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1. Introduction

In 1963, A. Brown and P.R. Halmos characterized all pairs of commuting Toeplitz op-
erators on the Hardy space over the unit disc [3]. In the literature, the result is referred
to as the Brown-Halmos Theorem. In the ensuing decades, providing suitable extensions
of this result to the case of Hilbert spaces of holomorphic functions on general domains
in several complex variables, and studying the corresponding Brown-Halmos-type the-
orems has been a central theme of research in Toeplitz operator theory. In particular,
the (essentially) commuting problem for (small) Hankel and Toeplitz operators on the
Hardy/Bergman space of several variables is quite important and interesting. In the
present paper, we attempt to contribute to this fascinating area of research with a num-
ber of necessary and sufficient conditions that guarantee the commutativity of certain
Hankel and Toeplitz operators on the Hardy space of the n—torus.

Throughout the paper, we will use the symbol D to denote the open unit disc and
T to denote the unit circle in the complex plane C. For a positive integer n, the open
unit polydisc and n-torus in C™ are denoted by D™ and T™, respectively. Although
the function theory on the polydisc differs significantly from that on the unit disc, we
will utilize the available theory related with multiple Fourier series on the n-dimensional
torus. By L2(T™) (= (L?(T™),du)) we will denote the Lebesgue space of measurable and
square integrable functions defined on T"™, with du the normalized Lebesgue measure on
T™. The Hardy space H2(T") is a closed subspace of L?(T™). As usual, we will denote
elements of T™ by z = (z1,...,2,), elements of Z" by k, and z* := zfl - zFn With
the help of multivariable Fourier series [15], we have

LX(T") ={f| f: T"— C with f(z) = Y _ frz"

keZ™

with Z ‘fk|2 < OO}7

kezZ™

and
H*(T™) ={f € L*(T"™)| fx = 0 whenever k ¢ Z!

(Throughout this paper, the sets Z and Z, denote the set of all integers and the set
of all nonnegative integers, respectively.) It is straightforward to verify that the sets of
monomials {z*}gczn and {z¥}pczn form orthonormal bases of L*(T™) and H?(T™), re-
spectively. By L (T™) we denote the space of essentially bounded measurable functions
defined on T". By an operator we mean a bounded linear transformation on a Hilbert
space H, and the symbol B(H) is used to denote the space of all bounded operators on
H.

For ¢ € L*(T), the Toeplitz operator T, acting on H?(T) (introduced by O.
Toeplitz), is defined as
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T, := PM,,

where M, denotes the multiplication operator, induced by ¢ and P is the orthogonal
projection of L?(T) onto the subspace H?(T). The Hankel operators, which are charac-
terized in terms of Hankel matrices, are defined as

Hy(f) = PIMy(f) (f € HT)),

where ¢ € L>°(T). Here J is the flip operator defined as J(f)(z) := f(2) for f € L*(T).

Due to its vast applicability, the theory of Hankel and Toeplitz operators on H?(T)
possesses extensive literature. The appearance of Hankel operators and Hankel matri-
ces is seen in diverse areas such as control theory, approximation theory, Wiener-Hopf
factorizations, interpolation problem and perturbation theory. (See [2,6,11,13,16] and
the references therein). In this paper, we study the commutativity between Hankel and
Toeplitz operators defined on the space H2(T"). For n = 1, R.A. Martinez- Avendaifio
[12], in 2000, classified commuting Hankel and Toeplitz operators; in 2003, Guo and
Zheng [9] classified when a Hankel and a Toeplitz operator have a compact commutator.

The situation in the multivariable setting requires special techniques. C. Gu (see [7,8])
discussed some algebraic properties of Hankel and Toeplitz operators on the Hardy space
of the polydisc, and some conditions for the product of Hankel and Toeplitz operators
to be of finite rank operator were derived. Though commutativity and essential com-
mutativity between slant Hankel and slant Toeplitz operators on the space L*(T™) has
been studied in [5], not much is known regarding commutativity between Hankel and
Toeplitz operators in the multivariable case. In the present paper we are able to obtain a
necessary condition for commutativity between Hankel and Toeplitz operators in those
instances when the Hankel operator is induced by a specific kind of symbol. Further, we
show that certain results concerning commutativity between these operators which hold
in the one-variable case may not hold in the multivariable case.

2. Hankel operators on H2(T™)

We begin with the definition of Toeplitz operator, a formal companion of Hankel
operator, on the space H(T™) [10]. For ¢ in L>(T") T, ,,
H?*(T™), is defined as T, = PM¢|H2(TW). Here M, is the multiplication operator
defined on L?(T™) and P represents the orthogonal projection of L*(T™) onto H2(T™).

In the literature, Hankel operators have been defined in various forms. For instance,
these operators are considered in the form Hy(f) = (I — P)Myf over the Hardy-
Sobolev spaces in [1] and in the same form on the Bergman spaces of the polydisc
in C™ in [14] (where ¢ an essentially bounded function). K. Guo and D. Zheng in
[9] considered the Hankel operator defined on H?(T) as Hy(f) == PUM,f, (¢ in
L>°(T)), where U is defined on L?(T) as Uf(z) := Zf(z). C. Gu in [7] considered
Hy(f) := VPMy(f) for f € H?>(D™), with V being the anti-unitary operator defined on

H2(D") as V() (215, 2n) = f(Z1, -, Zn)-

the Toeplitz operator on
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In this paper, we extend the definition of Hankel operator taken up by Martinez-
Avendaiio in [12] to the space H?(T™) and study some of the properties of this operator
in this section.

Definition 2.1. For ¢ in L*°(T"), the Hankel operator on H?(T") with symbol ¢ is
denoted by Hy , and is defined as Hy, ,, := PJnMw|H2(Tn). Here J,, is the flip operator
[4] defined on L?(T™) as J,,(f)(2) := f(z) for each f € L?>(T™").

It is easy to see that J,, is a unitary operator on L?(T™). (For more properties of the
operator J,, we refer the reader to [4].) The boundedness of ¢ provides the boundedness
of H‘lh" with

[yl < IPITnlll Myl < 9 ]loo-
Further, for ¢ in L>°(T") and m € Z7;, we have

Hyn(2™) = PJn(ih- 2™)

i€Z™

= Z d}—i—m zi~

€L

As a result, if 4, j € Z"} we obtain

Thus,

H’Z,n(zm) = Z E—m—j zj’ (21)

for each m in Z7.
We now discuss some notations which will help us derive certain properties of Hankel
operators.

Definition 2.2. For f in L?(T"), f and fare defined respectively as

f(z) = f(2)
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and

f(z):=[(Z) .

