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1. Introduction and preliminaries

Let H be a separable, complex infinite dimensional Hilbert space and £(#) the algebra of bounded linear
operators on H. The current paper continues the study, initiated in [5], of certain weighted shifts in £(H)
called the geometrically regular weighted shifts (henceforth, GRWS), with concentration on when their
quotients and products belong to standard classes of interest, especially the MZD and subnormal shifts (all
definitions reviewed below). We introduce as well two useful partial orders on these weighted shifts which
aid in the study, and recast some earlier results in terms of these orders.

The study of such quotients is pertinent because the resulting shifts add to the collections of reasonably
tractable shifts, which nonetheless extend the standard shift examples. Shifts are often used to begin the
study of a new concept or definition, or as test operators for a new hypothesis. However, we have discovered
that the most used ones — the Agler-type shifts related to the Bergman shift and the finitely atomic (recur-
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sively generated) shifts — are so special as to be seriously misleading. The GRWS themselves are such an
addition to the example set; their quotients, in various classes of considerable interest as defined by a base
point and other points in the parameter space, yield a “quotient safe zone” for some property, and they are
a further such addition. Related to these considerations is the fact that MZD shifts form a sophisticated
yet tractable collection of operators, with many important properties, among others, their stability under
the Aluthge transform and Schur products [4]. As a result, any time two GRWS W,, and W3 have a (Schur)
MID quotient W%7 all reasonable properties involving moment matrices or Agler sums enjoyed by W3 will
transfer to W,. This places the class of MZD GRWS in a privileged position, and justifies our emphasis on
safe quotients.

We first briefly recall the relevant definitions and set notation. For a more complete introduction and
fuller discussion, see [5].

1.1. Unilateral weighted shifts and operator properties

Set Np := {0,1,...} and let ¢? be the classical Hilbert space ¢?(Ng) with canonical orthonormal basis
€0, €1,.... Let a: ag, a1, ... be a (bounded) non-negative weight sequence and W, the weighted shift defined
by Wae; := ajejr1 (j > 0) and extended by linearity. (It is standard that for our questions of interest we
may, and do henceforth, assume that « is positive, i.e., a, > 0 for all n.) The moments v = (7,,)22, of the
shift are given by 79 := 1 and =, := ngol a? forn > 1.

An operator T' € L(H) is normal if TT* = T*T, where T™* is the adjoint of T. (It is well known that
with our assumption of positive weights no weighted shift can be normal.) An operator is subnormal
if it is the restriction of a normal operator to a (closed) invariant subspace. Weighted shifts have been
studied extensively with respect to subnormality and related properties; there is a condition sufficient for
subnormality via an approach through k—hyponormality (positive (semi)-definiteness of moment matrices)
and the Bram-Halmos theorem (see originally [9], and [5] for background and further references). There is a
second approach through n—contractivity and the Agler-Embry theorem (see originally [1] and again [5] for
context); as well, a weighted shift is subnormal if and only if it has a Berger measure (a measure compactly
supported in R4 whose moment sequence is the moment sequence of the shift — see [10, II1.8.16] and [11]).

It is well known that the Schur (Hadamard, or entry-wise) product of two positive (semi)-definite matrices
is again positive (semi)-definite. It follows readily from the Bram-Halmos approach to subnormality that
if W, and W3 are subnormal (respectively, k—hyponormal for some k) shifts, then the shift with weight
sequence the Schur product af is subnormal (respectively, k—hyponormal).

In [3] and [4] certain “better than subnormal” shifts were considered. We say that a shift W, is moment
infinitely divisible (henceforth, MZD) if, for every real s such that s > 0, the shift with weight sequence

o’ = (af)22, is subnormal. One characterization of such shifts relies on sequence conditions, and we turn

n/n=0
next to some needed machinery.

Recall that the forward difference operator V on a sequence § = (f,,) is defined by (V). := Bn — Bn+1,
and powers of V are defined recursively by V(©) as the identity mapping and V(**t1 := V(V(™). A sequence
f is completely monotone if V(™3 >0 for all n = 1,2,.... We say a sequence is log completely monotone
if VO InpB >0 for all n = 1,2, ...; note that we do not require that the terms In 3, be themselves positive.
The backward difference operator A is defined by A := —V, and a sequence [ is completely alternating
(respectively, log completely alternating) if A3 > 0 for n = 1,2,... (respectively, A Ing > 0 for
n = 1,2,..., where again, in contrast to the definition in [8] we do not require that the terms In 3, be
themselves positive). It is known from [3] and [4] that a contractive shift is MZD if and only if its moment
sequence is log completely monotone, or, equivalently, its weight sequence is log completely alternating. The
implications are as follows, with (a,)%2, the weights of the shift and (v,)52, the moments:
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(an)5>y completely alternating

4

(an)o2 g log completely alternating < (v, )ne log completely monotone

4

(Yn)52 completely monotone.

The first implication is [3, Prop. 2.2], the intermediate bi-implication is implicit in [4, Theorem 3.4], and the
final implication is [4, Corollary 3.6]. Note that a contractive shift is subnormal if and only if its moment
sequence is completely monotone, which is just the Agler-Embry condition in different language.

