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A B S T R A C T

We present a novel method for simulating unsteady, variable density, fluid flows in membrane desalination
systems. By assuming the density varies only with concentration and temperature, the scheme decouples the
solution of the governing equations into two sequential blocks. The first solves the governing equations for the
temperature and concentration fields, which are used to compute all thermophysical properties. The second
block solves the conservation of mass and momentum equations for the velocity and pressure. We show that
this is computationally more efficient than schemes that iterate over the full coupled equations in one block. We
verify that the method achieves second-order spatial–temporal accuracy, and we use the method to investigate
buoyancy-driven convection in a desalination process called vacuum membrane distillation. Specifically, we
show that with gravity properly oriented, variations in temperature and concentration can trigger a double-
diffusive instability that enhances mixing and improves water recovery. We also show that the instability can
be strengthened by providing external heating.
1. Introduction

Membrane desalination processes have important applications to
esalinating seawater and brackish water, and treating municipal and
ndustrial wastewaters [1–3]. The energy efficiency and water recovery
f membrane desalination systems depend on heat and mass transport
hat are challenging to observe experimentally, because they occur
etween optically opaque membrane sheets. Computational fluid dy-

namics (CFD) consequently plays an important role in elucidating the
physics of membrane desalination [4–7]. The current study is motivated
by the fact that fluid flows in membrane desalination systems can ex-
erience rapid variations in temperature and solute concentration near
he membrane surfaces. The impacts of these variations on fluid density
nd buoyancy remain largely unexplored. Simulating these variations
umerically faces two hurdles. First, the density in some cases varies by
oughly 10%, pushing the limits of the Boussinesq assumption. Second,
ost variable-density, low-mach-number, CFD schemes are tailored to

lows in which the fluid density is coupled to the pressure [8]. Such

∗ Corresponding author.
E-mail address: ntilton@mines.edu (N. Tilton).

schemes typically iterate over all transport equations in one block [9].
In membrane desalination, however, the density varies primarily with
concentration and temperature. This opens the door to a more efficient
iterative procedure, that to our knowledge, remains unexplored.

Thus motivated, we develop a numerical method tailored to sim-
ulating variable-density flows in membrane desalination systems. By
assuming the density varies only with concentration and temperature,
the scheme decouples the solution of the governing equations into
two sequential blocks. The first solves the governing equations for
the temperature and concentration, which we then use to compute all
thermophysical properties. The second uses those properties to solve
conservation of mass and momentum for the velocity and pressure.
We show this maintains second-order spatio-temporal accuracy, but
is computationally more efficient than iterating over the full coupled
equations as in [9].

To demonstrate our method, we explore density variations in a de-
salination process called vacuum membrane distillation (VMD) [10,11].
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Nomenclature

Superscrips

∗ Denotes a variable extrapolated in time, as in
Eq. (24)

𝑖 Denotes a variable at iteration 𝑖, as in Eq. (3.1)
𝑛 Denotes a variable evaluated at time step 𝑛, as in

Eq. (20)
Subscripts

𝐶 Denotes a variable evaluated at a cell centroid
𝑒 Denotes the manufactured solution defined in

Eqs. (51)–(53)
𝑓 Denotes a variable evaluated at a face centroid of a

cell
Other Symbols
𝛥𝑡 Time step (s)
𝛿 Membrane pore length (μm)
𝜖 Membrane porosity (unitless)
𝛤 Molecular diffusivity (m2/s)
𝜅 Thermal conductivity (J/m s ◦C)
𝜆 Second viscosity coefficient (Pa s)
𝜆𝑣 Latent heat of evaporation (J/kg)
⟨𝑐𝑚⟩ Time averaged concentration on membrane surface

(g/l)
⟨𝑗𝑣⟩ Time averaged permeate flux (kg/ m2 s), see Eq. (59)
𝐃, 𝐌 Matrices defined in Eqs. (37)–(39)
𝐠 Gravitational vector (m/s2)
𝐇 Vector defined in Eq. (39)
𝐈 Identity tensor (unitless)
𝐮 Velocity vector (m/s)
𝜇 Dynamic viscosity (Pa s)
𝜌 Density (kg/m3)
𝜌𝑚 Local density of water on the feed surface of the

membrane (kg/m3)
𝝉 Viscous stress tensor (Pa)
𝜏 Membrane tortuosity (unitless)
𝑝 Reduced pressure 𝑝 = 𝑝 − 𝜌𝑔 𝑦 (Pa)
𝜉 Mass fraction (unitless)
𝑎𝑤 Activity coefficient (unitless)
𝐵 Membrane vapor permeability (kg/m2 s Pa)
𝐵𝐷 𝐺 Membrane vapor permeability in the dusty gas

model (kg/m2 s Pa)
𝑐 Salt concentration (g/l)
𝑐𝑝 Specific heat capacity (J/kg ◦C)
𝐶𝑆 Control surface (m2)
𝐶𝑉 Control volume (m3)
𝐶𝑖𝑛 Inlet concentration (g/l)
𝑐𝑚𝑎𝑥 Local maximum concentration downstream of 𝑥𝑜𝑛

(g/l), see Fig. 8
𝐶 𝑜 Courant number (unitless), see Eq. (58)
𝑑𝐒 Infinitesimal surface vector normal to 𝐶𝑆 (m2)

VMD flows warm feed water over a hydrophobic porous membrane,
as in Fig. 1(a). A difference in partial vapor pressure across the mem-
brane causes water to evaporate from the feed and travel through the
membrane as vapor. Nonvolatile solutes remain in the feed. The vapor
on the distillate side of the membrane is maintained at low pressure
2 
𝐸𝑁 Relative spatial error (unitless), see Eq. (55)
𝐸𝛥𝑡 Relative temporal error (unitless), see Eq. (56)
𝑔 Gravitational acceleration (9.81 m/s2)
𝐻 Channel height (m)
ℎ Specific enthalpy (J/kg)
𝑗𝑣 Transmembrane vapor mass flux (kg/m2 s)
𝐽𝑎𝑣𝑒 Average permeate flux (kg/ m2 s), see Eq. (60)
𝑗𝑚𝑎𝑥 Local maximum in ⟨𝑗𝑣⟩ (kg/ m2 s), see Fig. 8
𝐾 Kinetic energy per unit volume (J/m3), 𝐾 = 𝜌(𝐮⋅𝐮)∕2
𝐿 Channel length (m)
𝑀𝑤 Molar weight of water (Kg/mol)
𝑝 Pressure (Pa)
𝑝𝑚 Partial vapor pressure on the feed surface of the

membrane (Pa)
𝑝𝑜 Average pressure prescribed at outlet (Pa)
𝑝𝑠𝑎𝑡 Saturation pressure (Pa)
𝑝𝑣𝑎𝑐 Absolute pressure on distillate side of membrane

(Pa)
𝑅 Universal constant of gases (J/mol K)
𝑟𝑝 Membrane pore radius (μm)
𝑟𝑒𝑜𝑠 Unitless residual defined in Eq. (34)
𝑅𝑒 Inlet Reynolds number (unitless), 𝑅𝑒 = 𝜌𝑖𝑛𝑈𝑖𝑛𝐻∕𝜇𝑖𝑛.
𝑆𝑐 Source term defined in Eq. (30)
𝑇 Temperature (◦C)
𝑡 Time (s)
𝑇𝑖𝑛 Inlet temperature (◦C)
𝑢, 𝑣, 𝑤 Velocity components in 𝑥, 𝑦, 𝑧 directions, respec-

tively (m/s)
𝑈𝑖𝑛 Mean inlet velocity (m/s)
𝑢𝑖𝑛(𝑦) Parabolic inlet velocity profile (m/s), see Eq. (13)
𝑥, 𝑦, 𝑧 Cartesian coordinates (m)
𝑥𝑚𝑎𝑥 Downstream distance where 𝑗𝑚𝑎𝑥 occurs (m), see

Fig. 8
𝑥𝑜𝑛 Onset distance where ⟨𝑗𝑣⟩ begins increasing (m), see

Fig. 8

by a vacuum pump that draws the vapor into a condenser. Modern
desalination systems currently rely on a process called reverse osmosis
(RO). In comparison to RO, the advantage of VMD is that it is less
sensitive to osmotic pressure. This allows VMD to concentrate NaCl
solutions to above 300 g/l, compared to only 70 g/l using RO [2,12].

