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Geometrically regular weighted shifts (in short, GRWS) are those with weights 
α(N, D) given by αn(N, D) =

√
pn+N
pn+D

, where p > 1 and (N, D) is fixed in the open 
unit square (−1, 1) × (−1, 1). We study here the zone of pairs (M, P ) for which the 
weight α(N,D)

α(M,P ) gives rise to a moment infinitely divisible (MID) or a subnormal 
weighted shift, and deduce immediately the analogous results for product weights 
α(N, D)α(M, P ), instead of quotients. Useful tools introduced for this study are a 
pair of partial orders on the GRWS.

© 2024 Elsevier Inc. All rights reserved.

 Introduction and preliminaries

Let H be a separable, complex infinite dimensional Hilbert space and L(H) the algebra of bounded linear 
erators on H. The current paper continues the study, initiated in [5], of certain weighted shifts in L(H)
lled the geometrically regular weighted shifts (henceforth, GRWS), with concentration on when their 

uotients and products belong to standard classes of interest, especially the MID and subnormal shifts (all 
efinitions reviewed below). We introduce as well two useful partial orders on these weighted shifts which 
d in the study, and recast some earlier results in terms of these orders.
The study of such quotients is pertinent because the resulting shifts add to the collections of reasonably 

actable shifts, which nonetheless extend the standard shift examples. Shifts are often used to begin the 
udy of a new concept or definition, or as test operators for a new hypothesis. However, we have discovered 
at the most used ones – the Agler-type shifts related to the Bergman shift and the finitely atomic (recur-
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vely generated) shifts – are so special as to be seriously misleading. The GRWS themselves are such an 
dition to the example set; their quotients, in various classes of considerable interest as defined by a base 
int and other points in the parameter space, yield a “quotient safe zone” for some property, and they are 
further such addition. Related to these considerations is the fact that MID shifts form a sophisticated 
t tractable collection of operators, with many important properties, among others, their stability under 
e Aluthge transform and Schur products [4]. As a result, any time two GRWS Wα and Wβ have a (Schur) 
ID quotient W α

β
, all reasonable properties involving moment matrices or Agler sums enjoyed by Wβ will 

ansfer to Wα. This places the class of MID GRWS in a privileged position, and justifies our emphasis on 
fe quotients.
We first briefly recall the relevant definitions and set notation. For a more complete introduction and 

ller discussion, see [5].

1. Unilateral weighted shifts and operator properties

Set N0 := {0, 1, . . .} and let �2 be the classical Hilbert space �2(N0) with canonical orthonormal basis 
, e1, . . .. Let α : α0, α1, . . . be a (bounded) non-negative weight sequence and Wα the weighted shift defined 
 Wαej := αjej+1 (j ≥ 0) and extended by linearity. (It is standard that for our questions of interest we 
ay, and do henceforth, assume that α is positive, i.e., αn > 0 for all n.) The moments γ = (γn)∞

n=0 of the 
ift are given by γ0 := 1 and γn :=

∏n−1
j=0 α2

j for n ≥ 1.
An operator T ∈ L(H) is normal if TT ∗ = T ∗T , where T ∗ is the adjoint of T . (It is well known that 

ith our assumption of positive weights no weighted shift can be normal.) An operator is subnormal 
it is the restriction of a normal operator to a (closed) invariant subspace. Weighted shifts have been 
udied extensively with respect to subnormality and related properties; there is a condition sufficient for 
bnormality via an approach through k–hyponormality (positive (semi)-definiteness of moment matrices) 
d the Bram-Halmos theorem (see originally [9], and [5] for background and further references). There is a 
cond approach through n–contractivity and the Agler-Embry theorem (see originally [1] and again [5] for 
ntext); as well, a weighted shift is subnormal if and only if it has a Berger measure (a measure compactly 
pported in R+ whose moment sequence is the moment sequence of the shift – see [10, III.8.16] and [11]).
It is well known that the Schur (Hadamard, or entry-wise) product of two positive (semi)-definite matrices 

 again positive (semi)-definite. It follows readily from the Bram-Halmos approach to subnormality that 
Wα and Wβ are subnormal (respectively, k–hyponormal for some k) shifts, then the shift with weight 
quence the Schur product αβ is subnormal (respectively, k–hyponormal).
In [3] and [4] certain “better than subnormal” shifts were considered. We say that a shift Wα is moment 

finitely divisible (henceforth, MID) if, for every real s such that s > 0, the shift with weight sequence 
s := (αs

n)∞
n=0 is subnormal. One characterization of such shifts relies on sequence conditions, and we turn 

xt to some needed machinery.
Recall that the forward difference operator ∇ on a sequence β = (βn) is defined by (∇β)n := βn − βn+1, 
d powers of ∇ are defined recursively by ∇(0) as the identity mapping and ∇(n+1) := ∇(∇(n)). A sequence 
is completely monotone if ∇(n)β ≥ 0 for all n = 1, 2, . . .. We say a sequence is log completely monotone
∇(n) ln β ≥ 0 for all n = 1, 2, . . .; note that we do not require that the terms ln βn be themselves positive. 
he backward difference operator Δ is defined by Δ := −∇, and a sequence β is completely alternating
espectively, log completely alternating) if Δ(n)β ≥ 0 for n = 1, 2, . . . (respectively, Δ(n) ln β ≥ 0 for 
 = 1, 2, . . ., where again, in contrast to the definition in [8] we do not require that the terms ln βn be 
emselves positive). It is known from [3] and [4] that a contractive shift is MID if and only if its moment 
quence is log completely monotone, or, equivalently, its weight sequence is log completely alternating. The 

plications are as follows, with (αn)∞

n=0 the weights of the shift and (γn)∞
n=0 the moments:
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(αn)∞
n=0 completely alternating

⇓
(αn)∞

n=0 log completely alternating ⇔ (γn)∞
n=0 log completely monotone

⇓
(γn)∞

n=0 completely monotone.

