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ARTICLE INFO ABSTRACT

Keywords: We present a novel method for simulating unsteady, variable density, fluid flows in membrane desalination
Membrane desalination systems. By assuming the density varies only with concentration and temperature, the scheme decouples the
Variable density flow solution of the governing equations into two sequential blocks. The first solves the governing equations for the

Computational fluid dynamics temperature and concentration fields, which are used to compute all thermophysical properties. The second

block solves the conservation of mass and momentum equations for the velocity and pressure. We show that
this is computationally more efficient than schemes that iterate over the full coupled equations in one block. We
verify that the method achieves second-order spatial-temporal accuracy, and we use the method to investigate
buoyancy-driven convection in a desalination process called vacuum membrane distillation. Specifically, we
show that with gravity properly oriented, variations in temperature and concentration can trigger a double-
diffusive instability that enhances mixing and improves water recovery. We also show that the instability can
be strengthened by providing external heating.

1. Introduction schemes typically iterate over all transport equations in one block [9].

In membrane desalination, however, the density varies primarily with

Membrane desalination processes have important applications to concentration and temperature. This opens the door to a more efficient
desalinating seawater and brackish water, and treating municipal and iterative procedure, that to our knowledge, remains unexplored.

industrial wastewaters [1-3]. The energy efficiency and water recovery Thus motivated, we develop a numerical method tailored to sim-

of membrane desalination systems depend on heat and mass transport ulating variable-density flows in membrane desalination systems. By

that are challenging to observe experimentally, because they occur
between optically opaque membrane sheets. Computational fluid dy-
namics (CFD) consequently plays an important role in elucidating the
physics of membrane desalination [4-7]. The current study is motivated
by the fact that fluid flows in membrane desalination systems can ex-
perience rapid variations in temperature and solute concentration near
the membrane surfaces. The impacts of these variations on fluid density
and buoyancy remain largely unexplored. Simulating these variations
numerically faces two hurdles. First, the density in some cases varies by
roughly 10%, pushing the limits of the Boussinesq assumption. Second,

most variable-density, low-mach-number, CFD schemes are tailored to R o
flows in which the fluid density is coupled to the pressure [8]. Such salination process called vacuum membrane distillation (VMD) [10,11].

assuming the density varies only with concentration and temperature,
the scheme decouples the solution of the governing equations into
two sequential blocks. The first solves the governing equations for
the temperature and concentration, which we then use to compute all
thermophysical properties. The second uses those properties to solve
conservation of mass and momentum for the velocity and pressure.
We show this maintains second-order spatio-temporal accuracy, but
is computationally more efficient than iterating over the full coupled
equations as in [9].

To demonstrate our method, we explore density variations in a de-
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Nomenclature

Superscrips

* Denotes a variable extrapolated in time, as in
Eq. (24)

i Denotes a variable at iteration i, as in Eq. (3.1)

n Denotes a variable evaluated at time step n, as in
Eq. (20)

Subscripts

C Denotes a variable evaluated at a cell centroid

e Denotes the manufactured solution defined in
Egs. (51)-(53)

f Denotes a variable evaluated at a face centroid of a
cell

Other Symbols

At Time step (s)

1) Membrane pore length (pm)

€ Membrane porosity (unitless)

r Molecular diffusivity (m?/s)

K Thermal conductivity (J/m s °C)

A Second viscosity coefficient (Pa s)

Ay Latent heat of evaporation (J/kg)

() Time averaged concentration on membrane surface
(g/M

) Time averaged permeate flux (kg/ m? s), see Eq. (59)

D,M Matrices defined in Egs. (37)-(39)

g Gravitational vector (m/s?)

H Vector defined in Eq. (39)

1 Identity tensor (unitless)

u Velocity vector (m/s)

u Dynamic viscosity (Pa s)

p) Density (kg/m?)

P Local density of water on the feed surface of the
membrane (kg/m?)

T Viscous stress tensor (Pa)

T Membrane tortuosity (unitless)

P Reduced pressure p = p — pgy (Pa)

13 Mass fraction (unitless)

a, Activity coefficient (unitless)

B Membrane vapor permeability (kg/m? s Pa)

Bpg Membrane vapor permeability in the dusty gas
model (kg/m? s Pa)

c Salt concentration (g/1)

< Specific heat capacity (J/kg °C)

Cy Control surface (m?)

Cy Control volume (m?3)

C, Inlet concentration (g/1)

Conax Local maximum concentration downstream of x,,
(g/1), see Fig. 8

Co Courant number (unitless), see Eq. (58)

ds Infinitesimal surface vector normal to Cg (m?)

VMD flows warm feed water over a hydrophobic porous membrane,
as in Fig. 1(a). A difference in partial vapor pressure across the mem-
brane causes water to evaporate from the feed and travel through the
membrane as vapor. Nonvolatile solutes remain in the feed. The vapor

on the distillate side of the membrane is maintained at low pressure

En Relative spatial error (unitless), see Eq. (55)

E,, Relative temporal error (unitless), see Eq. (56)

g Gravitational acceleration (9.81 m/s?)

H Channel height (m)

h Specific enthalpy (J/kg)

Jo Transmembrane vapor mass flux (kg/m? s)

Jve Average permeate flux (kg/ m? s), see Eq. (60)

Jmax Local maximum in (j,) (kg/ m? s), see Fig. 8

K Kinetic energy per unit volume (J/m?), K = p(u-u)/2

L Channel length (m)

M, Molar weight of water (Kg/mol)

P Pressure (Pa)

P Partial vapor pressure on the feed surface of the
membrane (Pa)

Do Average pressure prescribed at outlet (Pa)

Psar Saturation pressure (Pa)

Poac Absolute pressure on distillate side of membrane
(Pa)

R Universal constant of gases (J/mol K)

r, Membrane pore radius (pm)

Feos Unitless residual defined in Eq. (34)

Re Inlet Reynolds number (unitless), Re = p;,U;,H / ji;,,-

S, Source term defined in Eq. (30)

T Temperature (°C)

t Time (s)

T; Inlet temperature (°C)

u, v, W Velocity components in x, y, z directions, respec-
tively (m/s)

U, Mean inlet velocity (m/s)

u;, (») Parabolic inlet velocity profile (m/s), see Eq. (13)

X, Y, Z Cartesian coordinates (m)

Xmax Downstream distance where j,,. occurs (m), see
Fig. 8

Xon Onset distance where (j,) begins increasing (m), see
Fig. 8

by a vacuum pump that draws the vapor into a condenser. Modern
desalination systems currently rely on a process called reverse osmosis
(RO). In comparison to RO, the advantage of VMD is that it is less
sensitive to osmotic pressure. This allows VMD to concentrate NaCl
solutions to above 300 g/1, compared to only 70 g/1 using RO [2,12].