VMD faces two long-standing challenges. The first, called tempera-
ture polarization, is the cooling of the feed in a thermal boundary layer
growing along the membrane (Fig. 1a). This reduces the feed’s partial
vapor pressure, and reduces vapor production. The second challenge,
called concentration polarization, is the accumulation of solutes in a
concentration boundary layer at the membrane. Though this also de-
creases the feed’s partial vapor pressure, the greater risk is that it causes
mineral scaling, which is the precipitation of solutes onto the membrane,
where they block pores. Surprisingly little work considers that temper-
ature and concentration polarization increase the feed density near the
membrane [13–16]. We show that when gravity is properly oriented,
this can trigger a double-diffusive buoyancy-driven instability, in which
plumes of dense feed sink away from the membrane, as in Fig. 1(b).

his brings warm, low-concentration, feed to the membrane, which
ncreases vapor production.

The remaining manuscript is structured as follows. Section 2 de-
cribes the governing transport equations for VMD. Section 3 presents
ur spatial–temporal discretization and decoupling strategy. Section 4
verifies our method’s spatial–temporal accuracy and compares with
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Fig. 1. (a) Sketch (not to scale) of a VMD system in which gravity points towards the membrane. The membrane is shaded gray. The dotted region shows the concentration
boundary layer. The temperature profile illustrates temperature polarization. (b) Sketch of buoyancy driven instability when gravity points away from the membrane.
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Fig. 2. Sketch (not to scale) of the VMD system considered in this work. The inlet
elocity profile is the sum of a parabolic flow 𝑢𝑖𝑛(𝑦) and a perturbation 𝑢𝑝(𝑦, 𝑡).

xperiments. Section 5, explores buoyancy-driven convection in VMD,
nd the stability of the proposed algorithm. Section 6 summarizes our
esults and conclusions.

. Mathematical description

We consider a 2D channel of length 𝐿 with a flat-sheet membrane
t 𝑦 = 𝐻 and an impermeable wall at 𝑦 = 0, as in Fig. 2. A Newtonian
eed solution of water and NaCl enters at 𝑥 = 0 with a mean velocity
in, uniform NaCl concentration 𝐶in, and uniform temperature 𝑇in.

Concentrate exits the domain at 𝑥 = 𝐿. As the feed flows downstream,
water vapor exits the domain through the membrane. We assume a
acuum pump maintains a constant vapor pressure 𝑝vac on the vapor
ide of the membrane. We consider cases where the gravitational vector
points in the negative or positive 𝑦-direction.

.1. Governing equations

The feed mixture velocity 𝐮 = [𝑢 𝑣 𝑤] and pressure 𝑝 are governed
y the conservation of mass and momentum equations, where the feed
ensity 𝜌 is a function of concentration and temperature only,
𝜕 𝜌
𝜕 𝑡 + ∇ ⋅ (𝜌𝐮) = 0 , (1)

𝜕
𝜕 𝑡 (𝜌𝐮) + ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + 𝜌𝒈 + ∇ ⋅ 𝝉 + 𝐅𝐮, (2)

𝝉 = 𝜇
[

∇𝐮 + (∇𝐮)𝑇 ] − 2𝜇
3
(∇ ⋅ 𝐮)𝐈 ,

where 𝜇 is the dynamic viscosity, 𝐈 is the identity matrix, (∇𝐮)𝑇 is
he gradient transpose, and 𝐅𝐮 is a forcing term used for verification
n Section 4.1. Heat transport is governed by the thermal energy
quation [17],
𝜕
𝜕 𝑡 (𝜌ℎ) + ∇ ⋅ (𝜌𝐮ℎ) + 𝐷 𝐾

𝐷 𝑡 −
𝜕 𝑝
𝜕 𝑡 = ∇ ⋅

(

𝜅
𝑐𝑝
∇ℎ

)

+ 𝜌 (𝒈 ⋅ 𝐮) + 𝐹ℎ , (3)

where ℎ, 𝑐𝑝, and 𝜅 are the mixture’s specific enthalpy, specific heat
capacity, and thermal conductivity, respectively, 𝐷 𝐾∕𝐷 𝑡 = 𝜕 𝐾∕𝜕 𝑡 +
∇ ⋅ (𝐮𝐾), and 𝐾 = 𝜌(𝐮 ⋅ 𝐮)∕2. The term 𝐹ℎ is a forcing term used for
erification purposes in Section 4.1. Solute transport is governed by an

advection-diffusion equation,
𝜕 𝑐

𝜕 𝑡 + ∇ ⋅ (𝐮𝑐) = ∇ ⋅ (𝜌𝛤∇𝜉) + 𝐹𝑐 , (4)

3 
where 𝑐 is the concentration (mass of solute per liter of solution), 𝜉 =
∕𝜌 is the mass fraction (mass of solute per mass of solution), 𝛤 is the
ass diffusivity of NaCl, and 𝐹𝑐 is a forcing term used for verification

n Section 4.1. The specific enthalpy is related to the temperature (𝑇 )
hrough the relation

(𝑇 ) = ∫

𝑇

𝑇ref

𝑐𝑝(𝑇 ′)𝑑 𝑇 ′, (5)

here 𝑇ref is a reference temperature.
We express the variation of all thermophysical properties (𝜇, 𝜌, 𝑐𝑝,

, 𝛤 ) with temperature and concentration using bivariate polynomials
f the form

(𝑇 , 𝑐) =
3
∑

𝑛=0

4
∑

𝑚=0
𝑎𝑛𝑚 𝑇

𝑛 𝑐𝑚. (6)

e determine the coefficients 𝑎𝑛𝑚 for 𝜇, 𝜌, 𝑐𝑝, and 𝛤 by fitting (us-
ng MATLAB’s ‘‘polyfit’’ command) to data from thermodynamic soft-
are [18]. The coefficients for 𝜅 are fit to data from Jamieson and
udhope [19]. The fit requires 𝑐 in Eq. (6) to be replaced with the
ractical salinity defined as 𝑆𝑝 = 1000𝜉∕1.00472. All correlations are
it using data in the range 10 ≤ 𝑐 ≤ 257 (g/l) and 298.15 ≤ 𝑇 ≤ 373.15
K), except for 𝜅, which is valid in the range 0 ≤ 𝑆𝑝 ≤ 160 and 273.15 ≤
≤ 453.15 (K). The maximum deviation between the correlations and

ata is 1.18%. Model coefficients are provided in the Supplementary
aterial.

.2. Transmembrane heat and mass transport

Transport through the membrane is modeled on a macroscopic
cale using the popular model of Schofield et al. [10], whose va-
idity has been confirmed experimentally [20,21] for the conditions

explored here. The model assumes the transmembrane vapor mass flux
𝑣 is proportional to the transmembrane difference in partial vapor
ressure,

𝑣 = −𝐵 [

𝑝m(𝑥, 𝑡) − 𝑝vac
]

, (7)

here 𝑝m is the partial vapor pressure of the solution on the feed side
f the membrane, and 𝐵 is the vapor permeability [10,20,22]. There
emains some discussion in the literature regarding 𝐵 [23]. Lawson
nd Loyd [11] suggest 𝐵 depends on the local temperature, while
ther studies [10,20,22] suggest 𝐵 is well approximated as a constant
embrane property. Though our method permits either approach, we

ssume 𝐵 is constant for demonstration purposes.
Condition (7) produces the following condition for 𝑣 on the mem-

rane,

𝑣||
|𝑦=𝐻

=
𝑗𝑣
𝜌𝑚

= −𝐵
(

𝑝m − 𝑝vac
)

𝜌𝑚
, (8)

where 𝜌𝑚 is the local water density at the membrane surface (𝑦 = 𝐻).
Because no solutes traverse the membrane, we compute 𝜌𝑚 as the
density of pure water (𝑐 = 0 g/l). As in most prior literature, we apply
the no-slip condition (𝑢 = 0) on the membrane. Throughout this study,
no-slip implies the velocity tangential to a stationary surface is zero. The
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erm no-penetration implies the velocity normal to a stationary surface
is zero [24].

