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 Introduction

In 1963, A. Brown and P.R. Halmos characterized all pairs of commuting Toeplitz op-
ators on the Hardy space over the unit disc [3]. In the literature, the result is referred 
 as the Brown-Halmos Theorem. In the ensuing decades, providing suitable extensions 
 this result to the case of Hilbert spaces of holomorphic functions on general domains 
 several complex variables, and studying the corresponding Brown-Halmos-type the-
ems has been a central theme of research in Toeplitz operator theory. In particular, 
e (essentially) commuting problem for (small) Hankel and Toeplitz operators on the 
ardy/Bergman space of several variables is quite important and interesting. In the 
resent paper, we attempt to contribute to this fascinating area of research with a num-
er of necessary and sufficient conditions that guarantee the commutativity of certain 
ankel and Toeplitz operators on the Hardy space of the n–torus.
Throughout the paper, we will use the symbol D to denote the open unit disc and 
to denote the unit circle in the complex plane C. For a positive integer n, the open 

nit polydisc and n-torus in Cn are denoted by Dn and Tn, respectively. Although 
e function theory on the polydisc differs significantly from that on the unit disc, we 
ill utilize the available theory related with multiple Fourier series on the n-dimensional 
rus. By L2(Tn) (= (L2(Tn), dμ)) we will denote the Lebesgue space of measurable and 
uare integrable functions defined on Tn, with dμ the normalized Lebesgue measure on 
n. The Hardy space H2(Tn) is a closed subspace of L2(Tn). As usual, we will denote 
ements of Tn by z = (z1, . . . , zn), elements of Zn by k, and zk := zk1

1 · · · zkn
n . With 

e help of multivariable Fourier series [15], we have

L2(Tn) = {f | f : Tn �→ C with f(z) =
∑

k∈Zn

fkzk

with
∑

k∈Zn

|fk|2 < ∞},

d

H2(Tn) = {f ∈ L2(Tn)| fk = 0 whenever k /∈ Zn
+}

hroughout this paper, the sets Z and Z+ denote the set of all integers and the set 
 all nonnegative integers, respectively.) It is straightforward to verify that the sets of 
onomials {zk}k∈Zn and {zk}k∈Zn

+
form orthonormal bases of L2(Tn) and H2(Tn), re-

ectively. By L∞(Tn) we denote the space of essentially bounded measurable functions 
efined on Tn. By an operator we mean a bounded linear transformation on a Hilbert 
ace H, and the symbol B(H) is used to denote the space of all bounded operators on 
.
For ϕ ∈ L∞(T ), the Toeplitz operator Tϕ acting on H2(T ) (introduced by O. 
oeplitz), is defined as
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Tϕ := PMϕ,

here Mϕ denotes the multiplication operator, induced by ϕ and P is the orthogonal 
ojection of L2(T ) onto the subspace H2(T ). The Hankel operators, which are charac-
rized in terms of Hankel matrices, are defined as

Hψ(f) = PJMψ(f) (f ∈ H2(T )),

here ψ ∈ L∞(T ). Here J is the flip operator defined as J(f)(z) := f(z) for f ∈ L2(T ).
Due to its vast applicability, the theory of Hankel and Toeplitz operators on H2(T )

ossesses extensive literature. The appearance of Hankel operators and Hankel matri-
s is seen in diverse areas such as control theory, approximation theory, Wiener-Hopf 
ctorizations, interpolation problem and perturbation theory. (See [2,6,11,13,16] and 
e references therein). In this paper, we study the commutativity between Hankel and 

oeplitz operators defined on the space H2(Tn). For n = 1, R.A. Martínez-Avendaño 
2], in 2000, classified commuting Hankel and Toeplitz operators; in 2003, Guo and 
heng [9] classified when a Hankel and a Toeplitz operator have a compact commutator.

The situation in the multivariable setting requires special techniques. C. Gu (see [7,8]) 
scussed some algebraic properties of Hankel and Toeplitz operators on the Hardy space 
 the polydisc, and some conditions for the product of Hankel and Toeplitz operators 
 be of finite rank operator were derived. Though commutativity and essential com-
utativity between slant Hankel and slant Toeplitz operators on the space L2(Tn) has 
een studied in [5], not much is known regarding commutativity between Hankel and 
oeplitz operators in the multivariable case. In the present paper we are able to obtain a 
cessary condition for commutativity between Hankel and Toeplitz operators in those 
stances when the Hankel operator is induced by a specific kind of symbol. Further, we 
ow that certain results concerning commutativity between these operators which hold 
 the one-variable case may not hold in the multivariable case.

 Hankel operators on H2(Tn)

We begin with the definition of Toeplitz operator, a formal companion of Hankel 
erator, on the space H2(Tn) [10]. For ϕ in L∞(Tn) Tϕ,n, the Toeplitz operator on 
2(Tn), is defined as Tϕ,n = PMϕ

∣∣
H2(Tn). Here Mϕ is the multiplication operator 

fined on L2(Tn) and P represents the orthogonal projection of L2(Tn) onto H2(Tn).
In the literature, Hankel operators have been defined in various forms. For instance, 
ese operators are considered in the form Hψ(f) = (I − P )Mψf over the Hardy-
bolev spaces in [1] and in the same form on the Bergman spaces of the polydisc 
 Cn in [14] (where ψ an essentially bounded function). K. Guo and D. Zheng in 
] considered the Hankel operator defined on H2(T ) as Hψ(f) := PUMψf , (ψ in 
∞(T )), where U is defined on L2(T ) as Uf(z) := zf(z). C. Gu in [7] considered 

ψ(f) := V PMψ(f) for f ∈ H2(Dn), with V being the anti-unitary operator defined on 

2(Dn) as V (f)(z1, . . . , zn) := f(z1, . . . , zn).
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In this paper, we extend the definition of Hankel operator taken up by Martínez-
vendaño in [12] to the space H2(Tn) and study some of the properties of this operator 
 this section.

efinition 2.1. For ψ in L∞(Tn), the Hankel operator on H2(Tn) with symbol ψ is 
enoted by Hψ,n and is defined as Hψ,n := PJnMψ

∣∣
H2(Tn). Here Jn is the flip operator 

] defined on L2(Tn) as Jn(f)(z) := f(z) for each f ∈ L2(Tn).

It is easy to see that Jn is a unitary operator on L2(Tn). (For more properties of the 
erator Jn, we refer the reader to [4].) The boundedness of ψ provides the boundedness 

 Hψ,n with

‖Hψ,n‖ � ‖P ‖‖Jn‖‖Mψ‖ � ‖ψ‖∞.

urther, for ψ in L∞(Tn) and m ∈ Zn
+, we have

Hψ,n(zm) = PJn(ψ · zm)

= PJn

( ∑
i∈Zn

ψi zm+i

)

=
∑

i∈Zn
+

ψ−i−m zi.

s a result, if i, j ∈ Zn
+ we obtain

〈
Hψ,n(zi), zj

〉
=

〈 ∑
m∈Zn

+

ψ−i−m · zm, zj

〉
= ψ−i−j

=
〈

zi,
∑

m∈Zn
+

ψ−j−m · zm

〉
.

hus,

H∗
ψ,n(zm) =

∑
j∈Zn

+

ψ−m−j zj , (2.1)

r each m in Zn
+.

We now discuss some notations which will help us derive certain properties of Hankel 
erators.

efinition 2.2. For f in L2(Tn), f and f̃ are defined respectively as
f(z) := f(z)
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f̃(z) := f(z) .