These conditions may sometimes be verified by showing that the sequence is interpolated by a function in
an appropriate class. Recall that an infinitely differentiable function f : R} — R is completely monotone if
f is non-negative, and its derivatives alternate in sign: f(™) is non-negative for n even and non-positive for n
odd. We say f is log completely monotone if In f is completely monotone, except that we do not insist that
In f is itself non-negative. It is straightforward to show that if a sequence is interpolated by a completely
monotone [respectively, log completely monotone] function, it is completely monotone [respectively, log
completely monotone]. Related classes are the Bernstein functions (infinitely differentiable functions f :
R, — R which are non-negative and whose first derivative is completely monotone) and the log Bernstein
functions (those f such that In f is Bernstein, except again we do not, in contrast to [8], require that In f
is itself non-negative). It is known that a sequence interpolated by a Bernstein [respectively, log Bernstein]
function is completely alternating [respectively, log completely alternating]. See [5] for further details and
more complete discussion. Finally, an operator class related to subnormality is the class of completely
hyperexpansive operators; these are obtained by reversing the direction of the inequality in the tests for
n—contractivity (see originally [2], and [5] for definitions and discussion), and it follows from the definitions
that completely hyperexpansive shifts are those for which the moment sequence is completely alternating.

Recall from [5] that the geometrically regular weighted shifts (briefly, GRWS) are those shifts with weight
sequence given by

an(N,D) =

where p > 1 and (N, D) is fixed in (—1,1) x (—1,1).

We state the needed partial versions of previous results for geometrically regular weighted shifts (them-
selves, as opposed to their quotients which are the subject of the current paper) from [5] and, in particular,
their membership in the various general classes, in reference to the diagram in Fig. 1. This is, for fixed
p > 1, the open unit square in R? with parameter pair (IV, D), and with Sectors I, II, ..., the ray D = pN
in Sector VIIT and the rays of the form D = p™N in Sector IV. (Hereafter, by a sector we mean the convex
cone in the open unit square with vertex at (0,0) and bounded by two rays emanating from the center. All
sectors in this paper will be closed in the relative topology of the open unit square.) We take the slight
liberty of referring to the open unit square in this context as the “magic square.”

(The online version of this paper has pictures in color while the print version does not. The reader of a
print version may wish to consult the online version, or refer to an earlier preprint version on the ArXiv:
arXiv:2312.06390.)

The classes of interest relevant here appear as follows:

e In Sector I, the weighted shifts are MZD with the sequence of weights squared interpolated by a
Bernstein function;

e In Sector II, the weighted shifts are MZD with the sequence of weights squared interpolated by a log
Bernstein function;

e In Sector III, the weighted shifts are subnormal;
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Fig. 1. Magic Square.

e In Sector IV, the shifts corresponding to points on the special lines D = p"N, n = 0,1,2,..., are
subnormal with finitely atomic Berger measure but not MZD (except on the line D = N, which yields
the unweighted shift, which is MZD); on the boundary with Sector III the shift is subnormal but not
MZID; other points in the sector yield shifts that are not subnormal (although they are k—hyponormal
for various k);

e In Sector VIITA, the shifts are completely hyperexpansive.

This numbering is chosen so that Sector I holds the “best” parameters, yielding shifts that are not only
subnormal but MZD; indeed, their weights have the stronger property that they are interpolated by a
Bernstein function, and, for a portion of the sector, the even stronger property of being the reciprocals of
the weights of a completely hyperexpansive weighted shift (see [2] and [3] for the discussion showing this is
stronger than MZD). Sector II contains the next best parameters, yielding an MZD shift, and from there
we simply proceed clockwise.

2. Main results
We first give a useful definition of two partial orders on the parameter space yielding the shifts we study.

Definition 2.1. Let (N, D) and (M, P) be two points in the open unit square (—1,1) x (—=1,1). We say
(N,D) > (M, P) if the weight géﬁ% is an MZD weight (i.e., the shift with weights the Schur quotient is
MUID). Often, particularly in text, we will say (M, P) is MZD-subordinate to (N, D) if (N, D) > (M, P).

Similarly, we say

Definition 2.2. (N, D) >, (M, P) if the weight Zgﬁgg is a subnormal weight (i.e., the shift with weights the

Schur quotient is subnormal). We will say (M, P) is subnormal-subordinate to (N, D) if (N, D) >, (M, P).
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(A) MQ: (N, D) in Sector I (B) MQ: (N, D) in Sector II

Fig. 2. MQ: (N, D) in Sectors I or II.

Implicit in the above definitions, but omitted from the notation, is that we consider p as fixed in such

situations.
Proposition 2.3. The relation “>7 [respectively, “>;”] is a partial order.

Proof. The proof is straightforward using, for antisymmetry, that a subnormal shift must have a weakly
increasing weight sequence and, to handle transitivity, that the Schur product of two MZD (respectively,
subnormal) shifts is MZD (respectively, subnormal). O

For a given “base point” (N, D), define as well the sets
MQn py = {(M,P) € (—1,1) x (—1,1) such that (N, D) > (M, P)}, (2.1)
and
SQn,py := {(M,P) € (—1,1) x (=1,1) such that (N, D) >, (M, P)}. (2.2)
We may refer to these sets as containing the points yielding “safe MZD [respectively, subnormal] quotients.”

Observe also that MOy py € SQ(n,p)-

Given a base point (N, D) in one of various sectors, we will give sets contained in the sets MQy p)
and SQ(n,p); we will often refer to these as safe zones. The pictures in Figs. 2, 3 and 4 contain the most
important relevant results.

Theorem 2.4. For (N, D) in Sector I, MQn, p) - the set of safe MID quotients — contains the set shown
in Fig. 2A; for (N, D) in Sector II, MQy,py contains the set shown in Fig. 2B.

Similar results for base points in Sectors III-VIII and their MZD safe quotients are given in the next
section, where the results are proved.