It is plain to see that f € L2(T™) if and only if f € L2(T™). In fact, f € H2(T")
if and only if f € H2(T™) and f € L>(T") if and only if f € L>®(T"). Likewise, f €
L?(T™) if and only if f € L2(T") and f € L°(T") if and only if f € L>(T"). For f in
L?(T™), the flip of f, denoted by f*, is defined as

fH(2) = f(z).

As a result,

frz)=Y_ f 7.

jezn

Again f € L?(T") if and only if f* € L?(T"™) and f € L°(T") if and only if f* €
L>(T™) hold.
Using the above notation and equation (2.1), we see that

* — ~
H’l/h" - Hw,n ’

for ¢ in L°°(T™). This shows that the collection {Hy, : ¥ € L*(T")} of Hankel
operators on H?(T™") is self-adjoint.

Theorem 2.3. The map 1) — Hy, , from L>=(T™) to B(H*(T™)) is linear but not one-to-
one.

Proof. Linearity of the given mapping is evident from the fact that the mapping ¢ — My
from L*(T™) to B(H?(T™)) is linear. To investigate injectivity, we consider the function
P(z) := 2z, where 1 := (1,1,...,1) € Z". Then ¢ € L*>°(T") and Hy, = 0, the zero
operator. However ¢ # 0. O

Recall now that H>°(T™) = L°°(T")N H?(T™). From the explicit expression of Hy ,,
we observe that the action of Hy, ,, on the canonical basis elements involves only those
Fourier coefficients ; of ¢ (in L>°(T™)) for which each j, < 0, 1 < t < n. Hence, it
is easy to see that the operator Hy , = 0, if ¢ € 2 H>°(T™), where i; > 0 for at least
one j (1 < j < n). However, the converse, which is true for n = 1, is not true in case of
n > 1. To see this, consider n = 2 and (21, 22) := 27 223 + 2725 2. Clearly ¢ € L>(T™)
and Hyo = 0, but ¢ ¢ 2" 22 H?>(T?) if i; > 0 for j = 1 or 2. In order to obtain a
characterization for symbols inducing zero Hankel operators, we now state the following
definition.
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Definition 2.4. For ¢ in L?(T") with Fourier series expansion given by v(z) = Z i 2t
i€Zm
we define the coanalytic part of ¢ by

zZ— Z izt

1;<0,1<j<n
and denote it by (CAP)y.
The following result is straightforward.

Theorem 2.5. For 1 in L>(T"), Hy , = 0 if and only if (CAP)y, the coanalytic part of
P, 1§ zero.

Theorem 2.3 helps us reformulate Theorem 2.5 in the following way.
Corollary 2.6. For ¢ and ¢ in L>(T"), Hy n, = Hy », if and only if (CAP)y = (CAP)y.

In view of Corollary 2.6 we see that the symbol of a Hankel operator on H?(T™") is
not uniquely determined.

3. Commutativity between Hankel and Toeplitz operators

In this section we discuss the commutativity between Hankel and Toeplitz operators
in several variable. From the definitions, it is easy to verify that for ¢ in L°°(T™) the
action of the Toeplitz operator T}, ,,(= PM,) on any basis element of H*(T") is given
by

Ton(z™) = Z ‘Pj*mzj’
jezn

where m € Z'. The adjoint of T, , is T3 ,, = PMg = T 5.

A symbol ¢ in L?(T") is said to be analytic if ¢ € H?(T"), and ¢ is said to be
coanalytic if ¢ is analytic. (For other relevant results on T, »,
[11].)

In the one-variable setting, it is well known that Toeplitz and Hankel operators do

we refer the reader to

not commute in general. This fact is also present in the multivariable setting, if we
consider, for instance, the symbols ¢(z1,...,2,) := 21 and ¥(21,...,2,) := 1 defined
on T™ when n > 1. Then Ty, nHy (1) = T n PJn(1) = Ty (1) = P(p) = ¢ = 21 and
HypTon(1) = HyuP(9) = Hy () = PJu() = P(Z1) = 0.

Our next aim is to obtain a natural and reasonable necessary condition for the com-
mutativity between a Toeplitz operator and a Hankel operator in several variables. In
this direction we first prove the following result.
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Theorem 3.1. Let p,¢ € L>*(T") and let T,,, and Hy , be a nonzero Toeplitz and a
nonzero Hankel operator, respectively, acting on the space H*(T™). Assume that ¢ is
analytic. Then

T;,nH¢7n = Hqﬁ’nT@’n.
Proof. For m,p € Z7, we have
(T5 nHpn(2™),2P) = (Hypn(2™), Tpn(27))

= < Z ¢—i—mziaT¢v”(zp)>

€L

=D Yiimbip (3.1)

i€z’

Similarly,

(HynT5n(2™),2%) = Y Vi pPi—m.

i€
Due to the analyticity of ¢, equation (3.1) reduces to the following;:

<T;,nHw,n(zm)7 zp> = Z '(/)—i—mQZi—p

izp
= Z Y t—m—pPt-
teZn
Note here that by ¢ > p we mean all those 4 = (i1, 2, ...,%,) in Z" such that i; > p;

for each 1 < j < n. Similarly,
<H1b,nT<5,n(zm)7zp> = Z w—s—m—pﬁﬁs-
s€L:

Thus,

T, Hyn=Hy,T;

@,n>

as desired. O

It is worth noticing here that the converse of Theorem 3.1 is true when n = 1 (see
[12]), but does not hold when n > 1. For, consider ¢(z1, 22, ...,2n) := Z122 ... 2n, (n > 1)
and ¥(z1,22,...,2,) := 1 on T™ Then ¢ and ¢ are in L>°(T™). A simple computation
reveals that for any m € Z”}, we have
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T (21" 23

mi—1 m2+1 mp+1 :
mi1 _mao Zm") _ 2 29 - Zp g if mi 2 1
0 otherwise ’

and

Hyn(27 29" ... 2

may 1 fmi=mo=...=m, =0
0 otherwise ’

Thus, T, and Hy , are nonzero operators. Moreover, we have

T35 nHyn(2™) =

=0

otherwise

{ T:,(1)  ifm=0
0

and

Hwn gon

Hy (22t pmetly iy > 1
0 otherwise
0.

It follows that 17 Hypyn=0=Hy,T5n but ¢ is not analytic.

We now derive a few corollaries from Theorem 3.1. In all these corollaries we will
assume that the Toeplitz operator and the Hankel operator under consideration are
nonzero and ¢ and 1 are in L>(T").

Corollary 3.2. If ¢ is analytic then Ty«  Hy n = Hy n T .

Proof. If ¢ is analytic then @ is analytic. The proof follows using Theorem 3.1 (for @)
and the identities = ¢* and @ = ¢. O

Corollary 3.3. If ¢ is coanalytic then Ty, nHy n = Hy nTpr n. Further,
Loty n = HynTon.

