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Abstract. For recursively generated shifts, we provide definitive answers
to two outstanding problems in the theory of unilateral weighted shifts:
the Subnormality Problem (SP) (related to the Aluthge transform) and
the Square Root Problem (SRP) (which deals with Berger measures
of subnormal shifts). We use the Mellin Transform and the theory of
exponential polynomials to establish that (SP) and (SRP) are equivalent
if and only if a natural functional equation holds for the canonically
associated Mellin transform. For p-atomic measures with p ≤ 6, our
main result provides a new and simple proof of the above-mentioned
equivalence. Subsequently, we obtain an example of a 7-atomic measure
for which the equivalence fails. This provides a negative answer to a
problem posed by Exner (J Oper Theory 61:419–438, 2009), and to a
recent conjecture formulated by Curto et al. (Math Nachr 292:2352–
2368, 2019).
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1. Introduction

Let H be an infinite dimensional Hilbert space and let L(H) be the space
of all bounded linear operators on H. An operator T ∈ L(H) is normal if
TT ∗ = T ∗T , and subnormal if it is the restriction of a normal operator to an
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invariant subspace. (Here T ∗ stands for the usual adjoint operator of T .) The
polar decomposition of T is given by the unique representation T = V |T |,
where |T | := (T ∗T )

1
2 and V is a partial isometry satisfying ker V = ker T .

The Aluthge transform is then given by the expression

T̃ := |T | 1
2 V |T | 1

2 .

The Aluthge transform was introduced in [1], in order to extend several
inequalities valid for hyponormal operators, and has received ample attention
in the last decades.

We consider below the Hilbert space H = l2(Z+), endowed with the
canonical orthonormal basis {en}n∈Z+ . The unilateral (forward) shift op-
erator Wα is defined on the canonical basis by Wαen := αnen+1, where
α = (αn)n≥0 is a given sequence of positive real numbers (called weights). It
is well known that Wα is bounded if and only if the sequence of weights is
bounded, and ‖Wα‖ = sup

n≥0
αn < +∞. Clearly, Wα is never normal.

We associate with Wα the sequence defined by

γ0 := 1 and γk ≡ γk(α) := α2
0α

2
1 . . . α2

k−1 for k ≥ 1.

We will say that a sequence γ = (γn)n≥0 is a moment sequence on K ⊆ R,
or that it admits a representing measure μ supported in K, if

γn = γn(μ) :=
∫

K

tndμ(t) for every n ≥ 0 and supp(μ) ⊆ K. (1.1)

The Berger–Gellar–Wallen Theorem states that Wα is subnormal if and
only if there exists a positive Borel measure μ (called a Berger measure),
representing for γ and such that supp(μ) ⊆ [0, ‖Wα‖2] [4, III.8.16]. In the
sequel, when such μ exists, we will also write Wα = Wμ, and identify the
weighted shift and its Berger measure.

In the literature, it is common to refer to γ as the sequence of moments
arising from the weight sequence α. Consequently, the Berger–Gellar–Wallen
characterization is usually described as “Wα is subnormal if and only if the
sequence γ of moments of α corresponds to the sequence of moments of a
positive Borel measure μ.” To avoid any possible confusion, in this paper we
will reserve the phrase “moment sequence” for the sequence of moments of
the measure μ. With the exception of the discussion in Sect. 6, throughout
the rest of the paper our basic weighted shift Wα will be subnormal, and
we will seek necessary and sufficient conditions for the subnormality of the
square root shift W√

α and of the Aluthge transform W̃α. (Here (
√

α)k :=√
αk (k ≥ 0)).

In the case where μ is finitely atomic (that is, supp(μ) is a finite set),
there exists a nonzero polynomial P such that P (μ) = 0. In particular, the
sequence (γn)n≥0 satisfies a recursive relation, and the weighted shift Wμ is
said to be recursively generated. Conversely, if a subnormal weighted shift is
recursively generated, then its Berger measure is finitely atomic [6, Remark
3.10(i)].

The Aluthge transform W̃α of a weighted shift Wα is also a weighted
shift, associated with the sequence α̃n = √

αnαn+1, n ≥ 0. Indeed, it is easy
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to check that |Wα|en = αnen and that V en = en+1. It follows that

W̃αen =
√

αnαn+1en+1 = Wα̃en.

Notice also that γ̃2
n = 1

α2
0
γnγn+1. The problem of detecting the subnormality

of the Aluthge transform of a weighted shift has been considered by several
authors in the two last decades; see, for example [9]. As observed above, and
previously in [5], the subnormality of the square root shift W√

α implies both
the subnormality of Wα and the subnormality of the Aluthge transform W̃α.
On the other hand, it is possible to find a weight sequence α such that W√

α

is not subnormal, while both Wα and W̃α are subnormal (Example 5.1). This
is the first occurrence in the literature of such a shift, and it exemplifies the
significance and usefulness of identifying non-positive charges to represent
weighted shifts in a manner resembling (1.1).

The next question, which we call the Subnormality Problem (SP), has
been considered in recent papers (cf. [9, Question 4.1] and [2,7,10,11]).