Theorem 2.5. For (N, D) in Sector I, SQ(n,p) — the set of safe subnormal quotients — contains the set
shown in Fig. 3A; for (N, D) in Sector II, SQ(n,py contains the set shown in Fig. 5B; for (N, D) in Sector
I, SQ(n,p) contains the set shown in Fig. j.

Note that the serrated left boundaries for (N, D) in Sectors II and III are intentional.
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(A) SQ: (N, D) in Sector I (B) SQ: (N, D) in Sector II

Fig. 3. SQ: (N, D) in Sectors I or II.

Fig. 4. SQ: (N, D) in Sector III.

Similar results for base points in the Sectors IV-VIII and their subnormal safe quotients are also given
in the next section.

Remark 2.6. “Reflection principle”

We pause here to record an observation useful in the sequel. Observe that the weight sequence associated
with a point (M, P) in the magic square is the reciprocal of the weight sequence associated with the point
(P, M) (the reflection across the main diagonal y = z). In particular, and since we will be using Schur
products throughout, the statement that “the quotient by (M, P) is good for some property” is equivalent
to “the product by (P, M) is good for the same property.” For example, in considering some quotient like
a(N,D)/a(M, P) for the MZID property, we are well on our way to an MZD shift if a(N, D) is MID,
since MZD is preserved under Schur products. This will often provide zones of safe quotients “for free.”
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This same observation allows for an immediate translation from the quotient results in the figures above
to product results, and we will leave such translation statements to the interested reader.

3. Proofs of results

The basic method of proof, which we will use throughout, is to express some quotient of weights as a
Schur product of weights known to be in some class of interest. We will also use strongly the transitivity of
the relations “>” and “>>;”. Let us separate out four arguments that will be recurring.

3.1. Recurring arguments

(i) If (N, D) is our base point, analysis of (M, D) on either a vertical or horizontal line including (N, D) is
in general straightforward, because cancellation results in the weights for a GRWS, which we understand
reasonably well, per the diagram in Fig. 1. This argument is to be found, for example, in consideration
of the “vertical segment down” from (N, D) in Sector I, as in Section 4.2.

(#i) Particularly for diagonal segments, using an argument involving completely monotone families from [5],
we will express some quotient of weights as interpolated by a Bernstein function, thus establishing that
the weights correspond to an MZD shift. This argument can be seen, for example, in the “diagonal
segments over” (N, D) in Sector I, as in Section 4.3.

(#ii) We will use a simple but important application of transitivity. We may for some (N, D) find a partic-
ularly useful point (N’,D’) so that (N',D’) is MZID-subordinate to (N, D) (respectively, (N', D’) is
subnormal-subordinate to (N’, D')) thus acquiring for (N, D) the safe zone pertaining to (N’, D’). This
allows us to leverage prior results; an example here is the observation, for a base point (N, D) in Sector
IV, that we have (N, D) > (=N, —D), as in Section 8.1.

(iv) Finally, we note that trivially either sort of safe quotient zone includes the base point (N, D) itself.
For clarity in diagrams, we will indicate (N, D) by a black dot without giving it the color to which it is
entitled.

The following statements are very useful in the sequel, as they provide methods for “growing” the zone of
safe quotients. In what follows, some designations such as “NW-SE” refer to the compass directions “North
West” and “South East.”

Theorem 3.1. For a given (N, D) € (—1,1) x (—1,1), we have

(1) (M,P) € MQ(n,py and —1 < M < 0 implies (=M, P) € MQn p).
(Right shadow, shown in B in Fig. 7B, a parallelogram extending from the center toward the South
East)
(2) (M,P) € MQn,py and |[M| > |P| implies (—P,—M) € MQ py. (Central reversed shadow, shown
in I in Fig. 7A, a trapezoid extending from the center toward the North East)
(3) a) (M,P) € MQn,pyN(=1,0] x [0,1) implies (—M,—P) € MQn,py. (NW-SE shadow, shown in
B in Fig. 104, a pentagon in quadrant IV with a vertez facing E)
b) (M, P) € MQn.pyN(—1,0] x (—=1,0] and P > M together imply (—M,—P) € MQn,p). (SW-NE
shadow, shown in IHM: in Fig. 8A, a trapezoid in quadrant I from the center to the NE)

Proof. 1) Assume (M, P) € MQn p)y and consider

a(N,D)  «a(N,D)
oM. P) a1 p) M M),
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The weight a(M, —M) is obviously an MZD weight since it corresponds to a GRWS with the pair living
on the line y = —z and « < 0 (cf. Fig. 1). Since MZD is stable under Schur products, we have as desired
(N,D) > (=M, P),ie., (=M, P) € MQn p).

2) In the same manner, we write

a(N,D)  a(N,D) a(M, P)

a(—=P,—M)  o(M,P) o(—P,—M)

Surely (N, D) > (M, P) by definition if we assume (M, P) € MQy py. With the assumption |M| > |P|,
we have also (—P, —M) is MZD-subordinate to (M, P). Indeed,

042(1\47 P) an _ M2 - (pQ)n _ M2

a?(—P,—M) - p2n — P2 B (p?) — P2
and this corresponds to the weights squared for the GRWS associated to p? with the pair (—M?, —P?)

located in the associated Sector I. Thus by transitivity (N, D) > (M, P) > (—P,—M) and we have the
desired result.

3) a) As above

a(N,D)  «(N,D) a(M,P)  a(N,D)
a(-M,—P) ~ a(.P) a(-M,—P) _ a(ar,p) WM a=RE)

and the result follows since we have the Schur product of three MZD weights.

