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Abstract. For recursively generated shifts, we provide definitive answers
to two outstanding problems in the theory of unilateral weighted shifts:
the Subnormality Problem (SP) (related to the Aluthge transform) and
the Square Root Problem (SRP) (which deals with Berger measures
of subnormal shifts). We use the Mellin Transform and the theory of
exponential polynomials to establish that (SP) and (SRP) are equivalent
if and only if a natural functional equation holds for the canonically
associated Mellin transform. For p-atomic measures with p < 6, our
main result provides a new and simple proof of the above-mentioned
equivalence. Subsequently, we obtain an example of a 7-atomic measure
for which the equivalence fails. This provides a negative answer to a
problem posed by Exner (J Oper Theory 61:419-438, 2009), and to a
recent conjecture formulated by Curto et al. (Math Nachr 292:2352—
2368, 2019).
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1. Introduction

Let H be an infinite dimensional Hilbert space and let £(H) be the space
of all bounded linear operators on H. An operator 7' € L£(H) is normal if
TT* =T*T, and subnormal if it is the restriction of a normal operator to an
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invariant subspace. (Here T™* stands for the usual adjoint operator of T'.) The
polar decomposition of T' is given by the unique representation 7' = V|7,
where |T'| := (T*T)z and V is a partial isometry satisfying ker V = ker T'.
The Aluthge transform is then given by the expression

T :=|T|?V|T|z.

The Aluthge transform was introduced in [1], in order to extend several
inequalities valid for hyponormal operators, and has received ample attention
in the last decades.

We consider below the Hilbert space H = [2(Zy), endowed with the
canonical orthonormal basis {e,}nez,. The unilateral (forward) shift op-
erator W, is defined on the canonical basis by Wye, = ape,y1, where
a = (ap)n>0 1s & given sequence of positive real numbers (called weights). It
is well known that W, is bounded if and only if the sequence of weights is
bounded, and ||W,]|| = sup a, < +00. Clearly, W, is never normal.

n>0

We associate with W, the sequence defined by
70 := 1 and v, = (@) := a2a? ... a3 | for k> 1.

We will say that a sequence v = (y,,)n>0 is & moment sequence on K C R,
or that it admits a representing measure u supported in K, if

Yo = Y (1) ::/ t"du(t) for every n >0 and supp(p) C K. (1.1)
K

The Berger—Gellar—Wallen Theorem states that W, is subnormal if and
only if there exists a positive Borel measure p (called a Berger measure),
representing for v and such that supp(u) C [0, |[Wal/?] [4, I11.8.16]. In the
sequel, when such p exists, we will also write W, = W, and identify the
weighted shift and its Berger measure.

In the literature, it is common to refer to v as the sequence of moments
arising from the weight sequence a. Consequently, the Berger—Gellar—Wallen
characterization is usually described as “W,, is subnormal if and only if the
sequence v of moments of « corresponds to the sequence of moments of a
positive Borel measure p.” To avoid any possible confusion, in this paper we
will reserve the phrase “moment sequence” for the sequence of moments of
the measure p. With the exception of the discussion in Sect. 6, throughout
the rest of the paper our basic weighted shift W, will be subnormal, and
we will seek necessary and sufficient conditions for the subnormality of the
square root shift W /5 and of the Aluthge transform W,. (Here (va)i :=
Var (k> 0)).

In the case where p is finitely atomic (that is, supp(u) is a finite set),
there exists a nonzero polynomial P such that P(u) = 0. In particular, the
sequence (v, )n>0 satisfies a recursive relation, and the weighted shift W, is
said to be recursively generated. Conversely, if a subnormal weighted shift is
recursively generated, then its Berger measure is finitely atomic [6, Remark
3.10(1)].

The Aluthge transform ﬁ/\; of a weighted shift W, is also a weighted
shift, associated with the sequence a,, = |/, a5, 11, n > 0. Indeed, it is easy
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to check that |W,le, = ane, and that Ve, = e,1+1. It follows that

Wocen = VOnQn41€ny1 = Wden-
Notice also that 72 = aig%%ﬁl. The problem of detecting the subnormality
of the Aluthge transform of a weighted shift has been considered by several
authors in the two last decades; see, for example [9]. As observed above, and
previously in [5], the subnormality of the square root shift W implies both

the subnormality of W, and the subnormality of the Aluthge transform fV[\/;
On the other hand, it is possible to find a weight sequence « such that W5

is not subnormal, while both W, and W,, are subnormal (Example 5.1). This
is the first occurrence in the literature of such a shift, and it exemplifies the
significance and usefulness of identifying non-positive charges to represent
weighted shifts in a manner resembling (1.1).