Proof. First apply Theorem 3.1 on ¢, which is analytic because ¢ is coanalytic. Next,
observe that ¢* is analytic, ©* = @ and c/p; = ¢, which yield the desired result. O

Remark 3.4. It is worth noting again that the converse of Corollaries 3.2 and 3.3 hold in
the case n =1 (see [12]), but do not hold when n > 1. In fact, for n > 1 the functions
©(21,29,...,2n) = Z122 ... 2 and (21, 29, ..., 2,) := 1 serve as an example.

Our aim now is to discuss the converse of Theorem 3.1 in case n > 1. Not enough
is known in this direction, however we are able to derive some information about the
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symbol ¢ when the Toeplitz and Hankel operators Ty, , and Hy , satisfy the desired
commutator equation, and when the symbol ¢ is in a specific format.

Theorem 3.5. Let n > 1. Suppose that Ty, and Hy, are a nonzero Toeplitz and a
nonzero Hankel operator with symbols ¢ and i in L>°(T™). Assume that

n
(21, 2n) = H 270 flza) = 20 T2y P2 T f(za) g 2
d#i=1

for some function f of the variable z4, 1 < d < n, and (n — 1) nonnegative integers
g, 1<i<n, i#d IfT;,Hyn=HypnT;n then

(i) my....omn, =09 mg <0 and 0 < m; < ¢ for each 1 < i< n,i#d.
(11) Omy,...m, =0 if mqg <0 and m; < g; for each 1 < i < n,i #d, and such that for
at least one 1 < j < n,j #d, we have m; < 0.

o0

(Z”) Z(@lh—mh q2—m2, ..., qd—1—Md—1, td, qd+1—Md+1, d+2—Md+2, -+, n —mn)'
ia=0
('(/)—thy vy —Qd—1, —td—Pd; —qd+1; - —qn) =0, for each integer pg = 0 and m; = 0 for
each 1 < i < n,i # d, and such that for at least one 1 < j < n,j # d, we have
m; > q;.-

(For a visualization of conditions (i), (ii), and (iii) in the case n = 2, the reader is
referred to Fig. 1 on page 19.)

Proof. For two n—tuples ¢ and j in Z'} satisfying the inequalities i, > j; (1 <t < n), we
will use the notation 2 > j. Let m,p in Z"}. Then

<T;,nHw,n(zm)7 zp> = (Hyn(z™), T%n(zp))

< Y timz Y saj—pzj>

€L JEZT

Z w—'i—m@i—p

€LY

Z ¢7i7m¢i7p

i€Zi; i>p

+ Z Y _i—mPip

i—p¢Z1

= Z Qﬁ—s—m—p@s

seZ
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+ > Yiim®Pip - (3.2)

€LY ; i—pgLT

Similarly,

<H¢,nTcﬁ,n(Zm)7zp> = Z '(/stfmfp@s

seL

+ Y Ui pBiom - (3.3)

i€Z"; i—m¢ZLn

Since T ,, Hyn = HynTp n, equations (3.2) and (3.3) yield

Z @i—pq/}—i—m - Z @i—mw—i—pa (34)

i€LT; i—pgLy GELT; i-mgL

for all p,m € Z7. Observe that when p; = 0 (resp. m; = 0) for each 1 < j < n, then
the sum on the left-hand side (resp. right-hand side) of equation (3.4) is zero. We now
choose different values for p and m in equation (3.4) to derive conclusions (i), (ii) and
(ii).

We begin by choosing p; = 0 and 0 < m; < ¢ for each 1 <t < n,t # d then equation
(3.4) gives

E Pit,.riqg—1 ,id*Pd,id+1»winzb*il*mlw-,*id*md,m,*in*mn
- n
ISVl
~and
0<ig<pa—1

= E 901'1*mu---,id*mdy---,in*mnw*ih---,*idfpd,mﬁin? (3'5)

i€ZT; i—m¢Ln

for each pg and mg in Z. Due to the given form of 1, in equation (3.5) we have fixed

choices for (i1,...,%4—1,%d+1,- - - ,in) and thus equation (3.5) reduces to
pa—1
E (thh*ml, q2—mM2, ...y qd—1—Md—1, td—Dd, qd+1—Md+1; qn*mn)'
ia=0
(w*thw, *Qd—l,*id*md,*chl,--ﬁqn)
md—l

E (90(11 —M1,..,qd—1—Md—1 7id_mdv(Id+1_md+1---7Qn_mn).
1q=0

(wfthw»ﬁfldﬂ,*id*}?d,*qdﬂ,--q*qn)? (3'6)

for each pg and my in Z, keeping in mind that the sum on the left-hand side (resp.
right-hand side) of equation (3.6) is zero if pg = 0 (or mg = 0). Without loss of generality,
we assume pg > mg > 0 and rewrite the sum on the left-hand side of equation (3.6) as
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pa—1

E : (SOQI*mlgH-"Id—l*md—laidfpd,an-#l*md+1v~~~»qn7mn) : (¢*Q1,~,*Qd—1ﬁid*md

iq=0
Pa—mg—1
,—Qd+1,~-,—qn) = E (QDQI_ml7~,Qd—1_md—17id_pd7Qd+1_md+17'~;Qn_mn).
iq=0

pa—1
(w—m,--~7—<1471,—id—md7—4d+17~-7—qn) + E (90(11—m17 oy @d—1—Md—1,4d—Pd
td=pd—Mmd

7q¢+1—md+1~--,qn—mn) ! (w—fh7--47_‘1d717_id_md7_Qd+17~~-7_Qn)' (3~7)

Using a change of variable (that is, by substituting, say, iq — (pa — mq) = sq for the
second sum on the right-hand side of equation (3.7), we easily see that it is equal to the
sum on the right-hand side of equation (3.6). As a result, equation (3.6) yields

pda—ma—1

E (Soql*ml,myq(i—l*md—l,idfpd,Qd+1*md+1»--,qn*mn )
1q=0

(u}*m,m,*qd—l ,*id*md,*qfﬂ-l,m,*qn) =0, (38)

for all integers pg > mg = 0. Since the Hankel operator Hy, ,, is nonzero there must exist

=qd—1,—%d,—qd+1,--,—qn % 0. Fix mq = {4
and put pg = £y + 1,04+ 2,04 + 3,. .. successively in equation (3.8) to obtain

some nonnegative integer f4 such that ¢_g,

Par—mi,....qa—1—ma—1,—(La+b),qd41 =M1, sqn —Mp 0, for all integers b > 0. (3'9)

However, if we choose pg = 4+ 1 and put mg =403 — 1,453 —2,...,2,1,0 successively in
equation (3.8), we get