VMD faces two long-standing challenges. The first, called tempera-
ture polarization, is the cooling of the feed in a thermal boundary layer
growing along the membrane (Fig. 1a). This reduces the feed’s partial
vapor pressure, and reduces vapor production. The second challenge,
called concentration polarization, is the accumulation of solutes in a
concentration boundary layer at the membrane. Though this also de-
creases the feed’s partial vapor pressure, the greater risk is that it causes
mineral scaling, which is the precipitation of solutes onto the membrane,
where they block pores. Surprisingly little work considers that temper-
ature and concentration polarization increase the feed density near the
membrane [13-16]. We show that when gravity is properly oriented,
this can trigger a double-diffusive buoyancy-driven instability, in which
plumes of dense feed sink away from the membrane, as in Fig. 1(b).
This brings warm, low-concentration, feed to the membrane, which
increases vapor production.

The remaining manuscript is structured as follows. Section 2 de-
scribes the governing transport equations for VMD. Section 3 presents
our spatial-temporal discretization and decoupling strategy. Section 4
verifies our method’s spatial-temporal accuracy and compares with
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Fig. 1. (a) Sketch (not to scale) of a VMD system in which gravity points towards the membrane. The membrane is shaded gray. The dotted region shows the concentration
boundary layer. The temperature profile illustrates temperature polarization. (b) Sketch of buoyancy driven instability when gravity points away from the membrane.
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Fig. 2. Sketch (not to scale) of the VMD system considered in this work. The inlet
velocity profile is the sum of a parabolic flow «,,(y) and a perturbation u,(y,1).

experiments. Section 5, explores buoyancy-driven convection in VMD,
and the stability of the proposed algorithm. Section 6 summarizes our
results and conclusions.

2. Mathematical description

We consider a 2D channel of length L with a flat-sheet membrane
at y = H and an impermeable wall at y = 0, as in Fig. 2. A Newtonian
feed solution of water and NaCl enters at x = 0 with a mean velocity
U,,, uniform NaCl concentration Cj,, and uniform temperature Tj,.
Concentrate exits the domain at x = L. As the feed flows downstream,
water vapor exits the domain through the membrane. We assume a
vacuum pump maintains a constant vapor pressure p,,. on the vapor
side of the membrane. We consider cases where the gravitational vector
g points in the negative or positive y-direction.

2.1. Governing equations
The feed mixture velocity u = [uvw] and pressure p are governed

by the conservation of mass and momentum equations, where the feed
density p is a function of concentration and temperature only,

dp

Fiv. =0, 1
Frin (pu) (€]
%(pu)+V-(puu)=—Vp+pg+V-r +F,, 2)

T=u [Vu+(Vu)T] - 2TM(V ~wl,

where y is the dynamic viscosity, I is the identity matrix, (Vu)” is
the gradient transpose, and F, is a forcing term used for verification
in Section 4.1. Heat transport is governed by the thermal energy
equation [17],

d DK dp K

L on+V-(puh)+ —_-_EL=-v.(Lvn . F,, 3
at(ﬂ)+ (puh) + Dr " o <Cp )+p(g w) + Fy 3
where A, c,, and x are the mixture’s specific enthalpy, specific heat

capacity, and thermal conductivity, respectively, DK/Dt = 0K /ot +
V. (uK), and K = p(u - uw)/2. The term F), is a forcing term used for
verification purposes in Section 4.1. Solute transport is governed by an
advection-diffusion equation,

dc

5+V-(uc)=V-(pI"V§)+Fc, “4)

where ¢ is the concentration (mass of solute per liter of solution), ¢ =
¢/p is the mass fraction (mass of solute per mass of solution), I" is the
mass diffusivity of NaCl, and F, is a forcing term used for verification
in Section 4.1. The specific enthalpy is related to the temperature (7)
through the relation

T
W) = / e, (T)dT’, 5)
Tref
where T, is a reference temperature.

We express the variation of all thermophysical properties (4, p, c,,
x, I') with temperature and concentration using bivariate polynomials
of the form

3 4
STy =3, D ap T ©
n=0 m=0

We determine the coefficients a,,, for u, p, c,, and I' by fitting (us-
ing MATLAB’s “polyfit” command) to data from thermodynamic soft-
ware [18]. The coefficients for x are fit to data from Jamieson and
Tudhope [19]. The fit requires ¢ in Eq. (6) to be replaced with the
practical salinity defined as S, = 1000£/1.00472. All correlations are
fit using data in the range 10 < ¢ < 257 (g/1) and 298.15 < T < 373.15
(K), except for x, which is valid in the range 0 < .S, < 160 and 273.15 <
T < 453.15 (K). The maximum deviation between the correlations and
data is 1.18%. Model coefficients are provided in the Supplementary
Material.

2.2. Transmembrane heat and mass transport

Transport through the membrane is modeled on a macroscopic
scale using the popular model of Schofield et al. [10], whose va-
lidity has been confirmed experimentally [20,21] for the conditions
explored here. The model assumes the transmembrane vapor mass flux
J, is proportional to the transmembrane difference in partial vapor
pressure,

Jjo = =B [Pm(.1) = Pyac| » %)

where p,, is the partial vapor pressure of the solution on the feed side
of the membrane, and B is the vapor permeability [10,20,22]. There
remains some discussion in the literature regarding B [23]. Lawson
and Loyd [11] suggest B depends on the local temperature, while
other studies [10,20,22] suggest B is well approximated as a constant
membrane property. Though our method permits either approach, we
assume B is constant for demonstration purposes.