(SP) Under what conditions is the subnormality of a weighted shift
preserved under the Aluthge transform?

The general case remains open and only some partial affirmative results
have been obtained in [2,7,10,11]. For the class of moment infinitely divisible
(MID) weighted shifts (i.e., subnormal shifts Wα for which W t

α remains
subnormal for all 0 < t < 1), it was proved in [3] that the Aluthge transform
maps MID bijectively onto MID, and that Wα, its Aluthge transform, and
the square root shift are simultaneously either MID or not MID (cf. [3,
Corollary 4.7 and Theorem 4.10]).

(SP) can be reformulated in terms of moment sequences as follows:
Given a moment sequence (γn)n on K := [0,M ], under what conditions

is (√γnγn+1)n also a moment sequence?
A direct application of Schur’s product theorem implies that if (

√
γn)n

is a moment sequence on K, then (√γnγn+1)n is also a moment sequence on
K; this gives, in particular, a sufficient condition to solve (SP). The question
of whether the reverse implication holds is stated in several recent papers.
The next conjecture appears in [7, Conjecture 4.6]:

Conjecture A. Let Wμ be a recursively generated (i.e., card suppμ < ∞)
subnormal weighted shift. Then the following statements are equivalent:

(i) W√
α is subnormal;

(ii) W̃μ is subnormal.
Until now, the treatment of (SP) and of Conjecture A has focused on

the number of atoms in the suppμ; let p := card suppμ. Using algebraic
proofs, affirmative answers to Conjecture A have been obtained for p ≤ 6.
The case p = 2 was treated in [10], and the case p = 3, 4 in [11] where the
conjecture appears for the first time; the case p = 5 was answered in [7], and
finally the case p = 6 was solved in [8].

In this paper, we provide concrete examples of p-atomic measures dis-
proving Conjecture A, with p ∈ {7, 8, 9}. We also recover the case p ≤ 6 as
a simple consequence of a new purely analytic approach. The main tools are
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the Mellin transform and the theory of exponential polynomials developed
by J. F. Ritt in the 1920–1930s.

The organization of the paper is as follows. In the next section, we state
the definition of the convolution of measures and the main conjecture related
to the so-called Square Root Problem (SRP): Given a positive measure μ,
under what conditions does there exist a positive measure ν such that ν ∗ν =
μ ? In Sect. 3, we exhibit the role of the Mellin transform and the main
properties of exponential polynomials as central tools for (SP) and (SRP).
In Sect. 4, we apply the results obtained in Sect. 3 to the (SP) and (SRP)
in the case of finitely atomic measures. Finally, Sects. 5 and 6 include some
illustrative examples.

2. Square Roots of Measures

Given two positive finite measures ν and μ, let ∗ denote the multiplicative
convolution, defined as follows:

[ν ∗ μ](E) :=
∫
R2

χE(xy)dν(x)dμ(y),

where χE denotes the characteristic function of the Borel set E.
It is easy to check that, for any n ∈ Z+,∫

R

tnd(μ∗ν)(t) =
∫
R2

(st)ndμ(t)dν(s) =
(∫

R

tndμ(t)
) (∫

R

sndν(s)
)

. (2.1)

In particular, we get γn(μ ∗ μ) = γ2
n(μ), where γn(μ) :=

∫
R

tndμ(t) is
the moment of μ of order n. The square root problem is usually written as
follows:
(SRP): Given a positive measure μ, under what conditions does there exist
a positive measure ν such that ν ∗ ν = μ ?

In the case of compactly supported measures, and thanks to the Weier-
strass density theorem and Eq. (2.1), the (SRP) can be stated in the next
simple form:

Let (γn)n be a moment sequence. Under what conditions is (
√

γn)n

also a moment sequence?
The close relationship between (SRP) and (SP) has already been ob-

served in the following proposition from [7].

Proposition 2.1. Let Wμ be a subnormal weighted shift with associated Berger
measure μ. Then W̃μ is subnormal if and only if there exists a R

+-supported
probability measure ν such that ν ∗ ν = μ ∗ tμ.

It follows from the previous proposition that

μ has a square root ⇒ W̃μ is subnormal.

The question of whether the reverse implication holds is our main mo-
tivation. We are naturally led to the following recent conjecture from [7].

Conjecture A. (cf. [7, Conjecture 4.6]). Let μ be a finitely atomic Berger
measure with support in R+. Then the following statements are equivalent:
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(i) μ has a square root;
(ii) μ ∗ tμ has a square root.

We will now use the next technical results from [8], associated with the
square root problem of measures; this will allow us to simplify our proof.

Lemma 2.2. Let μ be a positive measure such that 0 /∈ supp(μ) and let s > 0.
Also, let μs(t) := μ(st) be the image measures by the mapping t → st, and
let ν := aδ0 +μ, where δα denotes the Dirac measure with atom α. Then the
following statements are equivalent:

1. μ (resp. μ ∗ tμ) admits a square root;
2. ν (resp. ν ∗ tν) admits a square root;
3. μs (resp. μs ∗ t(μs)) admits a square root.