Par—mi1,...;qa—1—ma—1,—(€d—$),qd41—Md 41, dn—Mn 0 (3‘10)
for each integer s such that 0 < s < ¢y — 1.
Equations (3.9) and (3.10) lead to
Pt =My d o1 —Md— 15—, Qa1 =T 1seees@n =1 = 05 (3.11)

for all integers b > 0 and 0 < m; < ¢; for all 1 <t < n, ¢t # d. This proves part (i).
We now return to equation (3.4), applied to p and m in Z, when m; = 0 for each
1 <t < nt+#dandp > q for at least one 1 < ¢t < n, we have t # d. It is
straightforward to note that, in this setting and using the given form of 1, we have

E (90111*]01, q2—pP2, «-vy §d—1—Pd—1, id*Pda qdd+1—Pd+1; -+ anpn) : (’(/)*lh, coy —Qqd—1,
ig>0

—id—Md, 7Qd+1y~~57Qn> =0, (3'12)
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for each pg and my in Z . There is no loss of generality if we further assume pg > mgy4 > 0.
This allows us to rewrite the sum on the left-hand side of equation (3.12) as

E :QDQI_pl7--an71_pd—l7id_pd7Q(l+l_pd+17--aQn_pnw_Q1a<~7_fM*1a_id_mdv_Qd+17~-7—Qn
id>0

Pa—ma—1
= § (Solh*plu»wq:i—l*Pd—lqid*pd,Qdﬁ—l*pd+17»~7‘In*Pn) ' (¢*q11~-’*Qd—1g*id*md
iq=0

o0

7_(Id+17--7_CIn) + E ((p(h_pla--7<1d71_pd—l7id_Pd7Qd+1_Pd+11-<7Qn_pn) : (1/)—(117--1
td=pd—"mMd

_qdfl7_id_md7_qd+17--<7_Qn)' (3'13)

By substituting iq — (pg — maq) = sq in the second sum on the right-hand side of
equation (3.13), and then using equation (3.12), we obtain that

pa—ma—1
E : (90‘117?1w-de—l*Z’d—l7id7pd7‘Id+17pd+11-»7‘In*Pn) : (¢*41,-~,*Qd—1ﬁid*md’

iq=0

*Qd+1,-~,*qn) =0, (3.14)

for all integers pg > mgq > 0 and (p1,...,Pd—1,Pd+1,--,Pn) € Zi_l such that p; > ¢
for at least one 1 < t < n, we have t # d. If we now follow the steps used earlier (between
equation (3.8) to equation (3.11)), we can conclude from equation (3.14) that

Pa1—p1,-:qd—1—Pd—1,—b,qd+1—Pd4 1 -sdn—Pn — 0, (3'15)

for all integers b > 0 and (p1,...,Pd—1,Pd+1,---,Pn) € Zi‘l such that p; > ¢; for at
least one 1 < t < n, we have t # d. Equation (3.15) now establishes part (ii).

By applying again equation (3.4) with the substitutions my = 0 and p; = 0 for each
1 <t < n,t#d, we obtain

E Piy a-~7id—1Jd_Pdv--ainw_il_mlv--y_id—l_md—17_id,_id+1 M1~ =My
ien”
with
0<ig<pa—1

E : 807;1_ml1--7id—1_md—17id7id+1_md+17--7in_mn¢_ily--7_id—17_id_pd7_id+17~-7_in’
i€LT;
i—mgZ"
(3.16)
. n—1 . .
for each integer pg > 0 and (ma,...,mg—1,May1,...,my) € Z'"". Using the given

structure of ¢ in equation (3.16) we obtain that the sum on the left hand side is zero for
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the choice of (mq,...,mg—1,Mg41,...,My) € Zﬁfl such that m; > ¢; for at least one
1 <t < n,t#d. Thus equation (3.16) provides that

E : Pg1—m1,..,qd—1—Md—1,d,9d+1—Md415,qn—Tn 11/}—Q17~-7—Qd—17_id_pd7_Qd+la-~7_Qn
1920

=0, (3.17)

for each integer pd 0and (my,...,Mg—1,Mas1,---,Mp) € Zi_l such that m; > ¢ for
at least one 1 < t < n, with ¢ # d. This prove part (iii). The proof of the theorem is now
complete. O

We verify the proof of Theorem 3.5 by tracing through it for the following example
in the setting n = 2.

Example 3.6. Consider n = 2 and (21, 22) = Z1(Zz + Z2°). Suppose that 15 Hy2 =
Hy T35 for ¢ € L>°(T?). In view of Theorem 3.5, we have, ¢; = 1, d = 2 and f(22)
%3 + Z3°. Let m := (my,mz) and p := (p1,p2) be in Zi. Consider

<T;72Hw,2(zm), z”>

(T5 2 Hy 2 (2" 23"), 2 257
= (Hya(21"23), Ty 2(27" 25%))
= Z w—h—mh—iz—mz@il—pl,iz—pz

4:=(i1,i2)€Z3

E w—il—ml7—i2—m2<pi1—p17i2—172
o 2
(i1,d2)€ZY
. _ with
i1 2p1,92 2p2

+ E : 'lz/}*il*mh*iz*mz@h*m,iz*pz
(i1,i2)EZ7,
. _ with
i12p1,12 2P2
does not hold

- E : w517m17p1,527m27p29051752

(s1,82)€Z3

+ Z 11[}—721—ml,—iz—mz¢i1—p1712—p2' (318)

(i1 ﬂz)EZi

. _ with

11 2P1,12 2P2
does not hold

Similarly,

(Hy2T;52(2™), 2P) = (HyoTpa(21" 25"), 21" 257)

= (T ), Hy (1 28))
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- E : ¢51*m1*171,82*m2*1729081,82

(sl,sz)EZi

+ E /l/}*il7p1777;27p2@i17m17i27m2' (319)
(ir,i2)€Z%
with
11 2Mm1,i2 2m2
does not hold

Since T3 o Hy 2 = Hy 215 2, equations (3.18) and (3.19) yield

E w_il_ml1_i2_m2§0i1_p17i2_p2 =
(7;1,1'2)EZ3>
. _ with
11 2P1,12 2P2
does not hold