Condition (7) produces the following condition for v on the mem-
brane,

v| _ J_U =_B(pm_pvac) . 8)
y=H p, Pm

where p,, is the local water density at the membrane surface (y = H).
Because no solutes traverse the membrane, we compute p, as the
density of pure water (¢ = 0 g/1). As in most prior literature, we apply
the no-slip condition (u = 0) on the membrane. Throughout this study,
no-slip implies the velocity tangential to a stationary surface is zero. The
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term no-penetration implies the velocity normal to a stationary surface
is zero [24].

We express the dependence of the partial vapor pressure p,, on
temperature and concentration as in Schofield et al. [10],

3841 ) ’ ©

Pm = AyPsat»  Psat = €XP (23'238 - m

where the saturation pressure pg,, is computed using the Antoine equa-
tion [20], T,, is the local feed temperature on the membrane (y = H),
and q,, is an activity coefficient given by

a, =1 -0.03112c)y=,, -0.001482c2(y=,,. (10)

Heat traverses the membrane due to advection by the vapor and
conduction through the vapor and membrane material. In VMD, the
contribution due to conduction is usually negligible due to the low
thermal conductivity of the rarefied vapor opposite the membrane.
Using that common assumption, conservation of energy [6] requires
the following boundary condition,

aT

— K —

5 A, = 3177800 — 2464.4T,, , 11
y

=Juhy

y=H
where 4, is the latent heat of evaporation of pure water. Consistent

with all prior literature, we assume there is no transmembrane flux of
NaCl. This requires

) o
<Ju<§ - pl"$>

2.3. Inlet, outlet, and plate boundary conditions

=0. (12)
y=H

Feed enters at x = 0 with uniform temperature and concentration,
r x=0 = Tin ’ c|x=0 = Cin : (13)
To trigger buoyancy-driven instability independently of numerical
noise, we impose an inlet parabolic velocity profile (u;,) with mean
velocity U, and an added perturbation (u,),
y ¥

ul = 6Up <ﬁ - ﬁ) + A Ups(.1), a4

— ——
parabolic profile u;,(y) perturbation u,(».1)

where s(y,f) € [-1,1] is a random number generated at each time
step for each inlet face of our finite volume discretization. A, is the
perturbation magnitude relative to U,,, which we set to A4, = 0.0075.
To accommodate the effects of the membrane at the inlet, we apply an
inlet Neumann condition to v,

L) — as)
ax x=0

At the outlet, we impose the following Neumann conditions,

aT dc ou Ju

—| =0, —| =0, —| =-—| =0. 16
0x x=L ox x=L ox x=L ox x=L ( )

Prior VMD simulations typically fix the outlet pressure [6,7,25].
However, we found that produces unphysical velocity fields at the
outlet when p varies with T and c. This likely occurs because the
transmembrane mass flow generates a vertical pressure profile that is
inconsistent with a constant outlet pressure. We consequently fix an
average outlet pressure p, through the condition

| /H
Wl v
with p, = 10° Pa. Our numerical tests showed that conditions (16)-
(17), combined with a TVD (Total Variation Diminishing) van Leer
scheme [26] (described in Section 3), allows flow structures to exit the
domain cleanly.

At the lower plate, we apply no-slip and no-penetration conditions
to the velocity, and zero-flux conditions to ¢ and T,

oT _ dc —0. (18)

= U) = O, —_— = R —_
y=0 dy y=0 dy y=0

Ldy = Do a7)

x=

d

y=0
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Note that in Section 5.3, we explore the impact of heating the lower
plate. For that, we use the following boundary condition,

oT .
(55 )= 4

y=0
where ¢, is the provided heat flux.

3. Numerical formulation

We discretize Egs. (1)—(4) in time using the BDF2 scheme [27]. For
brevity, we neglect the forcing terms F,,, F,, and F, in Egs. (2)-(4) and
present our method assuming a constant time step 4¢. More generally,
we use adaptive time stepping, with details given in Supplementary Ma-
terial. With a constant time step, we can write the governing transport
equations in semidiscrete form as
3pn+l + 4pn _ pn—l

o +V-(pu)*! =0, (20)
3(pw)™! +4 (pu)" — (pu)"”! .
V. ntl —
A7 + V- (puu)
V. ‘L'”+1 _ Vﬁ"+1 + gyvpn+1 , 21

n+1 n__ n—1
3(pW)" +4(ph)" — (ph) + V- (puhyt! =

24t
n+1 n+1 n+l
SDET o +v.<c£Vh> +g- (" 22)
D
n+1 no_ n—1
e R S N S e5)

where n is the time step index, p = p — p(g - x) is the modified pressure,
and x = [x, y] is the coordinate vector. Note that the term (g - x)Vp is
present in each component of the momentum equation.

Several methods of decoupling Egs. (20)—(23) are proposed in prior
literature [8,9,28-34]. These typically iterate over the full set of gov-
erning equations in a single block to obtain a density field that satisfies
both mass conservation and an equation of state [9,31]. In contrast,
we perform two segregated inner iterative loops, which provides two
advantages in terms of performance. First, the overall convergence rate
is improved because the flow variables are fixed while solving the first
block, and the thermophysical properties are fixed while solving the
second block. Second, each block only performs the iterations required
to achieve the desired accuracy, while a full coupling would perform
as many iterations as required by the slowest converging block. One
drawback is that the first block must predict several flow variables
using temporal extrapolation. This requires stricter conditions on the
time step to maintain stability, compared to a fully coupled algorithm.

3.1. Solution algorithm

The solution algorithm consists of three steps summarized in Al-
gorithm 1. The first step predicts (pu), p, dp/dt, u, and DK /Dt using
second-order extrapolation in time. The second step iteratively solves
the advection-diffusion and energy equations to update the equation
of state and compute the thermophysical properties. Finally, the third
step iteratively solves the pressure-velocity coupling using a Pressure
Implicit Operator Splitting (PISO) method [35].