he first implication is [3, Prop. 2.2], the intermediate bi-implication is implicit in [4, Theorem 3.4], and the 
nal implication is [4, Corollary 3.6]. Note that a contractive shift is subnormal if and only if its moment 
quence is completely monotone, which is just the Agler-Embry condition in different language.
These conditions may sometimes be verified by showing that the sequence is interpolated by a function in 
 appropriate class. Recall that an infinitely differentiable function f : R+ → R is completely monotone if 
is non-negative, and its derivatives alternate in sign: f (n) is non-negative for n even and non-positive for n

dd. We say f is log completely monotone if ln f is completely monotone, except that we do not insist that 
f is itself non-negative. It is straightforward to show that if a sequence is interpolated by a completely 
onotone [respectively, log completely monotone] function, it is completely monotone [respectively, log 
mpletely monotone]. Related classes are the Bernstein functions (infinitely differentiable functions f :
+ → R which are non-negative and whose first derivative is completely monotone) and the log Bernstein 
nctions (those f such that ln f is Bernstein, except again we do not, in contrast to [8], require that ln f

 itself non-negative). It is known that a sequence interpolated by a Bernstein [respectively, log Bernstein] 
nction is completely alternating [respectively, log completely alternating]. See [5] for further details and 
ore complete discussion. Finally, an operator class related to subnormality is the class of completely 

yperexpansive operators; these are obtained by reversing the direction of the inequality in the tests for 
–contractivity (see originally [2], and [5] for definitions and discussion), and it follows from the definitions 
at completely hyperexpansive shifts are those for which the moment sequence is completely alternating.
Recall from [5] that the geometrically regular weighted shifts (briefly, GRWS) are those shifts with weight 

quence given by

αn(N, D) =

√
pn + N

pn + D
,

here p > 1 and (N, D) is fixed in (−1, 1) × (−1, 1).
We state the needed partial versions of previous results for geometrically regular weighted shifts (them-

lves, as opposed to their quotients which are the subject of the current paper) from [5] and, in particular, 
eir membership in the various general classes, in reference to the diagram in Fig. 1. This is, for fixed 
> 1, the open unit square in R2 with parameter pair (N, D), and with Sectors I, II, . . . , the ray D = pN

 Sector VIII and the rays of the form D = pnN in Sector IV. (Hereafter, by a sector we mean the convex 
ne in the open unit square with vertex at (0, 0) and bounded by two rays emanating from the center. All 
ctors in this paper will be closed in the relative topology of the open unit square.) We take the slight 

berty of referring to the open unit square in this context as the “magic square.”
(The online version of this paper has pictures in color while the print version does not. The reader of a 

rint version may wish to consult the online version, or refer to an earlier preprint version on the ArXiv: 
Xiv :2312 .06390.)
The classes of interest relevant here appear as follows:

In Sector I, the weighted shifts are MID with the sequence of weights squared interpolated by a 
Bernstein function;
In Sector II, the weighted shifts are MID with the sequence of weights squared interpolated by a log 
Bernstein function;

In Sector III, the weighted shifts are subnormal;
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Fig. 1. Magic Square.

In Sector IV, the shifts corresponding to points on the special lines D = pnN , n = 0, 1, 2, . . ., are 
subnormal with finitely atomic Berger measure but not MID (except on the line D = N , which yields 
the unweighted shift, which is MID); on the boundary with Sector III the shift is subnormal but not 
MID; other points in the sector yield shifts that are not subnormal (although they are k–hyponormal 
for various k);
In Sector VIIIA, the shifts are completely hyperexpansive.

This numbering is chosen so that Sector I holds the “best” parameters, yielding shifts that are not only 
bnormal but MID; indeed, their weights have the stronger property that they are interpolated by a 
ernstein function, and, for a portion of the sector, the even stronger property of being the reciprocals of 
e weights of a completely hyperexpansive weighted shift (see [2] and [3] for the discussion showing this is 
ronger than MID). Sector II contains the next best parameters, yielding an MID shift, and from there 
e simply proceed clockwise.

 Main results

We first give a useful definition of two partial orders on the parameter space yielding the shifts we study.

efinition 2.1. Let (N, D) and (M, P ) be two points in the open unit square (−1, 1) × (−1, 1). We say 
, D) � (M, P ) if the weight α(N,D)

α(M,P ) is an MID weight (i.e., the shift with weights the Schur quotient is 
ID). Often, particularly in text, we will say (M, P ) is MID–subordinate to (N, D) if (N, D) � (M, P ).

Similarly, we say

efinition 2.2. (N, D) �s (M, P ) if the weight α(N,D)
α(M,P ) is a subnormal weight (i.e., the shift with weights the 
hur quotient is subnormal). We will say (M, P ) is subnormal-subordinate to (N, D) if (N, D) �s (M, P ).
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•

(−N, −D)•
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(A) MQ: (N, D) in Sector I
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•
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•
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(B) MQ: (N, D) in Sector II

Fig. 2. MQ: (N, D) in Sectors I or II.

Implicit in the above definitions, but omitted from the notation, is that we consider p as fixed in such 
tuations.

roposition 2.3. The relation “�” [respectively, “�s”] is a partial order.

roof. The proof is straightforward using, for antisymmetry, that a subnormal shift must have a weakly 
creasing weight sequence and, to handle transitivity, that the Schur product of two MID (respectively, 
bnormal) shifts is MID (respectively, subnormal). �
For a given “base point” (N, D), define as well the sets

MQ(N,D) := {(M, P ) ∈ (−1, 1) × (−1, 1) such that (N, D) � (M, P )}, (2.1)

d

SQ(N,D) := {(M, P ) ∈ (−1, 1) × (−1, 1) such that (N, D) �s (M, P )}. (2.2)

e may refer to these sets as containing the points yielding “safe MID [respectively, subnormal] quotients.”

Observe also that MQ(N,D) ⊆ SQ(N,D).
Given a base point (N, D) in one of various sectors, we will give sets contained in the sets MQ(N,D)
d SQ(N,D); we will often refer to these as safe zones. The pictures in Figs. 2, 3 and 4 contain the most 
portant relevant results.

heorem 2.4. For (N, D) in Sector I, MQ(N,D) – the set of safe MID quotients – contains the set shown 
 Fig. 2A; for (N, D) in Sector II, MQ(N,D) contains the set shown in Fig. 2B.