We express the dependence of the partial vapor pressure 𝑝m on
temperature and concentration as in Schofield et al. [10],

𝑝m = 𝑎𝑤𝑝sat , 𝑝sat = exp
(

23.238 − 3841
𝑇𝑚 − 318

)

, (9)

where the saturation pressure 𝑝sat is computed using the Antoine equa-
ion [20], 𝑇𝑚 is the local feed temperature on the membrane (𝑦 = 𝐻),

and 𝑎𝑤 is an activity coefficient given by

𝑎𝑤 = 1 − 0.03112 𝑐||
|

𝑦=𝐻 − 0.001482 𝑐2||
|

𝑦=𝐻 . (10)

Heat traverses the membrane due to advection by the vapor and
conduction through the vapor and membrane material. In VMD, the
contribution due to conduction is usually negligible due to the low
thermal conductivity of the rarefied vapor opposite the membrane.
Using that common assumption, conservation of energy [6] requires
the following boundary condition,

− 𝜅 𝜕 𝑇
𝜕 𝑦

|

|

|

|𝑦=𝐻
= 𝑗𝑣𝜆𝑣 , 𝜆𝑣 = 3177800 − 2464.4 𝑇𝑚 , (11)

where 𝜆𝑣 is the latent heat of evaporation of pure water. Consistent
with all prior literature, we assume there is no transmembrane flux of
NaCl. This requires
(

𝑗𝑣𝜉 − 𝜌𝛤
𝜕 𝜉
𝜕 𝑦

)

|

|

|

|𝑦=𝐻
= 0 . (12)

2.3. Inlet, outlet, and plate boundary conditions

Feed enters at 𝑥 = 0 with uniform temperature and concentration,

𝑇 ||
|𝑥=0

= 𝑇in , 𝑐||
|𝑥=0

= 𝐶in . (13)

To trigger buoyancy-driven instability independently of numerical
noise, we impose an inlet parabolic velocity profile (𝑢𝑖𝑛) with mean
velocity 𝑈in and an added perturbation (𝑢𝑝),
𝑢||
|𝑥=0

= 6𝑈in

(

𝑦
𝐻

−
𝑦2

𝐻2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
parabolic profile 𝑢𝑖𝑛(𝑦)

+ 𝐴𝑝𝑈in𝑠(𝑦, 𝑡),
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

perturbation 𝑢𝑝(𝑦, 𝑡)
(14)

where 𝑠(𝑦, 𝑡) ∈ [−1, 1] is a random number generated at each time
step for each inlet face of our finite volume discretization. 𝐴𝑝 is the
erturbation magnitude relative to 𝑈𝑖𝑛, which we set to 𝐴𝑝 = 0.0075.
o accommodate the effects of the membrane at the inlet, we apply an

nlet Neumann condition to 𝑣,
𝜕 𝑣
𝜕 𝑥

|

|

|

|𝑥=0
= 0 . (15)

At the outlet, we impose the following Neumann conditions,
𝜕 𝑇
𝜕 𝑥

|

|

|

|𝑥=𝐿
= 0 , 𝜕 𝑐

𝜕 𝑥
|

|

|

|𝑥=𝐿
= 0 , 𝜕 𝑢

𝜕 𝑥
|

|

|

|𝑥=𝐿
= 𝜕 𝑣
𝜕 𝑥

|

|

|

|𝑥=𝐿
= 0 . (16)

Prior VMD simulations typically fix the outlet pressure [6,7,25].
However, we found that produces unphysical velocity fields at the
outlet when 𝜌 varies with 𝑇 and 𝑐. This likely occurs because the
transmembrane mass flow generates a vertical pressure profile that is
inconsistent with a constant outlet pressure. We consequently fix an
verage outlet pressure 𝑝𝑜 through the condition
1
𝐻 ∫

𝐻

0
𝑝||
|𝑥=𝐿

𝑑 𝑦 = 𝑝𝑜 , (17)

with 𝑝𝑜 = 105 Pa. Our numerical tests showed that conditions (16)–
(17), combined with a TVD (Total Variation Diminishing) van Leer
cheme [26] (described in Section 3), allows flow structures to exit the
omain cleanly.

At the lower plate, we apply no-slip and no-penetration conditions
o the velocity, and zero-flux conditions to 𝑐 and 𝑇 ,

𝑢|| = 𝑣|| = 0 , 𝜕 𝑇 |

| = 0 , 𝜕 𝑐 |
| = 0 . (18)
|𝑦=0 |𝑦=0 𝜕 𝑦 |
|𝑦=0 𝜕 𝑦 |

|𝑦=0

4 
Note that in Section 5.3, we explore the impact of heating the lower
late. For that, we use the following boundary condition,
(

𝜅 𝜕 𝑇
𝜕 𝑦

)

|

|

|

|𝑦=0
= −𝑞̇𝑠 , (19)

where 𝑞̇𝑠 is the provided heat flux.

. Numerical formulation

We discretize Eqs. (1)–(4) in time using the BDF2 scheme [27]. For
brevity, we neglect the forcing terms 𝐅𝐮, 𝐹ℎ, and 𝐹𝑐 in Eqs. (2)–(4) and
present our method assuming a constant time step 𝛥𝑡. More generally,
we use adaptive time stepping, with details given in Supplementary Ma-
terial. With a constant time step, we can write the governing transport
equations in semidiscrete form as
3𝜌𝑛+1 + 4𝜌𝑛 − 𝜌𝑛−1

2𝛥𝑡
+ ∇ ⋅ (𝜌𝐮)𝑛+1 = 0 , (20)

3 (𝜌𝐮)𝑛+1 + 4 (𝜌𝐮)𝑛 − (𝜌𝐮)𝑛−1

2𝛥𝑡
+ ∇ ⋅ (𝜌𝐮𝐮)𝑛+1 =

∇ ⋅ 𝝉𝑛+1 − ∇𝑝̂𝑛+1 + 𝑔 𝑦∇𝜌𝑛+1 , (21)

3 (𝜌ℎ)𝑛+1 + 4 (𝜌ℎ)𝑛 − (𝜌ℎ)𝑛−1

2𝛥𝑡
+ ∇ ⋅ (𝜌𝐮ℎ)𝑛+1 =

−𝐷 𝐾
𝐷 𝑡

𝑛+1
+
𝜕 𝑝
𝜕 𝑡

𝑛+1
+ ∇ ⋅

(

𝜅
𝑐𝑝
∇ℎ

)𝑛+1
+ 𝒈 ⋅ (𝜌𝐮)𝑛+1 , (22)

3 (𝜌𝜉)𝑛+1 + 4 (𝜌𝜉)𝑛 − (𝜌𝜉)𝑛−1

2𝛥𝑡
+ ∇ ⋅ (𝜌𝐮𝜉)𝑛+1 = ∇ ⋅ (𝜌𝛤∇𝜉)𝑛+1 , (23)

where 𝑛 is the time step index, 𝑝̂ = 𝑝− 𝜌(𝒈 ⋅ 𝒙) is the modified pressure,
and 𝒙 = [𝑥, 𝑦] is the coordinate vector. Note that the term (𝒈 ⋅ 𝒙)∇𝜌 is
resent in each component of the momentum equation.

Several methods of decoupling Eqs. (20)–(23) are proposed in prior
iterature [8,9,28–34]. These typically iterate over the full set of gov-
rning equations in a single block to obtain a density field that satisfies
oth mass conservation and an equation of state [9,31]. In contrast,
e perform two segregated inner iterative loops, which provides two
dvantages in terms of performance. First, the overall convergence rate
s improved because the flow variables are fixed while solving the first
lock, and the thermophysical properties are fixed while solving the
econd block. Second, each block only performs the iterations required
o achieve the desired accuracy, while a full coupling would perform
s many iterations as required by the slowest converging block. One
rawback is that the first block must predict several flow variables
sing temporal extrapolation. This requires stricter conditions on the
ime step to maintain stability, compared to a fully coupled algorithm.

.1. Solution algorithm

The solution algorithm consists of three steps summarized in Al-
orithm 1. The first step predicts (𝜌𝐮), 𝜌, 𝜕 𝑝∕𝜕 𝑡, 𝐮, and 𝐷 𝐾∕𝐷 𝑡 using
econd-order extrapolation in time. The second step iteratively solves
he advection-diffusion and energy equations to update the equation
f state and compute the thermophysical properties. Finally, the third
tep iteratively solves the pressure-velocity coupling using a Pressure
mplicit Operator Splitting (PISO) method [35].
Step 1 - The advection-diffusion and energy Eqs. (3)–(4) depend on

𝑛+1, 𝐮𝑛+1, (𝐷 𝐾∕𝐷 𝑡)𝑛+1, and (𝜕 𝑝∕𝜕 𝑡)𝑛+1. Step 1 estimates these using
econd-order extrapolation in time. We first compute the extrapolated
ass flux

(𝜌𝐮)∗ = 2 (𝜌𝐮)𝑛 − (𝜌𝐮)𝑛−1 , (24)

here the asterisk denotes an approximation to (𝜌𝐮)𝑛+1. We then sub-
titute (𝜌𝐮)∗ into Eq. (20) to compute an extrapolated density and
elocity
3 𝜌∗ = ∇ ⋅ (𝜌𝐮)∗ − 4𝜌𝑛 − 𝜌𝑛−1

, 𝐮∗ =
(𝜌𝐮)∗

. (25)

2𝛥𝑡 2𝛥𝑡 𝜌∗
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Algorithm 1 Solution algorithm
for 𝑡 < 𝑡𝑚𝑎𝑥 do ⊳ Time Loop