Step 1 - The advection-diffusion and energy Egs. (3)—-(4) depend on
ot wt (DK /Dty™*!, and (dp/or)™*!. Step 1 estimates these using
second-order extrapolation in time. We first compute the extrapolated
mass flux

(pw)* =2 (pw)" — (pw)"™", @24

where the asterisk denotes an approximation to (pu)**!. We then sub-
stitute (pu)* into Eq. (20) to compute an extrapolated density and
velocity

3 * * 4pn - p’kl * (pu)*
= =V. -+ = . 25
24" (pu) 2 u > (25)
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Algorithm 1 Solution algorithm

fort<1,,, do

t=1t+ At

Compute the extrapolated flow variables

Feos =0

while r.,; > tolerance do
Solve the advection-diffusion equation for &+!
Solve the energy equation for h'+!
Update thermophysical properties and rg,

end while

Compute u’ by solving equation (36) with p"

corr =0

while corr < maximum iterations do
Solve the Poisson equation for p™*!
Update mass flux (pu)*! and velocity u'*!
corr = corr + 1

end while
ﬁn+1 — Ai+l, (pu)n+l — (pl.l)i+1, uVH—l — lli+1
end for

> Time Loop

> Compute time step 4t and update time
> Equations (24)-(27)

> Initialize residual for density

> Advection-diffusion/Energy loop

> Equation (29)

> Equation (33)

> Predictor step

> Initialize pressure corrector
> Correction loop

> Equation (41)

> Equation (39)

We then compute the extrapolated derivatives of K and p,

(50) =25 - (5" e

* n n—1
(5) =) -(3) - B
ot ot ot

where the time derivatives are computed using the BDF2 scheme. All
extrapolated quantities are kept constant for the rest of the algorithm,
and are only computed at the beginning of each temporal step.

Step 2 - The second step solves the advection-diffusion and energy
equations iteratively by updating the thermophysical properties within
an iterative loop. Introducing the iteration index i, we first initialize
the following variables

g=¢" n=n". p=p". =T,

K=k (", T,

r'=re",m™). (28)

We then solve the advection-diffusion Eq. (23) in conservative form,

%pifi +V. [(pu)* §i+]] —v. (pi[vivéHl) +§i+1S£

4/7"-’:" _ pnfléznfl
- , 29
24t (29)
where the source term S! is given by
. 3pi+4pn_pn—l
Si=2 £ F  4v. L 30
. StV w (30)

Note that S is not zero at convergence, because it accounts for the
difference between p* and p’. At the end of the loop, when the new
density p"*! is computed, it can be shown that
P} P n+1 F) P *

Sn+l —
¢ ot ot

3D
Because both time derivatives in Eq. (31) are discretized using BDF2,
the error introduced by S! is at most @ (4r?). As described in the next
step, the mass flux is consistent with the equation of state, so that the
extrapolated time derivative of the density is given by

op* ap"  op"! 1 .

L= L = V20" - (o) = =V - (pu)* . 32
o o1 o [2(pw" = (pu)"~'] (pw) (32)
Hence, the divergence of the extrapolated mass flux can be seen as a
second-order accurate extrapolation of the time derivative of the den-
sity, consistent with the equation of state. After solving the advection-
diffusion Eq. (29), we solve the energy equation using the source term

Si

L',

3 il  pitl (DK)* o\ Ko il
—p'h \ h =—(— — V- =Vh
22tV ewn T o) "\ar) TV\G

) . . 4p"h" — nflhnfl
+g- (p'u*) +AHSE 4 th (33)

After computing h'*!, the temperature T'*! is obtained from Eq. (5)
using Newton iterations. The new solute concentration is computed as
¢+l = pigi*+l ] and all thermophysical properties are updated to i + 1
using ¢*! and T'*!. To quantify the convergence of the iterative loop
in step 2, we compute the following residual re, on the equation of
state using the infinity norm,
_ 1o =Pl

8 o+l

When r. falls below a preset threshold, the loop is interrupted, and
the fields at iteration i + 1 are taken as the values for time step n + 1.

, 34)

Step 3 - This final step solves the conservation of mass and mo-
mentum Egs. (1)-(2) using a modified PISO method with second-order
temporal accuracy. Using i as the iteration index, we initialize the flow

variables as
P=p". () =(u". (35)

The momentum equation is then written in the linearized form

3_/’"+Iui+1 + V- [(pw* ui+1] — V. _ypitl
24t
4p”u" _ pn—lun—l
vprtl o — £ — 36
+gyVp 2 (36)
where we discretize the stress tensor temporally as
ftl—v. (”n+|Vui+|> +V. [lln+| (Vu*)T 4 (V . u*) I] ) 37)

In the PISO formulation, it is convenient to represent the semi-discrete
momentum equation in the compact form

Mpn+lui+l — bﬁ _ VﬁHl + gyvanrl , (38)

where M is the matrix arising from the spatio-temporal discretization
of the differential operators, and b} is a vector of explicit terms,
such as those arising from temporal discretization. We then apply the
decomposition M = D + N, where D is the diagonal of M, and we
define the vector H' = —Np"*!u' + b!. After multiplying both sides by
of Eq. (39) by D~! we obtain the expression

n+1 i+l

Pl — D—I [H[ _ VﬁH'] + (gpr”'H)] . (39)
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Fig. 3. Sketch of a cell C (shaded gray). Dots denote cell centers. Squares denote face
centers. Arrows indicate face-normal vectors.

Eq. (39) can be interpreted as a Jacobi decomposition of Eq. (36). Tak-
ing the divergence of Eq. (39) produces the pressure Poisson
equation

V. (DIt =

V. [D—l (Ht + gvpn+l)] —-Vv. (prl+lui+l) . (40)

We leverage mass conservation to replace (dp/dr)"+! with (pu)"*!, re-
sulting in

3pn+l +4pn _ pn—l

24t

Boundary conditions for Eq. (41) are discussed in Section 3.2. The
initialization of the PISO algorithm consists of a predictor step in
which Eq. (36) is solved implicitly using p" to initialize u’. The Poisson
Eq. (41) is then solved using a corrector iterative loop to compute p'*!,
and Eq. (39) is used to update u'*!, a strategy commonly employed in
projection methods and SIMPLE-like schemes [36]. The corrector loop
is repeated until the maximum number of iterations is reached. The
number of iterations is chosen to reduce the residuals on the Poisson
equation below a set threshold. Finally, u"*!, (pu)"*!, and p"*!' are
updated using values from the last iteration of the PISO scheme.