The next question, which we call the Subnormality Problem (SP), has
been considered in recent papers (cf. [9, Question 4.1] and [2,7,10,11]).

(SP) Under what conditions is the subnormality of a weighted shift
preserved under the Aluthge transform?

The general case remains open and only some partial affirmative results
have been obtained in [2,7,10,11]. For the class of moment infinitely divisible
(MZID) weighted shifts (i.e., subnormal shifts W, for which W/ remains
subnormal for all 0 < ¢ < 1), it was proved in [3] that the Aluthge transform
maps MZD bijectively onto MZD, and that W, its Aluthge transform, and
the square root shift are simultaneously either MZD or not MZID (cf. [3,
Corollary 4.7 and Theorem 4.10]).

(SP) can be reformulated in terms of moment sequences as follows:

Given a moment sequence (), on K := [0, M], under what conditions
is (\/YnVn+1)n also a moment sequence?

A direct application of Schur’s product theorem implies that if (\/¥,)n
is a moment sequence on K, then (\/m )n is also a moment sequence on
K; this gives, in particular, a sufficient condition to solve (SP). The question
of whether the reverse implication holds is stated in several recent papers.
The next conjecture appears in [7, Conjecture 4.6]:

Conjecture A. Let W, be a recursively generated (i.e., cardsuppp < o)
subnormal weighted shift. Then the following statements are equivalent:

(i) W g is subnormal;

(if) W, is subnormal.

Until now, the treatment of (SP) and of Conjecture A has focused on
the number of atoms in the supp y; let p := cardsupp . Using algebraic
proofs, affirmative answers to Conjecture A have been obtained for p < 6.
The case p = 2 was treated in [10], and the case p = 3,4 in [11] where the
conjecture appears for the first time; the case p = 5 was answered in [7], and
finally the case p = 6 was solved in [8].

In this paper, we provide concrete examples of p-atomic measures dis-
proving Conjecture A, with p € {7,8,9}. We also recover the case p < 6 as
a simple consequence of a new purely analytic approach. The main tools are
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the Mellin transform and the theory of exponential polynomials developed
by J. F. Ritt in the 1920-1930s.

The organization of the paper is as follows. In the next section, we state
the definition of the convolution of measures and the main conjecture related
to the so-called Square Root Problem (SRP): Given a positive measure u,
under what conditions does there exist a positive measure v such that v*xv =
©? In Sect. 3, we exhibit the role of the Mellin transform and the main
properties of exponential polynomials as central tools for (SP) and (SRP).
In Sect. 4, we apply the results obtained in Sect. 3 to the (SP) and (SRP)
in the case of finitely atomic measures. Finally, Sects. 5 and 6 include some
illustrative examples.

2. Square Roots of Measures

Given two positive finite measures v and pu, let * denote the multiplicative
convolution, defined as follows:

e )(B) = [ xlendv(a)duty),

where x g denotes the characteristic function of the Borel set E.
It is easy to check that, for any n € Z,

[ = [ oranoants) = ([ ) ([ sas). e

In particular, we get v, (u * 1) = v2(1), where vy, () =[5 t"dpu(t) is
the moment of p of order n. The square root problem is usually written as
follows:

(SRP): Given a positive measure p, under what conditions does there exist
a positive measure v such that vxv = p?

In the case of compactly supported measures, and thanks to the Weier-
strass density theorem and Eq. (2.1), the (SRP) can be stated in the next
simple form:

Let (vn)n be a moment sequence. Under what conditions is (\/¥n)n
also a moment sequence?

The close relationship between (SRP) and (SP) has already been ob-
served in the following proposition from [7].

Proposition 2.1. Let W, be a subnormal weighted shift with associated Berger

measure ji. Then EVV,L is subnormal if and only if there exists a RT -supported
probability measure v such that vxv = p*tu.