Without loss of generality, hereafter we will assume that x0 := min(supp(μ))
= 1; in particular, the support of μ will be contained in [1, +∞).

We conclude this section with a diagram that illustrates how various
conditions for measures and charges are related to the subnormality of Wα,
W√

α and W̃α.
(MID level):

W√
α is MID ⇐⇒ Wα is MID ⇐⇒ Wα̃ is MID.

(Subnormal level: Wα ∼ μ)

W√
α is subnormal ⇐⇒ μ = ν ∗ ν, with ν ≥ 0

⇓ ⇓
W̃α is subnormal

Prop. 2.1⇐⇒ μ ∗ tμ = ξ ∗ ξ, with ξ ≥ 0

�⇓(Ex. 5.1 (resp. Ex. 5.2))

W√
α is subnormal

Example 5.1 (resp. Example 5.2): There exists a 9-atomic (resp. 7-
atomic) positive measure μ supported in R+ such that μ ∗ tμ has a positive
square root, while μ has no positive square root. Examples 5.1 and 5.2 are
the first such example known in the literature.

3. The Mellin Transform and Its Relationship to the Aluthge
Transform

Let μ be a finite positive Radon measure. The Mellin transform Mμ is
defined as

Mμ(z) :=
∫
R

∗
+

tzdμ(t). (3.1)
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We now let

M+(R+) := {μ : μ is a finite positive Radon measure supported in R+}.

Using the Perron inversion formula, as in, e.g., [13, VI Theorem 9b], one can
establish that the Mellin transform is one-to-one, and thus it characterizes
the measure. We also have

Mμ∗ν(z) =
∫
R

2
+

(uv)zdμ(u)dν(v) =
∫
R+

uzdμ(u)
∫
R+

vzdν(v) = Mμ(z)Mν(z).

Conjecture A is then equivalent to:

Conjecture B.

Mμ∗tμ(z) = [Mν(z)]2

�
there exists ξ ∈ M+(R+) with Mμ(z) = [Mξ(z)]2.

(3.2)

In addition, we remark that

Mtμ(z) =
∫
R+

tz+1dμ(t) = Mμ(z + 1),

for every z ∈ C and hence

Mμ∗tμ(z) = Mμ(z)Mμ(z + 1).

Finally, Conjecture A is also equivalent to:

Conjecture C.

Mμ(z)Mμ(z + 1) = [Mν(z)]2

�
there exists ξ ∈ M+(R+) such that Mμ(z) = [Mξ(z)]2.

(3.3)

For μ =
∑

k≥0 akδxk
a finite discrete (positive) measure with compact

support in the interval (0,+∞), the Mellin transform of μ is the Dirichlet
series

Mμ(z) =
∑
k≥0

akxk
z =

∑
k≥0

akez ln(xk), (3.4)

which converges uniformly on every compact set of the complex plane. In-
deed, for every R > 0 we have∑
k≥0

sup
z∈D(0,R)

|akxk
z|=

∑
k≥0

ak sup
z∈D(0,R)

e�(z) ln xk ≤
∑
k≥0

akeR| ln xk| ≤ ‖μ‖eR ln M ,

where ‖μ‖ :=
∑

k≥0 ak stands for the total variation of μ and M is a positive
number such that | ln xk| ≤ ln M , for every k ∈ Z+. In particular Mμ(z) is
an entire function.

To deal with our main problem, we study assertion (3.2). To this end,
we need two auxiliary results.

Lemma 3.1. Let μ =
∑∞

k=0 akδxk
be a positive compactly supported measure

in R+ such that xi0 = xmin := inf(supp(μ)) and xi1 = xmax := sup(supp(μ))
are isolated in supp(μ). Then Z(Mμ), the zero set of Mμ, has a bounded
real part.
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Proof. We have

Mμ(z) =
∑
k≥0

akxz
k = ai1x

z
i1

⎡
⎣1 +

∑
k �=i1

ak

ai1

(
xk

xi1

)z
⎤
⎦ ,

and since

lim
�(z)→+∞

∑
k �=i1

∣∣∣∣ ak

ai1

(
xk

xi1

)z∣∣∣∣ = lim
�(z)→+∞

∑
k �=i1

ak

ai1

e
ln

(
xk
xi1

)
�(z)

= 0,

we deduce that Mμ(z) �= 0 for �(z) large enough, where �(·) denotes real
part. Using xmin instead of xmax, we obtain similarly that Mμ(z) �= 0 for
−�(z) large enough. This completes the proof. �

Proposition 3.2. Let Wμ be a subnormal weighted shift, with μ a discrete
Berger measure as in the previous lemma, and assume that W̃μ is also sub-
normal. Let (zk,mk)k the family of zeros, and respective multiplicities, of
Mμ(z). Then mk is even for every k.