Similar results for base points in Sectors III-VIII and their MID safe quotients are given in the next 
ction, where the results are proved.

heorem 2.5. For (N, D) in Sector I, SQ(N,D) – the set of safe subnormal quotients – contains the set 
own in Fig. 3A; for (N, D) in Sector II, SQ(N,D) contains the set shown in Fig. 3B; for (N, D) in Sector 
I, SQ(N,D) contains the set shown in Fig. 4.
Note that the serrated left boundaries for (N, D) in Sectors II and III are intentional.
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Fig. 3. SQ: (N, D) in Sectors I or II.
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p2 x
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•

Fig. 4. SQ: (N, D) in Sector III.

Similar results for base points in the Sectors IV-VIII and their subnormal safe quotients are also given 
in the next section.

Remark 2.6. “Reflection principle”
We pause here to record an observation useful in the sequel. Observe that the weight sequence associated 

with a point (M, P ) in the magic square is the reciprocal of the weight sequence associated with the point 
(P, M) (the reflection across the main diagonal y = x). In particular, and since we will be using Schur 
products throughout, the statement that “the quotient by (M, P ) is good for some property” is equivalent 
to “the product by (P, M) is good for the same property.” For example, in considering some quotient like 
α(N, D)/α(M, P ) for the MID property, we are well on our way to an MID shift if α(N, D) is MID, 
since MID is preserved under Schur products. This will often provide zones of safe quotients “for free.”
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This same observation allows for an immediate translation from the quotient results in the figures above 
 product results, and we will leave such translation statements to the interested reader.

 Proofs of results

The basic method of proof, which we will use throughout, is to express some quotient of weights as a 
chur product of weights known to be in some class of interest. We will also use strongly the transitivity of 
e relations “�” and “�s”. Let us separate out four arguments that will be recurring.

1. Recurring arguments

i) If (N, D) is our base point, analysis of (M, D) on either a vertical or horizontal line including (N, D) is 
in general straightforward, because cancellation results in the weights for a GRWS, which we understand 
reasonably well, per the diagram in Fig. 1. This argument is to be found, for example, in consideration 
of the “vertical segment down” from (N, D) in Sector I, as in Section 4.2.

i) Particularly for diagonal segments, using an argument involving completely monotone families from [5], 
we will express some quotient of weights as interpolated by a Bernstein function, thus establishing that 
the weights correspond to an MID shift. This argument can be seen, for example, in the “diagonal 
segments over” (N, D) in Sector I, as in Section 4.3.

ii) We will use a simple but important application of transitivity. We may for some (N, D) find a partic-
ularly useful point (N ′, D′) so that (N ′, D′) is MID–subordinate to (N, D) (respectively, (N ′, D′) is 
subnormal-subordinate to (N ′, D′)) thus acquiring for (N, D) the safe zone pertaining to (N ′, D′). This 
allows us to leverage prior results; an example here is the observation, for a base point (N, D) in Sector 
IV, that we have (N, D) � (−N, −D), as in Section 8.1.

v) Finally, we note that trivially either sort of safe quotient zone includes the base point (N, D) itself. 
For clarity in diagrams, we will indicate (N, D) by a black dot without giving it the color to which it is 
entitled.

The following statements are very useful in the sequel, as they provide methods for “growing” the zone of 
fe quotients. In what follows, some designations such as “NW-SE” refer to the compass directions “North 
est” and “South East.”

heorem 3.1. For a given (N, D) ∈ (−1, 1) × (−1, 1), we have

) (M, P ) ∈ MQ(N,D) and −1 < M ≤ 0 implies (−M, P ) ∈ MQ(N,D).
(Right shadow, shown in : in Fig. 7B, a parallelogram extending from the center toward the South 
East)

) (M, P ) ∈ MQ(N,D) and |M | ≥ |P | implies (−P, −M) ∈ MQ(N,D). (Central reversed shadow, shown 
in : in Fig. 7A, a trapezoid extending from the center toward the North East)

) a) (M, P ) ∈ MQ(N,D) ∩ (−1, 0] × [0, 1) implies (−M, −P ) ∈ MQ(N,D). (NW-SE shadow, shown in 
: in Fig. 10A, a pentagon in quadrant IV with a vertex facing E)

b) (M, P ) ∈ MQ(N,D) ∩ (−1, 0] × (−1, 0] and P ≥ M together imply (−M, −P ) ∈ MQ(N,D). (SW-NE 
shadow, shown in : in Fig. 8A, a trapezoid in quadrant I from the center to the NE)

roof. 1) Assume (M, P ) ∈ MQ(N,D) and consider

α(N, D) α(N, D)

α(−M, P ) =

α(M, P ) · α(M, −M).
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he weight α(M, −M) is obviously an MID weight since it corresponds to a GRWS with the pair living 
 the line y = −x and x ≤ 0 (cf. Fig. 1). Since MID is stable under Schur products, we have as desired 
, D) � (−M, P ), i.e., (−M, P ) ∈ MQ(N,D).

2) In the same manner, we write

α(N, D)
α(−P, −M) = α(N, D)

α(M, P ) · α(M, P )
α(−P, −M) .

rely (N, D) � (M, P ) by definition if we assume (M, P ) ∈ MQ(N,D). With the assumption |M | ≥ |P |, 
e have also (−P, −M) is MID–subordinate to (M, P ). Indeed,

α2(M, P )
α2(−P, −M) = p2n − M2

p2n − P 2 = (p2)n − M2

(p2)n − P 2

d this corresponds to the weights squared for the GRWS associated to p2 with the pair (−M2, −P 2)
cated in the associated Sector I. Thus by transitivity (N, D) � (M, P ) � (−P, −M) and we have the 
sired result.