V- (D7) = v DT (H + gVt + (41

3.2. Finite volume discretization

We discretize Egs. (20)—(23) spatially using a colocated finite vol-
ume method. The dependent variables u, p, A, p, and & are stored at
the cell centroids (dots in Fig. 3). The mass fluxes pu are stored at face
centers (squares in Fig. 3). For demonstration, consider the conserva-
tion of mass Eq. (25). Finite volume methods discretize the governing
transport equations in control volume form. Eq. (25) consequently takes
the form

* n _ n—1
/ <m> dV+/ (pu)* -dS =0, 42)
¢ 240 cs

where Cy, is the control volume, Cy is the control surface, and d§ is
the infinitesimal surface vector normal to Cg. The integrals in Eq. (42)
are approximated using mid-point Gauss quadrature, producing the
discrete form

S0 +4rt = :
VC(T +;(ﬂu)f'5f=0, (43)

where the subscripts C and f denote values at the cell and face
centroids, respectively, V. is the cell volume, and S} is the area vector
normal to face f. Summations over f are carried over all cell faces. Using
a similar approach, the momentum Eq. (36) takes the form

pC i+1 1+1
Ve—r e “c + E (pu)f - Sy = E r
n—1

———————  4ul -y
Ve |:(Vﬁ‘+1+gpr"+])C+% , (44)
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where the face-interpolated stress tensor is written as
o Sp= u (V- Se+ [uiVun] + 2V w5 45)

Overlines in Egs. (44)-(45) indicate quantities computed using special
interpolation or reconstruction methods. The face velocity in the advec-
tive term of Eq. (44) is computed using a van Leer TVD scheme [26],
while the gradient and divergence in Eq. (45) are first computed on cell
C using the Gauss theorem, and then linearly interpolated to the face
f. To avoid the checkerboard instability [37], the pressure source term
in Eq. (44) is reconstructed using the scheme of Weller et al. [38,39],

-1
_ S¢S S¢St
Vh-eVoe=| X o Z (V) — gy (Vo) - (46)
|54l I8

where |S¢| denotes the face area, and g is the magnitude of the
gravitational acceleration. The face gradients are discretized using a
linear finite difference stencil. This requires the inversion of a 3 x 3
matrix in 3D. The same approach is used to reconstruct the velocity
field from the mass fluxes in Eq. (25),

-1

S¢Se (pwy  S¢S¢
ul = —) . — 47)
¢ <; |Sf|) Z | Sl

£ Pf

where E;k is the linearly interpolated density at face f. The advection-
diffusion (29) and energy Egs. (33) are similarly discretized in the
Supplementary Material.

In the PISO corrector step, the velocity Eq. (39) is interpolated
to the faces to obtain an expression for the face fluxes. To prevent
checkerboarding, we compute the mass flux using Rhie-Chow interpo-
lation [40]

) 1 [~ )
(it =D [Hp = (V3 + (g9vo™) | (48)
where ﬁf is linearly interpolated at face f. Eq. (48) is used to update the
mass flux and to obtain boundary conditions for the Poisson Eq. (41)
in the form of a Neumann condition,

nf‘(Vﬁi+1)f:nf~ [ﬁf'l- (gyvpn+l) D(pll)H—l] . (49)

This condition is applied at all boundary faces, except for the outlet,
where we apply Eq. (17). Finally, the velocity correction Eq. (39) is
discretized using the reconstruction scheme in Eq. (46), consistent with
Eq. (36),

pluit = D! [H'c — (Vi +gyvpn+l)c] ) (50)

4. Verification and validation
4.1. Verification

We implement our method using the C++ library OpenFOAM®,
which provides a broad choice of methods for parallel linear algebra
and finite volume discretization [41]. We verify the spatial-temporal
accuracy of the proposed algorithm using the method of manufactured
solutions [42]. The method chooses desired exact solutions for u, p,
T, and ¢, which are substituted into Egs. (2)-(4) to compute the
required forcing terms F,, Fj,, and F, analytically. The manufactured
solutions are chosen to satisfy conservation of mass, so that no source
term is required in Eq. (1). For our purposes, we built the following
manufactured solution in a square periodic domain x € [0,2x], y €
[0, 2x],

u, sin(x) cos(y)
v, | = | —cos(x)sin(y) | cos(wr) (51)
Pe sin(x) sin(y)

= 100 + 50 [sin (x) sin (y) — cos (x) cos (y)] cos (wt) , (52)
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indistinguishable from those for v. The dashed black lines show second-order accuracy.

T, =300 + 30 [sin (x) sin (y) + cos (x) cos (y)] cos (wt) , (53)

where w is an angular frequency. The solution satisfies the constitutive
equations

I' =1+0.001c —0.002T, p=1+40.003¢ +0.005T ,

u=1040.01c -0.01T, c¢,=1, k=1, (54)

p

We omit units in Egs. (51)-(54) because they play no role in the
analysis.

To verify the spatial accuracy of our method, we set @ = 0 so
the manufactured solution is steady. We consider a uniform grid with
N2 cells (N in each direction), and integrate in time from the initial
condition u® = p¥ = 0, ® = 100, T9 = 300 to steady-state. We then
compute the relative spatial error

vy~ el

M el

where v, and y, are the numerical and exact solutions of u, T, &, and
p respectively. Fig. 4(a) shows that the method achieves second-order
spatial accuracy for all variables.