It is plain to see that f ∈ L2(Tn) if and only if f̃ ∈ L2(Tn). In fact, f ∈ H2(Tn)
 and only if f̃ ∈ H2(Tn) and f ∈ L∞(Tn) if and only if f̃ ∈ L∞(Tn). Likewise, f ∈
2(Tn) if and only if f ∈ L2(Tn) and f ∈ L∞(Tn) if and only if f ∈ L∞(Tn). For f in 
2(Tn), the flip of f , denoted by f∗, is defined as

f∗(z) := f(z).

s a result,

f∗(z) =
∑

j∈Zn

f−jzj .

gain f ∈ L2(Tn) if and only if f∗ ∈ L2(Tn) and f ∈ L∞(Tn) if and only if f∗ ∈
∞(Tn) hold.
sing the above notation and equation (2.1), we see that

H∗
ψ,n = Hψ̃,n ,

r ψ in L∞(Tn). This shows that the collection {Hψ,n : ψ ∈ L∞(Tn)} of Hankel 
erators on H2(Tn) is self-adjoint.

heorem 2.3. The map ψ �→ Hψ,n from L∞(Tn) to B(H2(Tn)) is linear but not one-to-
e.

roof. Linearity of the given mapping is evident from the fact that the mapping ψ �→ Mψ

om L∞(Tn) to B(H2(Tn)) is linear. To investigate injectivity, we consider the function 
(z) := z1, where 1 := (1, 1, . . . , 1) ∈ Zn. Then ψ ∈ L∞(Tn) and Hψ,n = 0, the zero 
erator. However ψ �= 0. �
Recall now that H∞(Tn) = L∞(Tn) ∩H2(Tn). From the explicit expression of Hψ,n, 

e observe that the action of Hψ,n on the canonical basis elements involves only those 
ourier coefficients ψj of ψ (in L∞(Tn)) for which each jt � 0, 1 � t � n. Hence, it 
 easy to see that the operator Hψ,n = 0, if ψ ∈ ziH∞(Tn), where ij > 0 for at least 
e j (1 � j � n). However, the converse, which is true for n = 1, is not true in case of 

 > 1. To see this, consider n = 2 and ψ(z1, z2) := z−2
1 z2

3 + z3
1z−2

2 . Clearly ψ ∈ L∞(Tn)
d Hψ,2 = 0, but ψ /∈ zi1

1 zi2
2 H2(T 2) if ij > 0 for j = 1 or 2. In order to obtain a 

aracterization for symbols inducing zero Hankel operators, we now state the following 

finition.
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efinition 2.4. For ψ in L2(Tn) with Fourier series expansion given by ψ(z) =
∑

i∈Zn

ψiz
i, 

e define the coanalytic part of ψ by

z �→
∑

ij�0,1�j�n

ψiz
i

d denote it by (CAP )ψ.

The following result is straightforward.

heorem 2.5. For ψ in L∞(Tn), Hψ,n = 0 if and only if (CAP )ψ, the coanalytic part of 
, is zero.

Theorem 2.3 helps us reformulate Theorem 2.5 in the following way.

orollary 2.6. For φ and ψ in L∞(Tn), Hφ,n = Hψ,n if and only if (CAP )φ = (CAP )ψ.

In view of Corollary 2.6 we see that the symbol of a Hankel operator on H2(Tn) is 
ot uniquely determined.

 Commutativity between Hankel and Toeplitz operators

In this section we discuss the commutativity between Hankel and Toeplitz operators 
 several variable. From the definitions, it is easy to verify that for ϕ in L∞(Tn) the 
tion of the Toeplitz operator Tϕ,n(= PMϕ) on any basis element of H2(Tn) is given 

y

Tϕ,n(zm) =
∑

j∈Zn
+

ϕj−mzj ,

here m ∈ Zn
+. The adjoint of Tϕ,n is T ∗

ϕ,n = PMϕ̄ = Tϕ̄,n.
A symbol ϕ in L2(Tn) is said to be analytic if ϕ ∈ H2(Tn), and ϕ is said to be 
analytic if ϕ̄ is analytic. (For other relevant results on Tϕ,n, we refer the reader to 
1].)
In the one-variable setting, it is well known that Toeplitz and Hankel operators do 

ot commute in general. This fact is also present in the multivariable setting, if we 
nsider, for instance, the symbols ϕ(z1, . . . , zn) := z1 and ψ(z1, . . . , zn) := 1 defined 
 Tn when n > 1. Then Tϕ,nHψ,n(1) = Tϕ,nPJn(1) = Tϕ,n(1) = P (ϕ) = ϕ = z1 and 

ψ,nTϕ,n(1) = Hψ,nP (ϕ) = Hψ,n(ϕ) = PJn(ϕ) = P (z1) = 0.
Our next aim is to obtain a natural and reasonable necessary condition for the com-

utativity between a Toeplitz operator and a Hankel operator in several variables. In 

is direction we first prove the following result.
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heorem 3.1. Let ϕ, ψ ∈ L∞(Tn) and let Tϕ,n and Hψ,n be a nonzero Toeplitz and a 
onzero Hankel operator, respectively, acting on the space H2(Tn). Assume that ϕ is 
alytic. Then

T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n.

roof. For m, p ∈ Zn
+, we have〈

T ∗
ϕ,nHψ,n(zm), zp

〉
= 〈Hψ,n(zm), Tϕ,n(zp)〉

=
〈 ∑

i∈Zn
+

ψ−i−mzi, Tϕ,n(zp)
〉

=
∑

i∈Zn
+

ψ−i−mφi−p. (3.1)

milarly,

〈Hψ,nTϕ̃,n(zm), zp〉 =
∑

i∈Zn
+

ψ−i−pϕ̄i−m.

ue to the analyticity of ϕ, equation (3.1) reduces to the following:〈
T ∗

ϕ,nHψ,n(zm), zp
〉

=
∑
i�p

ψ−i−mϕ̄i−p

=
∑

t∈Zn
+

ψ−t−m−pϕ̄t.

Note here that by i � p we mean all those i = (i1, i2, . . . , in) in Zn
+ such that ij � pj

r each 1 � j � n. Similarly,

〈Hψ,nTϕ̃,n(zm), zp〉 =
∑

s∈Zn
+

ψ−s−m−pϕ̄s.

hus,

T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n,

 desired. �
It is worth noticing here that the converse of Theorem 3.1 is true when n = 1 (see 

2]), but does not hold when n > 1. For, consider ϕ(z1, z2, . . . , zn) := z1z2 . . . zn, (n > 1) 
d ψ(z1, z2, . . . , zn) := 1 on Tn. Then ϕ and ψ are in L∞(Tn). A simple computation 

veals that for any m ∈ Zn

+, we have
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Tϕ,n(zm1
1 zm2

2 . . . zmn
n ) =

{
zm1−1

1 zm2+1
2 . . . zmn+1

n if m1 � 1
0 otherwise

,

d

Hψ,n(zm1
1 zm2

2 . . . zmn
n ) =

{
1 if m1 = m2 = . . . = mn = 0
0 otherwise

.

hus, Tϕ,n and Hψ,n are nonzero operators. Moreover, we have

T ∗
ϕ,nHψ,n(zm) =

{
T ∗

ϕ,n(1) if m = 0
0 otherwise

= 0

d

Hψ,nTϕ̃,n(zm) =
{

Hψ,n(zm1−1
1 zm2+1

2 . . . zmn+1
n ) if m1 � 1

0 otherwise

= 0.

 follows that T ∗
ϕ,nHψ,n = 0 = Hψ,nTϕ̃,n but ϕ is not analytic.