3) a) As above

α(N, D)
α(−M, −P ) = α(N, D)

α(M, P ) · α(M, P )
α(−M, −P ) = α(N, D)

α(M, P ) · α(M, −M) · α(−P, P )

d the result follows since we have the Schur product of three MID weights.

For 3) b) we need Lemma 3.4 below. To prove this result, we need to pause briefly to recall a key result 
om [5], which we reproduce here for the sake of completeness. First, we need a definition. �
efinition 3.2. Given a family G ≡ {gi}�

i=1 of infinitely differentiable positive functions defined on R+, we 
y that G is a completely monotone family if for each k = 1, 2, . . ., the derivative d

dx gk(x) is a sum of terms 
 the form

(−1)ckfk(x)
�∏

i=1
gi(x)ni (3.1)

here the ni are nonnegative integers, ck is a positive constant, and fk is a completely monotone function 
 ≤ k ≤ �). (We interpret any gi(x)0 as the function identically 1.)

The name is justified by the following lemma.

emma 3.3. Let G ≡ {gi}�
i=1 be a completely monotone family. Then each member of G is completely 

onotone.

roof. Without loss of generality, we show, by induction, that g1 is completely monotone. In fact, we show 
at the n–th derivative of g1 is a sum of terms of the form

(−1)nc
(n)
1 f1,n(x)

�∏
i=1

gi(x)ni(n) (3.2)

here c(n)
1 is a positive constant, f1,n is a completely monotone function, and the ni(n) are nonnegative 
tegers. The case n = 1 is precisely what is required by the definition in (3.1). Suppose then that the result 
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olds for n. Each term in the (n + 1)–st derivative of g1 arises from the product rule applied to some term 
 in (3.2), and there are two possibilities. If the derivative of some gj(x)nj(n) (where we ignore the trivial 
se nj(n) = 0) is being taken as part of the product rule, what results is

(−1)nc
(n)
1 f1,n(x)

�∏
i=1,i �=j

gi(x)ni(n) · (nj(n) − 1)gj(x)nj(n)−1g′
j(x)

= (−1)nc
(n)
1 f1,n(x)

�∏
i=1,i �=j

gi(x)ni(n) · (nj(n) − 1)gj(x)nj(n)−1 · (−1)cjfj(x)
�∏

i=1
gi(x)ni

= (−1)n+1c
(n)
1 cj(nj(n) − 1)f1,n(x)fj,1(x)

�∏
i=1,i �=j

gi(x)ni(n) ·
�∏

i=1
gi(x)ni

d it is easy to rewrite this to see that it is of the form required for (3.2). (Of course, we use that the 
roduct of the completely monotone functions f (n)

1 and fj,1 is completely monotone.)
In the case in which the derivative of f1,n is being taken as part of the product rule, we use that d

dx f1,n

 the negative of a completely monotone function since f1,n is completely monotone. We note that in each 
se, the sign of the (n + 1)–st derivative is as required, and the form is as claimed; this completes the 
duction. �
Observe that the strength of Lemma 3.3 is that one need only examine the first derivatives.

emma 3.4. Let (M, P ) be a pair in (−1, 1) × (−1, 1) such that P ≥ M and MP ≥ 0; then

(M, P ) � (−M, −P ).

roof. Notice that

α2(M, P )
α2(−M, −P ) = (pn + M)(pn − P )

(pn − M)(pn + P ) ,

 if P = M the result is trivial. Otherwise, we would like to prove that the interpolating function, namely

g(x) := (px + M)(px − P )
(px − M)(px + P ) ,

 a log Bernstein function. (The reader of [3] may expect that this function should be contractive; while we 
ote that it is, it is now understood that this restriction is not necessary.)

First, it is easy to see that 0 < g(x) < 1 for all x > 0. Second, we have

(log g)′(x) = g′(x)
g(x) = 2(log p)(P − M)px(p2x + MP )

(p2x − M2)(p2x − P 2) .

ote that this is positive as required. Clearly, we may discard the 2(P − M) and the log p. We then are left 
ith

px(p2x + MP )
(p2x − M2)(p2x − P 2) = px

p2x − P 2 · p2x

p2x − M2 + MPpx

p2x − M2 · 1
p2x − P 2

hich is completely monotone using the result on completely monotone families (Lemma 3.3) with the 

ecific family
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O
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re
an

M
pr

4.
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4.
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w

4.

0 
{ 1
p2x − M2 ,

px

p2x − M2 ,
p2x

p2x − M2 ,
1

p2x − P 2 ,
px

p2x − P 2 ,
p2x

p2x − P 2

}
.

bserve that the complete monotonicity of all the relevant functions can be established, using Lemma 3.4, 
 an examination of a finite number of first derivatives. In this present case, this avoids more technically 

fficult computations of all derivatives, particularly for the function x 
→ px

p2x + b
.

We are finally ready to prove (3) b). Let (M, P ) be in MQ(N,D) ∩ (−1, 0] × (−1, 0] and P ≥ M and just 
e Lemma 3.4 and transitivity: (N, D) � (M, P ) � (−M, −P ). �
With these results in hand, we turn to producing the various safe zones.

 Safe MID quotients for a base point in Sector I

Let (N, D) be a pair in Sector I; that is, 0 ≥ D ≥ N > −1. By the “Reflection Principle,” it follows 
adily that for a point (N, D) in either Sector I or Sector II, Sectors VII and VIII provide safe quotients, 
d so these latter sectors are automatically included in the zone for safe quotients.
Note second that the main diagonal in the magic square yields simply the unilateral shift (which is both 
ID and completely hyperexpansive), and thus any point on this diagonal yields a safe quotient for any 
operty of interest which the base point (N, D) itself possesses.
We may now turn to further zones.

1. The green zone

The aim is to prove that the green zone in Fig. 5 (a parallelogram extending from the center South West) 
nsists of points (M, P ) which are MID–subordinate to (N, D) and thus yielding safe MID quotients.
We will proceed in three steps.