𝑡 = 𝑡 + 𝛥𝑡 ⊳ Compute time step 𝛥𝑡 and update time
Compute the extrapolated flow variables ⊳ Equations (24)–(27)
𝑟eos = 0 ⊳ Initialize residual for density
while 𝑟eos ≥ tolerance do ⊳ Advection-diffusion/Energy loop

Solve the advection-diffusion equation for 𝜉𝑖+1 ⊳ Equation (29)
Solve the energy equation for ℎ𝑖+1 ⊳ Equation (33)
Update thermophysical properties and 𝑟eos

end while
Compute 𝐮𝑖 by solving equation (36) with 𝑝̂𝑛 ⊳ Predictor step
corr = 0 ⊳ Initialize pressure corrector
while corr ≤ maximum iterations do ⊳ Correction loop

Solve the Poisson equation for 𝑝̂𝑖+1 ⊳ Equation (41)
Update mass flux (𝜌𝐮)𝑖+1 and velocity 𝐮𝑖+1 ⊳ Equation (39)
corr = corr + 1

end while
𝑝̂𝑛+1 = 𝑝̂𝑖+1, (𝜌𝐮)𝑛+1 = (𝜌𝐮)𝑖+1, 𝐮𝑛+1 = 𝐮𝑖+1

end for
We then compute the extrapolated derivatives of 𝐾 and 𝑝,
(𝐷 𝐾
𝐷 𝑡

)∗
= 2

(𝐷 𝐾
𝐷 𝑡

)𝑛
−
(𝐷 𝐾
𝐷 𝑡

)𝑛−1
, (26)

(

𝜕 𝑝
𝜕 𝑡

)∗
= 2

(

𝜕 𝑝
𝜕 𝑡

)𝑛
−
(

𝜕 𝑝
𝜕 𝑡

)𝑛−1
, (27)

where the time derivatives are computed using the BDF2 scheme. All
extrapolated quantities are kept constant for the rest of the algorithm,
and are only computed at the beginning of each temporal step.

Step 2 - The second step solves the advection-diffusion and energy
equations iteratively by updating the thermophysical properties within
an iterative loop. Introducing the iteration index 𝑖, we first initialize
the following variables

𝜉𝑖 = 𝜉𝑛 , ℎ𝑖 = ℎ𝑛 , 𝜌𝑖 = 𝜌∗ , 𝑐𝑖𝑝 = 𝑐𝑝 (𝑐𝑛, 𝑇 𝑛) ,

𝑖 = 𝜅 (𝑐𝑛, 𝑇 𝑛) , 𝛤 𝑖 = 𝛤 (𝑐𝑛, 𝑇 𝑛) . (28)

e then solve the advection-diffusion Eq. (23) in conservative form,
3
2𝛥𝑡

𝜌𝑖𝜉𝑖 + ∇ ⋅
[

(𝜌𝐮)∗ 𝜉𝑖+1
]

= ∇ ⋅
(

𝜌𝑖𝛤 𝑖∇𝜉𝑖+1
)

+ 𝜉𝑖+1𝑆𝑖𝑐

−
4𝜌𝑛𝜉𝑛 − 𝜌𝑛−1𝜉𝑛−1

2𝛥𝑡
, (29)

where the source term 𝑆 𝑖𝑐 is given by

𝑆 𝑖𝑐 =
3𝜌𝑖 + 4𝜌𝑛 − 𝜌𝑛−1

2𝛥𝑡
+ ∇ ⋅ (𝜌𝐮)∗ . (30)

Note that 𝑆𝑖𝑐 is not zero at convergence, because it accounts for the
difference between 𝜌∗ and 𝜌𝑖. At the end of the loop, when the new
ensity 𝜌𝑛+1 is computed, it can be shown that

𝑆𝑛+1𝑐 =
𝜕 𝜌
𝜕 𝑡

𝑛+1
−
𝜕 𝜌
𝜕 𝑡

∗
. (31)

Because both time derivatives in Eq. (31) are discretized using BDF2,
the error introduced by 𝑆 𝑖𝑐 is at most 

(

𝛥𝑡2
)

. As described in the next
step, the mass flux is consistent with the equation of state, so that the
extrapolated time derivative of the density is given by
𝜕 𝜌
𝜕 𝑡

∗
= 2 𝜕 𝜌

𝜕 𝑡
𝑛
−
𝜕 𝜌
𝜕 𝑡

𝑛−1
= −∇ ⋅

[

2 (𝜌𝐮)𝑛 − (𝜌𝐮)𝑛−1
]

= −∇ ⋅ (𝜌𝐮)∗ . (32)

Hence, the divergence of the extrapolated mass flux can be seen as a
econd-order accurate extrapolation of the time derivative of the den-

sity, consistent with the equation of state. After solving the advection-
diffusion Eq. (29), we solve the energy equation using the source term
5 
𝑆 𝑖𝑐 ,

3
2𝛥𝑡

𝜌𝑖ℎ𝑖+1 + ∇ ⋅
[

(𝜌𝐮)∗ ℎ𝑖+1
]

= −
(𝐷 𝐾
𝐷 𝑡

)∗
+
(

𝜕 𝑝
𝜕 𝑡

)∗
+ ∇ ⋅

(

𝜅𝑖

𝑐𝑖𝑝
∇ℎ𝑖+1

)

+ 𝒈 ⋅
(

𝜌𝑖𝐮∗
)

+ ℎ𝑖+1𝑆𝑖𝑐 −
4𝜌𝑛ℎ𝑛 − 𝜌𝑛−1ℎ𝑛−1

2𝛥𝑡
. (33)

After computing ℎ𝑖+1, the temperature 𝑇 𝑖+1 is obtained from Eq. (5)
using Newton iterations. The new solute concentration is computed as
𝑐𝑖+1 = 𝜌𝑖𝜉𝑖+1, and all thermophysical properties are updated to 𝑖 + 1
using 𝑐𝑖+1 and 𝑇 𝑖+1. To quantify the convergence of the iterative loop
in step 2, we compute the following residual 𝑟eos on the equation of
state using the infinity norm,

𝑟eos =
‖𝜌𝑖+1 − 𝜌𝑖‖∞
‖𝜌𝑖+1‖∞

. (34)

When 𝑟eos falls below a preset threshold, the loop is interrupted, and
the fields at iteration 𝑖 + 1 are taken as the values for time step 𝑛 + 1.

Step 3 - This final step solves the conservation of mass and mo-
mentum Eqs. (1)–(2) using a modified PISO method with second-order
temporal accuracy. Using 𝑖 as the iteration index, we initialize the flow
variables as

𝐮𝑖 = 𝐮∗ , 𝑝𝑖 = 𝑝𝑛 , (𝜌𝑢)𝑖 = (𝜌𝑢)∗ . (35)

The momentum equation is then written in the linearized form
3𝜌
2𝛥𝑡

𝑛+1
𝐮𝑖+1 + ∇ ⋅

[

(𝜌𝐮)∗ 𝐮𝑖+1
]

= ∇ ⋅ 𝝉 𝑖+1 − ∇𝑝̂𝑖+1

+𝑔 𝑦∇𝜌𝑛+1 − 4𝜌𝑛𝐮𝑛 − 𝜌𝑛−1𝐮𝑛−1
2𝛥𝑡

, (36)

where we discretize the stress tensor temporally as

𝝉 𝑖+1 = ∇ ⋅
(

𝜇𝑛+1∇𝐮𝑖+1
)

+ ∇ ⋅
[

𝜇𝑛+1
(

∇𝐮∗
)𝑇 + 𝜆𝑛+1

(

∇ ⋅ 𝐮∗
)

𝐈
]

. (37)

In the PISO formulation, it is convenient to represent the semi-discrete
momentum equation in the compact form

𝐌𝜌𝑛+1𝐮𝑖+1 = 𝒃𝑛𝐮 − ∇𝑝̂𝑖+1 + 𝑔 𝑦∇𝜌𝑛+1 , (38)

where 𝐌 is the matrix arising from the spatio-temporal discretization
of the differential operators, and 𝒃𝑛𝐮 is a vector of explicit terms,
such as those arising from temporal discretization. We then apply the
decomposition 𝐌 = 𝐃 + 𝐍, where 𝐃 is the diagonal of 𝐌, and we
define the vector 𝐇𝑖 = −𝐍𝜌𝑛+1𝐮𝑖 + 𝒃𝑛𝐮. After multiplying both sides by
of Eq. (39) by 𝐃−1 we obtain the expression

[ ( )]
𝜌𝑛+1𝐮𝑖+1 = 𝐃−1 𝐇𝑖 − ∇𝑝̂𝑖+1 + 𝑔 𝑦∇𝜌𝑛+1 . (39)
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Fig. 3. Sketch of a cell C (shaded gray). Dots denote cell centers. Squares denote face
centers. Arrows indicate face-normal vectors.