We now derive a few corollaries from Theorem 3.1. In all these corollaries we will 
sume that the Toeplitz operator and the Hankel operator under consideration are 

onzero and ϕ and ψ are in L∞(Tn).

orollary 3.2. If ϕ is analytic then Tϕ∗,nHψ,n = Hψ,nTϕ,n.

roof. If ϕ is analytic then ϕ̃ is analytic. The proof follows using Theorem 3.1 (for ϕ̃) 
d the identities ϕ̃ = ϕ∗ and ˜̃ϕ = ϕ. �

orollary 3.3. If ϕ is coanalytic then Tϕ,nHψ,n = Hψ,nTϕ∗,n. Further,

Tϕ̃,nHψ,n = Hψ,nTϕ̄,n.

roof. First apply Theorem 3.1 on ϕ̄, which is analytic because ϕ is coanalytic. Next, 
serve that ϕ∗ is analytic, ϕ∗ = ϕ̃ and ϕ̃∗ = ϕ̄, which yield the desired result. �

emark 3.4. It is worth noting again that the converse of Corollaries 3.2 and 3.3 hold in 
e case n = 1 (see [12]), but do not hold when n > 1. In fact, for n > 1 the functions 

(z1, z2, . . . , zn) := z1z2 . . . zn and ψ(z1, z2, . . . , zn) := 1 serve as an example.

Our aim now is to discuss the converse of Theorem 3.1 in case n > 1. Not enough 

 known in this direction, however we are able to derive some information about the 
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mmutator equation, and when the symbol ψ is in a specific format.

heorem 3.5. Let n > 1. Suppose that Tϕ,n and Hψ,n are a nonzero Toeplitz and a 
onzero Hankel operator with symbols ϕ and ψ in L∞(Tn). Assume that

ψ(z1, . . . , zn) =

⎛⎝ n∏
d�=i=1

z−qi

i

⎞⎠ f(zd) = z−q1
1 z−q2

2 . . . z
−qd−1
d−1 f(zd)z−qd+1

d+1 . . . z−qn
n ,

r some function f of the variable zd, 1 � d � n, and (n − 1) nonnegative integers 
, 1 � i � n, i �= d. If T ∗

ϕ,nHψ,n = Hψ,nTϕ̃,n then

(i) ϕm1,...,mn
= 0 if md < 0 and 0 � mi � qi for each 1 � i � n, i �= d.

ii) ϕm1,...,mn
= 0 if md < 0 and mi � qi for each 1 � i � n, i �= d, and such that for 

at least one 1 � j � n, j �= d, we have mj < 0.

iii)
∞∑

id=0
(ϕ̄q1−m1, q2−m2, ..., qd−1−md−1, id, qd+1−md+1, qd+2−md+2, ..., qn−mn

)·

(ψ−q1, ..., −qd−1, −id−pd, −qd+1, ..., −qn
) = 0, for each integer pd � 0 and mi � 0 for 

each 1 � i � n, i �= d, and such that for at least one 1 � j � n, j �= d, we have 
mj > qj.

(For a visualization of conditions (i), (ii), and (iii) in the case n = 2, the reader is 
ferred to Fig. 1 on page 19.)

roof. For two n–tuples i and j in Zn
+ satisfying the inequalities it � jt (1 � t � n), we 

ill use the notation i � j. Let m, p in Zn
+. Then

〈
T ∗

ϕ,nHψ,n(zm), zp
〉

= 〈Hψ,n(zm), Tϕ,n(zp)〉

=
〈 ∑

i∈Zn
+

ψ−i−mzi,
∑

j∈Zn
+

ϕj−pzj

〉

=
∑

i∈Zn
+

ψ−i−mϕ̄i−p

=
∑

i∈Zn
+; i�p

ψ−i−mϕ̄i−p

+
∑

i−p/∈Zn
+

ψ−i−mϕ̄i−p

=
∑

ψ−s−m−pϕ̄s
s∈Zn
+
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+
∑

i∈Zn
+; i−p/∈Zn

+

ψ−i−mϕ̄i−p . (3.2)

imilarly,

〈Hψ,nTϕ̃,n(zm), zp〉 =
∑

s∈Zn
+

ψ−s−m−pϕ̄s

+
∑

i∈Zn
+; i−m/∈Zn

+

ψ−i−pϕ̄i−m . (3.3)

ince T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n, equations (3.2) and (3.3) yield∑

i∈Zn
+; i−p/∈Zn

+

ϕ̄i−pψ−i−m =
∑

i∈Zn
+; i−m/∈Zn

+

ϕ̄i−mψ−i−p, (3.4)

r all p, m ∈ Zn
+. Observe that when pj = 0 (resp. mj = 0) for each 1 � j � n, then 

e sum on the left-hand side (resp. right-hand side) of equation (3.4) is zero. We now 
oose different values for p and m in equation (3.4) to derive conclusions (i), (ii) and 

ii).
e begin by choosing pt = 0 and 0 � mt � qt for each 1 � t � n, t �= d then equation 
.4) gives ∑

i∈Zn
+

and
0�id�pd−1

ϕ̄i1,...,id−1,id−pd,id+1...,in
ψ−i1−m1,...,−id−md,...,−in−mn

=
∑

i∈Zn
+; i−m/∈Zn

+

ϕ̄i1−m1,...,id−md,...,in−mn
ψ−i1,...,−id−pd,...,−in

, (3.5)

r each pd and md in Z+. Due to the given form of ψ, in equation (3.5) we have fixed 
oices for (i1, . . . , id−1, id+1, . . . , in) and thus equation (3.5) reduces to

pd−1∑
id=0

(ϕ̄q1−m1, q2−m2, ..., qd−1−md−1, id−pd, qd+1−md+1, ..., qn−mn
)·

(ψ−q1,.., −qd−1 ,−id−md,−qd+1,..,−qn
)

=
md−1∑
id=0

(ϕ̄q1−m1,...,qd−1−md−1,id−md,qd+1−md+1...,qn−mn
)·

(ψ−q1,...,−qd−1,−id−pd,−qd+1,...,−qn
), (3.6)

r each pd and md in Z+, keeping in mind that the sum on the left-hand side (resp. 
ght-hand side) of equation (3.6) is zero if pd = 0 (or md = 0). Without loss of generality, 

e assume pd > md � 0 and rewrite the sum on the left-hand side of equation (3.6) as
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pd−1∑
id=0

(ϕ̄q1−m1,...,qd−1−md−1,id−pd,qd+1−md+1,...,qn−mn
) · (ψ−q1,..,−qd−1,−id−md

,−qd+1,..,−qn
) =

pd−md−1∑
id=0

(ϕ̄q1−m1,..,qd−1−md−1,id−pd,qd+1−md+1,..,qn−mn
)·

(ψ−q1,...,−qd−1,−id−md,−qd+1,...,−qn
) +

pd−1∑
id=pd−md

(ϕ̄q1−m1, ..., qd−1−md−1,id−pd

,qd+1−md+1...,qn−mn
) · (ψ−q1,...,−qd−1,−id−md,−qd+1,...,−qn

). (3.7)

sing a change of variable (that is, by substituting, say, id − (pd − md) = sd for the 
cond sum on the right-hand side of equation (3.7), we easily see that it is equal to the 
m on the right-hand side of equation (3.6). As a result, equation (3.6) yields

pd−md−1∑
id=0

(ϕ̄q1−m1,...,qd−1−md−1,id−pd,qd+1−md+1...,qn−mn
)·

(ψ−q1,...,−qd−1 ,−id−md,−qd+1,...,−qn
) = 0, (3.8)

r all integers pd > md � 0. Since the Hankel operator Hψ,n is nonzero there must exist 
me nonnegative integer �d such that ψ−q1,...,−qd−1,−�d,−qd+1,...,−qn

�= 0. Fix md = �d

d put pd = �d + 1, �d + 2, �d + 3, . . . successively in equation (3.8) to obtain

ϕq1−m1,...,qd−1−md−1,−(�d+b),qd+1−md+1,...,qn−mn
= 0, for all integers b > 0. (3.9)

owever, if we choose pd = �d + 1 and put md = �d − 1, �d − 2, . . . , 2, 1, 0 successively in 
uation (3.8), we get

