasing the 
correspondence with certain activities executed by the subject 

during the long-term test, including running, shooting, dribbling, 
and attempting a layup. SI Appendix, Figs. S35 and S36 shows 

the training performances of the adap-GRU model (40, 41). 
 

 

 
 

Fig. 4. Deployment and analysis of LaHMo during daily activities. (A) The representative central (red) and yaw (gray) measurements during a 30-min test during 

a basketball game. The markers show the manually labeled cough (green circles) and cough-like (blue rectangles) events. The latter contains deep breaths and 

aerobic and anaerobic exercises during the long test. After data preprocessing, the fine-tuned adap-GRU model produces a real-time prediction based on the 3 s 

slices. (B) Photographs (Top row) and corresponding 3 s slices of preprocessed data (Bottom row) showing the highlighted activities in the classification algorithm. 

From Left to Right: deep breath during rest, dry cough, anaerobic workout (shooting ball), and aerobic workout (dribbling and jogging). The black dashed boxes 

show the unique features that are considered during the manual label process. (C) Calculated respiratory health indicator as a function of time. The datapoint 

color indicates the number of observed coughs in a 5-s window, that ranges from no cough (green) to 5 coughs per time window (red). (D) Calculated exercise 

intensity indicator as a function of time. The datapoint color indicates the number of observed exercise events in a 5-s window, that ranges from no workout 

(green) to intensive workouts (red). 
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SI Appendix, Figs. S37 and S38 present the performance of the 
AI model in action identification over time. These raw predictions 

enable the calculation of high-level health indicators (Fig. 4 
C and D). Fig. 4C presents the respiratory health indicator, 
defined as the average prediction score of cough events within 

a 5-s window, accompanied by the number of observed cough 
events in that period. Fig. 4D illustrates the exercise intensity 
indicator, determined by the combined average prediction scores 

of anaerobic and aerobic workouts within a 5-s window, along 
with the number of observed workout events. These results allow 
us to quantitatively assess the relationship between the subject’s 
respiratory health condition and their exercise intensity during 
the workout. By comparing the respiratory health indicator with 
the exercise intensity indicator, we can evaluate whether increased 
exercise intensity correlates with a decline in respiratory health 
or vice versa. This quantitative analysis provides valuable insights 
into how physical activity impacts respiratory function, helping 
to identify potential issues and optimize training and health 
monitoring protocols for individuals based on their specific needs 
and conditions. 

Validation with Gold Standard and Monte Carlo Simulation. To 
understand the underlying correspondence between the signals 
collected from LaHMo and the muscular movements of the 

neck, a time-resolved Monte Carlo (MC) simulation is utilized 
to present a view of both internal muscular movements and 
corresponding optical modulations in the laryngeal (42–47). In 

addition to the simulation, we performed gold-standard validation 
using EMG, where LaHMo was compared against EMG 
recordings of the thyrohyoid membrane, cricothyroid muscle, 
and suprahyoid muscles during controlled swallowing events. This 
comparison revealed a high degree of signal alignment, confirming 
LaHMo’s ability to track swallowing movements in real time, 
corroborating the simulation with physiological measurements. 
A videostroboscopy (VSS) test further confirmed the alignment 
of the LaHMo data with the activity of vocal folds during the 
production of natural musical scales using chest voice and falsetto, 
respectively. 

In each MC simulation experiment, 107 photon wave packets 
are launched into a predefined voxel space, and the trajectory and 
weight of each wave packet along all the time steps are recorded 
(SI Appendix, Note S2). Fig. 5A shows the laryngeal region with 
contour outlines defining the voxel space emulated in the simu- 
lation. The image depicts the LP of the throat, that defines sensing 

areas of the LaHMo patch. Accompanying this is a cross-sectional 
model of the layered tissue at the site: the epidermis, dermis, 

subcutaneous fat, and skeletal muscle. A close-up video is first 

recorded (Movie S2) to show a frame-by-frame profile change of 
the laryngeal area. The contour of the laryngeal prominence (LP) 
is manually extracted from the video for every frame and is mod- 
eled in the voxel space. Finally, a series of parallel boundaries inside 
the voxel space is generated to represent the borders between the 
epidermis, dermis, subcutaneous fat, and skeletal muscles. The 
LaHMo placement and light emission, both on a tissue surface 
and the LP, are respectively represented by SI Appendix, Figs. S39 
and S40. During each physiological activity (deep breath, dry 
cough, throat clearing, and swallowing) in this simulation, the 
motion will be mainly induced by the vertical and horizontal 
displacement of the LP. 