Eq. (39) can be interpreted as a Jacobi decomposition of Eq. (36). Tak-
ing the divergence of Eq. (39) produces the pressure Poisson
equation

∇ ⋅
(

𝐃−1∇𝑝̂𝑖+1
)

= ∇ ⋅
[

𝐃−1 (𝐇𝑖 + 𝑔∇𝜌𝑛+1
)]

− ∇ ⋅
(

𝜌𝑛+1𝐮𝑖+1
)

. (40)

We leverage mass conservation to replace (𝜕 𝑝∕𝜕 𝑡)𝑛+1 with (𝜌𝐮)𝑛+1, re-
sulting in
∇ ⋅

(

𝐃−1∇𝑝̂𝑖+1
)

= ∇ ⋅
[

𝐃−1 (𝐇𝑖 + 𝑔∇𝜌𝑛+1
)]

+
3𝜌𝑛+1 + 4𝜌𝑛 − 𝜌𝑛−1

2𝛥𝑡
. (41)

Boundary conditions for Eq. (41) are discussed in Section 3.2. The
initialization of the PISO algorithm consists of a predictor step in
which Eq. (36) is solved implicitly using 𝑝̂𝑛 to initialize 𝐮𝑖. The Poisson
q. (41) is then solved using a corrector iterative loop to compute 𝑝̂𝑖+1,
nd Eq. (39) is used to update 𝐮𝑖+1, a strategy commonly employed in
rojection methods and SIMPLE-like schemes [36]. The corrector loop
s repeated until the maximum number of iterations is reached. The
umber of iterations is chosen to reduce the residuals on the Poisson
quation below a set threshold. Finally, 𝐮𝑛+1, (𝜌𝐮)𝑛+1, and 𝑝𝑛+1 are
pdated using values from the last iteration of the PISO scheme.

.2. Finite volume discretization

We discretize Eqs. (20)–(23) spatially using a colocated finite vol-
me method. The dependent variables 𝐮, 𝑝, ℎ, 𝜌, and 𝜉 are stored at
he cell centroids (dots in Fig. 3). The mass fluxes 𝜌𝐮 are stored at face
enters (squares in Fig. 3). For demonstration, consider the conserva-
ion of mass Eq. (25). Finite volume methods discretize the governing
ransport equations in control volume form. Eq. (25) consequently takes
he form

∫𝐶𝑉

(

3𝜌∗ + 4𝜌𝑛 − 𝜌𝑛−1
2𝛥𝑡

)

𝑑 𝑉 + ∫𝐶𝑆
(𝜌𝐮)∗ ⋅ 𝑑𝑺 = 0 , (42)

where 𝐶𝑉 is the control volume, 𝐶𝑆 is the control surface, and 𝑑𝑺 is
the infinitesimal surface vector normal to 𝐶𝑆 . The integrals in Eq. (42)
are approximated using mid-point Gauss quadrature, producing the
discrete form

𝑉𝐶

(

3𝜌∗𝐶 + 4𝜌𝑛𝐶 − 𝜌𝑛−1𝐶
2𝛥𝑡

)

+
∑

f
(𝜌𝐮)∗f ⋅ 𝑺f = 0 , (43)

where the subscripts 𝐶 and 𝑓 denote values at the cell and face
centroids, respectively, 𝑉𝐶 is the cell volume, and 𝑺f is the area vector
ormal to face f. Summations over f are carried over all cell faces. Using
 similar approach, the momentum Eq. (36) takes the form

𝑉𝐶
3𝜌𝐶
2𝛥𝑡

𝑛+1
𝐮𝑖+1𝐶 +

∑

f
(𝜌𝐮)∗f 𝐮

𝑖+1
f ⋅ 𝑺f =

∑

f
𝝉 𝑖+1f ⋅ 𝑺f

−𝑉𝐶

[

(

∇𝑝̂𝑖+1 + 𝑔 𝑦∇𝜌𝑛+1)𝐶 +
4𝜌𝑛𝐶𝐮

𝑛
𝐶 − 𝜌𝑛−1𝐶 𝐮𝑛−1𝐶

]

, (44)

2𝛥𝑡

6 
where the face-interpolated stress tensor is written as

𝝉 𝑖+1f ⋅ 𝑺f = 𝜇𝑖f (∇𝐮)
𝑖+1
f ⋅ 𝑆f +

[

𝜇𝑖f(∇𝐮∗)
𝑇
f + 𝜆𝑖f(∇ ⋅ 𝐮∗)f𝐈

]

⋅ 𝑺f . (45)

Overlines in Eqs. (44)–(45) indicate quantities computed using special
interpolation or reconstruction methods. The face velocity in the advec-
tive term of Eq. (44) is computed using a van Leer TVD scheme [26],
while the gradient and divergence in Eq. (45) are first computed on cell
𝐶 using the Gauss theorem, and then linearly interpolated to the face
f. To avoid the checkerboard instability [37], the pressure source term
in Eq. (44) is reconstructed using the scheme of Weller et al. [38,39],

(∇𝑝̂ − 𝑔 𝑦∇𝜌)𝐶 =

(

∑

f

𝑺f𝑺f
|𝑺f|

)−1

⋅
∑

f

[

(∇𝑝̂)f − 𝑔 𝑦 (∇𝜌)f
]

⋅
𝑺f𝑺f
|𝑺f|

, (46)

where |𝑺f| denotes the face area, and 𝑔 is the magnitude of the
ravitational acceleration. The face gradients are discretized using a
inear finite difference stencil. This requires the inversion of a 3 × 3
atrix in 3D. The same approach is used to reconstruct the velocity

ield from the mass fluxes in Eq. (25),

𝐮∗𝐶 =

(

∑

f

𝑺f𝑺f
|𝑺f|

)−1

⋅
∑

f

(𝜌𝐮)∗f
𝜌∗f

⋅
𝑺f𝑺f
|𝑺f|

, (47)

where 𝜌∗f is the linearly interpolated density at face f. The advection-
diffusion (29) and energy Eqs. (33) are similarly discretized in the
upplementary Material.

In the PISO corrector step, the velocity Eq. (39) is interpolated
to the faces to obtain an expression for the face fluxes. To prevent
checkerboarding, we compute the mass flux using Rhie-Chow interpo-
lation [40]

(𝜌𝐮)𝑖+1f = 𝐃
−1
f

[

𝐇𝑖f − (∇𝑝̂𝑖+1)f +
(

𝑔 𝑦∇𝜌𝑛+1)f

]

, (48)

where 𝐇𝑖f is linearly interpolated at face f. Eq. (48) is used to update the
ass flux and to obtain boundary conditions for the Poisson Eq. (41)

in the form of a Neumann condition,

𝐧f ⋅ (∇𝑝̂𝑖+1)f = 𝐧f ⋅
[

𝐇𝑖f +
(

𝑔 𝑦∇𝜌𝑛+1)f − 𝐃(𝜌𝐮)𝑖+1f

]

. (49)

This condition is applied at all boundary faces, except for the outlet,
where we apply Eq. (17). Finally, the velocity correction Eq. (39) is
discretized using the reconstruction scheme in Eq. (46), consistent with
Eq. (36),

𝜌𝑛+1𝐶 𝐮𝑖+1𝐶 = 𝐃−1
𝐶

[

𝐇𝑖
𝐶 −

(

∇𝑝̂𝑖+1 + 𝑔 𝑦∇𝜌𝑛+1)𝐶
]

. (50)

4. Verification and validation

4.1. Verification

We implement our method using the C++ library OpenFOAM® ,
hich provides a broad choice of methods for parallel linear algebra

and finite volume discretization [41]. We verify the spatial–temporal
accuracy of the proposed algorithm using the method of manufactured
solutions [42]. The method chooses desired exact solutions for 𝐮, 𝑝,
𝑇 , and 𝑐, which are substituted into Eqs. (2)–(4) to compute the
required forcing terms 𝐅𝐮, 𝐹ℎ, and 𝐹𝑐 analytically. The manufactured
solutions are chosen to satisfy conservation of mass, so that no source
term is required in Eq. (1). For our purposes, we built the following
manufactured solution in a square periodic domain 𝑥 ∈ [0, 2𝜋], 𝑦 ∈
[0, 2𝜋],
⎡

⎢

⎢

⎣

𝑢𝑒
𝑣𝑒
𝑝𝑒

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

sin(𝑥) cos(𝑦)
− cos(𝑥) sin(𝑦)
sin(𝑥) sin(𝑦)

⎤

⎥

⎥

⎦

cos(𝜔𝑡) (51)
𝑐𝑒 = 100 + 50 [sin (𝑥) sin (𝑦) − cos (𝑥) cos (𝑦)] cos (𝜔𝑡) , (52)
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Fig. 4. (a) 𝐸𝑁 vs. 𝑁 . (b) 𝐸𝛥𝑡 vs. 𝛥𝑡. The symbols denote results for 𝑝 (asterisks), 𝑣 (squares), 𝑐 (circles), and 𝑇 (triangles). Results for 𝑢 are not shown, because they are
indistinguishable from those for 𝑣. The dashed black lines show second-order accuracy.
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𝑇𝑒 = 300 + 30 [sin (𝑥) sin (𝑦) + cos (𝑥) cos (𝑦)] cos (𝜔𝑡) , (53)

where 𝜔 is an angular frequency. The solution satisfies the constitutive
equations

𝛤 = 1 + 0.001𝑐 − 0.002𝑇 , 𝜌 = 1 + 0.003𝑐 + 0.005𝑇 ,
𝜇 = 10 + 0.01𝑐 − 0.01𝑇 , 𝑐𝑝 = 1 , 𝜅 = 1 , (54)

We omit units in Eqs. (51)–(54) because they play no role in the
analysis.