ϕq1−m1,...,qd−1−md−1,−(�d−s),qd+1−md+1,...,qn−mn
= 0 (3.10)

r each integer s such that 0 � s � �d − 1.
Equations (3.9) and (3.10) lead to

ϕq1−m1,...,qd−1−md−1,−b,qd+1−md+1,...,qn−mn
= 0, (3.11)

r all integers b > 0 and 0 � mt � qt for all 1 � t � n, t �= d. This proves part (i).
e now return to equation (3.4), applied to p and m in Zn

+, when mt = 0 for each 
� t � n, t �= d and pt > qt for at least one 1 � t � n, we have t �= d. It is 
raightforward to note that, in this setting and using the given form of ψ, we have∑

id�0
(ϕ̄q1−p1, q2−p2, ..., qd−1−pd−1, id−pd, qd+1−pd+1, .., qn−pn

) · (ψ−q1, .., −qd−1,
−id−md, −qd+1,..,−qn
) = 0, (3.12)
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fo
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fo
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st
r each pd and md in Z+. There is no loss of generality if we further assume pd > md � 0. 
his allows us to rewrite the sum on the left-hand side of equation (3.12) as∑

id�0
ϕ̄q1−p1,..,qd−1−pd−1,id−pd,qd+1−pd+1,..,qn−pn

ψ−q1,..,−qd−1,−id−md,−qd+1,..,−qn

=
pd−md−1∑

id=0
(ϕ̄q1−p1,..,qd−1−pd−1,id−pd,qd+1−pd+1,..,qn−pn

) · (ψ−q1,..,−qd−1,−id−md

,−qd+1,..,−qn
) +

∞∑
id=pd−md

(ϕ̄q1−p1,..,qd−1−pd−1,id−pd,qd+1−pd+1,..,qn−pn
) · (ψ−q1,..,

−qd−1,−id−md,−qd+1,...,−qn
). (3.13)

By substituting id − (pd − md) = sd in the second sum on the right-hand side of 
uation (3.13), and then using equation (3.12), we obtain that

pd−md−1∑
id=0

(ϕ̄q1−p1,..,qd−1−pd−1,id−pd,qd+1−pd+1,..,qn−pn
) · (ψ−q1,..,−qd−1,−id−md

,

−qd+1,..,−qn
) = 0, (3.14)

r all integers pd > md � 0 and (p1, . . . , pd−1, pd+1, . . . , pn) ∈ Zn−1
+ such that pt > qt

r at least one 1 � t � n, we have t �= d. If we now follow the steps used earlier (between 
uation (3.8) to equation (3.11)), we can conclude from equation (3.14) that

ϕq1−p1,...,qd−1−pd−1,−b,qd+1−pd+1,...,qn−pn
= 0, (3.15)

r all integers b > 0 and (p1, . . . , pd−1, pd+1, . . . , pn) ∈ Zn−1
+ such that pt > qt for at 

ast one 1 � t � n, we have t �= d. Equation (3.15) now establishes part (ii).
y applying again equation (3.4) with the substitutions md = 0 and pt = 0 for each 
� t � n, t �= d, we obtain∑

i∈Zn
+

with
0�id�pd−1

ϕ̄i1,..,id−1,id−pd,..,in
ψ−i1−m1,..,−id−1−md−1,−id,−id+1−md+1,..,−in−mn

=

∑
i∈Zn

+;
i−m/∈Zn

+

ϕ̄i1−m1,..,id−1−md−1,id,id+1−md+1,..,in−mn
ψ−i1,..,−id−1,−id−pd,−id+1,..,−in

,

(3.16)

r each integer pd � 0 and (m1, . . . , md−1, md+1, . . . , mn) ∈ Zn−1
+ . Using the given 
ructure of ψ in equation (3.16) we obtain that the sum on the left hand side is zero for 
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Si
e choice of (m1, . . . , md−1, md+1, . . . , mn) ∈ Zn−1
+ such that mt > qt for at least one 

� t � n, t �= d. Thus equation (3.16) provides that∑
id�0

ϕ̄q1−m1,..,qd−1−md−1,id,qd+1−md+1,..,qn−mn
ψ−q1,..,−qd−1,−id−pd,−qd+1,..,−qn

= 0, (3.17)

r each integer pd � 0 and (m1, . . . , md−1, md+1, . . . , mn) ∈ Zn−1
+ such that mt > qt for 

 least one 1 � t � n, with t �= d. This prove part (iii). The proof of the theorem is now 
mplete. �
We verify the proof of Theorem 3.5 by tracing through it for the following example 

 the setting n = 2.

xample 3.6. Consider n = 2 and ψ(z1, z2) = z1(z2 + z2
2). Suppose that T ∗

ϕ,2Hψ,2 =
ψ,2Tϕ̃,2 for φ ∈ L∞(T 2). In view of Theorem 3.5, we have, q1 = 1, d = 2 and f(z2) =
+ z2

2. Let m := (m1, m2) and p := (p1, p2) be in Z2
+. Consider

〈
T ∗

ϕ,2Hψ,2(zm), zp
〉

=
〈
T ∗

ϕ,2Hψ,2(zm1
1 zm2

2 ), zp1
1 zp2

2
〉

= 〈Hψ,2(zm1
1 zm2

2 ), Tϕ,2(zp1
1 zp2

2 )〉

=
∑

i:=(i1,i2)∈Z2
+

ψ−i1−m1,−i2−m2 ϕ̄i1−p1,i2−p2

=
∑

(i1,i2)∈Z2
+

with
i1�p1,i2�p2

ψ−i1−m1,−i2−m2 ϕ̄i1−p1,i2−p2

+
∑

(i1,i2)∈Z2
+

with
i1�p1,i2�p2
does not hold

ψ−i1−m1,−i2−m2 ϕ̄i1−p1,i2−p2

=
∑

(s1,s2)∈Z2
+

ψs1−m1−p1,s2−m2−p2 ϕ̄s1,s2

+
∑

(i1,i2)∈Z2
+

with
i1�p1,i2�p2
does not hold

ψ−i1−m1,−i2−m2 ϕ̄i1−p1,i2−p2 . (3.18)

milarly,

〈Hψ,2Tϕ̃,2(zm), zp〉 = 〈Hψ,2Tϕ̃,2(zm1
1 zm2

2 ), zp1
1 zp2

2 〉〈 〉

= Tϕ̃,2(zm1

1 zm2
2 ), Hψ̃,2(zp1

1 zp2
2 )
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=
∑

(s1,s2)∈Z2
+

ψs1−m1−p1,s2−m2−p2 ϕ̄s1,s2

+
∑

(i1,i2)∈Z2
+

with
i1�m1,i2�m2
does not hold

ψ−i1−p1,−i2−p2 ϕ̄i1−m1,i2−m2 . (3.19)

ince T ∗
ϕ,2Hψ,2 = Hψ,2Tϕ̃,2, equations (3.18) and (3.19) yield

∑
(i1,i2)∈Z2

+
with

i1�p1,i2�p2
does not hold

ψ−i1−m1,−i2−m2 ϕ̄i1−p1,i2−p2 =

∑
(i1,i2)∈Z2

+
with

i1�m1,i2�m2
does not hold

ψ−i1−p1,−i2−p2 ϕ̄i1−m1,i2−m2 (3.20)

r all (p1, p2), (m1, m2) ∈ Z2
+. Observe that when p1 = p2 = 0 (resp. m1 = m2 = 0) 

en the sum on the left-hand side (resp. right-hand side) of equation (3.20) is zero. Here 
wards we divide the proof in steps.