Fig. 5B presents a three-dimensional graph of three dependent 
variables, describing the neuromuscular activity in the laryngeal 
region: the logarithm of the fluence at the LaHMo patch’s CP 
(central photodiode), the height of the LP (mm), and the vertical 

displacement (mm) of the LP from a set baseline throughout the 
Monte Carlo simulation. The logarithm of the fluence is the cal- 
culated brightness of the tissue at the site of the CP during the 
simulation. The LP height is the height of the LP’s peak relative 
to the baseline set at the surface of the throat. The vertical dis- 
placement, finally, is the location of the LP’s peak relative to the 
vertical midpoint of the throat. A color bar enables a more stream- 
lined interpretation of the figure, indicating the value of the log- 
arithm of the fluence corresponding to the colored region on the 

three-dimensional graph. The cross-sectional profiles in Fig. 5C 
and SI Appendix, Fig. S41 show the locations (blue triangles) and 

corresponding emitted near-infrared light (purple extrusions) of 
2 LEDs (Central and Bottom ones corresponding to Fig. 2A) from 

the deployed LaHMo. Fig. 5C shows three cross-section profiles 
of the emitted light per physiological activity, representing the 
initiation stage, peak stage, and ending stage, respectively. Fig. 5C 
also provides a comparison between the average photovoltage 
response of the central and bottom PDs and their simulated coun- 
terparts, with the former represented by solid lines and the latter 
represented by dashed lines and crosses. Orange vertical dashed 
lines on the graphs designate the times lining up with the respec- 

tive cross-sectional profiles of the Monte Carlo simulation. 
To quantitatively assess the agreement between the Monte Carlo 

(MC) simulated results and the actual measured signals for the deep 

breath event, we performed a cross-correlation analysis using a sliding 
window approach. The MC simulated signals and the measured 
signals were compared for both the central and bottom channels 
(SI Appendix, Fig. S42). In this analysis, the signals from both meas- 
urements and MC simulations are first normalized before being 
matched on the time axis to compensate for the unit mismatch 
between fluence (results of MC simulation) and photovoltage (meas- 

urements of PD). The cross-correlation is calculated after the nor- 
malization and best matching of the segment and the MC simulated 
signal. Overall, the central channels for the four activities show 
higher best correlations at around zero lag (0.77 for deep breath, 
0.80 for dry cough, 0.75 for throat clearing, and 0.63 for swallowing) 
indicating a strong similarity. The best correlations (0.79 for dry 
cough, 0.29 for dry cough, 0.36 for throat clearing, and 0.50 for 
swallowing) for bottom channels are less significant but still ample 
to show a similarity. These findings validate the accuracy of the MC 
simulation in capturing the underlying muscle activities during dif- 
ferent physiological events and support the feasibility of using MC 
simulations to investigate the relationship between the detected 
signals and the corresponding physiological events. 

To validate the LaHMo’s data with gold standard, a simultane- 
ous EMG test is performed where the activity patterns of the 
thyrohyoid muscle, cricothyroid muscle, and suprahyoid muscles 
during a swallowing event are recorded (Fig. 5 D–F). The valida- 
tion experiment involved three distinct swallowing events moni- 

tored simultaneously by both EMG and LaHMo over a 10-s 
interval. The EMG data and LaHMo data are shown in Fig. 5 E 
and F, highlighted in orange boxes for each swallow. The results 
demonstrate a high level of signal alignment between the EMG 
and LaHMo across all monitored muscle groups, confirming that 
LaHMo can track the muscle activities associated with swallowing. 