To verify the temporal accuracy of the method, we impose the
manufactured solution at time ¢ = 0 as the initial condition. We then
integrate in time from 7 = 0 to r = 2 using w = 2x. At t = 2, we compute
the relative temporal error
B, = llwar — Velloo

lwello

where y,, is the field computed using a time step Ar. To minimize
the spatial error, we set N = 750, which is the largest value that
maintained stability over the range of time steps considered. Fig. 4(b)
shows the method achieves second-order temporal accuracy when 4r >
1073, For smaller time steps, the error plateaus to that generated by
the spatial discretization. Note that the method achieves second-order
temporal accuracy for the pressure in the PISO scheme thanks to the
flux extrapolation in Eq. (24), as reported by Lee [43].

s (55)

s (56)

4.2. Validation

Prior experimental studies of VMD are of limited value for validat-
ing CFD, because to our knowledge, no prior work explores buoyancy-
driven convection, and the gravitational orientation is rarely reported.
VMD is not a mature technology, and most experiments use short
feed channels over which inlet and outlet effects are important. Feed
typically enters and exits the feed channels through holes in the plate
opposite the membrane, and the geometry of these holes is rarely
reported. We nevertheless compare the predictions of our method with
Angqi et al. [25], who performed experiments and CFD simulations of a
VMD system in which the feed channel is a 3D duct of H = 3 mm,

Table 1

Comparison of the average permeate flux predicted in the current study (column 2)
at steady-state with the experiments (column 3) and simulations (column 4) of Angi
et al. [25]. Results are shown for the lean inlet feed velocities shown in column 1.

Uy, [m/s]

Average vapor flux [kg m™2 s7']

Current work Experiments [25] CFD [25]
0.04 13.39 11.57 14.15
0.11 17.40 16.93 17.86
0.19 19.66 19.7 20

L = 7 cm, and a spanwise width of 1.5 cm. Gravity was oriented
as in Fig. 1(a), such that there was no potential for buoyancy-driven
convection. Anqi et al. use the standard incompressible flow solver of
OpenFOAM®, which ignores gravity and variations in thermophysical
properties.

Because Anqi et al. do not detail how feed enters and exits their
feed channel, we assume a parabolic inlet velocity profile, as in their
simulations. To be consistent with their CFD, we approximate the per-
meability B using the dusty gas model [11], in which B is expressed as
a combination of a diffusive component that models collisions between
vapor molecules, and a viscous component that models interactions be-
tween the vapor and the membrane material. In VMD, only the diffusive
component is relevant [44], and we therefore express B as [11]

2 Er

8RT,
_2_ m 7)
3 22RT,s \| 7My,

where r, = 0.2 pm is a pore radius, ¢ = 0.8 and 7 = 1.25 are the
membrane porosity and tortuosity, respectively, R = 8.3144 J/(mol K)
is the universal gas constant, M,, = 0.01803 kg/mol is the molecular
weight of water, and 6 = 100 pm is the pore length. These values
are all taken from Angqi et al. [25]. Though Angi et al. performed 3D
simulation; our simulations showed good agreement using a 2D grid
of 185 x 64 cells, detailed in the Supplementary Material. As in Anqi
et al., we set T;, =50 °C and T}, = 90 g/1.

Table 1 compares our predictions for the average transmembrane
vapor flux with the experiments and simulations of Anqi et al. [25]. The
vapor flux is averaged over the membrane length at steady state. Due
do the lack of information regarding the inlet and outlet geometry, the
comparison is only qualitative. Future work should perform dedicated
experiments to properly validate our mathematical model, which is
beyond the scope of the present work.

Bpg

5. Buoyancy-driven convection in membrane desalination

To investigate buoyancy-driven convection in VMD, we set the per-
meability to B = 1.8676 x 10~® kg/m? s Pa, which models a membrane
studied in Lou et al. [20]. We fix the channel height H = 3 mm,
length L = 15 cm, vacuum pressure p,,. = 5000 Pa, inlet temperature
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Fig. 5. The steady-state concentration (panel a) and temperature (panel b) fields when Re = 75 and g = [0,9.81] [m/s?] (stable configuration). Results are shown for x < 2.5 cm.
The black lines show where ¢ = 1.01C;, and T =0.99T;,. To aid visualization, the membrane is shaded gray at y =3 mm, and the plate is sketched at y =0.

T;, = 80 °C, and inlet concentration ¢;, = 70 g/l. These are typical of
a bench-scale system treating a hypersaline brine [45]. We vary U, so
that the inlet Reynolds number varies between 50 < Re < 100, where
Re = p;,Ui, H / u;,, is defined using the inlet density p;, and viscosity u;,,.
We initiate all simulations with «® = u;,(y), 1° = 0, ¢ = ¢, p° = 10°
Pa, and T° = 33 °C, where u,,(y) is given in Eq. (14). We use a grid
that is uniform in x, but that concentrates cells near the membrane, as
detailed in the Supplementary Material.

Our simulations use adaptive time stepping to satisfy the condition
Co < 0.5, where Co is a face-based Courant number,

_ At g+ S f

7 TSl

where |d;| is the distance between the centroids of the cells straddling
face f. The limit Co = 0.5 is based on a compromise between stability,
accuracy, and efficiency, and is in the stable range of Co for the PISO
scheme at the Reynolds numbers considered [46]. We mitigate the
initial transient by initiating simulations with Ar = 1010 s (producing
Co < 0.5), and we limit the increase in Ar between two time steps to a
factor of two. This allows At to grow smoothly.

From the available theory for Rayleigh-Bénard-Poiseuille flow [47-
51], we expect the dominant modes of instability (i.e., the least stable
modes) in VMD to be 3D. However, due to the computational cost of
3D simulations, and the limited objectives of this study, we focus on a
2D study in Sections 5.1-5.4. That study shows that density variations
are indeed important in VMD, and deserve future study. We conclude
with a 3D simulation in Section 5.5. The simulation confirms that 3D
effects further destabilize the flow.

(58)

5.1. Impact of gravitational orientation

To demonstrate the impact of gravitational orientation, we begin
by setting Re 75 and g [0,9.81] [m/s?] (pointing in the y-
direction). The density gradient is stable, and the simulation is run
to steady-state. Fig. 5 shows the resulting steady-state concentration
(panel a) and temperature (panel b) fields for x < 2.5 cm. We identify
the boundary layers by plotting the black iso-lines ¢ 1.01 ¢;, and
T = 0.99T;,. The concentration boundary layer is thinner than the
thermal layer, because the mass diffusivity is much smaller than the
thermal diffusivity. Though not shown, for brevity, the boundary layers
continue growing monotonically with downstream distance for x > 2.5
cm.