2. Vertical segment down from (N, D)

Suppose that (M, P ) is on the green segment as in Fig. 6A, which means that (M, P ) = (N, P ) where 
≤ P ≤ D. It is clear that

α(N, D)
α(M, P ) = α(N, D)

α(N, P ) = α(P, D)

hich is obviously an MID weight since the pair (P, D) is in Sector I.

3. Diagonal segment over (N, D)

Suppose that (M, P ) is in the diagonal green segment as in Fig. 6A, so (M, P ) = (N, D) + q(1, 1) and 
≤ q ≤ −N . Then

α2(N, D)
α2(M, P ) = α2(N, D)

α2(N + q, D + q)
= pn + N

pn + D
· pn + D + q

pn + N + q
q(D − N)
= 1 − (pn + D)(pn + N + q)
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y = x + (D − N)

y = −x + (D − N)

y = −x

•
(N, D)

ig. 5. The green zone. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

e claim that x 
→ q(D − N)
(px + D)(px + N + q) is a contractive completely monotone function; this uses 

emma 3.3 on completely monotone families (see originally [5, Lemma 2.2]) where the involved family 

{ 1
px + D

,
px

px + D
,

1
px + N + q

,
px

px + N + q

}
, with − 1 < D < 0 and − 1 < N + q < 0.

herefore, the function f(x) := 1 − q(D − N)
(px + D)(px + N + q) is a Bernstein function. This ensures that 

α(N, D)
(N + q, D + q) is an MID weight.

Therefore,

(N, D) � (N + q, D + q) for every 0 ≤ q ≤ −N.

emark 4.1. Notice here that according to step 2, for any given point (N ′, D′) in Sector I, the analogous 

iagonal segment up and to the right from it consists of points MID–subordinate to (N ′, D′).
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(A) Vertical and Diagonal Line Segments

y = x
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•
(N, D)

•
(N, P ′)

•(M, P )

(B) Interior Point

Fig. 6. Work toward green zone.

y = x
y = x + (D − N)

y = −x + (D − N)

y = −x

•
(N, D)

(−D, −N)
•

(A) Blue Zone (parallelogram center to NE)

y = x
y = x + (D − N)

y = −x + (D − N)

y = −x

•
(N, D) (−N, D)

•

(B) Brown Zone (parallelogram center to SE)

Fig. 7. Blue and Brown Zones.

4. The last step

For the general situation (when the pair (M, P ) is in the interior of the green parallelogram, as in Fig. 7A 
tending from the center SW), we may use the path (N, D) −→ (N, P ′) −→ (M, P ) as in Fig. 6B, to prove 
r result. Indeed, (N, D) � (N, P ′) � (M, P ), and this yields the result. (As we have previously done in 
r diagrams, we will continue to indicate (N, D) by a black dot without giving it the color to which it is 
titled.) �
5. Central reversed shadow (The blue zone)

Using the second statement of Theorem 3.1, we obtain the blue zone in Fig. 7A – a trapezoid extending 
om the center NE – (notice that this is nothing but symmetry with respect to the axis y = −x).

6. Right shadow (The brown zone in Fig. 7B, a parallelogram extending from the center SE)
Using Theorem 3.1 (1), we obtain the brown zone.
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(−N, −D)•

(A) Red Zone (trapezoid center to NE)

y = x
y = x + (D − N)

y = −x + (D − N)

y = −x

•
(N, D) (−N, D)

•

(−D, −N)
•

(−N, −D)•

(B) MQ: (N, D) in Sector I

Fig. 8. Red Zone and MQ: (N, D) in Sector I.

emark 4.2. Note that the purple zone (NW-SE shadow) – a small triangle in the fourth quadrant arising 
om a small triangle in the second quadrant – is contained in, and pictorially hidden by, the brown zone.

7. SW-NE shadow (The red zone in Fig. 8A, a trapezoid extending from center NE)

Using Theorem 3.1 (3) b), we obtain this zone, a trapezoid in quadrant I extending from the center NE 
 in Fig. 8A.

8. Conclusion

By gathering the above zones and including Sectors VII and VIII as noted at the beginning of the 
iscussion for a base point in Sector I, we obtain the safe zone for MID quotients as in Fig. 8B or as in 
ig. 2A in Section 2 (Main Results) on page 5.

 Safe MID quotients for a base point in Sector II

Our assumption is −N ≥ D > 0 > N > −1. We begin with the following result.

heorem 5.1. Let (N, D) be in Sector II (−N ≥ D > 0 > N > −1). Then we have

MQ(N,−D) ⊆ MQ(N,D).

roof. Just write

α(N, D)
α(M, P ) = α(N, D)

α(N, −D) · α(N, −D)
α(M, P ) = α(−D, D) · α(N, −D)

α(M, P ) .

ince (−D, D) is in Sector II, α(−D, D) is an MID weight, and we have the result. �
emark 5.2. The application of this theorem is straightforward and we will reserve its implications until we 
semble results into a picture at the end. Observe that
(N, D) � (M, P ) ⇐⇒ (N, M) � (D, P ).
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) Green (pentagon in quadrant II) and Brown (pentagon in 
adrant I) Zones
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•(N, D)

•
(−D, −N)

•
(−N, D)

•
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(B) Blue Zones, trapezoids in quadrants II and III

Fig. 9. Green, Brown, and Blue Zones.

The most useful approach for this sector is to take advantage of the known facts about safe zones for the 
otients with a starting point in Sector I.

1. “Left side” (The green zone)

If M < 0 then (N, M) is in Sector I if furthermore N ≤ M . Thus, in this case (since we know already 
at −N ≥ D > 0), we have

(N, M) � (D, P ) ⇐=

⎧⎪⎨
⎪⎩

D − (M − N) ≤ P ≤ D + (M − N)
D ≤ −N (which holds)
0 ≤ P ≤ −N

⇐⇒
{

−M + (D + N) ≤ P ≤ M + (D − N)
0 ≤ P ≤ −N

hus we obtain the safe zone, a pentagon in quadrant II with a vertex facing W (Fig. 9A, green zone).

2. “Right shadow” (The brown zone, a pentagon with a vertex facing E)

Using the first statement of Theorem 3.1, we get (Fig. 9A, brown zone, a pentagon in quadrant I with a 
rtex facing E).