To further extend this validation, a proof-of-concept videostro- 
boscopy (VSS) experiment is performed that measured LaHMo’s 
ability to track vocalization, particularly pitch modulation in chest 
voice and falsetto. The VSS recording, presented in SI Appendix, 
Fig. S44, was obtained from an authentic external source (48), 
and provided a visual confirmation of the vocal fold dynamics. 
SI Appendix, Fig. S44 A and C depict LaHMo data as the subject 
produced natural musical scales ranging from C3 to C4 using 
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Fig. 5. Monte Carlo simulation to validate the correlation between signals collected from LaHMo patch and corresponding muscular movements from the 

neck. (A) A photographic depiction of the LP, the targeted sensing area of the LaHMo patch. Video recordings of the anterior neck during various activities (deep 

breath, dry cough, throat clearing, and swallowing) yield measurements of its contour movements for comparison with simulation results. Inset: a cross-sectional 

model of the layered tissue at the sensing site, which consists of the epidermis, dermis, subcutaneous fat, and skeletal muscle (from outside inward). (B) A 3D 

contour plot showing the simulation results on the logarithm of the fluence corresponding to responses from the central photodiode of a LaHMo patch. The 

height of the LP (the distance between the LP’s peak and the surface of the throat) and the LP’s vertical displacement (the location of the LP’s peak relative to 

the midpoint of the throat) over the experiment. The logarithm of fluence is the calculated brightness of the tissue in the operational area. The LP height and 

the vertical displacement are shown on the bottom plane. (C) Simulation results on the cross-sectional profiles of LED illumination from a LaHMo patch into 

the neck and their accompanying measured photovoltage and calculated fluence data during the deep breath and dry cough actions. To facilitate a practical 

visualization of the effects of the actions, there are three cross-section profiles per physiological action: at the start point, the point of the greatest change in 

the measurement, and the endpoint, respectively. (D) Placement of the electrode of four EMG channels and the reference. (E) Acquired EMG signals at three 

different swallow events (highlighted with orange boxes) in a 10-s interval. (F) Acquired LaHMo data at the corresponding time interval. 
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chest voice, and C4 to C5 using falsetto. The audio recordings of 
these events, shown in SI Appendix, Fig. S44 B and D, correlate 
the vocal performance with the muscle activity captured by 
LaHMo. SI Appendix, Fig. S44 E–H provides VSS slices during 
these vocalizations, showing the distinct movement of the cornic- 
ulate cartilages (highlighted by green dashed circles). The VSS 
confirms the posterior movement of the corniculate cartilages 
during falsetto, which aligns with the optical data recorded by 
LaHMo, further validating the platform’s ability to monitor vocal 
fold dynamics. 

This combination of MC simulations and gold standard meas- 
urements, including EMG and VSS, validates the operational 
robustness of LaHMo, demonstrating that the device accurately 
captures physiological events such as swallowing and vocalization, 

while offering insight into both swallowing-related muscular 
movements and dynamic changes during phonation. 

Discussion 

In this study, we present the LaHMo platform, a wearable system 

that leverages near-infrared spectroscopy (NIRS) and inertial 

measurement unit (IMU) sensors with a dual-modality AI algo- 
rithm to continuously monitor laryngeal muscle activity with high 
precision. The LaHMo platform exhibits significant potential in 
providing a direct assessment of the physiological activities of 
extrinsic laryngeal muscles, such as the sternohyoid, thyrohyoid, 
and suprahyoid, which are integral to laryngeal positioning and 
stabilization. Additionally, it offers indirect insights into the 
behavior of intrinsic laryngeal muscles, like the thyroarytenoid 
and cricothyroid, which are crucial for vocal fold modulation and 
phonation (49). This dual capability enables the platform to 
enhance the understanding and treatment of conditions such as 
dysphonia, dysphagia, post-COVID dry cough, and dystussia by 
offering a comprehensive view of laryngeal muscle function and 

its impact on these disorders. The developed dual-GRU model 
exhibited superior performance compared with the other 24 con- 
ventional RNN architectures, demonstrating its ability to effec- 
tively synergize NIRS and IMU data and accurately classify muscle 

activity and head motion events. Both the long-term on-body tests 
and Monte Carlo simulations further validate the efficacy of the 

LaHMo platform, highlighting its practical potential for real-world 
applications. The developed adaptation network (adap-GRU) 

allows for AI-model individualization without extensive training 
for target users, making the LaHMo platform more accessible and 

user-friendly. 
Finally, the LaHMo platform is designed to offer valuable insights 

into daily behaviors of laryngeal muscles, such as swallowing and 
breathing, by continuously monitoring collective muscle activities 

in a noninvasive manner. Its long-term wearability and noninvasive 
tracking lead to its promising utility more on preliminary clinical 
screening for hospital admission and proactive diagnosis for critical 