Keeping Re 75, we now set g = [0,-9.81] [m/s2], so that
gravity points away from the membrane. In this case, our simulation
predicts there is no steady-state. Figs. 6 and 7 show the instantaneous
concentration and temperature fields, respectively, at + = 300 s for
different downstream sections (see captions). In panel (b) of both fig-
ures, a sinusoidal perturbation becomes evident in the iso-line around
3 < x £ 4 cm, and plumes become evident for x > 4.25 cm. Because

the thermal diffusivity is orders-of-magnitude larger than the mass
diffusivity, energy mixing occurs more rapidly than solute mixing, and
the iso-line for T = 0.997;, disappears around x ~ 5 cm, while those
for ¢ 1.01¢;, after x ~ 10 cm. In both the stable and unstable
configurations shown in Figs. 5-7, the thermophysical properties of the
feed vary significantly. The density varies by approximately 8%, the
viscosity by more than 100%, the mass diffusivity by roughly 50%, and
the thermal conductivity and capacity by approximately 30%.

To compare stable and unstable cases, we compute the local time-
averaged permeate flux (j,) (x) and solute concentration on the mem-
brane surface (c,,) (x),

1 to+A4t 1 1o+Atg
i = — ji,(x,0)dt, =— ,H,1)dt,
(p) (0 ar, /ro Jo(x,1) (e (x) ar, /t0 e(x )

(59

where 4z, is a sampling interval taken sufficiently large to achieve a
statistically steady state, and ¢, is a start time greater than the initial
transient. We also compute the average permeate flux over the full
channel length,

1 L
Jape = Z/O <./v> dx.

In the following, because the variation of the temperature over the
membrane surface closely follows that of the vapor flux, we do not
show temperature profiles along the membrane.

Fig. 8(a) shows the downstream variation of (j,) for the stable
(dashed line) and unstable (solid line) cases shown in Figs. 5-7. For
the stable case, (j,) decreases monotonically downstream. The unstable
case shows a similar decrease up to x = 3.62 cm (open circle), after
which (j,) begins increasing. We hereinafter refer to the x-location
where (j,) begins increasing as the onset distance x,,. Downstream of
X, the flux (j,) for the unstable case reaches a local maximum j,,,, =
29.7 kg/(m>h) (solid dot), and then tends to decrease downstream. One
potential explanation for this behavior is that for x < x,,, perturbation
growth is dominated by linear instability mechanisms that have no net
impact on local permeate production. Downstream of x,,, the onset of
nonlinear mechanisms triggers the increase in (j,). However, this also
increases the rate of energy lost to evaporation, causing the instability
to quench downstream. This interpretation is incomplete, as it does not
explain the secondary maximum in (j,) near x = 12.3 cm. Overall, the
unstable case produces the average permeate flux J,, = 20.5 kg/(m?
h). This is a 21% relative increase compared to J,,, = 16.9 kg/(m?h)
produced by the stable case.

Fig. 8(b) shows the corresponding results for {c,). The open circle
marks x,,. The increase in vapor flux at x,, generates a corresponding
increase in (c,,), followed by a downstream maximum of c,,, = 177
g/l at x = 5.06 cm. Note from Fig. 8 that in the linear regime x < x,,,
the gravitational orientation has little impact on (j,), but significantly

(60)
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Fig. 6. Instantaneous snapshots of the concentration field when Re =75 and g = [0,-9.81] [m/s?] (unstable configuration). Results are shown in the ranges x € [0,2.5] cm (panel
a), x € [2.5,5] cm (panel b), x € [5,7.5] cm (panel ¢), and x € [10.5,13] cm (panel d). The black lines show where ¢ = 1.01 Cy,.
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Fig. 7. Instantaneous snapshots of the temperature field when Re = 75 and g = [0,-9.81] [m/s?] (unstable configuration). Results are shown in the ranges x € [0,2.5] cm (panel
a), x € [2.5,5] cm (panel b), x € [5,7.5] cm (panel ¢), and x € [10.5,13] cm (panel d). The black lines show where T =0.99T},.
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Fig. 9. Downstream variation of (j,) (panel a) and (c,,) (panel b) when Re = 50 (dashed line), 75 (solid line), and 100 (dash-dotted line). In panel (a), the open circles mark x,,,
and the solid dots mark the local maxima j,,.. In panel (b), the asterisks mark the maximum concentration c,,,,.
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Fig. 10. Downstream variation of (j,) (panel a) and (c,) (panel b) when Re = 100 and ¢, = 0 (dashed line), 10, 20, 30, and 40 kW/m?. The heat values are labeled in both

panels.

impacts (c,,). This is because the feed saturation pressure pg,, varies
exponentially with temperature, but only weakly with concentration
[

5.2. Impact of inlet Reynolds number

To investigate the impact of the Reynolds number, we perform
simulations with Re = 50, 75, and 100 in the unstable orientation.
Fig. 9(a) shows (j,) for each case (see legend). Increasing Re delays the
onset distance (open circles) from x,, = 1.76 for Re = 50 to x,, = 8.22
for Re = 100, and also decreases the local maxima j,,, (solid dots).
However, in the upstream region shaded gray, increasing Re increases

10

vapor production. This occurs because in the absence of convection,
increasing Re (by increasing U;,) decreases the thermal boundary layer
thickness and mitigates temperature polarization [20]. Increasing Re
also increases vapor production in the downstream region x > 10,
because quenching is delayed downstream. The simulations in Fig. 9(a)
produce J,,, = 18.6, 20.5, and 20.3, kg/(m? h) for Re = 50, 75, and
100, respectively.

Fig. 9(b) shows the corresponding results for (c,,). Though Re = 50
produces the largest j,,,, it produces the smallest ¢,,,. This might be
explained by the fact that j,, occurs further upstream for Re = 50,
where the solutal boundary layer is less developed. Overall, Fig. 9(a)
suggests there is an optimal Re that maximizes vapor, while Fig. 9(b)
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Fig. 11. Wall time vs. Co for the dual-block and the coupled algorithm.

suggests there is a separate Reynolds number that minimizes c,,,,, and
consequently the risk of mineral scaling.