3. “Central reversed shadow” (The blue zone)

Using the second statement of Theorem 3.1, we obtain Fig. 9B, two trapezoids: one in quadrant II roughly 
secting the left pentagon in Fig. 9A, and one in quadrant III.

4. “NW-SE shadow” (The purple zone)

Applying the third result of Theorem 3.1, we obtain the purple zone in Fig. 10A, a pentagon in quadrant 
 with a vertex facing E.

emark 5.3. Notice that the blue zone and the purple one are contained in, and in the pictures hidden by, 

her safe zones (see below).
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(B) MQ: (N, D) in Sector II

Fig. 10. Purple Zone and MQ: (N, D) in Sector II.

5. Conclusion

Putting all of this together, including that Sectors VII and VIII are safe, as noted before, and including 
e one resulting from Theorem 5.1, we obtain the picture in Fig. 10B or as in Fig. 2B in Section 2 (Main 
esults) on page 5.
We now turn to Sector VIII, departing from the order one might anticipate, so as to be able to leverage 
rlier results more efficiently.

 Base point in Sector VIII

Consider (N, D) in Sector VIII, which is D < N < 0, and some (M, P ) MID–subordinate to (N, D), so

α2(N, D)
α2(M, P ) = pn + N

pn + M
· pn + P

pn + D

 the square of an MID weight.
A sufficient condition, using the terms in the above choice of grouping terms, conditions for MID GRWS 

 in Fig. 1 (page 4), and Schur products, is

{
N ≤ M ≤ −N

P ≤ D ≤ −P
⇐⇒

{
N ≤ M ≤ −N

−1 < P ≤ D

hich gives the first part of the corresponding safe zone. (NB: In particular, the vertical line segment down 
om (N, D) is safe.)
Now, we’ll use a technique we have used above for when the pair (M, P ) is on a diagonal from the base 

oint, but this time below (N, D). This means (M, P ) = (N, D) + q(1, 1) and −1 − N < q < 0. Then

α2(N, D)
α2(M, P ) = α2(N, D)

α2(N + q, D + q)
= pn + N

pn + D
· pn + D + q

pn + N + q
q(D − N)
= 1 − (pn + D)(pn + N + q)
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(A) MQ: (N, D) in Sector VIII
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(B) MQ: (N, D) in Sector III

Fig. 11. MQ: (N, D) in Sectors VIII or III.

e have that x 
→ q(D − N)
(px + D)(px + N + q) is a completely monotone function, using Lemma 3.4 and the 

mily

{ 1
px + D

,
px

px + D
,

1
px + N + q

,
px

px + N + q

}
with − 1 < D < 0 and − 1 < N + q < 0.

herefore the function f defined by

f(x) := 1 − q(D − N)
(px + D)(px + N + q)

 a Bernstein function. This ensures that

α(N, D)
α(N + q, D + q)

 a MID weight. So (N, D) � (N + q, D + q) for every q, −1 − N < q < 0.
Using transitivity, we obtain the picture of the MID safe zone as in Fig. 11A.

 Base point in Sector III

Suppose (N, D) is in Sector III, which is N < 0 and D > −N , and as usual consider some point (M, P )
bordinate to (N, D). If P = D, it is clear that

α(N, D)
α(M, P ) = α(N, M)

 MID if N ≤ M ≤ −N which proves that a certain horizontal line segment is safe.
Further, α(N,D)

α(N,−D) = α(−D, D), and this latter weight yields MID using D > 0 as it is in (on the 
undary of) Sector II, so α(N, D) � α(N, −D). With (N, D) in Sector III, (N, −D) is in Sector VIII, and 

e may apply transitivity; combining with the result from the previous paragraph, we obtain the MID

fe zone in Fig. 11B.
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 Base points in Sector IV, V, VI and VII

First, if (N, D) is in Sector V, so 0 < D < N , we prove that (−D, −N) is MID–subordinate to (N, D)
d we obtain a safe zone using the result for Sector VIII above. Observe that

α2(N, D)
α2(−D, −N) = p2n − N2

p2n − D2

d is obviously a weight squared corresponding to an MID GRWS with p2 given our assumptions on N
d D, yielding the picture in Fig. 12B.
Second, if (N, D) is in sector IV, we have

0 < N < D, (8.1)

d citing Lemma 3.4 we obtain (−N, −D) is MID–subordinate to (N, D). Using again transitivity and 
rior results we obtain the picture in Fig. 12A.

Third, if (N, D) is in sector VI or VII, meaning that D < 0 < N , we’ll show (0, D − N) is 
ID–subordinate to (N, D). Indeed,

α2(N, D)
α2(0, D − N) = pn + N

pn + D
· pn + D − N

pn

= 1 − N(N − D)
pn(pn + D) .

Since −1 < D ≤ 0 and N(N − D) > 0, the map x 
→ N(N − D)
px(px + D) is a completely monotone function, 

sing Lemma 3.3, and so the function

f(x) := 1 − N(N − D)
px(px + D)

 a Bernstein function. Consequently,

α(N, D)
α(0, D − N)

 an MID weight so (N, D) � (0, D−N), and again we apply transitivity. This gives the result in Fig. 12C 
hich covers both Sectors VI and VII).
The three results obtained for MID safe quotients for a base point in Sector IV, V, and VI/VII are 
mmarized in Figs. 12A through 12C.

 Subnormal safe quotients

We turn next to determining points yielding safe subnormal, as opposed to safe MID, quotients. For 
, D) and (M, P ) in our magic square (−1, 1) × (−1, 1), recall the partial order (N, D) �s (M, P ) (intro-

uced in Definition 2.2) and the set SQ(N,D) (given by (2.2)).

emark 9.1. 1) It is clear that MQ(N,D) ⊆ SQ(N,D), which makes for a nesting of safe quotient zones.
2) The presence of the special lines in Sector IV, upon which there is subnormality, makes for considerably 
ore complicated pictures for subnormal safe quotients than for MID quotients.