It follows from the previous proposition that
1 has a square root = Wu is subnormal.

The question of whether the reverse implication holds is our main mo-
tivation. We are naturally led to the following recent conjecture from [7].

Conjecture A. (cf. [7, Conjecture 4.6]). Let p be a finitely atomic Berger
measure with support in R;. Then the following statements are equivalent:
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(i) w has a square root;
(ii) p*tp has a square root.

We will now use the next technical results from [8], associated with the
square root problem of measures; this will allow us to simplify our proof.

Lemma 2.2. Let p be a positive measure such that 0 ¢ supp(u) and let s > 0.
Also, let ps(t) :== p(st) be the image measures by the mapping t — st, and
let v := adg + p, where 6, denotes the Dirac measure with atom «. Then the
following statements are equivalent:

1. w (resp. pxtu) admits a square root;

2. v (resp. vxtv) admits a square root;

3. s (resp. ps * t(us)) admits a square root.

Without loss of generality, hereafter we will assume that zy := min(supp(u))
= 1; in particular, the support of u will be contained in [1, +00).

We conclude this section with a diagram that illustrates how various
conditions /fg/r measures and charges are related to the subnormality of W,
W Ja and W,.

(MZID level):

W g is MID <= W, is MID <= W5 is MID.
(Subnormal level: W, ~ p)

’ W /& is subnormal ‘ S ’ u=v*v, withv >0

4 4

— Pyop. 2.
W, is subnormal @]u*ng*g, With520‘

\JX(EX. 5.1 (resp. Ex. 5.2))

’ W /5 is subnormal ‘

Example 5.1 (resp. Example 5.2): There exists a 9-atomic (resp. 7-
atomic) positive measure p supported in Ry such that p * ¢t has a positive
square root, while p has no positive square root. Examples 5.1 and 5.2 are
the first such example known in the literature.

3. The Mellin Transform and Its Relationship to the Aluthge
Transform

Let 1 be a finite positive Radon measure. The Mellin transform M, is
defined as

M, (2) ::/]R t*du(t). (3.1)

*
+
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We now let
M (Ry) := {p: u is a finite positive Radon measure supported in R }.

Using the Perron inversion formula, as in, e.g., [13, VI Theorem 9b], one can
establish that the Mellin transform is one-to-one, and thus it characterizes
the measure. We also have

Mual2) = [ (w0 du(uive) = | wdu(w [ i) = MM

+ +
Conjecture A is then equivalent to:

Conjecture B.

Mu*tu(z) = [MV(Z)]Q

i (3.2)
there exists £ € M (Ry) with M, (2) = [M(2)]?.
In addition, we remark that
M) = [ 3dut) = Moz -+ 1),
R
for every z € C and hence
Myt (2) = Mu(2)Mpu(z +1).
Finally, Conjecture A is also equivalent to:
Conjecture C.
Mu(IMu(z +1) = M, (2)]?
(3.3)

there exists & € M (R) such that M, (z) = [Me(2)]%.

For = 3", axds, a finite discrete (positive) measure with compact
support in the interval (0,+o0), the Mellin transform of p is the Dirichlet

series
M, (z) = Z apry® = Z ape® @) (3.4)
k>0 k>0
which converges uniformly on every compact set of the complex plane. In-
deed, for every R > 0 we have

E sup |akxk2|:§ ap sup e%(z)lnxk < E ak€R|1na:k| < ||,U'H€RIDM>
k>07€D(0,R) k>0 *€D(0,R) =0

where ||| := >, ~, ar stands for the total variation of  and M is a positive
number such that |Inzy| < InM, for every k € Z. In particular M, (z) is
an entire function.

To deal with our main problem, we study assertion (3.2). To this end,
we need two auxiliary results.