Proof. From Eq. (3.2), we have Mμ(z)Mμ(z + 1) = [Mν(z)]2. On the set
Ω ⊆ C where Mμ(z) is holomorphic, we obtain:

2
M′

ν(z)
Mν(z)

=
M′

μ(z)
Mμ(z)

+
M′

μ(z + 1)
Mμ(z + 1)

.

Using Cauchy’s argument principle, we derive that

2m(z,Mν) = m(z,Mμ) + m(z + 1,Mμ), (3.5)

where m(z, f) is the multiplicity of the zero z in f (with m(z, f) = 0 if z is
not a zero of f).

Seeking a contradiction, assume that the zero set of odd multiplicity
Zodd(Mμ) is nonempty and let z ∈ Zodd(Mμ). From Eq. (3.5), we derive
that {z − 1, z + 1} ⊂ Zodd(Mμ) and thus, by induction, z + Z ⊆ Zodd(Mμ).
This last statement is false, using Lemma 3.1. This completes the proof. �

We now derive the next preparatory result.

Proposition 3.3. Let Wμ be a subnormal weighted shift, with μ a discrete
Berger measure as in the previous lemma, and assume that W̃μ is also sub-
normal. Assume also that the assumptions of Lemma 3.1 are satisfied. Then

Mμ(z) = [H(z)]2, z ∈ C,

for some entire function H.

Proof. Given a set I ⊆ Z+, let Z(Mμ) := {(zk,mk), k ∈ I}. Since the
multiplicities of all zeros of the entire function Mμ(z) are even (using a
simple factorization by (z − zk)mk in the finite case, or using the Weierstrass
factorization theorem in the infinite case), we obtain the desired result. �

To reach our main theorem, we need one more auxiliary result. Con-
sistent with the prevailing terminology, we will refer to signed measures as
charges; these are Borel measures that are not necessarily positive. Thus, a
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charge ξ typically admits either an atom with negative density or a Borel set
E for which ξ(E) < 0.

Theorem 3.4. Let Wμ be a subnormal weighted shift, with μ a discrete Berger
measure, and assume that W̃μ is also subnormal. Then there exists a finitely
atomic charge ξ supported in [1,+∞) such that

H(z) = Mξ(z),

where H is an entire function satisfying the equation Mμ(z) = [H(z)]2, given
by Proposition 3.3. In particular, ξ ∗ ξ = μ.

Proof. Write μ =
∑p

k=0 akδxk
, with supp(μ) = {1 = x0 < x1 < · · · < xp}.

The Mellin transform Mμ is an exponential polynomial with nonnega-
tive exponents:

Mμ(z) =
p∑

k=0

akxk
z =

p∑
k=0

akez ln(xk).

From the previous discussion, there exists an entire function H satisfying
H(z)2 =

∑p
k=0 akxk

z, for all z ∈ C.
Next, we use a suitable version of a theorem due to J.F. Ritt. As

a consequence, we prove that the square root of a positive Borel measure
always exists, if we allow charges as solutions. We briefly pause the proof to
state this result.

Ritt’s Theorem ([12, Theorems I and II]) Let Pk be exponential poly-
nomials and f be an analytic solution, in a sector with opening greater than
π, of the equation

fn + Pn−1f
n−1 + · · · + P0 = 0.

Then f is also an exponential polynomial, whose exponents are linear com-
binations of the exponents in the Pk’s, and with rational coefficients.

From Ritt’s Theorem, and from the equation

H(z)2 =
p∑

k=0

akxk
z := −P0,

it follows that H(z) is also an exponential polynomial. That is, there ex-
ist bi ∈ C and yi ∈ R, such that H(z) =

∑q
k=0 bkezyk . (Here {y0 < y1 <

· · · < yq} are linear combinations of ln(xk) with rational coefficients; in par-
ticular, all yk’s are real numbers). Moreover, using the uniqueness of the
representation of exponential polynomials, we get

{yk + yl, 0 ≤ k, l ≤ q} = {ln(x0) < ln(x1)) < · · · < · · · < ln(xp)} ⊆ R+.

Since 2y0 = ln(x0) = 0, we obtain {y0 < y1 < · · · < yq} ⊂ R+.

Finally, ξ =
∑q

k=0 bkδeyk is a charge satisfying ξ ∗ ξ = μ, and such that
supp(ξ) = {ey0 , . . . , eyq} ⊂ [1,+∞). �
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4. Applications to (SRP)

We begin with the following observation.

Proposition 4.1. (i) Under the notations above, if ξ1 and ξ2 are square roots
of μ, then ξ1 = ±ξ2. (ii) Let ξ be a signed square root of a finitely atomic
measure μ. Then μ has a positive square root if and only if the coefficients
in ξ have constant sign.

Proof. (i) If ξ1 ∗ ξ1 = ξ2 ∗ ξ2, then Mξ1(z)2 = Mξ2(z)2 for all z ∈ C. Since
Mξ1 and Mξ2 are entire functions, we deduce that Mξ1(z) = ±Mξ2(z) =
M±ξ2(z), and since the Mellin transform is one-to-one, we get ξ1 = ±ξ2.