18 C. Benhida et al. / J. Math. Anal. Appl. 538 (2024) 128443

zo

(s
so

B
su
at

co
fo
or

of
bo

in
us

9.

ad
zo

9.
y = x

•
(N, D)

•(−N, −D)

(A) MQ: Sector IV

y = x

•
(N, D)

•(−D, −N)

(B) MQ: Sector V

y = x

•
(N, D)

• (0, D − N)

(C) MQ: Sector VI, VII

Fig. 12. MQ: (N, D) in Sectors IV, V, VI, and VII.

In the sequel, we will consider, for various placements of the base point, at least some portion of those 
nes. We again assemble some general observations.
First, the presence of the special lines creates what we call “raindrops” for base points (N, D) with D > 0

ee Fig. 14). If we consider points on the vertical line segment from (N, D) with coordinates (N, D/pk) for 
me positive integer k, we have the quotient

α2(N, D)
α2(N, D/pk) =

pn+N
pn+D

pn+N
pn+D/pk

= pn + D/pk

pn + D
.

ut this is a weight squared for a GRWS in Sector IV on the special line y = pkx, and thus yields a 
bnormal shift. A similar result concerning “raindrops,” but this time lying horizontally from (N, D) and 
 (pkN, D), obtains if N is positive.
Second, note also that a point (N, P ) on this same vertical line, but with P ≤ 0, yields, by a similar 
mputation for the quotient, a point in Sector II or III, again yielding a subnormal shift. A similar result 
r a horizontal line holds in the case in which N is negative. These two yield, in what follows, horizontal 
 vertical line segments that extend “to the boundary” of the magic square.
Third, if (N, D) produces raindrops of either kind, by transitivity the safe zone for subnormal quotients 

 (N, D) will include the union of all the safe zones of the raindrops; it is this that produces the serrated 
undaries for base points (N, D) in Sectors II and III.
Fourth, if the base point (N, D) already yields a subnormal (or MID) shift, points on the reflections 

to Sector V of the special lines in Sector IV produce, via the reflection principle, subnormal shifts when 
ed to form quotients.

1. (N, D) in Sector VIII

In this case, of course we contain the safe MID quotient zone as in Fig. 11A; the picture in Fig. 13A 
ds a zone arising from “horizontal lines that extend to the boundary” from points in the MID quotient 
ne as in the third observation above, and we leave the computation to the interested reader.

2. (N, D) in Sectors VI or VII

Here we have N > 0 and D < 0, and using the grouping

α2(N, D) pn + N pn + P
α2(M, P ) =
pn + M

·
pn + D

, (9.1)
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Fig. 13. SQ: (N, D) in Sectors VIII, VI, or VII.
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(B) SQ: generic (N, D) in Sector IV

Fig. 14. SQ: (N, D) in Sector V or generic in Sector IV.

e have that if M = pkN for some integer k and −1 < P ≤ D then (N, D) �s (M, P ). Thus, we 
tain horizontal raindrops and vertical line segments that extend to the boundary from them. Further, 
e computes that (0, D − N) is subnormal-subordinate to (N, D); since this is a point in Sector VIII, we 
tain by transitivity its safe subnormal quotient zone as just above, yielding the picture in Fig. 13B.

3. (N, D) in Sector V

We may obtain the horizontal and vertical raindrops as usual, as well as the aligned vertical lines down 
om the x axis to the boundary. We have proved that for a point in Sector V we have (−D, −N) is 
ID–subordinate to (N, D) � (−D, −N) (Section 8), so it is surely subnormal-subordinate, thus adding 
 the safe subnormal quotient zone for (N, D) that for (−D, −N) in Sector VIII, and Fig. 14A follows.
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Fig. 15. SQ: non-generic (N, D) in Sector IV.

4. (N, D) in Sector IV, “generic” case (not on a special line)

Here we have both N > 0 and D > 0, so we get both horizontal and vertical raindrops; as well, we obtain 
e vertical lines to the boundary in quadrant IV below the vertical raindrops. From the raindrops which lie 
 Sector V we obtain their safe zones as in Fig. 14A from transitivity, and while no such raindrop can lie 
 the main diagonal y = x (else (N, D) would be on a special line) we obtain their union. In particular, we 
tain the safe zone arising from the raindrop (M, P ) = (pkN, D/pj) in Sector V where D/pj is as large as 
ssible and pkN is as small as possible; this is the first raindrop in the first column which falls into Sector 

. Putting this together yields the picture in Fig. 14B as the safe subnormal quotient zone for a generic 
int in Sector IV.

5. (N, D) in Sector IV, “non-generic” case (on a special line)

In this case everything holding for the generic case still holds; as well, we obtain the reflections across 
e main diagonal into Sector V of the special lines in Sector IV (since the shift associated with (N, D) is 
bnormal). Note that the raindrops from (N, D) which lie in Sector V are actually on these reflected lines 
d are not otherwise indicated. We obtain all of Sectors VI, VII, and VIII by the reflection principle, since 
otients with these points are products with points of subnormality. What results is the picture in Fig. 15.

6. (N, D) in Sector I

We begin with the safe zone for MID quotients as in Fig. 2A on page 5. To this we may adjoin the 
flections of special lines from Sector IV as usual; note that vertical or horizontal raindrops from points 
 these reflections will themselves be on reflected lines and add nothing new. Of course, we obtain all of 
ctors VI, VII, and VIII.
Consider next some horizontal segment in the safe zone and in the first quadrant. The Sector IV or Sector 

 first horizontal raindrops from the points in this horizontal segment create another horizontal segment 
ifted to the right; in particular, a segment from (M, P ) to (P, P ) is shifted to the segment from (pM, P )
 (pP, P ). These shifted segments will overlap if pM ≤ P , thus extending the horizontal segment without 
break. The raindrops from the second segment, of course, create a further shifted segment and so on, and 
 is easy to check that the overlaps continue if pM ≤ P . What results is a horizontal segment, without 

eaks, from (M, P ) to the right-hand boundary.
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Fig. 16. Work toward SQ: (N, D) in Sector II.