Lemma 3.1. Let p = ZEOZO ardz, be a positive compactly supported measure
in Ry such that x;, = Ty = inf(supp(p)) and x;, = Tpas := sup(supp(p))
are isolated in supp(p). Then Z(M,,), the zero set of M,,, has a bounded
real part.
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Proof. We have

z
Qf Tk
M) = Yt =, |1+ 3 2 (2))
i1

a
k>0 ktip 1
and since
z X g
. ak [ Tk . ag 1n<r>%(z)
lim E — (> = lim E —e 1 =0,
R(z)—+o0 ki iy \Tiy R(z)—+o0 ki Qi

we deduce that M, (z) # 0 for R(z) large enough, where R(-) denotes real
part. Using &y, instead of Zy,4,, we obtain similarly that M, (z) # 0 for
—R(2) large enough. This completes the proof. O

Proposition 3.2. Let W, be a subnormal weighted shift, with p a discrete

Berger measure as in the previous lemma, and assume that fW; s also sub-
normal. Let (zi,my)r the family of zeros, and respective multiplicities, of
M, (2). Then my, is even for every k.

Proof. From Eq. (3.2), we have M, (2)M,,(z + 1) = [M,(2)]%2. On the set
2 C C where M, (z) is holomorphic, we obtain:
M, (z)  My(z) M (z+1)
My(z) ~ Mu(z) - Mu(z+1)
Using Cauchy’s argument principle, we derive that
2m(z, My,) = m(z, M) + m(z +1,M,,), (3.5)

where m(z, f) is the multiplicity of the zero z in f (with m(z, f) = 0 if z is
not a zero of f).

Seeking a contradiction, assume that the zero set of odd multiplicity
Zoaa(M,,) is nonempty and let z € Z,44(M,,). From Eq. (3.5), we derive
that {z — 1,24+ 1} C Z,qa(M,,) and thus, by induction, z +Z C Z,34(M,,).
This last statement is false, using Lemma 3.1. This completes the proof. O

We now derive the next preparatory result.

Proposition 3.3. Let W, be a subnormal weighted shift, with p a discrete

Berger measure as in the previous lemma, and assume that W, is also sub-

normal. Assume also that the assumptions of Lemma 3.1 are satisfied. Then
M, (z) = [H(2)]?, z € C,

for some entire function H.

Proof. Given a set I C Zy, let Z(M,) = {(zx,my), k € I}. Since the
multiplicities of all zeros of the entire function M, (z) are even (using a
simple factorization by (z — z;)™* in the finite case, or using the Weierstrass
factorization theorem in the infinite case), we obtain the desired result. [

To reach our main theorem, we need one more auxiliary result. Con-
sistent with the prevailing terminology, we will refer to signed measures as
charges; these are Borel measures that are not necessarily positive. Thus, a
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charge ¢ typically admits either an atom with negative density or a Borel set
E for which £(E) < 0.

Theorem 3.4. Let W, be a subnormal weighted shift, with jv a discrete Berger

measure, and assume that W; 1s also subnormal. Then there exists a finitely
atomic charge £ supported in [1,+00) such that

H(z) = Me(2),

where H is an entire function satisfying the equation M, (z) = [H(2)]?, given
by Proposition 3.3. In particular, £ x & = p.

Proof. Write pp = >"%_, a0y, , with supp(p) = {1 =29 < 21 < -+ < xp}.
The Mellin transform M, is an exponential polynomial with nonnega-
tive exponents:

p p
M, (z) = Z apry® = Z ape? @k,
k=0 k=0

From the previous discussion, there exists an entire function H satisfying
H(2)? =37 _apzi?, for all z € C.

Next, we use a suitable version of a theorem due to J.F. Ritt. As
a consequence, we prove that the square root of a positive Borel measure
always exists, if we allow charges as solutions. We briefly pause the proof to
state this result.

Ritt’s Theorem ([12, Theorems I and II}) Let P, be exponential poly-
nomials and f be an analytic solution, in a sector with opening greater than
m, of the equation

P+ Puaf" 4 4 Py =0,

Then f is also an exponential polynomial, whose exponents are linear com-
binations of the exponents in the Py’s, and with rational coefficients.
From Ritt’s Theorem, and from the equation

p
H(Z)2 = Zakxkz = —Po,
k=0

it follows that H(z) is also an exponential polynomial. That is, there ex-
ist b € C and y; € R, such that H(z) = >{_,bre®*. (Here {yo < y1 <
.-+ < y4} are linear combinations of In(z) with rational coefficients; in par-
ticular, all yi’s are real numbers). Moreover, using the uniqueness of the
representation of exponential polynomials, we get

{ys +u1, 0 <k, 1 < ¢} ={In(zg) <In(z1)) <--- <--- <In(z,)} CRy.