5.3. Sustaining convection through wall heating

Convection can be strengthened and sustained over long membranes
by heating the channel wall opposite the membrane. This generates
rising plumes of warm fluid that replenish heat lost to evaporation. For
demonstration, we set g = [0, —9.81] [m/s2] (unstable orientation) and
Re = 100, and perform five simulations in which we deliver ¢, = 0,
10, 20, 30, and 40 kW/m? to the channel wall, using condition (19).
Fig. 10 shows the resulting downstream variation of (j,) (panel a) and
(c,,) (panel b). Results for ¢, = 0 are shown as a dashed-line. Wall
heating moves x,, upstream and increases j,,,.. Moreover, for ¢, > 20,
the downstream vapor production stabilizes to non-zero values. How-
ever, panel (b) shows that wall heating also increases concentration
polarization, and risk of mineral scaling. Future study is required to
determine what operating conditions limit concentration polarization
to acceptable values.

5.4. Numerical stability

To decouple the solution of the concentration and energy equations
from the mass and momentum equations, our method uses temporal
extrapolation in Egs. (24), (26), and (27). Our method is consequen-
tially less stable than those that iterates through the full governing
equations in a single block. To explore the trade-off between stability
and speed, we run a series of simulations at different Courant numbers,
and compute the wall time 7,,,;, (total time required by the computation
using a standard clock) required to simulate 100 s. We consider the case
described in Section 5.2 for Re = 50, and we repeat the simulations
using our dual-block method and a fully coupled algorithm detailed in
the Supplementary Material. The simulations are run on 16 physical
cores of a workstation mounting two 22-Core Intel Xeon E5-2699 v4
and running on OpenSUSE Tumbleweed.

Fig. 11 reports the wall time for different Co. The dual-block algo-
rithm (dashed line) is 5-6 times faster than the fully coupled algorithm.
However, for the problem tested, the dual-block algorithm could not
be pushed beyond Co = 2.5, even when we added under-relaxation.
Meanwhile, using a relaxation factor, the coupled algorithm could
be pushed beyond Co = 5. In this manner, the fully coupled al-
gorithm can achieve similar performance to the dual-bloc algorithm
by increasing Co beyond 2.5. However, this comes at the expense of
reduced temporal resolution. When the loss of accuracy is not relevant,

11
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such as for steady-state cases, the fully coupled algorithm is a viable
choice for simulating VMD. In the unstable orientation, however, the
dual-block method is more attractive for resolving the dynamics of
buoyancy-driven instabilities.

5.5. 3D example

As a final demonstration of our method, we perform a 3D simulation
at Re = 50 for the conditions described in Section 5.2, but in a 3D
domain H x L x4H, where the last length corresponds to the spanwise
width in the z-direction. We set periodic boundary conditions at z = 0
and z = 4H. To reduce the computational time and data storage, we
use a grid with N, = 50, and the spanwise direction is discretized using
100 cells.

Fig. 12 shows the instantaneous temperature (panel a) and con-
centration (panel b) fields at the membrane and four downstream
cross-sections at + = 300 s. The cross-sections reveal that the onset of
instability has a spanwise wavelength comparable to H. Downstream,
the plumes coarsen with an increasing wavelength. This coarsening
may be related to the downstream quenching of the instability. The
coarsening is more evident in Fig. 13(a), where we show isosurfaces
of T — (T) at t+ = 300 s, where (T') is the temporal average of T.
Fig. 13 (b) similarly shows isosurfaces of ¢ — {c), where (c) is the
temporal average of c. Plumes correspond to regions with positive
concentration difference and negative temperature difference. A more
thorough investigation of 3D instabilities is left to future work. We note
that compared to the 2D simulation in Section 5.2, the 3D simulation
predicts a permeate flux J,,, = 24.2 (kg/m’h). This is a 43% increase in
J e compared to that observed in our 2D simulations, indicating that

a.
the spanwise modes enhance permeate production.

6. Conclusions

We present a novel method of simulating variable density flows in
membrane desalination systems. The method leverages the fact that the
feed density varies primarily with the temperature and concentration,
but not pressure. The method is based on a dual-block algorithm that
solves all governing equations in conservation form and is formally
second-order accurate in time and space. We verify the accuracy using
manufactured solutions, and demonstrated that the proposed algorithm
is significantly faster than fully-coupled schemes.

To demonstrate our method, we simulate buoyancy-driven convec-
tion in vacuum membrane distillation (VMD). The convection arises
because the temperature and concentration fields trigger a double-
diffusive instability in which plumes of dense feed sink away from
the membrane surface. This brings warm low-concentration feed to the
membrane, and increases vapor production. Our simulations suggest
that buoyancy-driven convection generates three distinct downstream
regions in a VMD channel. First, there is an initial distance 0 < x < x,,,
in which the local vapor flux decreases with downstream distance. Sec-
ond, at the onset distance x = x,,, the onset of nonlinear mechanisms
cause the local vapor flux (j,) to increase rapidly, reaching a local
maximum j,,,,. Third, downstream of j,,,,, the local vapor flux begins
decreasing as the instability quenches due to energy lost to evaporation.
For the operating conditions considered, we found that increasing the
Reynolds number inhibits buoyancy-driven convection, such that x,,
is pushed downstream and j,,, decreases. We show, however, that
convection can be strengthened and sustained over long membranes
by heating the channel wall opposite the membrane.

Finally, we performed a 3D simulation of buoyancy-driven convec-
tion in VMD. This showed that instability in a real-world system likely
occurs to 3D modes of instability, that are less stable than 2D modes.
The simulation found that transport is further enhanced in the span-
wise direction, producing a larger increase in vapor production that
observed in 2D simulations. Future work is now required to expand our
simulations of VMD in 3D, and determine optimal operating conditions



F. Municchi et al. Computers and Fluids 285 (2024) 106449

160

gll

70

(a)

5.8—I 43
o gl
-74 -11

Fig. 13. Difference between the instantaneous and mean temperature (panel a) and concentration (panel b) in a 3D simulation at Re = 50. The channel is flipped on the y axis
for visualization purposes.
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