(ii) From Theorem 3.4, μ always admits a charge ξ as a square root.
Because of (i), μ has, as two square roots, i.e., ±ξ. Thus, μ has a positive
square root (ξ ≥ 0 or −ξ ≥ 0) if and only if the densities in ξ have constant
sign. �

In the sequel, we focus on positive measures μ such that μ∗tμ has a posi-
tive square root. Let us first consider ν a signed (i.e., not necessarily positive)
square root of μ∗tμ. Taking into account the previous proposition, we investi-
gate when the coefficients in ν have a constant sign. Since supp(μ) ⊆ [1,+∞),
we get supp(μ ∗ tμ) ⊆ [1,+∞) and then supp(ν) ⊆ [1,+∞). Using the iden-
tity

M2
ν(z) = Mμ(z)Mμ(z + 1) = H(z)2H(z + 1)2 ⇒ Mν(z) = ±H(z)H(z + 1),

we get
Mν(z) = ± (

∑q
k=0 bkezyk) (

∑q
k=0 bkeykezyk)

= ±∑q
k,l=0 bkble

ykez(yk+yl)

=
∑

k

(∑
(i,j)∈Γ(γk) bibje

yi

)
ezγk ,

where Γ(γk) =
{
(i, j) ∈ (Z+)2 0 ≤ i, j ≤ q and yi + yj = ln(γk)

}
.

Now, writing λi = eyi , we get

ν =
∑

k

⎛
⎝ ∑

(i,j)∈Γ(γk)

bibjλi

⎞
⎠ δγk

. (4.1)

We will now use the following useful observation.

Remark 4.2. In Eq. 4.1, the atom γk := λiλj is said to be uniquely repre-
sented (in symbols, γk ∈ UR) if card Γ(γk) ≤ 2. In this case, when γk is
nonnegative, we readily get that bi and bj are of the same sign. The use of
uniquely represented elements in supp(μ) will be helpful in the sequel.

Our strategy now is to consider a charge ν, such that both μ = ν ∗ ν

and ν ∗ tν are positive. It will follow in particular that Wμ and W̃μ must
be subnormal. We will then show that if ν has at most six atoms, it is
necessarily positive, and that if ν has more than six atoms, then it is not
necessarily positive. This will provide an affirmative answer to Conjecture
A for p ≤ 6 and a negative answer for p ≥ 7.

We begin with the next two auxiliary lemmas.
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Lemma 4.3. Let ν =
∑q

k=0 akδλk
be a charge such that ν ∗ ν =

∑p
k=0 bkδγk

and ν ∗ tν are positive measures. If card Γ(λ2
k) ≤ 3 for some k, then bk �= 0.

Proof. The case card Γ(λ2
k) = 1 is trivial since it corresponds to a uniquely

represented atom. Suppose Γ(λ2
k) = {(k, k), (i, j), (j, i)}: we get λ2

k = λiλj

and if the coefficient bk = a2
k + 2aiaj = 0, we will get for the coefficient of λ2

k

in ν ∗ tν,

λka2
k + (λi + λj)aiaj =

√
λiλja

2
k + (λi + λj)aiaj

< (λi + λj)
(

a2
k

2
+ aiaj

)

= 0.

This is a contradiction. �

Lemma 4.4. Let ν =
∑q

k=0 akδλk
be a charge such that ν ∗ ν =

∑p
k=0 bkδγk

and ν ∗tν are positive measures. Then (i) If q ≥ 4, then p ≥ 6. (ii) If q ≥ 5,
then p ≥ 7. To list items (i) and (ii), please use the itemize environment, as
follows:

Proof. (i) Suppose q ≥ 4. Since card Γ(λ2
2) ≤ 3 and card Γ(λ2

q−1) ≤ 3, we
obtain {λ2

1, λ1λ2, λ
2
2, λ

2
q−1, λq−1λq, λ

2
q} ⊆ supp(μ) and hence p ≥ 6.

(ii) From the previous item, p ≥ 6. To show that p ≥ 7, it suffices to
exhibit a new atom.

First, if λ2
2 is UR or if λ2

2 = λ1λk with some k > 4, λ1λ3 becomes an
UR and hence provides an additional atom in ν ∗ν. We write then λ2

2 = λ1λ3

and we show that either λ2
3 or λ2λ3 is the additional atom or produce a new

one. To this goal, we suppose that neither λ2
3 nor λ2λ3 is UR. In this case,

necessarily λ2λ3 = λ1λ4 (otherwise λ1λ4 will be the new atom as an UR.) We
write λ2

3 = λ1λk, λ2
3 = λ2λl or λ2

3 = λ1λk = λ2λl with zero as corresponding
coefficient. Since the two first situations will provide a new atom because
of Lemma 4.3, we can assume that λ2

3 = λ1λk = λ2λl. Now, multiplying
λ2λ3 = λ1λ4 with λ3 gives l = 4.

Now, from the identity λ1λk = λ2λl, we derive that k ≥ 5.
1) In the case where k > 5 and λ1λ5 = λ3λ4, then by multiplying with

λ3, we get λ1λ3λ5 = λ2
3λ4 = λ1λkλ4. It follows that λ3λ5 = λkλ4 for some

k > 5, which is impossible. Then if k �= 5 λ1λ5 will give additional atom as
an UR element.