For 3) b) we need Lemma 3.4 below. To prove this result, we need to pause briefly to recall a key result
from [5], which we reproduce here for the sake of completeness. First, we need a definition. O

Definition 3.2. Given a family G' = {g;}¢_, of infinitely differentiable positive functions defined on R, we
say that G is a completely monotone family if for each k = 1,2, ..., the derivative % gx(z) is a sum of terms
of the form

4

(—Derfi(@) [ [ gix)™ (3.1)

=1

where the n; are nonnegative integers, ¢, is a positive constant, and fi is a completely monotone function
(1 <k < /). (We interpret any g;(x)° as the function identically 1.)

The name is justified by the following lemma.

Lemma 3.3. Let G = {g;}\_; be a completely monotone family. Then each member of G is completely
monotone.

Proof. Without loss of generality, we show, by induction, that g; is completely monotone. In fact, we show
that the n—th derivative of g; is a sum of terms of the form

14

(—1) et frn(@) [T gi(a)™ ™ (3.2)

i=1

where c§”) is a positive constant, f1, is a completely monotone function, and the n;(n) are nonnegative

integers. The case n = 1 is precisely what is required by the definition in (3.1). Suppose then that the result
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holds for n. Each term in the (n 4 1)-st derivative of g1 arises from the product rule applied to some term
as in (3.2), and there are two possibilities. If the derivative of some g;(x)" (") (where we ignore the trivial
case nj(n) = 0) is being taken as part of the product rule, what results is

L

0" ) TT @)™ - g (0) = 1y o)™ g5 )

i=1,i#j
l l
= (1" fnl@) T 9i@)™® - (n(n) = 1)gs ()™M= (=1)e; f5(2) [ gi(a)™
i=1,ij i=1

14

l
= (~1)" e e;(ni(n) — D) i) fia(x) T gil@)™ ™ -] gilx)™
=1

i=1,i#j

and it is easy to rewrite this to see that it is of the form required for (3.2). (Of course, we use that the
product of the completely monotone functions fl(n) and f;1 is completely monotone.)

In the case in which the derivative of f; ,, is being taken as part of the product rule, we use that % fin
is the negative of a completely monotone function since f; , is completely monotone. We note that in each
case, the sign of the (n + 1)-st derivative is as required, and the form is as claimed; this completes the
induction. O

Observe that the strength of Lemma 3.3 is that one need only examine the first derivatives.
Lemma 3.4. Let (M, P) be a pair in (=1,1) x (=1,1) such that P > M and M P > 0; then
(M,P) > (—M,—P).

Proof. Notice that

(M, P) _ (p"+M)(p"—P)

a?(=M,—-P) (p" — M)(p" + P)’

so if P = M the result is trivial. Otherwise, we would like to prove that the interpolating function, namely

(p* + M)(p® — P)

9@) = M) 5 P)’

is a log Bernstein function. (The reader of [3] may expect that this function should be contractive; while we
note that it is, it is now understood that this restriction is not necessary.)
First, it is easy to see that 0 < g(z) < 1 for all > 0. Second, we have

gy - 8@) _ 2008p)(P = M)y (5% + MP)
e R T [

Note that this is positive as required. Clearly, we may discard the 2(P — M) and the log p. We then are left
with
p*(p** + MP) P p* MPp* 1

(p2* — M2)(p?* — P2)  p2* — P2 p2 — \J2 + p2r — M2 p2e — p2

which is completely monotone using the result on completely monotone families (Lemma 3.3) with the
specific family
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1 pz p2:v 1 pm p2x
{p2z7M2 ’ p21’7M2 ’ p2x7M2 ’ p2:cip2 ’ p2:cip2 ’ p217P2}.

Observe that the complete monotonicity of all the relevant functions can be established, using Lemma 3.4,

by an examination of a finite number of first derivatives. In this present case, this avoids more technically
€T

p2r + b
We are finally ready to prove (3) b). Let (M, P) be in MQy,py N (—1,0] x (=1,0] and P > M and just
use Lemma 3.4 and transitivity: (N, D) > (M, P) > (—M,—P). O

difficult computations of all derivatives, particularly for the function = —

With these results in hand, we turn to producing the various safe zones.
4. Safe MZD quotients for a base point in Sector I

Let (N, D) be a pair in Sector I; that is, 0 > D > N > —1. By the “Reflection Principle,” it follows
readily that for a point (N, D) in either Sector I or Sector II, Sectors VII and VIII provide safe quotients,
and so these latter sectors are automatically included in the zone for safe quotients.

Note second that the main diagonal in the magic square yields simply the unilateral shift (which is both
MZID and completely hyperexpansive), and thus any point on this diagonal yields a safe quotient for any
property of interest which the base point (N, D) itself possesses.

We may now turn to further zones.

4.1. The green zone

The aim is to prove that the green zone in Fig. 5 (a parallelogram extending from the center South West)
consists of points (M, P) which are MZD-subordinate to (N, D) and thus yielding safe MZD quotients.
We will proceed in three steps.