To verify the spatial accuracy of our method, we set 𝜔 = 0 so
the manufactured solution is steady. We consider a uniform grid with
𝑁2 cells (𝑁 in each direction), and integrate in time from the initial
condition 𝐮0 = 𝑝0 = 0, 𝑐0 = 100, 𝑇 0 = 300 to steady-state. We then
compute the relative spatial error

E𝑁 =
‖𝜓𝑁 − 𝜓𝑒‖∞

‖𝜓𝑒‖∞
, (55)

where 𝜓𝑁 and 𝜓𝑒 are the numerical and exact solutions of 𝐮, 𝑇 , 𝜉, and
respectively. Fig. 4(a) shows that the method achieves second-order

patial accuracy for all variables.
To verify the temporal accuracy of the method, we impose the

anufactured solution at time 𝑡 = 0 as the initial condition. We then
integrate in time from 𝑡 = 0 to 𝑡 = 2 using 𝜔 = 2𝜋. At 𝑡 = 2, we compute
the relative temporal error

E𝛥𝑡 =
‖𝜓𝛥𝑡 − 𝜓𝑒‖∞

‖𝜓𝑒‖∞
, (56)

where 𝜓𝛥𝑡 is the field computed using a time step 𝛥𝑡. To minimize
the spatial error, we set 𝑁 = 750, which is the largest value that
maintained stability over the range of time steps considered. Fig. 4(b)
shows the method achieves second-order temporal accuracy when 𝛥𝑡 >
0−3. For smaller time steps, the error plateaus to that generated by
he spatial discretization. Note that the method achieves second-order

temporal accuracy for the pressure in the PISO scheme thanks to the
lux extrapolation in Eq. (24), as reported by Lee [43].

.2. Validation

Prior experimental studies of VMD are of limited value for validat-
ng CFD, because to our knowledge, no prior work explores buoyancy-
riven convection, and the gravitational orientation is rarely reported.
MD is not a mature technology, and most experiments use short

eed channels over which inlet and outlet effects are important. Feed
ypically enters and exits the feed channels through holes in the plate
pposite the membrane, and the geometry of these holes is rarely
eported. We nevertheless compare the predictions of our method with
nqi et al. [25], who performed experiments and CFD simulations of a
MD system in which the feed channel is a 3D duct of 𝐻 = 3 mm,
 l

7 
able 1
omparison of the average permeate flux predicted in the current study (column 2)
t steady-state with the experiments (column 3) and simulations (column 4) of Anqi
t al. [25]. Results are shown for the lean inlet feed velocities shown in column 1.
𝑈in [m/s] Average vapor flux [kg m−2 s−1]

Current work Experiments [25] CFD [25]

0.04 13.39 11.57 14.15
0.11 17.40 16.93 17.86
0.19 19.66 19.7 20

𝐿 = 7 cm, and a spanwise width of 1.5 cm. Gravity was oriented
as in Fig. 1(a), such that there was no potential for buoyancy-driven
convection. Anqi et al. use the standard incompressible flow solver of
OpenFOAM®, which ignores gravity and variations in thermophysical
properties.

Because Anqi et al. do not detail how feed enters and exits their
feed channel, we assume a parabolic inlet velocity profile, as in their
simulations. To be consistent with their CFD, we approximate the per-
meability 𝐵 using the dusty gas model [11], in which 𝐵 is expressed as
a combination of a diffusive component that models collisions between
vapor molecules, and a viscous component that models interactions be-
tween the vapor and the membrane material. In VMD, only the diffusive
component is relevant [44], and we therefore express 𝐵 as [11]

𝐵DG = 2
3

𝜀𝑟𝑝
𝜏2𝑅𝑇𝑚𝛿

√

8𝑅𝑇𝑚
𝜋 𝑀w

, (57)

where 𝑟𝑝 = 0.2 μm is a pore radius, 𝜀 = 0.8 and 𝜏 = 1.25 are the
membrane porosity and tortuosity, respectively, 𝑅 = 8.3144 J/(mol K)
is the universal gas constant, 𝑀w = 0.01803 kg/mol is the molecular
weight of water, and 𝛿 = 100 μm is the pore length. These values
are all taken from Anqi et al. [25]. Though Anqi et al. performed 3D
simulation; our simulations showed good agreement using a 2D grid
of 185 × 64 cells, detailed in the Supplementary Material. As in Anqi
et al., we set 𝑇𝑖𝑛 = 50 ◦C and 𝑇𝑖𝑛 = 90 g/l.

Table 1 compares our predictions for the average transmembrane
apor flux with the experiments and simulations of Anqi et al. [25]. The
apor flux is averaged over the membrane length at steady state. Due
o the lack of information regarding the inlet and outlet geometry, the
omparison is only qualitative. Future work should perform dedicated
xperiments to properly validate our mathematical model, which is
eyond the scope of the present work.

. Buoyancy-driven convection in membrane desalination

To investigate buoyancy-driven convection in VMD, we set the per-
meability to 𝐵 = 1.8676 × 10−6 k g∕m2 s Pa, which models a membrane
tudied in Lou et al. [20]. We fix the channel height 𝐻 = 3 mm,
ength 𝐿 = 15 cm, vacuum pressure 𝑝 = 5000 Pa, inlet temperature
vac
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Fig. 5. The steady-state concentration (panel a) and temperature (panel b) fields when 𝑅𝑒 = 75 and 𝐠 = [0, 9.81] [m/s2] (stable configuration). Results are shown for 𝑥 ≤ 2.5 cm.
he black lines show where 𝑐 = 1.01𝐶in and 𝑇 = 0.99 𝑇in. To aid visualization, the membrane is shaded gray at 𝑦 = 3 mm, and the plate is sketched at 𝑦 = 0.
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𝑇in = 80 ◦C, and inlet concentration 𝑐in = 70 g/l. These are typical of
a bench-scale system treating a hypersaline brine [45]. We vary 𝑈in so
that the inlet Reynolds number varies between 50 ≤ 𝑅𝑒 ≤ 100, where
𝑅𝑒 = 𝜌𝑖𝑛𝑈in𝐻∕𝜇𝑖𝑛 is defined using the inlet density 𝜌𝑖𝑛 and viscosity 𝜇𝑖𝑛.
We initiate all simulations with 𝑢0 = 𝑢𝑖𝑛(𝑦), 𝑣0 = 0, 𝑐0 = 𝑐in, 𝑝0 = 105
a, and 𝑇 0 = 33 ◦C, where 𝑢𝑖𝑛(𝑦) is given in Eq. (14). We use a grid
hat is uniform in 𝑥, but that concentrates cells near the membrane, as
etailed in the Supplementary Material.

Our simulations use adaptive time stepping to satisfy the condition
 𝑜 < 0.5, where 𝐶 𝑜 is a face-based Courant number,

𝐶 𝑜 = 𝛥𝑡𝐮f ⋅ 𝑺f
|𝑺f||𝒅f|

, (58)

where |𝒅f| is the distance between the centroids of the cells straddling
face f. The limit 𝐶 𝑜 = 0.5 is based on a compromise between stability,
ccuracy, and efficiency, and is in the stable range of 𝐶 𝑜 for the PISO
cheme at the Reynolds numbers considered [46]. We mitigate the
nitial transient by initiating simulations with 𝛥𝑡 = 10−10 s (producing
 𝑜 ≪ 0.5), and we limit the increase in 𝛥𝑡 between two time steps to a

actor of two. This allows 𝛥𝑡 to grow smoothly.
From the available theory for Rayleigh-Bénard-Poiseuille flow [47–

1], we expect the dominant modes of instability (i.e., the least stable
odes) in VMD to be 3D. However, due to the computational cost of
D simulations, and the limited objectives of this study, we focus on a
D study in Sections 5.1–5.4. That study shows that density variations
re indeed important in VMD, and deserve future study. We conclude
ith a 3D simulation in Section 5.5. The simulation confirms that 3D
ffects further destabilize the flow.