2) k = 5. That is, λ1λ4 = λ2λ3, and λ2
3 = λ1λ5 = λ2λ4. For r = λ2

λ1
, we

get λk = λ1r
k−1 for every k ≤ 5. Now, to provide the 7th atom, it suffices

to show that either a2a3 + a1a4 �= 0 or a2
3 + 2a1a5 + 2a2a4 �= 0. Seeking a

contradiction, suppose that a2a3 + a1a4 = a2
3 + 2a1a5 + 2a2a4 = 0. From

the inequality (r + r2)a2a3 + (1 + r3)a1a4 ≥ 0, we derive that a2a3 < 0.
Otherwise,

0 ≤ (r + r2)a2a3 + (1 + r3)a1a4 < (1 + r3)(a2a3 + a1a4) = 0.

It follows also that a1a4 > 0 and then a2a4 > 0. Now, from a2
3 + 2a1a5 +

2a2a4 = 0, we derive that a1a5 < a1a5 + a2a4 = −a2
3 < 0 and since
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(1 − r2)2 > r(1 − r)2 we obtain the following contradiction:

0 ≤ r2a2
3 + (1 + r4)a1a5 + (r + r3)a2a4

= −r2(2a1a5 + 2a2a4) + (1 + r4)a1a5 + (r + r3)a2a4

= (1 − r2)2a1a5 + r(1 − r)2a2a4

≤ r(1 − r)2(a1a5 + a2a4) < 0.

The proof is complete. �

We now state and prove our main result.

Theorem 4.5. Let q, p be integers and ν =
∑q

k=0 bkδλk
be a charge such that

μ = ν ∗ ν is a positive p−atomic measure with p ≤ 6. If μ = ν ∗ tν ≥ 0, then
the coefficients bk have a constant sign. In particular, μ admits a positive
square root.

The proof below provides a new and simple way to recover a solution
to the square root problem in the case p ≤ 6.

Proof.

• p = 2. This is a trivial case, since a 2-atomic measure μ has a square
root if and only if μ = aδ0 + bδλ, with a, b, λ > 0. As a result, there
is no 2-atomic positive measure supported in [1, +∞) such that W̃μ is
subnormal.

• p = 3. In this case q = 2, ν = b1δλ1 + b2δλ2 and μ = ν ∗ ν =
b2
1δλ2

1
+b1b2δλ1λ2 +b2

2δλ2
2

with b1, b2 real numbers. Since b1b2 is uniquely
represented, it follows that b1 and b2 have the same sign.

• p = 4. A 4-atomic measure has no square root. Indeed, assume ν
exists. Then, necessarily q ≥ 3. Now write

ν = b1δλ1 + b2δλ1 + · · · + bq−1δλq−1 + bqδλq
,

and therefore,

ν ∗ ν = b2
1δλ2

1
+ 2b1b2δλ1λ2 + b2

2δλ2
2
+ · · · + b2

q−1δλ2
q−1

+ 2bq−1bqδλq−1λq
+ b2

qδλ2
q
.

It is then clear that p should be at least 5, a contradiction.
• p ∈ {5, 6}. From Lemma 4.4, we obtain q < 5. Thus either q = 3 or

q = 4.
- q = 3. We put ν = b1δλ1 + b2δλ2 + b3δλ3 and μ = ν ∗ ν =

b2
1δλ2

1
+2b1b2δλ1λ2+b2

2δλ2
2
+2b1b3δλ1λ3+2b2b3δλ2λ3+b2

3δλ3
1

≥ 0, with b1, b2

and b3 real numbers. Since λ1λ2 and λ2λ3 are uniquely represented, it
follow that b1b2 > 0 and b2b3 > 0. This gives as above b1, b2 and b3

have the same sign.
- For q = 4, we write ν = b1δλ1 + · · · + b4δλ4 and

μ = ν ∗ ν = b2
1δλ2

1
+ b2

2δλ2
2
+ b2

3δλ2
3
+ b2

4δλ2
4
+ 2(b1b2δλ1λ2 + b1b3δλ1λ3

+b1b4δλ1λ4 + b2b3δλ2λ3 + b2b4δλ2λ4 + b3b4δλ3λ4) ≥ 0.

As before, b1b2 ≥ 0 and b3b4 ≥ 0. If, moreover λ1λ3 ∈ UR or λ2λ4 ∈
UR, we get b1b3 ≥ 0 or b2b4 ≥ 0 and then b1, b2, b3 and b4 have a
constant sign.
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If not, λ2
2 = λ1λ3, and λ2

3 = λ2λ4, we get λ2
λ1

= λ3
λ2

= λ4
λ3

(= r) which
corresponds to the case when the support is contained in a geometric
sequence λk = rk with a = λ1 > 1. Then

μ = b2
1δa2r2 + 2b1b2δa2r3 + (2b1b3 + b2

2)δa2r4 + 2(b1b4 + b2b3)δa2r5

+(2b2b4 + b2
3)δa2r6 + 2b3b4δa2r7 + b2

4δa2r8 .