Since 2yg = In(xg) = 0, we obtain {yo < y1 < --- < y,} C R4.
Finally, ¢ = ZZ:O brdevi is a charge satisfying £ x £ = p, and such that
supp(§) = {e¥o,...,e¥%} C [1,+00). O
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4. Applications to (SRP)

We begin with the following observation.

Proposition 4.1. (i) Under the notations above, if & and &5 are square Toots
of w, then & = +&. (ii) Let £ be a signed square root of a finitely atomic
measure (. Then p has a positive square root if and only if the coefficients
in & have constant sign.

Proof. (i) If & % & = & * &, then Mg, (2)? = M, (2)? for all z € C. Since
Mg, and Mg, are entire functions, we deduce that Mg, (2) = £ Mg, (2) =
Mg, (%), and since the Mellin transform is one-to-one, we get & = £&s.
(ii) From Theorem 3.4, u always admits a charge £ as a square root.
Because of (i), u has, as two square roots, i.e., =£. Thus, p has a positive
square root (£ > 0 or —¢ > 0) if and only if the densities in £ have constant
sign. O

In the sequel, we focus on positive measures p such that pxtu has a posi-
tive square root. Let us first consider v a signed (i.e., not necessarily positive)
square root of pxtu. Taking into account the previous proposition, we investi-
gate when the coefficients in v have a constant sign. Since supp(u) C [1, +00),
we get supp(p *tp) C [1,4+00) and then supp(v) C [1,+00). Using the iden-
tity
M3 (2) = Mu(2)Myu(z +1) = H(z)?H(z + 1)* = M, (2) = £H(2)H(z + 1),

we get
M, (2) = £ (g bee™r) (OoF_, brelke™r)
=4+ ZZ,I:O bkbley"’ez(y’“ﬂl)

=2 (Z(i,j)el“(fyk) bibjeyi) ek,

where I'(v;,) = {(i,j) € (Z4+)* 0<4,j <qgandy; +y; = In(yw)}.
Now, writing \; = e¥?, we get

v=> | > bbby, (4.1)

k- \(G7)er (ve)

We will now use the following useful observation.

Remark 4.2. In Eq. 4.1, the atom 7 := A;); is said to be uniquely repre-
sented (in symbols, v, € UR) if cardT'(y;) < 2. In this case, when ~; is
nonnegative, we readily get that b; and b; are of the same sign. The use of
uniquely represented elements in supp(u) will be helpful in the sequel.

Our strategy now is to consider a charge v, such that both p=vxv
and v * tv are positive. It will follow in particular that W, and W, must
be subnormal. We will then show that if v has at most six atoms, it is
necessarily positive, and that if v has more than six atoms, then it is not
necessarily positive. This will provide an affirmative answer to Conjecture
A for p < 6 and a negative answer for p > 7.

We begin with the next two auxiliary lemmas.
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Lemma 4.3. Let v = > §_,aidy, be a charge such that v xv = >} _; bid,
and v x tv are positive measures. If card'(\) < 3 for some k, then by # 0.

Proof. The case card'(A\?) = 1 is trivial since it corresponds to a uniquely
represented atom. Suppose I'(A2) = {(k, k), (i,5), (4,7)}: we get A} = \;)\j
and if the coefficient by, = a% +2a;a; = 0, we will get for the coeflicient of )\ﬁ
in v xty,

)\kaz + (>\z -+ )\j)aiaj = 1/ )\iAjai —+ (>\z + /\j)aiaj
2
< ()\1 + )\J) <(12k -+ aiaj>
=0.
This is a contradiction. O

Lemma 4.4. Let v = Y }_, a0y, be a charge such that vxv = Y 1 _, bid,,
and vty are positive measures. Then (i) If ¢ > 4, thenp > 6. (ii) If g > 5,
then p > 7. To list items (i) and (ii), please use the itemize environment, as
follows:

Proof. (i) Suppose ¢ > 4. Since card'(A3) < 3 and card'(A2_;) < 3, we
obtain {\2, A1 A2, A3, /\5_17 Ag—1q, )\3} C supp(p) and hence p > 6.