Z w—il—Pl7—i2—p2¢i1—m1,i2—m2 (320)
(i1,i2)€Z7,
with
i1 2my,i2 2mo
does not hold
for all (p1,p2), (m1,ma) € Z2. Observe that when p; = po = 0 (resp. m; = my = 0)
then the sum on the left-hand side (resp. right-hand side) of equation (3.20) is zero. Here
onwards we divide the proof in steps.
Step 1: Choose p; = 0 and 0 < my < 1 in equation (3.20). Actual idea is to choose m;

between 0 and ¢;. We thus obtain

E : <pi17i2—172w—i1—m17—i2—m2
el
cand
0<izgp2—1

= Z @il—m1,i2—m2,w—i1,—i2—p27 (321)

i€Z%; i—m¢Z3

for each ps and mg in Z,. Due to the given form of 9, only _1 1 and 9_;,_o are
nonzero (each equal to 1) and all other Fourier coefficients of i are zero, thus equation
(3.21) reduces to

p2—1 mo—1
Z (951—77117 iz—;llz) ' (w—l,—iz—mz) = Z (¢l—m1,i2—m2) ! (w—l,—lé—pz)’ (322)
12=0 12=0

for each py and mq in Z ., keeping in mind that the sum on the left-hand side (resp. right-
hand side) of equation (3.22) is zero if po = 0 (or mg = 0). Without loss of generality,
we assume ps > mg > 0 and rewrite the sum on the left-hand side of equation (3.22) as

p2—1 p2—ma—1

Z (@1*7111,1'2*172,) : (w*17*i2*m2) = Z (@1*7711,2'2*172) ' (wfl,fizfmz)

19=0 19=0
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p2—1

+ Z (951*m1,i2*172) ’ (1/L1,fz‘27m2)~ (3.23)

i2=p2—m2

Using a change of variable (put iy — (pa —msg) = so for the second sum on the right-hand
side of equation (3.23), we easily see that it is equal to the sum on the right-hand side
of equation (3.22). As a result, equation (3.23) reduces to

p2—ma—1

> (Par—maiaps)  (V—gy—in—ms) =0, (3.24)

i19=0

for all integers pa > mo > 0. Since the Hankel operator Hy 2 is nonzero there must exist
some nonnegative integer ¢o such that ¢_,, _g, # 0 (here in this case we can take fo =1
or 2). Let us fix my = €5 = 1 and put py = 2,3, ... successively in equation (3.24) to
obtain

©1—m,,—(145) = 0, for all integers b > 0. (3.25)

Next, choose po = ¥l +1 =2 and put me =¥ — 1,05 —2,...,2,1,0 successively, that is,
in this case mg = 0 in equation (3.24), we get

1
> (@romaia—pa) * (-1 —i—my) =0, (3.26)

i2=0

which further provides

Solfml,fl = 0 (3.27)

Equations (3.25) and (3.27) lead to

@1-my,—b =0, (3.28)

for all integers b > 0 and 0 < m; < 1. This proves part (i).

Step 2: We now return to equation (3.20), applied to p and m in Z2 and choose my =0
and p; > 1(= ¢1). It is straightforward to note that, in this setting and using the given
form of ¢, we have

Z (951*;01, iz*Pz) ’ (¢71,—i2—m2) =0, (329)

1230

for each py and mo in Z . There is no loss of generality if we further assume py > mgy > 0.
This allows us to rewrite the sum on the left-hand side of equation (3.29) as
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p2—ma—1
Z @1*101,2’2*1721#71,*1'2*7712 = Z (951*;01,%'2*1)2) : (1/J—1,7i27m2) (3'30)
1230 i2=0

=+ Z 901 —P1,i2 '(¢—17—i2—m2)'

i2=p2—ma2

By substituting is — (p2 —msa) = s in the second sum on the right-hand side of equation
(3.30), and then using equation (3.29), we obtain that

p2—ma2—1

Z ((151—P1,i2—p2) : (w—ly—iz—mz) =0, (331)

i2=0

for all integers po > mo > 0 and p; € Z such that p; > ¢;. If we now follow the steps
used earlier (between equation (3.24) to equation (3.28)), we can conclude from equation
(3.31) that

Pl1—p;,—b = O, (3.32)

for all integers b > 0 and p; € Zy such that p; > ¢;. Equation (3.32) now establishes
part (ii).

Step 3: By applying again equation (3.20) with the substitutions ms = 0 and p; = 0, we
obtain

E @il,iz—Pzw—il—mh—iz = § : Soi1—m1,i2'(/)—i17—i2—1727 (333)
1WEZy leZJﬁ

with ith
0<iz<p2—1 0<11<m1 1

for each integer po > 0 and m; € Z, . Using the given structure of v, in the right-hand
side of equation (3.33) only i1 = ¢; = 1 will contribute, but for that we need 1 < my — 1,
that is, 1 < mj. Thus we obtain

Z @1—m17i2w—1,—i2—P2 =0, (334)

1230

for each integer po > 0 and m; € Z, such that my > 1. This completes the illustration
of the working of the Theorem 3.5. However, equation (3.34) can further be solved by
taking different values of p, > 0 and using given information that ¢_1 1 =1=19_1 2
and all other Fourier coefficients of i are zero. This provides ¢, 0 = $my.1 = Pmy .2

for all integers m7 < 0.

We now provide an immediate consequence of Theorem 3.5.

Corollary 3.7. Ify in L>°(T™) is such that the coanalytic part of ¥ is a constant (nonzero)
function then a necessary condition for a nonzero Toeplitz operator Ty, ,, (¢ € L>=(T™))
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to satisfy Tg, ,, Hy n = Hy nT5 5 is that (CAP),, the coanalytic part of ¢, be a constant
function.

Proof. Suppose that the coanalytic part of ¢ in L (T™) is a constant (nonzero) function,
ie., (CAP)y(z1,...,2n) = to,... 0 for some 0 # 1y, .o € C. We can then take f(zq) =
o,...0 forsome 1 <d < nandg =0foreachl < g <n,i#d If T;nH%n =Hy T5n,
then by using Theorem 3.5 we have

(a) vo,...,—b,...0 = 0 for all integers b > 0.
(b) ¢—p,,....—p, = 0 forall (p1,...,pn) € Z7} such that p, > 0 for at least one ¢, we have

—
N
VAN
3

Thus, (CAP), is also a constant function. O

We note here that the proof of Theorem 3.5 holds up to equation (3.11) for n > 1
and demands n > 1 to proceed ahead, so in the one-variable case (that is, ¥ = f(z)
is any function in L°°(T)) we obtain that a necessary condition for T;Hy = HyTj is
that ¢_; = 0 for all integers b > 0, that is, ¢ is analytic. But when n > 1, the three
conditions combined together do not provide the analyticity of ¢.

We now see some applications of Theorem 3.5 via some examples. While conditions (i)
and (ii) can be easily visualized, the same is not necessarily true of condition (iii). To
provide further clarity on what condition (iii) entails, we present an example (Exam-
ple 3.10) with a detailed analysis of the Toeplitz symbol ¢ that go along with a Hankel

symbol of the form (21, z2) = z{* (23 + 23).