early-stage indicators, but the limited spatial quantification and 
structural correspondence in the analyzed signals make the system 
less useful for deep mechanistic analysis of a singular muscle func- 
tion. Specifically, during the examination of the swallowing process, 
the LaHMo platform effectively tracks hyolaryngeal elevation and 
tongue movements, and the preliminary evidence from the IDDSI 
level tests (SI Appendix, Fig. S46) also suggests that the platform 
can monitor and differentiate tongue movement across various 

bolus viscosities, providing valuable real-time biofeedback for initial 
clinical screening and rehabilitation tracking. Additionally, for the 
respiration, the LaHMo platform cannot comprehensively describe 
the complex dynamics of breathing, which primarily involve the 
diaphragm and intercostal muscles. Therefore, while it can provide 

insights into basic breathing behaviors, such as distinguishing 
between oral and nasal breathing (SI Appendix, Fig. S47), it is not 
equipped to offer a comprehensive analysis of respiratory function. 

Moreover, while long-term tests and simulations conducted in con- 
trolled environments suggest the potential efficacy of the LaHMo 

platform for real-world applications these findings are preliminary. 
Simulations and lab tests, although useful, cannot fully replicate 
the complexities encountered in clinical trials with human subjects, 

where factors like patient variability and long-term device perfor- 
mance play critical roles. Future studies may focus on validating 
the system’s performance in larger and more diverse patient popu- 
lations, including those with specific NMDs. Additionally, the 
integration of the LaHMo platform with other diagnostic tools and 
treatment modalities may hold great promise to improve patient 
outcomes and enhance clinical decision-making in treating mus- 
cular disorders. 

 

Methods 

Device Design and Components. The outline of the three flexible PCB (fPCB) 
islands and two serpentine hinges are defined in Autodesk AutoCAD 2023 before 
being incorporated into the fPCB design. The fPCB schematic and board layout 
are finished using Altium Designer (version 24.1.2). The bill of materials (BOM) 
can be found in SI Appendix, Table S1. 

Device Fabrication. Panels of fPCB were manufactured according to inter- 
national standards ISO 9001:2005 and IPC. Solder paste is dispensed with a 
desktop PCB prototype machine (V-One, Voltera). The components are populated 
manually. 

Data Collection. The device is secured to make sure the top and bottom 
NIRS sensors are above and below the subject’s laryngeal prominent, respec- 
tively. Three of the authors participated in one or more of the 4 tests (Details 
in SI Appendix, Table S2). The data are collected via BTViz. Additional operating 
information can be found in SI Appendix, Note 3. The on-body evaluation of the 
LaHMo was performed in compliance with the protocol that was approved by the 
institutional review board at the University of North Carolina, Chapel Hill (study 
number 22-0163). 

Data Analytics. The real-time data preprocessing procedures during the tests 
are deployed on a personal computer running Linux (Manjaro), including two 
Butterworth filters, one peak finding function, and one slice stacking algorithm. 
The detailed calculations can be found in SI Appendix, Note 4. All the above- 

mentioned neural networks are built with the PyTorch package (version 2.0.0, 
based on CUDA 12.1 platform). The network dimensional parameters of the 24 
tested RNN variants and the adap-GRU can be found in SI Appendix, Table S3. 
The training and validation were conducted in Visual Studio Code (version 1.86) 
environment embedded with Python 3.10.11. 

Monte Carlo Simulation. The platform of the MC simulation used in this project 
is MCXLAB v2020 (1.8 - Furious Fermion), an open-source light transport simu- 
lator. Two MC optical simulations are performed: normal status (NS) and bump 
translate (BP). The detailed performances of these simulations can be found in 
SI Appendix, Note 2. 

EMG Validation Test. The EMG validation test starts by placing 9 electrodes 
(Kendall™, CardinalHealth) onto the subject’s neck at the labeled locations. Eight 
electrodes are connected to channel 1 to 4 of a PowerLab 16/35 data acquisi- 
tion system (ADInstruments), and the last electrode is connected to the external 
ground port. The data acquisition is performed by the LabChart 7 software. For 
all the input channels, the sample frequency is set to 100 kHz. On all the input 
differential amplifiers, a bandpass filter is added, with a 1 Hz low cutoff and a 
50 Hz high cutoff. A LaHMo patch is applied after all electrodes are placed. The 
subject uses a straw to drink a mouthful of water to prevent redundant mouth 
movement before swallowing the liquid naturally. 

Data, Materials, and Software Availability. All raw data, analysis code, firm- 
ware code data have been deposited in Zenodo (50). D
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