(ii) From the previous item, p > 6. To show that p > 7, it suffices to
exhibit a new atom.

First, if A% is UR or if )\% = M A, with some k > 4, A\; A3 becomes an
UR and hence provides an additional atom in v*v. We write then )\3 = AMA3
and we show that either )\g or A2)\3 is the additional atom or produce a new
one. To this goal, we suppose that neither A3 nor AyA3 is UR. In this case,
necessarily AgA3 = A A4 (otherwise A\; A4 will be the new atom as an UR.) We
write )\g = Mg, )\g = A2\ or )\g = M Ar = A\, with zero as corresponding
coefficient. Since the two first situations will provide a new atom because
of Lemma 4.3, we can assume that )\3 = MAx = A2\, Now, multiplying
)\2/\3 = )\1/\4 with )\3 giVGS | =4.

Now, from the identity \; A\ = A2\;, we derive that k > 5.

1) In the case where k > 5 and A\ A5 = Az\4, then by multiplying with
A3, we get AiA3As = A3y = MM\ Ag. It follows that A3\ = A\p Ay for some
k > 5, which is impossible. Then if k # 5 A\ A5 will give additional atom as
an UR element.

2) k= 5. That is, \1As = Aoz, and A3 = A A5 = ApAs. Forr = §2, we
get A, = A\rF~! for every k < 5. Now, to provide the 7" atom, it suffices
to show that either asas + ajay # 0 or a3 + 2ajas + 2aza4 # 0. Seeking a
contradiction, suppose that asaz + a1as = a3 + 2ajas + 2aza4 = 0. From
the inequality (r + r?)asaz + (1 + 73)ajay > 0, we derive that asaz < 0.
Otherwise,

0 < (r+r9agasz + (1 +r)aray < (14 7)(asas + ajay) = 0.

It follows also that ajas > 0 and then asas > 0. Now, from a3 + 2aia5 +
2a0a4 = 0, we derive that ajas < aijas + asay = —a% < 0 and since
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(1 —=7%)2? > r(1—r)? we obtain the following contradiction:

0 <7r2d? + (1+rYaras + (r +r)agay
= —r%(2a1a5 + 2aza4) + (1 +rHayas + (r + r3)azay
= (1—=7?)2a1a5 +r(1 — r)%azay

<7r(1 —r)*(aias + azay) < 0.

The proof is complete.

We now state and prove our main result.

33

Theorem 4.5. Let q,p be integers and v = ZZ:O brdx, be a charge such that
1= v*xvis a positive p—atomic measure with p < 6. If p =v=xtv >0, then
the coefficients by, have a constant sign. In particular, u admits a positive

square root.

The proof below provides a new and simple way to recover a solution

to the square root problem in the case p < 6.

Proof.

e p = 2. This is a trivial case, since a 2-atomic measure p has a square

root if and only if u = adg + by, with a,b,A > 0. As a result, there
is no 2-atomic positive measure supported in [1,400) such that W), is
subnormal.

p = 3. In this case ¢ = 2, v = b1y, + b2dx, and p = v *xv =
b%é)\f +b1b20x, 2, +b§5>\§ with by, by real numbers. Since by bs is uniquely
represented, it follows that b; and by have the same sign.

p = 4. A 4-atomic measure has no square root. Indeed, assume v
exists. Then, necessarily ¢ > 3. Now write

V= bl(S)\l =+ bQ(S)\l —+ -4 bqfl(S)\qfl + bq(S)\q,

and therefore,

vav = b10xe + 2b1ba0x,n, + 05053 + -+ 051032+ 2bg-1bg0x, ia, + Uj0xe.

q—1
It is then clear that p should be at least 5, a contradiction.
e p e {56}. From Lemma 4.4, we obtain ¢ < 5. Thus either ¢ = 3 or

q=4.

-q =3 Weput v =06\ +bdx, +0b30y, and p = v*v =
b%é)\% +2b1[)26)\1A2 +b%(§>\§+2b1b35)\1)\3+2b2b35k2)\3 +b§5>\? Z 0, Wlth bl, b2
and b3 real numbers. Since A\; Ay and A2 A3 are uniquely represented, it
follow that bibo > 0 and bybs > 0. This gives as above by,by and bg
have the same sign.