Example 3.8. Take n = 2 and let Hy 2 be a nonzero Hankel operator with symbol ¢ €
L>®(T?). Assume that v is of the form (21, 22) = 27 >f(22) for any function f in the
variable 2. Suppose that ¢ € L>(T?) is such that T, » is a nonzero Toeplitz operator
on the space H?(T?) satisfying T, oHy2 = Hy2T52. Keeping the notation used in
Theorem 3.5 intact, here d = 2 and ¢; = 2. Then the information gathered from (i) and
(ii) for the function ¢ yields the following information regarding the Fourier coefficients

Piy ig-

(a) w2,—s = ¥1,—5 = po,—s = 0, for each integer s > 0 and,
(b) ¢—r—s =0, for integers r > 0 and s > 0.

Also, the information in Theorem 3.5(iii) means that Zz‘2>0 G2—my is¥—2,—is—p, = 0, for
all integers my > 2 and po > 0. In particular, if f(z2) = 1 for all z5 € T, then in addition

to (a) and (b) obtained above, we have

(¢) ¢—ro0 =0, for each integer r > 0.
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We note that when f(z3) = 1 for all z5 € T, we can also take d = 1 and ¢o = 0. With
this setting, (i), (ii) and (iii) obtained for the function ¢ in Theorem 3.5 produce the
same information regarding the Fourier coefficients of ¢ as obtained in (a), (b) and (c).

Example 3.9. Take n = 3 and define (21, 22, 23) = 21_122_123_2; that is, d = 3,¢q1 =

1,go = 1 and f(z3) = 23%. Then ¢ € L>°(T3). Let ¢ € L>°(T?) be such that T 3Hys =
Hy 3T5 3, where T, 3 and H, 3 are nonzero Toeplitz and Hankel operators on the space
H?(T?). Using Theorem 3.5, we obtain the following information regarding the Fourier
coefficients of .

() Y1,1,—¢t = P1,0—t = ¥0,1,—t = Yo,0,— = 0, for each integer t > 0.
(b) @ri,—t = Pr0,—t = Py —s—t = P1,—s,—t = Po,—s,—t = 0, for positive integers r, s
and t,

along with

Z P1—mi,1—ma,izs¥—1,-1,—iz—ps = 0, (3.35)

330

for all integers p3 > 0 and for (my, ma) € Z%r such that either mq > 1 and 0 < mo < 1,
orm; > 1and mg > 1, or 0 < my < 1 and mo > 1. Information obtained from the
relation (3.35) by simple computations specifically provides the following.

() Por12=0P—r02=Pl—s2=P0—s2=P—r—s2 =0, for positive integers r and s.
(d) @or11=P—r01=P-r—s1=P1,-s1 = Po,—s1 = 0, for positive integers r and s.
(€) Y—r1,0=P—r0,0=Por—s50=Pl,—s0 = Po,—s,0 = 0, for positive integers r and s.

Likewise if we consider d = 1,qo0 = 1,q3 = 2,f(21) = 2, or d = 2,q1 = 1,q3 =
2, f(22) = 23 !, conditions (i), (ii) and (iii) of Theorem 3.5 produces the same information
as obtained above.

Example 3.10. Consider now a Hankel symbol of the form
(21, 22) = 29 f(22) = 217 (25 + 22°).

It is straightforward to observe that, without loss of generality, we can erase the first
term of f(z2). It follows that the region that provides information about ¢, m, = 0 with
respect to condition (iii) is given by the inequalities m; < 0 and 0 < ms < 3. In fact,

J
ajzy,

a more general result holds. Consider a trigonometric polynomial f(z9) = ijf .

with a_; # 0. Then condition (iii) in Theorem 3.5 becomes

oo
E : 90111*771171'21#*!11-,*1'2*172 =0,

12=0
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h)

i

q1

(1) (@)

Fig. 1. The three colored regions represent the subsets of Z2 that satisfy conditions (i), (ii) and (iii) in
Theorem 3.5. (For interpretation of the colors in the figure, the reader is referred to the web version of this
article.)

for all po > 0,m1 > 0 and m; > g1, which readily implies

Z Griis®—qi,—is—p, =0 (forall r < 0,ps > 0). (3.36)
i2=0
We show that these equations will always yield ¢, m, = 0 for m; < 0 and mo =

0,1,...,t.
For, given ps = t, (3.36) implies @, 0%—q,,—¢ = 0, and therefore @, ga_; = 0, that is,
&ro =0 (all » <0).
It follows that ¢y, m, = 0 whenever m; < 0 and mo = 0.
For py =t — 1, (3.36) yields
oo
Z @T,iz’(/)fthizfﬂrl =0 (fOI‘ all r < 0),

i2=0

which implies

Cro—qy,—(t—1) T Pr1v_q, —1-t—1) = 0,
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and therefore

GraV—q,—t = 0,

and @, 1 = 0, as desired. In an entirely similar way one obtains the remaining conclusions.
The regions described by conditions (i), (ii) and (iii) with respect to ¥(z1, 22) = 217 f(22)
where f(z2) = Zj:_t a;z}, with a_; # 0 are shown in Fig. 1.

After illustrating the necessary conditions for T} Hy n, = Hy T3

G,ny W€ NOW prove

that the conditions in Theorem 3.5 are also sufficient.

Theorem 3.11. Suppose n > 1. Let T, ,, and Hy , be a nonzero Toeplitz and a nonzero
Hankel operator induced by ¢ and ¢ in L>°(T™) respectively, where v is of the form

n
P(21, .5 20) = H 2 flza) = 20 P P 2 0T f(za) 2g 0T 2 0
dti=1

for some function f of the variable z4, 1 < d < n, and (n — 1) nonnegative integers
¢, 1<i<n, i#d. ThenT} Hyn = HynT5n if and only if

(i) ©m,...omn, =09 mg <0 and 0 < m; < ¢ foreach1 <i<n,i#d.
(%) Ymy....m, =0 if mg <0 and m; < ¢; for each 1 < i< n (i #d), and such that for
at least one 1 < j < n, j #d, we have m; < 0.

oo

(ZZ’L) Z (¢Q1—m17---7(1d—1—md—1 1id»(Id+1_md+17---7(1n—mn).(w_q17~~-7_Qd—17_id_Pd7_Qd+11-~~7_(1n)
1q=0

= 0, for each integer pg =2 0 and m; > 0 (1 <i < n, i #d), and such that for at
least one 1 < j < n, j #d, we have m; > gq;.