.1. Impact of gravitational orientation

To demonstrate the impact of gravitational orientation, we begin
y setting 𝑅𝑒 = 75 and 𝐠 = [0, 9.81] [m/s2] (pointing in the 𝑦-
irection). The density gradient is stable, and the simulation is run
o steady-state. Fig. 5 shows the resulting steady-state concentration
panel a) and temperature (panel b) fields for 𝑥 ≤ 2.5 cm. We identify
he boundary layers by plotting the black iso-lines 𝑐 = 1.01 𝑐in and
= 0.99 𝑇in. The concentration boundary layer is thinner than the

hermal layer, because the mass diffusivity is much smaller than the
hermal diffusivity. Though not shown, for brevity, the boundary layers
ontinue growing monotonically with downstream distance for 𝑥 > 2.5
m.

Keeping 𝑅𝑒 = 75, we now set 𝐠 = [0,−9.81] [m/s2], so that
ravity points away from the membrane. In this case, our simulation
redicts there is no steady-state. Figs. 6 and 7 show the instantaneous
oncentration and temperature fields, respectively, at 𝑡 = 300 s for
ifferent downstream sections (see captions). In panel (b) of both fig-
res, a sinusoidal perturbation becomes evident in the iso-line around
≤ 𝑥 ≤ 4 cm, and plumes become evident for 𝑥 > 4.25 cm. Because
 t

8 
he thermal diffusivity is orders-of-magnitude larger than the mass
iffusivity, energy mixing occurs more rapidly than solute mixing, and
he iso-line for 𝑇 = 0.99𝑇𝑖𝑛 disappears around 𝑥 ≈ 5 cm, while those
or 𝑐 = 1.01𝑐𝑖𝑛 after 𝑥 ≈ 10 cm. In both the stable and unstable
onfigurations shown in Figs. 5–7, the thermophysical properties of the
eed vary significantly. The density varies by approximately 8%, the
iscosity by more than 100%, the mass diffusivity by roughly 50%, and
he thermal conductivity and capacity by approximately 30%.

To compare stable and unstable cases, we compute the local time-
veraged permeate flux ⟨𝑗𝑣⟩ (𝑥) and solute concentration on the mem-
rane surface ⟨𝑐𝑚⟩ (𝑥),

⟨𝑗𝑣⟩ (𝑥) = 1
𝛥𝑡𝑠 ∫

𝑡0+𝛥𝑡𝑠

𝑡0
𝑗𝑣(𝑥, 𝑡) 𝑑 𝑡 , ⟨𝑐𝑚⟩ (𝑥) = 1

𝛥𝑡𝑠 ∫

𝑡0+𝛥𝑡𝑠

𝑡0
𝑐(𝑥, 𝐻 , 𝑡) 𝑑 𝑡 ,

(59)

where 𝛥𝑡𝑠 is a sampling interval taken sufficiently large to achieve a
statistically steady state, and 𝑡0 is a start time greater than the initial
transient. We also compute the average permeate flux over the full
channel length,

𝐽𝑎𝑣𝑒 =
1
𝐿 ∫

𝐿

0
⟨𝑗𝑣⟩ 𝑑 𝑥. (60)

In the following, because the variation of the temperature over the
membrane surface closely follows that of the vapor flux, we do not
show temperature profiles along the membrane.

Fig. 8(a) shows the downstream variation of ⟨𝑗𝑣⟩ for the stable
(dashed line) and unstable (solid line) cases shown in Figs. 5–7. For
the stable case, ⟨𝑗𝑣⟩ decreases monotonically downstream. The unstable
case shows a similar decrease up to 𝑥 = 3.62 cm (open circle), after
which ⟨𝑗𝑣⟩ begins increasing. We hereinafter refer to the 𝑥-location
where ⟨𝑗𝑣⟩ begins increasing as the onset distance 𝑥𝑜𝑛. Downstream of
𝑥𝑜𝑛, the flux ⟨𝑗𝑣⟩ for the unstable case reaches a local maximum 𝑗𝑚𝑎𝑥 =
29.7 kg/(m2h) (solid dot), and then tends to decrease downstream. One
potential explanation for this behavior is that for 𝑥 < 𝑥𝑜𝑛, perturbation
growth is dominated by linear instability mechanisms that have no net
mpact on local permeate production. Downstream of 𝑥𝑜𝑛, the onset of
onlinear mechanisms triggers the increase in ⟨𝑗𝑣⟩. However, this also
ncreases the rate of energy lost to evaporation, causing the instability
o quench downstream. This interpretation is incomplete, as it does not
xplain the secondary maximum in ⟨𝑗𝑣⟩ near 𝑥 = 12.3 cm. Overall, the
nstable case produces the average permeate flux 𝐽𝑎𝑣𝑒 = 20.5 kg/(m2

). This is a 21% relative increase compared to 𝐽𝑎𝑣𝑒 = 16.9 kg/(m2h)
roduced by the stable case.

Fig. 8(b) shows the corresponding results for ⟨𝑐𝑚⟩. The open circle
marks 𝑥𝑜𝑛. The increase in vapor flux at 𝑥𝑜𝑛 generates a corresponding
increase in ⟨𝑐𝑚⟩, followed by a downstream maximum of 𝑐𝑚𝑎𝑥 = 177
g/l at 𝑥 = 5.06 cm. Note from Fig. 8 that in the linear regime 𝑥 < 𝑥𝑜𝑛,
he gravitational orientation has little impact on ⟨𝑗 ⟩, but significantly
𝑣



F. Municchi et al.

Fig. 6. Instantaneous snapshots of the concentration field when 𝑅𝑒 = 75 and 𝐠 = [0,−9.81] [m/s2] (unstable configuration). Results are shown in the ranges 𝑥 ∈ [0, 2.5] cm (panel
a), 𝑥 ∈ [2.5, 5] cm (panel b), 𝑥 ∈ [5, 7.5] cm (panel c), and 𝑥 ∈ [10.5, 13] cm (panel d). The black lines show where 𝑐 = 1.01𝐶in.

Fig. 7. Instantaneous snapshots of the temperature field when 𝑅𝑒 = 75 and 𝐠 = [0,−9.81] [m/s2] (unstable configuration). Results are shown in the ranges 𝑥 ∈ [0, 2.5] cm (panel
a), 𝑥 ∈ [2.5, 5] cm (panel b), 𝑥 ∈ [5, 7.5] cm (panel c), and 𝑥 ∈ [10.5, 13] cm (panel d). The black lines show where 𝑇 = 0.99 𝑇in.
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Fig. 8. Downstream variation of ⟨𝑗𝑣⟩ (panel a) and ⟨𝑐𝑚⟩ (panel b) when 𝑅𝑒 = 75 for the stable (dashed line) and unstable (solid line) cases. The open circles mark 𝑥𝑜𝑛. The solid
ot marks the local maximum 𝑗𝑚𝑎𝑥. The asterisk marks 𝑐𝑚𝑎𝑥.
Fig. 9. Downstream variation of ⟨𝑗𝑣⟩ (panel a) and ⟨𝑐𝑚⟩ (panel b) when 𝑅𝑒 = 50 (dashed line), 75 (solid line), and 100 (dash-dotted line). In panel (a), the open circles mark 𝑥𝑜𝑛,
and the solid dots mark the local maxima 𝑗𝑚𝑎𝑥. In panel (b), the asterisks mark the maximum concentration 𝑐𝑚𝑎𝑥.
Fig. 10. Downstream variation of ⟨𝑗𝑣⟩ (panel a) and ⟨𝑐𝑚⟩ (panel b) when 𝑅𝑒 = 100 and 𝑞̇𝑠 = 0 (dashed line), 10, 20, 30, and 40 kW/m2. The heat values are labeled in both
panels.
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impacts ⟨𝑐𝑚⟩. This is because the feed saturation pressure 𝑝sat varies
exponentially with temperature, but only weakly with concentration
𝑐𝑚.