- For ¢ = 4, we write v = b1, +--- + b4dy, and

L=v*yU = b%éxf + b%é,\g + b§5>\§ + bid,\i + 2(b1b20x, 2, + b1b3x, A5
+b1040x, 1, + 020302, n; 4 b2baOx,n, + b3ba0r,x,) > 0.
As before, biby > 0 and bzby > 0. If, moreover \{A3 € UR or AagMy €

UR, we get bibs > 0 or byby > 0 and then by,bs,b3 and by have a
constant sign.
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Ifnot, A3 = A1 Ag, and A = ApAg, we get 42 = 42 = 44 (= r) which

corresponds to the case when the support is contained in a geometric
sequence A\ = ¥ with @ = A\; > 1. Then

n= b%(sazﬂ + 2b1b260,2,3 + (21)1[)3 + b%)§a2r4 + 2(b1b4 + bgbg)éasz
+(2b2bg + b%)(;a%a + 2b3bg0,2,7 + bi(;a%s.
It follows that biby + babs > 0 and thus by, by, b3 and by have
constant sign.

5. Conjecture A Settled in the Negative

From the previous section if v and —v are both ¢ atomic non-positive charges,
then p = v*v has no positive square root. Also, v*tv is a square root of pxtp.
Hence, if v*tv is positive, we will have M,, and M are subnormal. This will
provide a counter-example to Conjecture A. Since for p < 6, the conjecture
is valid, we take p = card supp(p) > 7 and hence g = card supp(v) > 5.
Let A € (1,+00) and consider the 5-atomic charge given by
v =">010)\ + ba0x2 + b3d\3 + bgdra + b5dys5.

Assume that v x v and v x tv are both positive. We will have
VxV = b%(s)\z + 2b1b25)\3 + (2b1b3 + b%)é)\4 -+ 2([)11)4 + beg)(S)ﬁ

+ (b3 + 2(b1bs + baba))dxe + 2(babs + bsba)dar + (2b3bs + b7)dxs

+ 2babsd o + bg(skm,
vxty= )\b%(S)\Z + ()\ + )\Q)ble(S)\S + ()\ng + ()\ + )\3)b1b3>(5)\4 + (()\ + )\4)b1b4

+ (A% + X¥)bab3)drs + (A303 + (A + A)bibs + (A2 + A*)babs))dxe

+ (A2 + X2)babs + (A> + A)b3ba)dxr + (A2 + A%)bsbs + A*03)dxs

+ (A X5)bybsdro + A5b20 0.

As before b1b2 > 0 and b4b5 > 0. Since blb4+b2b3 Z 0 and bgb5+b3b4 Z
0 we derive that by, bo, by and bs have constant sign. Otherwise bobs < 0 and
b1bs < 0 and both signs of bg will give a contradiction with biby + bobs > 0
and bsbs + b3by > 0.

Without loss of generality, we can assume by, by, by and b5 are nonneg-
ative. Denote p € {7,8,9} for the number of atoms in v v. If bs > 0, then
p =9 and in the case where b3 < 0 the possible zero coefficients are

b2b5 + b3b4, and b1b4 —+ bgbg.

Clearly p =7 < bobs + b3by = biby + bobs = 0,p =8 <<=

either b1by + bobs = 0 or babs + bsby = 0 and p = 9 otherwise.

Let us now study those instances when p * tp is positive. Since A > 1,
we have (A2 + %) > (A + A1) > (A% + \3), and we drive that

(A2 4+ X%)bobs + (A3 + A)bsby > (A% 4+ A1) (babs + bsby) > 0.
and
(A AD)biby + (A2 4+ X3)bobg > (A% 4+ A3)(biby + bybs) > 0.
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Thus, p*ty > 0 if and only if
A3 4 (14 A2)bybg > 0 and (1 + A?)bsbs + \b; > 0,

equivalently
A e <b§b3, bgbs) (5.1)
by by

Example 5.1. There exists a 9-atomic positive measure p supported in R
such that: p * tu has a positive square root, while © has no positive square
root.