Proof. The necessity was already proved in Theorem 3.5. For the sufficiency, we assume
that the relations (i), (#4) and (74i) hold. For m,p € Z7} we have

<T;,nH¢7"(zm)7zp> = Z @i—pw—i—m (337)
1€LT
and
<H¢»nT¢,n(Zm)7zp> = Z @ifm'(bfifp« (338)
€L

Using given conditions (i), (i), (#4¢) and form of ¢, the right hand side expression of
(3.37) reduces to
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§ (¢q1_p1_m17~-7Qd—1_pd—l_md—l7id_pd;qd+1_pd+1_md+17--;Qn_pn_7”n)'
14 2Pd
if 0 < my < ¢ for each
1<t<n, t#d

(w—QIa-~7—Qd—17—id—md7—Qd+17~~7_Qn)’

0 otherwise
which can be rewritten as

E : (90(11 —P1—MmM1,,9d—1—Pd—1—"Md—1,5d;9d+1 —~Pd+1—~Md+1,:"":9n —Pn—mn)'
Sd>o

if 0 < my < g for each
1<t<n, t#d

(¢7q1>“77qd71775d7md7pd17qd+11“17qn)7

0 otherwise

and is further same as,
E : (wafplfmla”qu—l7pd—17md—175d7[Id+17pd+17md+11"7(In7pn*mn).
Sd>o

(l[}*ql,"ﬁq(i—l,*Sd*md*pdﬁqw—l,",*qn)v if 0 < my +pt < qt
for1<t<n, t#d,

0 otherwise.

Similarly, we find that the right hand side expression of (3.38) becomes

E ((p!h*Pl*ml7“#](1—1*Pd—1*md—l,id*md’q(ﬂl*Pd+1*md+1,",qnfpn*mn)'
ig2mMd
if 0 < pr < ¢¢ for each
1<t<n, t£d,

('(/J—th,"7—Qd—1,—id—pd,—qaz+1,--,—qn)7

0 otherwise
§ ((p‘h —P1—mM1,,dd—1—Pd—1—"Md—1,5d,9d+1 —Pd+1—Md+1,"",9n _pn_mn).
Sd>0

if 0 < pt < ¢4 for each
1<t<n, t#d,

— (/l/}—(h7"7—Qd—17—Sd—md—Pd7_Qd+l7"7_51n)?

0 otherwise
§ : (Soih —P1—mMi1,,9d—1—Pd—1—"Md—1,5d;4d+1 —Pd+1 _md+17"7(Iﬂ,_pn_mn).
5,120

if 0 <my +pe < g for
1<t<n, t#d,

- (w*(h7",*%—1ﬁsd*mdﬂvdﬁQdew*qn)7

0 otherwise.
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Hence we conclude that

<T;7nHw,n(z{n1 sz, 2 ...z£"> = (HynTpn(z(" o ozpm), 2000 2k,

for each (my,...,my,) and (p1,...,pn) in Z%. Thus T3, Hy n = Hy n T . O

We now present an illustrative example (for the case n = 2) that provides a better
understanding of the proof of sufficiency in Theorem 3.11.

Example 3.12. Suppose T, > and Hy o are nonzero Toeplitz and nonzero Hankel operators
induced by ¢ and v in L>(T?), respectively, where 1) is of the form

Y(z1,22) = 21 " f(22),

for some function f of the variable zo and nonnegative integer ¢;. If the function ¢
satisfies the following conditions
(1) @my,me = 01if my <0 and my < ¢1, and
o0

(ii) Z Pgr—mais - W—q1,—is—p, = 0, for integers p > 0 and my > qi,

i2=0

then we prove that T} yHy 2 = Hy 215 2. To begin with, we take (m1,ma) and (p1, p2)
in Z;’, then,

<T;,2H¢72(21 Zfl Z§2> = Z 952'1—P1,i2—P2¢—i1—m1,—i2—m27 (339)
(il ,iz)GZi

and

<H11172 Q(Zinl Z;nz) 21101 Z§2> = Z @il—m17i2—m2w—il_pla_iZ_p2' (340)
(’L‘l,iQ)GZi

Since vj, j, = 0 whenever j; # —qi, thus in the summation in equation (3.39) we put
i1 = ¢1 —my, provided ¢; — my > 0. Thus equation (3.39) reduces to

Z (@Q1—p1—m1>i2—172) : (w—fh,—iz—mz) provided 0 < m1 < @1
4230

0 otherwise.

Since ¢j, j, = 0 whenever j» < 0 and j; < g1, thus the above expression further reduces
to,
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> (Par—pr—mirsia—ps) - (C—gy —ir—ms) provided 0 < m; < 1
i222p2

0 otherwise.

Substitute i — po = s in the above summation to obtain the following

Z (95111 _pl_m17s2) ' (¢—Q17 —Sz—mz—p2) provided 0<mi<aq
8220

0 otherwise.

Using the given condition (ii) we finally obtain that (T ,Hy 2(21"25"), 2" 25%) =
Z (¢Q1*p1*m1732) ’ (’@[J*th, *52*m2*102) provided 0<m +p <@
8220
0 otherwise.

Similarly we see that (Hy 2T 0(27" 25%), 271 25?) is also equal to
$,245,2(%1 <2 1 ~2 q

Z (@q1_p1_m1752) ’ (w—Qh —82—m2—172) provided O<smi+pi<a
8220

0 otherwise.

Hence
T3 oHy,2 = Hy,2T5 2.
As an application of Theorem 3.11 we now discuss the following example.

Example 3.13. Consider the case n = 2. Take ©(z1,21) = 21 t2o~ % and ¢(21,22) =
Z 21211222, Then ¢ and ¢ are in L=(T?). We can take d = 1 and ¢o = 1 or
(il,ig)EZ2

withi; <0
in>2

d =2 and ¢; = 1. Let us take ¢y = 1 and d = 2. For the given function ¢ we verify the
conditions (i), (ii) and (iii) of Theorem 3.11.

Since the Fourier coefficients ¢, m, are zero if 0 < m; < 1 and mo < 0, condition (i)
is verified. Next, we see that @, m, = 01if m; < 0 and ms < 0 and thus condition (ii) is
satisfied. Further we verify condition (iii), by considering the expression Z;O:O Ol—mmy,is "
Y_1,—is—ps, for all integers po > 0,m; > 1. Since ¥_; 1 = 1 and all other Fourier
coefficients of the function v are zero, so in the above summation only those values of
io and po will contribute for which is + py = 1.

Thus, for p; = 0, iz will be 1 and we see that ¢1_,y,, 1 is zero for all integers m; > 1.
For p, = 1, i3 will be 0 and ¢1_,y,, 0 is zero for all integers m; > 1. Hence ¢ satisfies
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conditions (i), (ii) and (iii) of Theorem 3.11 and the relationship T} yHy 2 = Hy 2T5 2
holds.

Our next result provides a characterization for the commutativity of Toeplitz and
Hankel operators induced by symbols of a specific type.