tep 1: Choose p1 = 0 and 0 � m1 � 1 in equation (3.20). Actual idea is to choose m1
etween 0 and q1. We thus obtain∑

i1∈Z+
and

0�i2�p2−1

ϕ̄i1,i2−p2ψ−i1−m1,−i2−m2

=
∑

i∈Z2
+; i−m/∈Z2

+

ϕ̄i1−m1,i2−m2,ψ−i1,−i2−p2 , (3.21)

r each p2 and m2 in Z+. Due to the given form of ψ, only ψ−1,−1 and ψ−1,−2 are 
onzero (each equal to 1) and all other Fourier coefficients of ψ are zero, thus equation 
.21) reduces to

p2−1∑
i2=0

(ϕ̄1−m1, i2−p2) · (ψ−1,−i2−m2) =
m2−1∑
i2=0

(ϕ̄1−m1,i2−m2) · (ψ−1,−i2−p2), (3.22)

r each p2 and m2 in Z+, keeping in mind that the sum on the left-hand side (resp. right-
and side) of equation (3.22) is zero if p2 = 0 (or m2 = 0). Without loss of generality, 
e assume p2 > m2 � 0 and rewrite the sum on the left-hand side of equation (3.22) as

p2−1∑
(ϕ̄1−m ,i −p ,) · (ψ−1,−i −m ) =

p2−m2−1∑
(ϕ̄1−m ,i −p ) · (ψ−1,−i −m )
i2=0
1 2 2 2 2

i2=0
1 2 2 2 2
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+
p2−1∑

i2=p2−m2

(ϕ̄1−m1,i2−p2) · (ψ−1,−i2−m2). (3.23)

sing a change of variable (put i2 − (p2 −m2) = s2 for the second sum on the right-hand 
de of equation (3.23), we easily see that it is equal to the sum on the right-hand side 
 equation (3.22). As a result, equation (3.23) reduces to

p2−m2−1∑
i2=0

(ϕ̄q1−m1,i2−p2) · (ψ−q1,−i2−m2) = 0, (3.24)

r all integers p2 > m2 � 0. Since the Hankel operator Hψ,2 is nonzero there must exist 
me nonnegative integer �2 such that ψ−q1,−�2 �= 0 (here in this case we can take �2 = 1
 2). Let us fix m2 = �2 = 1 and put p2 = 2, 3, . . . successively in equation (3.24) to 
tain

ϕ1−m1,−(1+b) = 0, for all integers b > 0. (3.25)

ext, choose p2 = �2 + 1 = 2 and put m2 = �2 − 1, �2 − 2, . . . , 2, 1, 0 successively, that is, 
 this case m2 = 0 in equation (3.24), we get

1∑
i2=0

(ϕ̄1−m1,i2−p2) · (ψ−1,−i2−m2) = 0, (3.26)

hich further provides

ϕ1−m1,−1 = 0 (3.27)

quations (3.25) and (3.27) lead to

ϕ1−m1,−b = 0, (3.28)

r all integers b > 0 and 0 � m1 � 1. This proves part (i).
ep 2: We now return to equation (3.20), applied to p and m in Z2

+ and choose m1 = 0
d p1 > 1(= q1). It is straightforward to note that, in this setting and using the given 
rm of ψ, we have

∑
i2�0

(ϕ̄1−p1, i2−p2) · (ψ−1,−i2−m2) = 0, (3.29)

r each p2 and m2 in Z+. There is no loss of generality if we further assume p2 > m2 � 0. 

his allows us to rewrite the sum on the left-hand side of equation (3.29) as
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i2�0

ϕ̄1−p1,i2−p2ψ−1,−i2−m2 =
p2−m2−1∑

i2=0
(ϕ̄1−p1,i2−p2) · (ψ−1,−i2−m2) (3.30)

+
∞∑

i2=p2−m2

(ϕ̄1−p1,i2) · (ψ−1,−i2−m2).

y substituting i2 − (p2 −m2) = s2 in the second sum on the right-hand side of equation 
.30), and then using equation (3.29), we obtain that

p2−m2−1∑
i2=0

(ϕ̄1−p1,i2−p2) · (ψ−1,−i2−m2) = 0, (3.31)

r all integers p2 > m2 � 0 and p1 ∈ Z+ such that p1 > q1. If we now follow the steps 
sed earlier (between equation (3.24) to equation (3.28)), we can conclude from equation 
.31) that

ϕ1−p1,−b = 0, (3.32)

r all integers b > 0 and p1 ∈ Z+ such that p1 > q1. Equation (3.32) now establishes 
art (ii).
tep 3: By applying again equation (3.20) with the substitutions m2 = 0 and p1 = 0, we 
tain ∑

i1∈Z+
with

0�i2�p2−1

ϕ̄i1,i2−p2ψ−i1−m1,−i2 =
∑

i2∈Z+;
with

0�i1�m1−1

ϕ̄i1−m1,i2ψ−i1,−i2−p2 , (3.33)

r each integer p2 � 0 and m1 ∈ Z+. Using the given structure of ψ, in the right-hand 
de of equation (3.33) only i1 = q1 = 1 will contribute, but for that we need 1 � m1 −1, 
at is, 1 < m1. Thus we obtain∑

i2�0
ϕ̄1−m1,i2ψ−1,−i2−p2 = 0, (3.34)

r each integer p2 � 0 and m1 ∈ Z+ such that m1 > 1. This completes the illustration 
 the working of the Theorem 3.5. However, equation (3.34) can further be solved by 
king different values of p2 � 0 and using given information that ψ−1,−1 = 1 = ψ−1,−2
d all other Fourier coefficients of ψ are zero. This provides φm1,0 = φm1,1 = φm1,2 = 0
r all integers m1 < 0.

We now provide an immediate consequence of Theorem 3.5.

orollary 3.7. If ψ in L∞(Tn) is such that the coanalytic part of ψ is a constant (nonzero) 

nction then a necessary condition for a nonzero Toeplitz operator Tϕ,n (ϕ ∈ L∞(Tn)) 
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(c
 satisfy T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n is that (CAP )ϕ, the coanalytic part of ϕ, be a constant 

nction.

roof. Suppose that the coanalytic part of ψ in L∞(Tn) is a constant (nonzero) function, 
., (CAP )ψ(z1, . . . , zn) = ψ0,...,0 for some 0 �= ψ0,...,0 ∈ C. We can then take f(zd) =

0,...,0 for some 1 � d � n and qi = 0 for each 1 � qi � n, i �= d. If T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n, 

en by using Theorem 3.5 we have

) ϕ0,...,−b,...,0 = 0 for all integers b > 0.
) ϕ−p1,...,−pn

= 0 for all (p1, . . . , pn) ∈ Zn
+ such that pt > 0 for at least one t, we have 

1 � t � n.

hus, (CAP )ϕ is also a constant function. �
We note here that the proof of Theorem 3.5 holds up to equation (3.11) for n � 1
d demands n > 1 to proceed ahead, so in the one-variable case (that is, ψ = f(z)

 any function in L∞(T )) we obtain that a necessary condition for T ∗
ϕHψ = HψTϕ̃ is 

at ϕ−b = 0 for all integers b > 0, that is, ϕ is analytic. But when n > 1, the three 
nditions combined together do not provide the analyticity of ϕ.
e now see some applications of Theorem 3.5 via some examples. While conditions (i) 
d (ii) can be easily visualized, the same is not necessarily true of condition (iii). To 
ovide further clarity on what condition (iii) entails, we present an example (Exam-
e 3.10) with a detailed analysis of the Toeplitz symbol ϕ that go along with a Hankel 
mbol of the form ψ(z1, z2) = z̄q1

1 (z2
2 + z̄3

2).

xample 3.8. Take n = 2 and let Hψ,2 be a nonzero Hankel operator with symbol ψ ∈
∞(T 2). Assume that ψ is of the form ψ(z1, z2) = z−2

1 f(z2) for any function f in the 
riable z2. Suppose that ϕ ∈ L∞(T 2) is such that Tϕ,2 is a nonzero Toeplitz operator 
 the space H2(T 2) satisfying T ∗

ϕ,2Hψ,2 = Hψ,2Tϕ̃,2. Keeping the notation used in 
heorem 3.5 intact, here d = 2 and q1 = 2. Then the information gathered from (i) and 
i) for the function ϕ yields the following information regarding the Fourier coefficients 
i1,i2 .