4.2. Vertical segment down from (N, D)

Suppose that (M, P) is on the green segment as in Fig. 6A, which means that (M, P) = (N, P) where
N < P < D. It is clear that

a(N,D) «a(N,D)
oL D) a(N.p) D)

which is obviously an MZD weight since the pair (P, D) is in Sector I.
4.3. Diagonal segment over (N, D)

Suppose that (M, P) is in the diagonal green segment as in Fig. 6A, so (M, P) = (N,D) + ¢(1,1) and
0 < g < —N. Then

a?(N, D) a?(N, D)
a?(M,P) — o*(N +¢,D+q)
P+ N p"+D+gq
p"+D pt+ N+gq
q(D— N
(" +D)(p"+ N +q)
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Fig. 5. The green zone. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

D—-N
We claim that =z 4 ) is a contractive completely monotone function; this uses
(p* + D)(p* + N +q)
Lemma 3.3 on completely monotone families (see originally [5, Lemma 2.2]) where the involved family

is

€T

1 v 1
{p“rD,pmiD,p”NJrq,pz+pN+q}, with —1<D<0Oand —1<N +¢ < 0.
. q(D —N) . ) ) .

ereiore, € Iunction xr) = — 1S a ernstein runction. 1S ensures a

Therefore, the function f(z) i= 1= 5=t s is a Bemstein function. Th that
p p q

a(N, D) . )
_ 1D ht.
aN+a.D1d is an MZID weig

Therefore,

(N,D)>» (N+¢q,D+¢q) forevery 0<qg<—N.

Remark 4.1. Notice here that according to step 2, for any given point (N, D) in Sector I, the analogous
diagonal segment up and to the right from it consists of points MZD-subordinate to (N’, D’).
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Fig. 7. Blue and Brown Zones.

4.4. The last step

For the general situation (when the pair (M, P) is in the interior of the green parallelogram, as in Fig. 7TA
extending from the center SW), we may use the path (N, D) — (N, P’) — (M, P) as in Fig. 6B, to prove
our result. Indeed, (N, D) > (N, P’) > (M, P), and this yields the result. (As we have previously done in
our diagrams, we will continue to indicate (N, D) by a black dot without giving it the color to which it is
entitled.) O
4.5. Central reversed shadow (The blue zone)

Using the second statement of Theorem 3.1, we obtain the blue zone in Fig. 7TA — a trapezoid extending
from the center NE — (notice that this is nothing but symmetry with respect to the axis y = —x).

4.6. Right shadow (The brown zone in Fig. 7B, a parallelogram extending from the center SE)

Using Theorem 3.1 (1), we obtain the brown zone.
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Fig. 8. Red Zone and MQ: (N, D) in Sector IL.

Remark 4.2. Note that the purple zone (NW-SE shadow) — a small triangle in the fourth quadrant arising
from a small triangle in the second quadrant — is contained in, and pictorially hidden by, the brown zone.

4.7. SW-NE shadow (The red zone in Fig. 8A, a trapezoid extending from center NE)

Using Theorem 3.1 (3) b), we obtain this zone, a trapezoid in quadrant I extending from the center NE
as in Fig. 8A.

4.8. Conclusion

By gathering the above zones and including Sectors VII and VIII as noted at the beginning of the
discussion for a base point in Sector I, we obtain the safe zone for MZD quotients as in Fig. 8B or as in
Fig. 2A in Section 2 (Main Results) on page 5.

5. Safe MZD quotients for a base point in Sector II
Our assumption is =N > D > 0> N > —1. We begin with the following result.
Theorem 5.1. Let (N, D) be in Sector Il (—N > D > 0> N > —1). Then we have
MO (N,—p) € MO (N,p)-
Proof. Just write
a(N, D) a(N,D) «(N,—D)

a(M, P) - a(N,—D) (M, P) =a(-D,D)-

a(N,-D)
a(M,P)

Since (—D, D) is in Sector II, a(—D, D) is an MZD weight, and we have the result. O

Remark 5.2. The application of this theorem is straightforward and we will reserve its implications until we
assemble results into a picture at the end. Observe that

(N,D) > (M,P) < (N,M) > (D, P).
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y=x+ (D —N)
y=z

N
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(A) Green (pentagon in quadrant II) and Brown (pentagon in (B) Blue Zones, trapezoids in quadrants I and TIT
quadrant I) Zones
Fig. 9. Green, Brown, and Blue Zones.

The most useful approach for this sector is to take advantage of the known facts about safe zones for the
quotients with a starting point in Sector I.

5.1. “Left side” (The green zone)

If M < 0 then (N, M) is in Sector I if furthermore N < M. Thus, in this case (since we know already
that —N > D > 0), we have

D—(M-N)<P<D+(M-N)
(N,M)>> (D,P) <= { D < —N (which holds)

0<P<-N

~M+(D+N)<P<M+(D-N)
==

0<P<-N

Thus we obtain the safe zone, a pentagon in quadrant IT with a vertex facing W (Fig. 9A, green zone).
5.2. “Right shadow” (The brown zone, a pentagon with a vertex facing E)

Using the first statement of Theorem 3.1, we get (Fig. 9A, brown zone, a pentagon in quadrant T with a
vertex facing E).

5.8. “Central reversed shadow” (The blue zone)

Using the second statement of Theorem 3.1, we obtain Fig. 9B, two trapezoids: one in quadrant IT roughly
bisecting the left pentagon in Fig. 9A, and one in quadrant III.

5.4. “NW-SE shadow” (The purple zone)

Applying the third result of Theorem 3.1, we obtain the purple zone in Fig. 10A, a pentagon in quadrant
IV with a vertex facing E.

Remark 5.3. Notice that the blue zone and the purple one are contained in, and in the pictures hidden by,
other safe zones (see below).
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Fig. 10. Purple Zone and MQ: (N, D) in Sector II.