5.2. Impact of inlet Reynolds number

To investigate the impact of the Reynolds number, we perform
simulations with 𝑅𝑒 = 50, 75, and 100 in the unstable orientation.
Fig. 9(a) shows ⟨𝑗𝑣⟩ for each case (see legend). Increasing 𝑅𝑒 delays the
onset distance (open circles) from 𝑥𝑜𝑛 = 1.76 for 𝑅𝑒 = 50 to 𝑥𝑜𝑛 = 8.22
or 𝑅𝑒 = 100, and also decreases the local maxima 𝑗𝑚𝑎𝑥 (solid dots).
owever, in the upstream region shaded gray, increasing 𝑅𝑒 increases
 s

10 
apor production. This occurs because in the absence of convection,
ncreasing 𝑅𝑒 (by increasing 𝑈𝑖𝑛) decreases the thermal boundary layer
hickness and mitigates temperature polarization [20]. Increasing 𝑅𝑒
lso increases vapor production in the downstream region 𝑥 > 10,
ecause quenching is delayed downstream. The simulations in Fig. 9(a)
roduce 𝐽𝑎𝑣𝑒 = 18.6, 20.5, and 20.3, kg/(m2 h) for 𝑅𝑒 = 50, 75, and
00, respectively.

Fig. 9(b) shows the corresponding results for ⟨𝑐𝑚⟩. Though 𝑅𝑒 = 50
produces the largest 𝑗𝑚𝑎𝑥, it produces the smallest 𝑐𝑚𝑎𝑥. This might be
explained by the fact that 𝑗𝑚𝑎𝑥 occurs further upstream for 𝑅𝑒 = 50,

here the solutal boundary layer is less developed. Overall, Fig. 9(a)
uggests there is an optimal 𝑅𝑒 that maximizes vapor, while Fig. 9(b)
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Fig. 11. Wall time vs. 𝐶 𝑜 for the dual-block and the coupled algorithm.

uggests there is a separate Reynolds number that minimizes 𝑐𝑚𝑎𝑥, and
onsequently the risk of mineral scaling.

.3. Sustaining convection through wall heating

Convection can be strengthened and sustained over long membranes
y heating the channel wall opposite the membrane. This generates
ising plumes of warm fluid that replenish heat lost to evaporation. For
emonstration, we set 𝐠 = [0,−9.81] [m/s2] (unstable orientation) and
𝑒 = 100, and perform five simulations in which we deliver 𝑞̇𝑠 = 0,
0, 20, 30, and 40 kW/m2 to the channel wall, using condition (19).
ig. 10 shows the resulting downstream variation of ⟨𝑗𝑣⟩ (panel a) and
𝑐𝑚⟩ (panel b). Results for 𝑞̇𝑠 = 0 are shown as a dashed-line. Wall
eating moves 𝑥𝑜𝑛 upstream and increases 𝑗𝑚𝑎𝑥. Moreover, for 𝑞̇𝑠 ≥ 20,
he downstream vapor production stabilizes to non-zero values. How-
ver, panel (b) shows that wall heating also increases concentration
olarization, and risk of mineral scaling. Future study is required to
etermine what operating conditions limit concentration polarization
o acceptable values.

.4. Numerical stability

To decouple the solution of the concentration and energy equations
rom the mass and momentum equations, our method uses temporal
xtrapolation in Eqs. (24), (26), and (27). Our method is consequen-
ially less stable than those that iterates through the full governing
quations in a single block. To explore the trade-off between stability
nd speed, we run a series of simulations at different Courant numbers,
nd compute the wall time 𝑡wall (total time required by the computation

using a standard clock) required to simulate 100 s. We consider the case
described in Section 5.2 for 𝑅𝑒 = 50, and we repeat the simulations
sing our dual-block method and a fully coupled algorithm detailed in
he Supplementary Material. The simulations are run on 16 physical
ores of a workstation mounting two 22-Core Intel Xeon E5-2699 v4
nd running on OpenSUSE Tumbleweed.

Fig. 11 reports the wall time for different 𝐶 𝑜. The dual-block algo-
ithm (dashed line) is 5–6 times faster than the fully coupled algorithm.
owever, for the problem tested, the dual-block algorithm could not
e pushed beyond 𝐶 𝑜 = 2.5, even when we added under-relaxation.
eanwhile, using a relaxation factor, the coupled algorithm could

be pushed beyond 𝐶 𝑜 = 5. In this manner, the fully coupled al-
gorithm can achieve similar performance to the dual-bloc algorithm
by increasing 𝐶 𝑜 beyond 2.5. However, this comes at the expense of
reduced temporal resolution. When the loss of accuracy is not relevant,
11 
such as for steady-state cases, the fully coupled algorithm is a viable
choice for simulating VMD. In the unstable orientation, however, the
dual-block method is more attractive for resolving the dynamics of
buoyancy-driven instabilities.

5.5. 3D example

As a final demonstration of our method, we perform a 3D simulation
at 𝑅𝑒 = 50 for the conditions described in Section 5.2, but in a 3D
domain 𝐻 ×𝐿× 4𝐻 , where the last length corresponds to the spanwise
width in the 𝑧-direction. We set periodic boundary conditions at 𝑧 = 0
and 𝑧 = 4𝐻 . To reduce the computational time and data storage, we
use a grid with 𝑁𝑏 = 50, and the spanwise direction is discretized using
100 cells.

Fig. 12 shows the instantaneous temperature (panel a) and con-
centration (panel b) fields at the membrane and four downstream
cross-sections at 𝑡 = 300 s. The cross-sections reveal that the onset of
instability has a spanwise wavelength comparable to 𝐻 . Downstream,
he plumes coarsen with an increasing wavelength. This coarsening

may be related to the downstream quenching of the instability. The
coarsening is more evident in Fig. 13(a), where we show isosurfaces
of 𝑇 − ⟨𝑇 ⟩ at 𝑡 = 300 s, where ⟨𝑇 ⟩ is the temporal average of 𝑇 .
Fig. 13 (b) similarly shows isosurfaces of 𝑐 − ⟨𝑐⟩, where ⟨𝑐⟩ is the
temporal average of 𝑐. Plumes correspond to regions with positive
concentration difference and negative temperature difference. A more
thorough investigation of 3D instabilities is left to future work. We note
that compared to the 2D simulation in Section 5.2, the 3D simulation
predicts a permeate flux 𝐽𝑎𝑣𝑒 = 24.2 (kg/m2h). This is a 43% increase in
𝐽𝑎𝑣𝑒 compared to that observed in our 2D simulations, indicating that
the spanwise modes enhance permeate production.

6. Conclusions

We present a novel method of simulating variable density flows in
membrane desalination systems. The method leverages the fact that the
feed density varies primarily with the temperature and concentration,
but not pressure. The method is based on a dual-block algorithm that
solves all governing equations in conservation form and is formally
second-order accurate in time and space. We verify the accuracy using
manufactured solutions, and demonstrated that the proposed algorithm
is significantly faster than fully-coupled schemes.

To demonstrate our method, we simulate buoyancy-driven convec-
tion in vacuum membrane distillation (VMD). The convection arises
because the temperature and concentration fields trigger a double-
diffusive instability in which plumes of dense feed sink away from
the membrane surface. This brings warm low-concentration feed to the
membrane, and increases vapor production. Our simulations suggest
that buoyancy-driven convection generates three distinct downstream
regions in a VMD channel. First, there is an initial distance 0 ≤ 𝑥 < 𝑥𝑜𝑛
in which the local vapor flux decreases with downstream distance. Sec-
ond, at the onset distance 𝑥 = 𝑥𝑜𝑛, the onset of nonlinear mechanisms
cause the local vapor flux ⟨𝑗𝑣⟩ to increase rapidly, reaching a local
maximum 𝑗𝑚𝑎𝑥. Third, downstream of 𝑗𝑚𝑎𝑥, the local vapor flux begins
decreasing as the instability quenches due to energy lost to evaporation.
For the operating conditions considered, we found that increasing the
Reynolds number inhibits buoyancy-driven convection, such that 𝑥𝑜𝑛
is pushed downstream and 𝑗𝑚𝑎𝑥 decreases. We show, however, that
convection can be strengthened and sustained over long membranes
by heating the channel wall opposite the membrane.

Finally, we performed a 3D simulation of buoyancy-driven convec-
tion in VMD. This showed that instability in a real-world system likely
occurs to 3D modes of instability, that are less stable than 2D modes.
The simulation found that transport is further enhanced in the span-
wise direction, producing a larger increase in vapor production that
observed in 2D simulations. Future work is now required to expand our
simulations of VMD in 3D, and determine optimal operating conditions
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Fig. 12. Instantaneous temperature (panel a) and concentration (panel b) fields in a 3D simulation at 𝑅𝑒 = 50. The channel is flipped on the 𝑦 axis for visualization purposes.
Fig. 13. Difference between the instantaneous and mean temperature (panel a) and concentration (panel b) in a 3D simulation at 𝑅𝑒 = 50. The channel is flipped on the 𝑦 axis
for visualization purposes.
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and wall heating that maximize vapor production while mitigating the
risk of mineral scaling. More broadly, our method opens the door to
investigating variable density flows in temperature and pressure-driven
membrane filtration processes with applications in the biofuel, medical,
pharmaceutical, chemical, food, and dairy industries.
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