) ϕ2,−s = ϕ1,−s = ϕ0,−s = 0, for each integer s > 0 and,
) ϕ−r,−s = 0, for integers r > 0 and s > 0.

lso, the information in Theorem 3.5(iii) means that 
∑

i2�0 ϕ̄2−m1,i2ψ−2,−i2−p2 = 0, for 
l integers m1 > 2 and p2 � 0. In particular, if f(z2) = 1 for all z2 ∈ T , then in addition 
 (a) and (b) obtained above, we have
) ϕ−r,0 = 0, for each integer r > 0.
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e note that when f(z2) = 1 for all z2 ∈ T , we can also take d = 1 and q2 = 0. With 
is setting, (i), (ii) and (iii) obtained for the function ϕ in Theorem 3.5 produce the 
me information regarding the Fourier coefficients of ϕ as obtained in (a), (b) and (c).

xample 3.9. Take n = 3 and define ψ(z1, z2, z3) = z−1
1 z−1

2 z−2
3 ; that is, d = 3, q1 =

 q2 = 1 and f(z3) = z−2
3 . Then ψ ∈ L∞(T 3). Let ϕ ∈ L∞(T 3) be such that T ∗

ϕ,3Hψ,3 =
ψ,3Tϕ̃,3, where Tϕ,3 and Hψ,3 are nonzero Toeplitz and Hankel operators on the space 
2(T 3). Using Theorem 3.5, we obtain the following information regarding the Fourier 
efficients of ϕ.

) ϕ1,1,−t = ϕ1,0,−t = ϕ0,1,−t = ϕ0,0,−t = 0, for each integer t > 0.
) ϕ−r,1,−t = ϕ−r,0,−t = ϕ−r,−s,−t = ϕ1,−s,−t = ϕ0,−s,−t = 0, for positive integers r, s

and t,

ong with ∑
i3�0

ϕ̄1−m1,1−m2,i3ψ−1,−1,−i3−p3 = 0, (3.35)

r all integers p3 � 0 and for (m1, m2) ∈ Z2
+ such that either m1 > 1 and 0 � m2 � 1, 

 m1 > 1 and m2 > 1, or 0 � m1 � 1 and m2 > 1. Information obtained from the 
lation (3.35) by simple computations specifically provides the following.

) ϕ−r,1,2 = ϕ−r,0,2 = ϕ1,−s,2 = ϕ0,−s,2 = ϕ−r,−s,2 = 0, for positive integers r and s.
) ϕ−r,1,1 = ϕ−r,0,1 = ϕ−r,−s,1 = ϕ1,−s,1 = ϕ0,−s,1 = 0, for positive integers r and s.
) ϕ−r,1,0 = ϕ−r,0,0 = ϕ−r,−s,0 = ϕ1,−s,0 = ϕ0,−s,0 = 0, for positive integers r and s.

ikewise if we consider d = 1, q2 = 1, q3 = 2, f(z1) = z−1
1 or d = 2, q1 = 1, q3 =

 f(z2) = z−1
2 , conditions (i), (ii) and (iii) of Theorem 3.5 produces the same information 

 obtained above.

xample 3.10. Consider now a Hankel symbol of the form

ψ(z1, z2) = z̄1
q1f(z2) = z̄1

q1(z2
2 + z̄2

3).

 is straightforward to observe that, without loss of generality, we can erase the first 
rm of f(z2). It follows that the region that provides information about ϕm1,m2 = 0 with 
spect to condition (iii) is given by the inequalities m1 < 0 and 0 � m2 � 3. In fact, 
more general result holds. Consider a trigonometric polynomial f(z2) =

∑s
j=−t ajzj

2, 
ith a−t �= 0. Then condition (iii) in Theorem 3.5 becomes

∞∑
ϕ̄q −m ,i ψ−q ,−i −p = 0,
i2=0
1 1 2 1 2 2
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g. 1. The three colored regions represent the subsets of Z2 that satisfy conditions (i), (ii) and (iii) in 
heorem 3.5. (For interpretation of the colors in the figure, the reader is referred to the web version of this 
ticle.)

r all p2 � 0, m1 � 0 and m1 > q1, which readily implies

∞∑
i2=0

ϕ̄r,i2ψ−q1,−i2−p2 = 0 (for all r < 0, p2 � 0). (3.36)

e show that these equations will always yield ϕm1,m2 = 0 for m1 < 0 and m2 =
 1, . . . , t.
For, given p2 = t, (3.36) implies ϕ̄r,0ψ−q1,−t = 0, and therefore ϕ̄r,0a−t = 0, that is, 

r,0 = 0 (all r < 0).
It follows that ϕm1,m2 = 0 whenever m1 < 0 and m2 = 0.
For p2 = t − 1, (3.36) yields

∞∑
i2=0

ϕ̄r,i2ψ−q1,−i2−t+1 = 0 (for all r < 0),

hich implies
ϕ̄r,0ψ−q1,−(t−1) + ϕ̄r,1ψ−q1,−1−(t−1) = 0,
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d therefore

ϕ̄r,1ψ−q1,−t = 0,

d ϕ̄r,1 = 0, as desired. In an entirely similar way one obtains the remaining conclusions. 
he regions described by conditions (i), (ii) and (iii) with respect to ψ(z1, z2) = z̄1

q1f(z2)
here f(z2) =

∑s
j=−t ajzj

2, with a−t �= 0 are shown in Fig. 1.

After illustrating the necessary conditions for T ∗
ϕ,nHψ,n = Hψ,nTϕ̃,n, we now prove 

at the conditions in Theorem 3.5 are also sufficient.

heorem 3.11. Suppose n > 1. Let Tϕ,n and Hψ,n be a nonzero Toeplitz and a nonzero 
ankel operator induced by ϕ and ψ in L∞(Tn) respectively, where ψ is of the form

ψ(z1, .., zn) =

⎛⎝ n∏
d�=i=1

z−qi

i

⎞⎠ f(zd) = z−q1
1 z−q2

2 · · · z
−qd−1
d−1 f(zd)z−qd+1

d+1 · · · z−qn
n ,

r some function f of the variable zd, 1 � d � n, and (n − 1) nonnegative integers 
, 1 � i � n, i �= d. Then T ∗

ϕ,nHψ,n = Hψ,nTϕ̃,n if and only if

(i) ϕm1,...,mn
= 0 if md < 0 and 0 � mi � qi for each 1 � i � n, i �= d.

ii) ϕm1,...,mn
= 0 if md < 0 and mi � qi for each 1 � i � n (i �= d), and such that for 

at least one 1 � j � n, j �= d, we have mj < 0.

iii)
∞∑

id=0
(ϕ̄q1−m1,...,qd−1−md−1,id,qd+1−md+1,...,qn−mn

) ·(ψ−q1,...,−qd−1,−id−pd ,−qd+1,...,−qn
)

= 0, for each integer pd � 0 and mi � 0 (1 � i � n, i �= d), and such that for at 
least one 1 � j � n, j �= d, we have mj > qj.

roof. The necessity was already proved in Theorem 3.5. For the sufficiency, we assume 
at the relations (i), (ii) and (iii) hold. For m, p ∈ Zn

+ we have

〈
T ∗

ϕ,nHψ,n(zm), zp
〉

=
∑

i∈Zn
+

ϕ̄i−pψ−i−m (3.37)

d

〈Hψ,nTϕ̃,n(zm), zp〉 =
∑

i∈Zn
+

ϕ̄i−mψ−i−p. (3.38)

sing given conditions (i), (ii), (iii) and form of ψ, the right hand side expression of 

.37) reduces to
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Si
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
id�pd