5.5. Conclusion

Putting all of this together, including that Sectors VII and VIII are safe, as noted before, and including
the one resulting from Theorem 5.1, we obtain the picture in Fig. 10B or as in Fig. 2B in Section 2 (Main
Results) on page 5.

We now turn to Sector VIII, departing from the order one might anticipate, so as to be able to leverage
earlier results more efficiently.

6. Base point in Sector VIII

Consider (N, D) in Sector VIII, which is D < N < 0, and some (M, P) MZD-subordinate to (N, D), so

a?(N, D) _p"+N p"+P
a2(M,P) pr+M pr+D
is the square of an MZD weight.
A sufficient condition, using the terms in the above choice of grouping terms, conditions for MZD GRWS
as in Fig. 1 (page 4), and Schur products, is

N<M§—N<:> N<M<-N
D< -1<P<D

which gives the first part of the corresponding safe zone. (NB: In particular, the vertical line segment down
from (N, D) is safe.)

Now, we’ll use a technique we have used above for when the pair (M, P) is on a diagonal from the base
point, but this time below (N, D). This means (M, P) = (N, D)+ ¢(1,1) and —1 — N < ¢ < 0. Then

a?(N, D) a?(N, D)
a?(M,P) — a?(N +q,D +q)
P+ N p"+D+gq
p"+D pt+ N+gq
q(D— N
(p" + D)(p" + N +q)
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(A) MQ: (N, D) in Sector VIII (B) MQ: (N, D) in Sector III
Fig. 11. MQ: (N, D) in Sectors VIII or III.

q(D - N)

We have that x —
¥ (p® + D)(p” + N +q)

is a completely monotone function, using Lemma 3.4 and the

family

X

1 P* 1 p } :
) ) ) with —1<D<0and —1< N +¢<0.
{pI—S—D p*+D p*+N+q p*+N+gq I
Therefore the function f defined by

q(D - N)
(p* + D)(p® + N +q)

fla)=1-

is a Bernstein function. This ensures that

a(N, D)
a(N +q,D +q)

is a MZD weight. So (N, D) > (N +q,D + q) for every ¢, -1 — N < ¢ < 0.
Using transitivity, we obtain the picture of the MZD safe zone as in Fig. 11A.

7. Base point in Sector III

Suppose (N, D) is in Sector III, which is N < 0 and D > —N, and as usual consider some point (M, P)
subordinate to (N, D). If P = D, it is clear that

e

is MID if N < M < —N which proves that a certain horizontal line segment is safe.
Further, a‘zg\]f\f’_DD)) = a(—D, D), and this latter weight yields MZD using D > 0 as it is in (on the
boundary of) Sector II, so a(N, D) > «(N,—D). With (N, D) in Sector III, (N, —D) is in Sector VIII, and
we may apply transitivity; combining with the result from the previous paragraph, we obtain the MZID

safe zone in Fig. 11B.
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8. Base points in Sector IV, V, VI and VII

First, if (N, D) is in Sector V, so 0 < D < N, we prove that (—D,—N) is MZD-subordinate to (N, D)
and we obtain a safe zone using the result for Sector VIII above. Observe that

a?(N, D) p?" — N2

OZQ(*Dv*N) p2n7D2

and is obviously a weight squared corresponding to an MZD GRWS with p? given our assumptions on N
and D, yielding the picture in Fig. 12B.
Second, if (N, D) is in sector IV, we have

0<N<D, (8.1)

and citing Lemma 3.4 we obtain (=N, —D) is MZD-subordinate to (N, D). Using again transitivity and
prior results we obtain the picture in Fig. 12A.

Third, if (NV,D) is in sector VI or VII, meaning that D < 0 < N, we'll show (0,D — N) is
MZID-subordinate to (N, D). Indeed,

a?(N, D) _p"+N p"+D-N
a2(0,D—N)  p*+D pn
o N(N - D)
pr(p" + D)
. N(N-D) . :
Since —1 < D < 0 and N(N — D) > 0, the map © — ————= is a completely monotone function,
p*(p* + D)
using Lemma 3.3, and so the function
N(N -D
flz)=1- z( — )
p*(p* + D)
is a Bernstein function. Consequently,
a(N, D)
a(0,D — N)

is an MZD weight so (N, D) > (0, D— N), and again we apply transitivity. This gives the result in Fig. 12C
(which covers both Sectors VI and VII).

The three results obtained for MZD safe quotients for a base point in Sector IV, V, and VI/VII are
summarized in Figs. 12A through 12C.

9. Subnormal safe quotients

We turn next to determining points yielding safe subnormal, as opposed to safe MZD, quotients. For
(N, D) and (M, P) in our magic square (—1,1) x (=1, 1), recall the partial order (N, D) >, (M, P) (intro-
duced in Definition 2.2) and the set SQn p) (given by (2.2)).

Remark 9.1. 1) It is clear that MQn py € SQ(n,p), which makes for a nesting of safe quotient zones.
2) The presence of the special lines in Sector IV, upon which there is subnormality, makes for considerably
more complicated pictures for subnormal safe quotients than for MZD quotients.
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Fig. 12. MQ: (N, D) in Sectors IV, V, VI, and VIL.

In the sequel, we will consider, for various placements of the base point, at least some portion of those
zones. We again assemble some general observations.

First, the presence of the special lines creates what we call “raindrops” for base points (N, D) with D > 0
(see Fig. 14). If we consider points on the vertical line segment from (N, D) with coordinates (N, D/p*) for
some positive integer k, we have the quotient

N
o*(N,D) x5 p"+D/p"
2 kY — _pt+N T n :

a?(N,Dfp*) e P+ D

But this is a weight squared for a GRWS in Sector IV on the special line y = pFz, and thus yields a
subnormal shift. A similar result concerning “raindrops,” but this time lying horizontally from (N, D) and
at (p*N, D), obtains if N is positive.