It follows that b1b4 + b2b3 ≥ 0 and thus b1, b2, b3 and b4 have
constant sign.

5. Conjecture A Settled in the Negative

From the previous section if ν and −ν are both q atomic non-positive charges,
then μ = ν∗ν has no positive square root. Also, ν∗tν is a square root of μ∗tμ.
Hence, if ν ∗ tν is positive, we will have Mμ and Mμ̃ are subnormal. This will
provide a counter-example to Conjecture A. Since for p ≤ 6, the conjecture
is valid, we take p = card supp(μ) ≥ 7 and hence q = card supp(ν) ≥ 5.

Let λ ∈ (1,+∞) and consider the 5-atomic charge given by

ν = b1δλ + b2δλ2 + b3δλ3 + b4δλ4 + b5δλ5 .

Assume that ν ∗ ν and ν ∗ tν are both positive. We will have

ν ∗ ν = b2
1δλ2 + 2b1b2δλ3 + (2b1b3 + b2

2)δλ4 + 2(b1b4 + b2b3)δλ5

+ (b2
3 + 2(b1b5 + b2b4))δλ6 + 2(b2b5 + b3b4)δλ7 + (2b3b5 + b2

4)δλ8

+ 2b4b5δλ9 + b2
5δλ10 ,

ν ∗ tν = λb2
1δλ2 + (λ + λ2)b1b2δλ3 + (λ2b2

2 + (λ + λ3)b1b3)δλ4 + ((λ + λ4)b1b4

+ (λ2 + λ3)b2b3)δλ5 + (λ3b2
3 + (λ + λ5)b1b5 + (λ2 + λ4)b2b4))δλ6

+ ((λ2 + λ5)b2b5 + (λ3 + λ4)b3b4)δλ7 + ((λ3 + λ5)b3b5 + λ4b2
4)δλ8

+ (λ4 + λ5)b4b5δλ9 + λ5b2
5δλ10 .

As before b1b2 > 0 and b4b5 > 0. Since b1b4+b2b3 ≥ 0 and b2b5+b3b4 ≥
0 we derive that b1, b2, b4 and b5 have constant sign. Otherwise b2b5 < 0 and
b1b4 < 0 and both signs of b3 will give a contradiction with b1b4 + b2b3 ≥ 0
and b2b5 + b3b4 ≥ 0.

Without loss of generality, we can assume b1, b2, b4 and b5 are nonneg-
ative. Denote p ∈ {7, 8, 9} for the number of atoms in ν ∗ ν. If b3 > 0, then
p = 9 and in the case where b3 < 0 the possible zero coefficients are

b2b5 + b3b4, and b1b4 + b2b3.

Clearly p = 7 ⇐⇒ b2b5 + b3b4 = b1b4 + b2b3 = 0, p = 8 ⇐⇒
either b1b4 + b2b3 = 0 or b2b5 + b3b4 = 0 and p = 9 otherwise.

Let us now study those instances when μ ∗ tμ is positive. Since λ > 1,
we have (λ2 + λ5) > (λ + λ4) > (λ2 + λ3), and we drive that

(λ2 + λ5)b2b5 + (λ3 + λ4)b3b4 > (λ3 + λ4)(b2b5 + b3b4) ≥ 0.

and
(λ + λ4)b1b4 + (λ2 + λ3)b2b3 > (λ2 + λ3)(b1b4 + b2b3) ≥ 0.
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Thus, μ ∗ tμ ≥ 0 if and only if

λb2
2 + (1 + λ2)b1b3 ≥ 0 and (1 + λ2)b3b5 + λb2

4 ≥ 0,

equivalently
λ

1 + λ2
≥ max

(−b1b3

b2
2

,
−b3b5

b2
4

)
(5.1)

Example 5.1. There exists a 9-atomic positive measure μ supported in R+

such that: μ ∗ tμ has a positive square root, while μ has no positive square
root.

Proof. Let x be a positive real number and λ > 1. Consider the 5−atomic
charge ξx given by

ξx := δλ + δλ2 − xδλ3 + δλ4 + δλ5 .

The coefficients of ξx are: (b1, b2, b3, b4, b5) = (1, 1,−x, 1, 1). The finite atomic
measure μx = ξx ∗ ξx given by

μx = δλ2 + 2δλ3 + (1 − 2x)δλ4 + (2 − 2x)δλ5 + (4 + x2)δλ6 + (2 − 2x)δλ7

+(1 − 2x)δλ8 + 2δλ9 + δλ10 ,

has no positive square root.
It is also clearly a positive 9-atomic measure if and only if 0 < x < 1

2 .
On the other hand, μx ∗ tμx possesses as square root νx = ξx ∗ tξx that is
positive (because of (5.1)) for any λ satisfying

x ≤ λ

1 + λ2
.