(ϕ̄q1−p1−m1,..,qd−1−pd−1−md−1,id−pd,qd+1−pd+1−md+1,..,qn−pn−mn
)·

(ψ−q1,..,−qd−1,−id−md,−qd+1,..,−qn
), if 0 � mt � qt for each

1 � t � n, t �= d

0 otherwise

hich can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
sd�0

(ϕ̄q1−p1−m1,··,qd−1−pd−1−md−1,sd,qd+1−pd+1−md+1,··,qn−pn−mn
)·

(ψ−q1,··,−qd−1,−sd−md−pd,−qd+1,··,−qn
), if 0 � mt � qt for each

1 � t � n, t �= d

0 otherwise

d is further same as,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
sd�0

(ϕ̄q1−p1−m1,··,qd−1−pd−1−md−1,sd,qd+1−pd+1−md+1,··,qn−pn−mn
)·

(ψ−q1,··,−qd−1,−sd−md−pd,−qd+1,··,−qn
), if 0 � mt + pt � qt

for 1 � t � n, t �= d,

0 otherwise.

milarly, we find that the right hand side expression of (3.38) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
id�md

(ϕ̄q1−p1−m1,··,qd−1−pd−1−md−1,id−md,qd+1−pd+1−md+1,··,qn−pn−mn
)·

(ψ−q1,··,−qd−1,−id−pd,−qd+1,··,−qn
), if 0 � pt � qt for each

1 � t � n, t �= d,

0 otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
sd�0

(ϕ̄q1−p1−m1,··,qd−1−pd−1−md−1,sd,qd+1−pd+1−md+1,··,qn−pn−mn
)·

(ψ−q1,··,−qd−1,−sd−md−pd,−qd+1,··,−qn
), if 0 � pt � qt for each

1 � t � n, t �= d,

0 otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪

∑
sd�0

(ϕ̄q1−p1−m1,··,qd−1−pd−1−md−1,sd,qd+1−pd+1−md+1,··,qn−pn−mn
)·

(ψ−q1,··,−qd−1,−sd−md−pd,−qd+1,··,−qn
), if 0 � mt + pt � qt for

1 � t � n, t �= d,
⎪⎩ 0 otherwise.
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ence we conclude that

〈
T ∗

ϕ,nHψ,n(zm1
1 . . . zmn

n ), zp1
1 . . . zpn

n

〉
= 〈Hψ,nTϕ̃,n(zm1

1 . . . zmn
n ), zp1

1 . . . zpn
n 〉 ,

r each (m1, . . . , mn) and (p1, . . . , pn) in Zn
+. Thus T ∗

ϕ,nHψ,n = Hψ,nTϕ̃,n. �
We now present an illustrative example (for the case n = 2) that provides a better 

nderstanding of the proof of sufficiency in Theorem 3.11.

xample 3.12. Suppose Tϕ,2 and Hψ,2 are nonzero Toeplitz and nonzero Hankel operators 
duced by ϕ and ψ in L∞(T 2), respectively, where ψ is of the form

ψ(z1, z2) = z−q1
1 f(z2),

r some function f of the variable z2 and nonnegative integer q1. If the function ϕ

tisfies the following conditions

(i) ϕm1,m2 = 0 if m2 < 0 and m1 � q1, and

(ii)
∞∑

i2=0
ϕ̄q1−m1,i2 · ψ−q1,−i2−p2 = 0, for integers p2 � 0 and m1 > q1,

en we prove that T ∗
ϕ,2Hψ,2 = Hψ,2Tϕ̃,2. To begin with, we take (m1, m2) and (p1, p2)

 Z+
2 , then,

〈
T ∗

ϕ,2Hψ,2(zm1
1 zm2

2 ), zp1
1 zp2

2
〉

=
∑

(i1,i2)∈Z2
+

ϕ̄i1−p1,i2−p2ψ−i1−m1,−i2−m2 , (3.39)

d

〈Hψ,2Tϕ̃,2(zm1
1 zm2

2 ), zp1
1 zp2

2 〉 =
∑

(i1,i2)∈Z2
+

ϕ̄i1−m1,i2−m2ψ−i1−p1,−i2−p2 . (3.40)

ince ψj1,j2 = 0 whenever j1 �= −q1, thus in the summation in equation (3.39) we put 
= q1 − m1, provided q1 − m1 � 0. Thus equation (3.39) reduces to

⎧⎪⎨⎪⎩
∑
i2�0

(ϕ̄q1−p1−m1,i2−p2) · (ψ−q1,−i2−m2) provided 0 � m1 � q1

0 otherwise.

ince ϕj1,j2 = 0 whenever j2 < 0 and j1 � q1, thus the above expression further reduces 

,
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⎧⎪⎨⎪⎩
∑

i2�p2

(ϕ̄q1−p1−m1,i2−p2) · (ψ−q1,−i2−m2) provided 0 � m1 � q1

0 otherwise.

bstitute i2 − p2 = s2 in the above summation to obtain the following⎧⎪⎨⎪⎩
∑
s2�0

(ϕ̄q1−p1−m1,s2) · (ψ−q1, −s2−m2−p2) provided 0 � m1 � q1

0 otherwise.

sing the given condition (ii) we finally obtain that 
〈
T ∗

ϕ,2Hψ,2(zm1
1 zm2

2 ), zp1
1 zp2

2
〉

=

⎧⎪⎨⎪⎩
∑
s2�0

(ϕ̄q1−p1−m1,s2) · (ψ−q1, −s2−m2−p2) provided 0 � m1 + p1 � q1

0 otherwise.

milarly we see that 〈Hψ,2Tϕ̃,2(zm1
1 zm2

2 ), zp1
1 zp2

2 〉 is also equal to

⎧⎪⎨⎪⎩
∑
s2�0

(ϕ̄q1−p1−m1,s2) · (ψ−q1, −s2−m2−p2) provided 0 � m1 + p1 � q1

0 otherwise.

ence

T ∗
ϕ,2Hψ,2 = Hψ,2Tϕ̃,2.

As an application of Theorem 3.11 we now discuss the following example.

xample 3.13. Consider the case n = 2. Take ψ(z1, z1) = z1
−1z2

−1 and ϕ(z1, z2) =∑
1,i2)∈Z2

ithi1<0
i2�2

2i1zi1
1 zi2

2 . Then ϕ and ψ are in L∞(T 2). We can take d = 1 and q2 = 1 or 

= 2 and q1 = 1. Let us take q1 = 1 and d = 2. For the given function ϕ we verify the 
nditions (i), (ii) and (iii) of Theorem 3.11.
Since the Fourier coefficients ϕm1,m2 are zero if 0 � m1 � 1 and m2 < 0, condition (i) 

 verified. Next, we see that ϕm1,m2 = 0 if m1 < 0 and m2 < 0 and thus condition (ii) is 
tisfied. Further we verify condition (iii), by considering the expression 

∑∞
i2=0 ϕ̄1−m1,i2 ·

−1,−i2−p2 , for all integers p2 � 0, m1 > 1. Since ψ−1,−1 = 1 and all other Fourier 
efficients of the function ψ are zero, so in the above summation only those values of 
and p2 will contribute for which i2 + p2 = 1.
Thus, for p2 = 0, i2 will be 1 and we see that ϕ1−m1,1 is zero for all integers m1 > 1. 
or p2 = 1, i2 will be 0 and ϕ1−m1,0 is zero for all integers m1 > 1. Hence ϕ satisfies 
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nditions (i), (ii) and (iii) of Theorem 3.11 and the relationship T ∗
ϕ,2Hψ,2 = Hψ,2Tϕ̃,2

olds.