Second, note also that a point (N, P) on this same vertical line, but with P < 0, yields, by a similar
computation for the quotient, a point in Sector II or III, again yielding a subnormal shift. A similar result
for a horizontal line holds in the case in which N is negative. These two yield, in what follows, horizontal
or vertical line segments that extend “to the boundary” of the magic square.

Third, if (N, D) produces raindrops of either kind, by transitivity the safe zone for subnormal quotients
of (N, D) will include the union of all the safe zones of the raindrops; it is this that produces the serrated
boundaries for base points (IV, D) in Sectors II and III.

Fourth, if the base point (N, D) already yields a subnormal (or MZD) shift, points on the reflections
into Sector V of the special lines in Sector IV produce, via the reflection principle, subnormal shifts when
used to form quotients.

9.1. (N, D) in Sector VIII

In this case, of course we contain the safe MZD quotient zone as in Fig. 11A; the picture in Fig. 13A
adds a zone arising from “horizontal lines that extend to the boundary” from points in the MZD quotient
zone as in the third observation above, and we leave the computation to the interested reader.

9.2. (N, D) in Sectors VI or VII

Here we have N > 0 and D < 0, and using the grouping

a?(N, D) _p"+N p"+P
a?(M,P) pr+M pr+D’

(9.1)
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Fig. 13. SQ: (N, D) in Sectors VIII, VI, or VII.

(A) 8Q: (N, D) in Sector V (B) SQ: generic (N, D) in Sector IV

Fig. 14. SQ: (N, D) in Sector V or generic in Sector IV.

we have that if M = p*N for some integer k and —1 < P < D then (N,D) >, (M, P). Thus, we
obtain horizontal raindrops and vertical line segments that extend to the boundary from them. Further,
one computes that (0, D — N) is subnormal-subordinate to (N, D); since this is a point in Sector VIII, we
obtain by transitivity its safe subnormal quotient zone as just above, yielding the picture in Fig. 13B.

9.3. (N, D) in Sector V

We may obtain the horizontal and vertical raindrops as usual, as well as the aligned vertical lines down
from the z axis to the boundary. We have proved that for a point in Sector V we have (=D, —N) is
MZID-subordinate to (N, D) > (=D, —N) (Section 8), so it is surely subnormal-subordinate, thus adding
to the safe subnormal quotient zone for (N, D) that for (—D, —N) in Sector VIII, and Fig. 14A follows.
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Fig. 15. SQ: non-generic (N, D) in Sector IV.

9.4. (N, D) in Sector IV, “generic” case (not on a special line)

Here we have both N > 0 and D > 0, so we get both horizontal and vertical raindrops; as well, we obtain
the vertical lines to the boundary in quadrant IV below the vertical raindrops. From the raindrops which lie
in Sector V we obtain their safe zones as in Fig. 14A from transitivity, and while no such raindrop can lie
on the main diagonal y = z (else (IV, D) would be on a special line) we obtain their union. In particular, we
obtain the safe zone arising from the raindrop (M, P) = (p*N, D/p’) in Sector V where D/p’ is as large as
possible and p* N is as small as possible; this is the first raindrop in the first column which falls into Sector
V. Putting this together yields the picture in Fig. 14B as the safe subnormal quotient zone for a generic
point in Sector IV.

9.5. (N, D) in Sector IV, “non-generic” case (on a special line)

In this case everything holding for the generic case still holds; as well, we obtain the reflections across
the main diagonal into Sector V of the special lines in Sector IV (since the shift associated with (N, D) is
subnormal). Note that the raindrops from (N, D) which lie in Sector V are actually on these reflected lines
and are not otherwise indicated. We obtain all of Sectors VI, VII, and VIII by the reflection principle, since
quotients with these points are products with points of subnormality. What results is the picture in Fig. 15.

9.6. (N, D) in Sector I

We begin with the safe zone for MZD quotients as in Fig. 2A on page 5. To this we may adjoin the
reflections of special lines from Sector IV as usual; note that vertical or horizontal raindrops from points
on these reflections will themselves be on reflected lines and add nothing new. Of course, we obtain all of
Sectors VI, VII, and VIII.

Consider next some horizontal segment in the safe zone and in the first quadrant. The Sector IV or Sector
V first horizontal raindrops from the points in this horizontal segment create another horizontal segment
shifted to the right; in particular, a segment from (M, P) to (P, P) is shifted to the segment from (pM, P)
to (pP, P). These shifted segments will overlap if pM < P, thus extending the horizontal segment without
a break. The raindrops from the second segment, of course, create a further shifted segment and so on, and
it is easy to check that the overlaps continue if pM < P. What results is a horizontal segment, without
breaks, from (M, P) to the right-hand boundary.
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(A) SQ: (N, D) in Sector II (partial) (B) SQ: (N, D) in Sector II (complete)

Fig. 16. Work toward SQ: (N, D) in Sector II.

We shall apply this general observation to the points on the left-hand upper diagonal boundary of the
safe zone for MZID quotients as in Fig. 2A on page 5. The intersection of this boundary (y =  + (D — N))
with the line y = px is at the point (11)):11\/7101;:11\/)' For any point (Q,R) on the y = 2 + (D — N) line
2 :le ), by the argument above we may add to the safe zone the whole
horizontal line from (@, R) to the right-hand boundary of the square.