We shall apply this general observation to the points on the left-hand upper diagonal boundary of the 
fe zone for MID quotients as in Fig. 2A on page 5. The intersection of this boundary (y = x + (D − N)) 
ith the line y = px is at the point (D−N

p−1 , p D−N
p−1 ). For any point (Q, R) on the y = x + (D − N) line 

ith second coordinate less than p D−N
p−1 ), by the argument above we may add to the safe zone the whole 

orizontal line from (Q, R) to the right-hand boundary of the square.
For points (Q, R) = (Q, Q +(D−N)) on the boundary line y = x +(D−N) with R = Q +(D−N) ≥ −D, 
e horizontal segment from (Q, R) to (−N, R) will overlap with its shifted segment (pQ, R) to (p(−N), R)

 and only if pQ ≤ −N , and this overlap of shifted segments will persist to create the unbroken horizontal 
ne from (Q, R) to the right-hand boundary of the square. If pQ > −N , however, the shifted segments will 
ot overlap and we will create a “notch” with vertical right-hand boundary because of the common right 
ift of the vertical segment with first coordinate −N . The shifts of these segments may create a second 

otch, and so on.
There are a number of cases, and we content ourselves with drawing, in Fig. 3A on page 6, a reasonably 

pical safe subnormal quotient zone for (N, D) in Sector I.

7. (N, D) in Sector II

We begin with the safe MID quotient zone as in Fig. 2B on page 5. Since we have subnormality at 
, D) we may add all of Sectors VI, VII, and VII, and the reflections of the special lines from Sector IV into 

ector V. Consideration (as in the discussion for Sector I) of horizontal segments from some point (0, R) to 
, R) with 0 ≤ R ≤ −N fill in the rectangle with corners (0, 0), (0, −N), (1, −N), and (1, 0). Consideration 

 the vertical segment from (N, −D) to (N, 0), easy as discussed before, yields that this segment is safe, 
d then a repetition of the diagonal argument from it yields (so far) the picture in Fig. 16A.
However, to this we must add the vertical raindrops from (N, D), each of which comes with its own 
rsion of the picture in Fig. 16A; what results finally from the union as a safe subnormal quotient zone for 
, D) in Sector II is as in Fig. 16B.

8. (N, D) in Sector III

To the safe quotient zone for MID quotients as in Fig. 11B we may, as usual, add Sectors VI, VII, 
d VIII and the reflections of the special lines in Sector IV; it is easy to show that the horizontal line 
om (N, D) extends to the right-hand boundary. When we include the vertical raindrops, those remaining 
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Fig. 17. SQ: (N, D) in Sector III.

 Sector III contribute their own horizontal line segments, while those in Sector II contribute their own 
rsion of Fig. 16A. What results from the union is Fig. 17 or as in Fig. 4 on page 6.

. Circumscribing safe zones

We do not claim to have obtained the maximal safe zones either for MID safe quotients or for subnormal 
fe quotients. A natural question, for example, is whether the interiors of the quadrilaterals bounded by 
e horizontal and slant safe lines for a base point in Sector III can be added to the safe subnormal quotient 
ne (see Fig. 17). This is not true, at least in general; with the aid of Mathematica [12] we can show that 
ith (N, D) = (−1/10, 2/5) the point (2/5, 1/3) interior to one such quadrilateral is not a subnormal safe 
otient. As well, there are other assorted routes to attempt to rule out points in the magic square from 
ing safe, which we discuss and illustrate briefly.
First, a shift is MID if and only if its weights (or weights squared) are log completely alternating. If we 
 a value of p, we may check using Mathematica [12] plots of the areas of negativity for tests of the form

n∑
i=0

(−1)i

(
n

i

)
ln (αi+j) ,

here the test starts at αj and the test is for part of n–alternating for the log. The picture in Fig. 18 gives 

or p = 3/2, (N, D) = (−1/2, −1/3)) a version of such a plot. (A point is excluded if it is not on the same 
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Fig. 18. MID Exclusion using log completely alternating test curves.

ide” of the curve as the origin, or, equivalently, if it is not on the same side of the curve as the line segment 
hich is part of the line N = D.) The picture is indicative of the fact that since the main diagonal is safe, 
 seems numerically difficult to exclude areas. We note that this problem is even more severe in the case of 
bnormal safe zones, as a glance at Fig. 17 on page 22 will make clear.
Second, we may prove that certain zones are excluded. In particular, if (M, P ) � (N, D) (respectively, 
, P ) �s (N, D)), except in the trivial case (M, P ) = (N, D) we have (N, D) �� (M, P ) (respectively, 
, D) ��s (M, P )) because of the partial order. For example, and using transitivity, for (N, D) in Sector I 

 in Fig. 2A on page 5 we may exclude from its safe MID quotients every (M, P ) such that P < D and 
puts the point above the diagonal line down and to the left from (N, D). What results, in the case p = 2, 
, D) = (−1/3, −1/2) is an excluded set as shown in Fig. 19.
Third, we note that the excluded points form an open set (since either MID or subnormality, as the 

tersection of zones determined by weak inequality conditions, is a closed condition). So, for example, for 
ID safe quotients for a point (N, D) in Sector II as in Fig. 2B on page 5, one can show that the open 

gment between (N, D) and (N, −D) is not safe (the relevant quotients fall in sectors not yielding even 
bnormality). This means that for any compact subset of this open segment, there is actually an open 
ube” of failure points.
In the paper [6], forthcoming, we will explore a notion that, applied in the particular case of the GRWS 

uotients, allows for further exclusion from quite a different point of view.

emark 10.1. First, the safe zones we have found for MID quotients would appear to be independent of 
and depend only on the pair (N, D); we conjecture that this is true for the full safe zones but do not 

nderstand why this should hold. It surely does not for subnormal safe quotients, because of the special 
nes which are clearly dependent upon p.

We observe next that the partial orders, here used within the class of GRWS, can in fact (with due care) 

e extended to the class of all shifts, and we will take this up in a subsequent paper [7].
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