Theorem 3.14. Let n > 1 and suppose that Hy , is a nonzero Hankel operator induced
by i in L>(T™) of the form

(21, .y 2n) =27 2y L. z;fi_lf(zd)z;f‘l”l coozy I

for some function f of the variable z4, 1 < d < n, and (n — 1) nonnegative integers

gi, 1 < q; <nyi £ d. If 0 # ¢ in L°(T™) is such that ¢ = ©* then the Toeplitz operator

Tpn commutes with Hy ,, if and only if the following conditions hold:

(i) my....om, =0 if mg >0 and —g; < m; <0 for each 1 <i<n,i#d.

(i5) ©ma,....m, =0 if mqg >0 and —q; < my; for each 1 < i < n,i#d, and such that for
at least one 1 < j < n,j # d, we have m; > 0.

oo

(m) Z (@ml_q17---7md—1_qd—17_id7md+l_‘Id+17---7mn_Qn)'(1/)_‘117---7_‘1d—17_7;d_pd’ _Qd+1v---7_‘In)
1q=0
= 0, for each integers pg = 0 and m; > 0 such that 1 < i < n,i # d, and for at

least one 1 < j < n,j #d, we have m; > gq;.

Proof. Since ¢ = ¢*, ©;, i, = ¢—i,,.. i, foreach (i1,...,4,) € Z™. Also, 5 =
thus, the commutativity of Ty, ,, and Hy, », is equivalent to say that T35 | Hy, », = Hy
Replacing ¢ by ¢ in Theorem 3.11, we obtain the desired result. O

Theorem 3.1 and the observation drawn immediately after Corollary 3.7 yield the
result proved in [12] in case of one variable, which states that if ¢ in L°(T) is such that
¢ = ¢* then T,H = HT, for a nonzero Hankel operator H if and only if ¢ is a constant
function. In the next example, we see that the same is not true in case n > 1. The
example also illustrates an application of Theorem 3.14 to provide commuting Toeplitz
and Hankel operators.

Example 3.15. Take n = 2 and define
©(21,22) = Z122 + 2172
and
P(21,22) =1

for (z1,29) € T2. It is straightforward to see that ¢ and v are in L°°(T?) and ¢ = ¢*.
Here, ¢_11 =1 = ¢1,—1 and all other Fourier coefficients in the Fourier series expansion
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of ¢ are zero. It is computationally simple to see that conditions (), (i¢) and (i) in
Theorem 3.14 are satisfied and 7T, o and Hy o are nonzero operators. Thus T, 20Hy o =
Hy T, (in fact on computation we see that T, 2Hy o and Hy 2T, 2 both are zero
operators). However, ¢ is not a constant function.

We now define an operator A on H?(T") as A(f) = f for each f in H2(T™). Oper-
ator A helps us in further investigation of commutative properties between Hankel and
Toeplitz operators on H?(T™). We first see the following properties of A which can be
obtained with simple computations.

Proposition 3.16.

(i) A is anti-linear and A? = I, the identity operator.
(ii) (Af, Ag) = (f,g) for each f and g in H*(T™).
(iii) For any ¢ in L>(T"), AT, nA=Ts, and AH,,A=H}, = Hgzy.

Lemma 3.17. For ¢ and v in L>(T™), Hy ,, commutes with Ty, ,, if and only if it com-
mutes with Ty« .

Proof. Now it is direct to see that

TpnHypn =HypnTpn < AT, ,AAHy A = AHy ,AAT, , A
& Tl =H, Ts,
& Hw,nTg,n = Tg’nme
& Lo nHyn=HynTpe p-

Hence the result. O

Now we use our findings to prove a necessary condition for the commutativity of a
Toeplitz and a nonzero Hankel operator on the space H?(T™).

Theorem 3.18. Let Hy ,, be a nonzero Hankel operator induced by symbol 1 in L>(T™),
(n > 1), of the form

V(215 o) =2, P2y P2 T f(za)zg U
for some function f of the variable zq, (1 < d < n), and (n — 1) nonnegative integers

gi,1 < ¢ < nyi £ d. If o € L>®(T") is given by p(z1,...,2n) = Zi:(il,...,i")ezn
<pi1,_“7inz1"1 ... zp'm, then the commutativity of Tpn and Hy , implies the following:

(Z) Pma,Mda—1,Ma,Mag 15 My —  P—ma,.y—Ma—1,—Md,— Mg 1,...,— My, if mqg <0 and 0 <
m; < q; for each 1 <i < n,i+#d.
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(”) P, ;ma—1,Ma,Mag1,-Mn — —P—m1,...,—Ma_1,—Md,—Mdq1,e..,— M ifma <0 andm; <
q; for each 1 < i < n,i # d, and such that for at least one 1 < j < n,j # d, we
have m; < 0.

oo
(”7') § (@ml—q17~--7md—1—Qdfl7_id7md+1—Qd+17---7mn—CIn).(w—(h7---7_Qd—17_id_pd7_Qd+1;44-7—‘171):
1q=0
oo
- E :(Soql_ml7~~711d71_md—17id7Qd+1_md+17~~7‘1n_mn).(w_1117~-»_(Id—17_7;d_Pd7_qd+17~~~7_4n)7
1q=0

for each integer pg = 0 and m; > 0 for each 1 <i < n,i# d, and such that for at
least one 1 < j < n,j #d, we have m; > g;.

Proof. Suppose that for given ¢ and ¥, Ty, , Hy n = Hy T, n. Using Lemma 3.17, we ob-
tain T« Hy pn = Hy nTpx p; thus Ty or nHy n = Hy n Tt o n- Applying Theorem 3.14
and the fact that ¢} . =@ —, forany (i1,...,i,) in Z", we obtain the desired
conditions. 0O

The conditions obtained in Theorem 3.18 are only necessary, and not sufficient to
ensure the commutativity between a Toeplitz operator and a nonzero Hankel operator
in several variables. The following example illustrates this fact.

Example 3.19. Consider n = 2 and take (21, 22) = Z120—21%3 and (21, 22) = Z122+2125
on T2. Then ¢ and v are in L®(T?) and satisfy the conditions (i), (ii) and (iii) of
Theorem 3.18, but Ty, o Hy 2(1) = 25 — 2} and Hy , Ty, (1) = 0.

We observe that when n > 1, the condition T, ,,Hy n = Hy Ty, (for nonzero H, )
need not provide that ¢+ ¢* is a constant function, unlike in the single variable case. This
can be seen by considering ¢ and ¢ defined in Example 3.15, which satisfy Ty, 0 Hy 0 =
Hy 2T, 0. But (¢ + ¢*)(21, 22) = 2¢ is not a constant function.

We conclude with the remark that all the results beginning with Theorem 3.5 onward
do hold if we replace ¢ by ¢ in L>(T") such that (CAP). = (CAP)y, which follows
immediately using Corollary 2.6.
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