For points (@, R) = (Q,Q+ (D —N)) on the boundary line y = x+(D—N) with R = Q+(D—N) > —-D,
the horizontal segment from (Q, R) to (—N, R) will overlap with its shifted segment (p@, R) to (p(—N), R)
if and only if p@Q < —N, and this overlap of shifted segments will persist to create the unbroken horizontal
line from (@, R) to the right-hand boundary of the square. If p@QQ > — N, however, the shifted segments will
not overlap and we will create a “notch” with vertical right-hand boundary because of the common right
shift of the vertical segment with first coordinate —N. The shifts of these segments may create a second

with second coordinate less than p

notch, and so on.
There are a number of cases, and we content ourselves with drawing, in Fig. 3A on page 6, a reasonably
typical safe subnormal quotient zone for (N, D) in Sector 1.

9.7. (N, D) in Sector II

We begin with the safe MZD quotient zone as in Fig. 2B on page 5. Since we have subnormality at
(N, D) we may add all of Sectors VI, VII, and VII, and the reflections of the special lines from Sector IV into
Sector V. Consideration (as in the discussion for Sector I) of horizontal segments from some point (0, R) to
(R, R) with 0 < R < —N fill in the rectangle with corners (0, 0), (0,—N), (1,—N), and (1, 0). Consideration
of the vertical segment from (N, —D) to (N,0), easy as discussed before, yields that this segment is safe,
and then a repetition of the diagonal argument from it yields (so far) the picture in Fig. 16A.

However, to this we must add the vertical raindrops from (N, D), each of which comes with its own
version of the picture in Fig. 16A; what results finally from the union as a safe subnormal quotient zone for
(N, D) in Sector II is as in Fig. 16B.

9.8. (N, D) in Sector III
To the safe quotient zone for MZD quotients as in Fig. 11B we may, as usual, add Sectors VI, VII,

and VIII and the reflections of the special lines in Sector IV; it is easy to show that the horizontal line
from (N, D) extends to the right-hand boundary. When we include the vertical raindrops, those remaining
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Fig. 17. SQ: (N, D) in Sector IIIL.

in Sector IIT contribute their own horizontal line segments, while those in Sector II contribute their own
version of Fig. 16A. What results from the union is Fig. 17 or as in Fig. 4 on page 6.

10. Circumscribing safe zones

We do not claim to have obtained the maximal safe zones either for MZD safe quotients or for subnormal
safe quotients. A natural question, for example, is whether the interiors of the quadrilaterals bounded by
the horizontal and slant safe lines for a base point in Sector III can be added to the safe subnormal quotient
zone (see Fig. 17). This is not true, at least in general; with the aid of Mathematica [12] we can show that
with (N, D) = (=1/10,2/5) the point (2/5,1/3) interior to one such quadrilateral is not a subnormal safe
quotient. As well, there are other assorted routes to attempt to rule out points in the magic square from
being safe, which we discuss and illustrate briefly.

First, a shift is MZD if and only if its weights (or weights squared) are log completely alternating. If we
fix a value of p, we may check using Mathematica [12] plots of the areas of negativity for tests of the form

Sy (1) m (@i,

where the test starts at «; and the test is for part of n—alternating for the log. The picture in Fig. 18 gives
(for p=3/2, (N,D) = (—1/2,—1/3)) a version of such a plot. (A point is excluded if it is not on the same
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Fig. 18. MZD Exclusion using log completely alternating test curves.

“side” of the curve as the origin, or, equivalently, if it is not on the same side of the curve as the line segment
which is part of the line N = D.) The picture is indicative of the fact that since the main diagonal is safe,
it seems numerically difficult to exclude areas. We note that this problem is even more severe in the case of
subnormal safe zones, as a glance at Fig. 17 on page 22 will make clear.

Second, we may prove that certain zones are excluded. In particular, if (M, P) > (N, D) (respectively,
(M,P) >s (N,D)), except in the trivial case (M, P) = (N, D) we have (N, D) % (M, P) (respectively,
(N, D) %5 (M, P)) because of the partial order. For example, and using transitivity, for (N, D) in Sector I
as in Fig. 2A on page 5 we may exclude from its safe MZD quotients every (M, P) such that P < D and
M puts the point above the diagonal line down and to the left from (N, D). What results, in the case p = 2,
(N,D) =(-1/3,—1/2) is an excluded set as shown in Fig. 19.

Third, we note that the excluded points form an open set (since either MZD or subnormality, as the
intersection of zones determined by weak inequality conditions, is a closed condition). So, for example, for
MZID safe quotients for a point (N, D) in Sector II as in Fig. 2B on page 5, one can show that the open
segment between (N, D) and (N, —D) is not safe (the relevant quotients fall in sectors not yielding even
subnormality). This means that for any compact subset of this open segment, there is actually an open
“tube” of failure points.

In the paper [6], forthcoming, we will explore a notion that, applied in the particular case of the GRWS
quotients, allows for further exclusion from quite a different point of view.

Remark 10.1. First, the safe zones we have found for MZD quotients would appear to be independent of
p and depend only on the pair (N, D); we conjecture that this is true for the full safe zones but do not
understand why this should hold. It surely does not for subnormal safe quotients, because of the special
lines which are clearly dependent upon p.

We observe next that the partial orders, here used within the class of GRWS, can in fact (with due care)
be extended to the class of all shifts, and we will take this up in a subsequent paper [7].
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.
(N, D)

Fig. 19. Excluded zone for a base point in Sector VIII.
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