Proof. Let = be a positive real number and A > 1. Consider the 5—atomic
charge &, given by
gz = (S)\ + (SAQ — ac(As + (SA4 + 5)\5.
The coefficients of &, are: (by,bs, b3, bs,b5) = (1,1, —x,1,1). The finite atomic
measure p, = &, *x &, given by
,U,z = 5)\2 + 25)\3 + (1 — 21‘)5)\4 + (2 — QI)(;AS + (4 + 392)5)\6 + (2 — 2$)5)\7
+(]. — 2x)6ks 4+ 2659 + dy10,
has no positive square root.
It is also clearly a positive 9-atomic measure if and only if 0 < < %

On the other hand, pu, * tu, possesses as square root v, = &, * t§, that is
positive (because of (5.1)) for any X satisfying

- A

< ——.
T 1422

One can take, for instance, A = 2 and = . The measure

1
5
8
5
has no positive square root, and satisfies p*xtu > 0. g

3 8 101 3
=04+ 20 + 3516 + 3532 + 75664 + =108 + 55256 + 20512 + 01024

Example 5.2. For p =7 and p = 8, there exists a p-atomic positive measure
supported in Ry such that: p * t has a positive square root measure, but p
has no positive square root.

Proof. Let
§ = (S)\ + a5>\2 — (S)\S + a5>\4 + ﬁé)\s
where a, 3, and A # 1 are positive numbers. For p = & % £, we have

p=0x2 + 2a6xs + (@ — 2)6x1 + (1 + 202 + 283)5x6 + (208 — 20) 7
—|—(a2 —20)0xs + 2aBdy0 + ﬂ25)\10

The measure p is positive if and only if:
a?>26>2.

On the other hand, the coefficients of € are: (b1, be, b3, bs, b5) = (1,0, —1, v, ).
Again, because of (5.1), v = &« t£ > 0, if and only if

A (L BB
14+ 22— a2’ a?) a?’
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Thus, for § =2, A = 2 and o« = 3 (resp. § = 1, A = 2 and a = 2), the
8-atomic measure

p =04 + 6dg + 716 + 23064 + 60128 + 5256 + 120512 + 401024
(resp. the 7-atomic measure
o= 54 + 458 + 2616 + 11564 + 26256 + 45512 + (51024),

is positive, without a positive square root, and such that p*tu has a positive
square root. O

6. An Additional Example

We present a concrete example of a non-subnormal weighted shift W, such
that W, is subnormal.

Example 6.1. We now exhibit a weighted shift W,,, where p is a non-positive
charge and such that p*tu admits a positive square root. Taking into account
the computations in the previous section, it suffices to find a non-positive
charge v such that u = v x v is a non-positive charge and /u * tu = v * tv is
positive.
Proof. Let A € (1,+00) and consider a 5-atomic charge given by
v =>b10) + badx2 — 3 + badya + b50,5,
where by, ba, by and by are positive numbers. We have
Vv =b30y2 4 201020\ + (b3 — 2b1)5xa + 2(b1bg — b2)dxs
+ (14 2(b1bs + b2ba))dre + 2(babs — ba)dx7
+ (b — 2b5)0xs + 2babsdro + b2dr10,
and
vty = A0z + (A 4+ A b1bodys + (203 — (A + A3)b1)dys
+ (A + AHbibs — (A2 4+ A3)b2) 6y
+ (A (A4 A2)bibs + (A% + A1)baby) b e
+ (A2 X5)bgbs — (A2 + AHby)dar 4+ (A1D2 — (A3 + A%)bs)dxs
+ (AT 4 M) babsdre + A2 y0.
It follows that

ez = {TEE AR BDRR TR IR
Now, using

A2b% — (A + A%)by < N2(B3 — 2by)
and

MB2— (X3 X5)bs < A1 (b2 — 2b3),
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it follows that b3 — 2b; > 0 and b2 — 2b5 > 0. In this case,
pi=v*xv >0 &< biby — by >0 andb2b5—b420,

and as above,

by b
vty >0 < > maz(—, ).

1+ < b2 b2
Taking by = b5 = 1, by = 2 and by = 3, we obtain that
on = (5)\2 + 4(5)\3 + 2(5)\4 + 25)\5 + 15(5)\6 — 2(5)\7 + 7(5/\8 + 65)\9 + (5}@07

is a non-positive charge for every A and

A

>z .
T2 & e (1,24 V3]

vxtr >0 <
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