Our next result provides a characterization for the commutativity of Toeplitz and 
ankel operators induced by symbols of a specific type.

heorem 3.14. Let n > 1 and suppose that Hψ,n is a nonzero Hankel operator induced 
 ψ in L∞(Tn) of the form

ψ(z1, . . . , zn) = z−q1
1 z−q2

2 . . . z
−qd−1
d−1 f(zd)z−qd+1

d+1 . . . z−qn
n ,

r some function f of the variable zd, 1 � d � n, and (n − 1) nonnegative integers 
, 1 � qi � n, i �= d. If 0 �= ϕ in L∞(Tn) is such that ϕ = ϕ∗ then the Toeplitz operator 

ϕ,n commutes with Hψ,n if and only if the following conditions hold:

(i) ϕm1,...,mn
= 0 if md > 0 and −qi � mi � 0 for each 1 � i � n, i �= d.

ii) ϕm1,...,mn
= 0 if md > 0 and −qi � mi for each 1 � i � n, i �= d, and such that for 

at least one 1 � j � n, j �= d, we have mj > 0.

iii)
∞∑

id=0
(ϕm1−q1,...,md−1−qd−1,−id,md+1−qd+1,...,mn−qn

) ·(ψ−q1,...,−qd−1,−id−pd
, −qd+1,...,−qn

)

= 0, for each integers pd � 0 and mi � 0 such that 1 � i � n, i �= d, and for at 
least one 1 � j � n, j �= d, we have mj > qj.

roof. Since ϕ = ϕ∗, ϕi1,...,in
= ϕ−i1,...,−in

for each (i1, . . . , in) ∈ Zn. Also, ˜̄ϕ = ϕ∗ = ϕ; 
us, the commutativity of Tϕ,n and Hψ,n is equivalent to say that T ∗

ϕ̄,nHψ,n = Hψ,nT ˜̄ϕ,n. 
eplacing ϕ by ϕ̄ in Theorem 3.11, we obtain the desired result. �
Theorem 3.1 and the observation drawn immediately after Corollary 3.7 yield the 

sult proved in [12] in case of one variable, which states that if ϕ in L∞(T ) is such that 
 = ϕ∗ then TϕH = HTϕ for a nonzero Hankel operator H if and only if ϕ is a constant 
nction. In the next example, we see that the same is not true in case n > 1. The 
ample also illustrates an application of Theorem 3.14 to provide commuting Toeplitz 
d Hankel operators.

xample 3.15. Take n = 2 and define

ϕ(z1, z2) = z1z2 + z1z2

d

ψ(z1, z2) = 1

r (z1, z2) ∈ T 2. It is straightforward to see that ϕ and ψ are in L∞(T 2) and ϕ = ϕ∗. 

ere, ϕ−1,1 = 1 = ϕ1,−1 and all other Fourier coefficients in the Fourier series expansion 
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 ϕ are zero. It is computationally simple to see that conditions (i), (ii) and (iii) in 
heorem 3.14 are satisfied and Tϕ,2 and Hψ,2 are nonzero operators. Thus Tϕ,2Hψ,2 =
ψ,2Tϕ,2 (in fact on computation we see that Tϕ,2Hψ,2 and Hψ,2Tϕ,2 both are zero 
erators). However, ϕ is not a constant function.

We now define an operator A on H2(Tn) as A(f) = f̃ for each f in H2(Tn). Oper-
or A helps us in further investigation of commutative properties between Hankel and 
oeplitz operators on H2(Tn). We first see the following properties of A which can be 
tained with simple computations.

roposition 3.16.

(i) A is anti-linear and A2 = I, the identity operator.
ii) 〈Af, Ag〉 = 〈f, g〉 for each f and g in H2(Tn).
ii) For any ϕ in L∞(Tn), ATϕ,nA = Tϕ̃,n and AHϕ,nA = H∗

ϕ,n = Hϕ̃,n.

emma 3.17. For ϕ and ψ in L∞(Tn), Hψ,n commutes with Tϕ,n if and only if it com-
utes with Tϕ∗,n.

roof. Now it is direct to see that

Tϕ,nHψ,n = Hψ,nTϕ,n ⇔ ATϕ,nAAHψ,nA = AHψ,nAATϕ,nA

⇔ Tϕ̃,nH∗
ψ,n = H∗

ψ,nTϕ̃,n

⇔ Hψ,nT ∗
ϕ̃,n = T ∗

ϕ̃,nHψ,n

⇔ Tϕ∗,nHψ,n = Hψ,nTϕ∗,n.

ence the result. �
Now we use our findings to prove a necessary condition for the commutativity of a 

oeplitz and a nonzero Hankel operator on the space H2(Tn).

heorem 3.18. Let Hψ,n be a nonzero Hankel operator induced by symbol ψ in L∞(Tn), 
 > 1), of the form

ψ(z1, . . . , zn) = z−q1
1 z−q2

2 . . . z
−qd−1
d−1 f(zd)z−qd+1

d+1 . . . z−qn
n ,

r some function f of the variable zd, (1 � d � n), and (n − 1) nonnegative integers 
, 1 � qi � n, i �= d. If ϕ ∈ L∞(Tn) is given by ϕ(z1, . . . , zn) =

∑
i=(i1,...,in)∈Zn

i1,...,in
z1

i1 . . . zn
in , then the commutativity of Tϕ,n and Hψ,n implies the following:

(i) ϕm1,...,md−1,md,md+1,...,mn
= −ϕ−m1,...,−md−1,−md,−md+1,...,−mn

if md < 0 and 0 �

mi � qi for each 1 � i � n, i �= d.
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ii) ϕm1,...,md−1,md,md+1,...,mn
= −ϕ−m1,...,−md−1,−md,−md+1,...,−mn

if md < 0 and mi �
qi for each 1 � i � n, i �= d, and such that for at least one 1 � j � n, j �= d, we 
have mj < 0.

iii)
∞∑

id=0
(ϕm1−q1,...,md−1−qd−1,−id,md+1−qd+1,...,mn−qn

) ·(ψ−q1,...,−qd−1,−id−pd,−qd+1,...,−qn
) =

− 
∞∑

id=0
(ϕq1−m1,..,qd−1−md−1,id,qd+1−md+1,..,qn−mn

) ·(ψ−q1 , ...,−qd−1,−id−pd,−qd+1,...,−qn
), 

for each integer pd � 0 and mi � 0 for each 1 � i � n, i �= d, and such that for at 
least one 1 � j � n, j �= d, we have mj > qj.

roof. Suppose that for given ϕ and ψ, Tϕ,nHψ,n = Hψ,nTϕ,n. Using Lemma 3.17, we ob-
in Tϕ∗,nHψ,n = Hψ,nTϕ∗,n; thus Tϕ+ϕ∗,nHψ,n = Hψ,nTϕ+ϕ∗,n. Applying Theorem 3.14
d the fact that ϕ∗

i1,...,in
= ϕ−i1,...,−in

for any (i1, . . . , in) in Zn, we obtain the desired 
nditions. �
The conditions obtained in Theorem 3.18 are only necessary, and not sufficient to 
sure the commutativity between a Toeplitz operator and a nonzero Hankel operator 
 several variables. The following example illustrates this fact.

xample 3.19. Consider n = 2 and take ϕ(z1, z2) = z1z2−z1z2 and ψ(z1, z2) = z1z2+z1z2
2

 T 2. Then ϕ and ψ are in L∞(T 2) and satisfy the conditions (i), (ii) and (iii) of 
heorem 3.18, but Tϕ,2Hψ,2(1) = z2

2 − z2
1 and Hψ,nTϕ,n(1) = 0.

We observe that when n > 1, the condition Tϕ,nHψ,n = Hψ,nTϕ,n (for nonzero Hϕ,n) 
eed not provide that ϕ +ϕ∗ is a constant function, unlike in the single variable case. This 
n be seen by considering ϕ and ψ defined in Example 3.15, which satisfy Tϕ,2Hψ,2 =
ψ,2Tϕ,2. But (ϕ + ϕ∗)(z1, z2) = 2ϕ is not a constant function.
We conclude with the remark that all the results beginning with Theorem 3.5 onward 

o hold if we replace ψ by ζ in L∞(Tn) such that (CAP )ζ = (CAP )ψ, which follows 
mediately using Corollary 2.6.
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