One can take, for instance, λ = 2 and x = 1
5 . The measure

μ = δ4 + 2δ8 +
3
5
δ16 +

8
5
δ32 +

101
25

δ64 +
8
5
δ128 +

3
5
δ256 + 2δ512 + δ1024

has no positive square root, and satisfies μ ∗ tμ ≥ 0. �

Example 5.2. For p = 7 and p = 8, there exists a p-atomic positive measure
supported in R+ such that: μ ∗ tμ has a positive square root measure, but μ
has no positive square root.

Proof. Let

ξ = δλ + αδλ2 − δλ3 + αδλ4 + βδλ5

where α, β, and λ �= 1 are positive numbers. For μ = ξ ∗ ξ, we have

μ = δλ2 + 2αδλ3 + (α2 − 2)δλ4 + (1 + 2α2 + 2β)δλ6 + (2αβ − 2α)δλ7

+(α2 − 2β)δλ8 + 2αβδλ9 + β2δλ10

The measure μ is positive if and only if:

α2 ≥ 2β ≥ 2.

On the other hand, the coefficients of ξ are: (b1, b2, b3, b4, b5) = (1, α,−1, α, β).
Again, because of (5.1), ν = ξ ∗ tξ ≥ 0, if and only if

λ

1 + λ2
≥ max

(
1
α2

,
β

α2

)
=

β

α2
.
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Thus, for β = 2, λ = 2 and α = 3 (resp. β = 1, λ = 2 and α = 2), the
8-atomic measure

μ = δ4 + 6δ8 + 7δ16 + 23δ64 + 6δ128 + 5δ256 + 12δ512 + 4δ1024

(resp. the 7-atomic measure

μ = δ4 + 4δ8 + 2δ16 + 11δ64 + 2δ256 + 4δ512 + δ1024),

is positive, without a positive square root, and such that μ∗ tμ has a positive
square root. �

6. An Additional Example

We present a concrete example of a non-subnormal weighted shift Wα such
that W̃α is subnormal.

Example 6.1. We now exhibit a weighted shift Wμ, where μ is a non-positive
charge and such that μ∗tμ admits a positive square root. Taking into account
the computations in the previous section, it suffices to find a non-positive
charge ν such that μ = ν ∗ ν is a non-positive charge and

√
μ ∗ tμ = ν ∗ tν is

positive.

Proof. Let λ ∈ (1,+∞) and consider a 5-atomic charge given by

ν = b1δλ + b2δλ2 − δλ3 + b4δλ4 + b5δλ5 ,

where b1, b2, b4 and b5 are positive numbers. We have

ν ∗ ν = b2
1δλ2 + 2b1b2δλ3 + (b2

2 − 2b1)δλ4 + 2(b1b4 − b2)δλ5

+ (1 + 2(b1b5 + b2b4))δλ6 + 2(b2b5 − b4)δλ7

+ (b2
4 − 2b5)δλ8 + 2b4b5δλ9 + b2

5δλ10 ,

and

ν ∗ tν = λb2
1δλ2 + (λ + λ2)b1b2δλ3 + (λ2b2

2 − (λ + λ3)b1)δλ4

+ ((λ + λ4)b1b4 − (λ2 + λ3)b2)δλ5

+ (λ3 + (λ + λ5)b1b5 + (λ2 + λ4)b2b4)δλ6

+ ((λ2 + λ5)b2b5 − (λ3 + λ4)b4)δλ7 + (λ4b2
4 − (λ3 + λ5)b5)δλ8

+ (λ4 + λ5)b4b5δλ9 + λ5b2
5δλ10 .

It follows that

ν ∗ tν ≥ 0 ⇐⇒
{

λ2b2
2 − (λ + λ3)b1 ≥ 0 (λ + λ4)b1b4 − (λ2 + λ3)b2 ≥ 0

λ4b2
4 − (λ3 + λ5)b5 ≥ 0 (λ2 + λ5)b2b5 − (λ3 + λ4)b4 ≥ 0.

Now, using

λ2b2
2 − (λ + λ3)b1 ≤ λ2(b2

2 − 2b1)

and

λ4b2
4 − (λ3 + λ5)b5 ≤ λ4(b2

4 − 2b5),
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it follows that b2
2 − 2b1 ≥ 0 and b2

4 − 2b5 ≥ 0. In this case,

μ := ν ∗ ν ≥ 0 ⇐⇒ b1b4 − b2 ≥ 0 and b2b5 − b4 ≥ 0,

and as above,

ν ∗ tν ≥ 0 ⇐⇒ λ

1 + λ2
≥ max(

b1

b2
2

,
b5

b2
4

).

Taking b1 = b5 = 1, b2 = 2 and b4 = 3, we obtain that

μ = δλ2 + 4δλ3 + 2δλ4 + 2δλ5 + 15δλ6 − 2δλ7 + 7δλ8 + 6δλ9 + δλ10 ,

is a non-positive charge for every λ and

ν ∗ tν ≥ 0 ⇐⇒ λ

1 + λ2
≥ 1

4
⇐⇒ λ ∈ (1, 2 +

√
3].

�
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