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Squamate reptiles are amongst the most successful terrestrial vertebrate
lineages, with over 10,000 species across a broad range of ecosystems.
Despite their success, squamates are also amongst the least studied lineages
immunologically. Recently, a universal lack of ¥ T cells in squamates due to
deletions of the genes encoding the T cell receptor (TCR) y and & chains was
discovered. Here, we begin to address how the loss of ¥d T cells may have
impacted the evolution of the squamate immune system. Using the skink Tiliqua
rugosa, we found that squamates have not significantly increased the complexity
of conventional T cell receptor beta (TCRB or TRB) chain V regions compared to
that of the nearest living squamate relative, the tuatara, Sphenodon punctatus or
other amniotes. Our analyses include a putative new TCR locus. This novel locus
contains V, D, and J gene segments that undergo V(D)J recombination, albeit
with a limited number of gene segments in most squamate species. Based on
conserved residues, the predicted protein chain would be expected to form a
heterodimer with TCRo. This new TCR locus appears to be derived from an
ancient duplication of the TRB locus and is homologous to the recently
described T cell receptor epsilon (TRE). TRE is absent from the genomes of the
tuatara and all Archosaurs examined and appears squamate specific.
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Introduction

The term reptile describes a broad range of species across
Sauropsida, the vertebrate clade that includes both the
Archelosauria (birds, crocodilians, and turtles) and the
Lepidosauria (1, 2). These two lineages diverged between 265-280
million years ago (MYA) (2, 3). The Lepidosauria contains two
ancient lineages, the Rhynchocephalia with a single living species,
the tuatara Sphenodon punctatus, and the Squamata, which are the
lizards, snakes, and amphisbaenians (2, 4, 5). Squamata includes
more than 10,000 species that occupy a broad range of
environmental niches (4, 6-8).

Despite their evolutionary success, reptiles are arguably the least
immunologically studied group of vertebrates (9-12). This is
unfortunate as squamate reptiles provide many potential model
species given their varying life-history traits including viviparity vs.
oviparity, sexual reproduction vs. parthenogenesis, and adaptation to
a wide range of ecosystems. Nonetheless, there remains comparatively
few published squamate immune system studies (9-12).

With few exceptions, all jawed vertebrate immune systems have
three distinct lineages of lymphocytes that are clonally unique due
to somatic recombination of their antigen receptor genes (13).
These receptors are the T cell receptors (TCR) expressed by of
and YO T cells and the immunoglobulins (Ig) expressed by B cells
(13-15). Squamates lack 3 T cells due to major genomic deletions
of the genes encoding the YSTCR chains (16). These deletions
occurred after the Lepidosauria-Rhynchocephalia split
approximately 260 MYA and appear to be squamate specific as S.
punctatus has the genes encoding the TCR yand § chains (TRG and
TRD) (5, 16, 17).

Here, we examine evidence for possible compensation of the
loss of YO T cells in squamates by investigating the complexity of the
remaining TCR loci in a model species, the skink Tiliqua rugosa.
This analysis includes investigating a potential new TCR chain,
recently identified as TCRe (TRE), that appears to be squamate
specific (18). We also provide evidence that this novel TCR is likely
derived from a duplication of the TCRB (TRB) locus.

Materials and methods
Animals

The T. rugosa spleen transcriptome data was generated from
two animals, one from Western Australia and one from South
Australia described previously in Morrissey et al. (16).

Genome annotation

The T. rugosa genome is being assembled and annotated as part of
the Bioplatforms Australia - Australian Amphibian and Reptile Genomics
Initiative (https://ausargenomics.com/). The animal used was the same
individual, SAMAR71619 (South Australian Museum), used for one
of the splenic transcriptomes. Briefly, Verkko (19) was used to
generate a hybrid assembly of PacBio HiFi (https://data.
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bioplatforms.com/ausarg-pacbio-hifi/bpa-ausarg-pacbio-hifi-
350719-da052873) and nanopore ultralong reads (https://
data.bioplatforms.com/ausarg-ont-promethion/bpa-ausarg-ont-
promethion-350780-pagl8329), incorporating HiC reads (https://
data.bioplatforms.com/ausarg-hi-c/bpa-ausarg-hi-c-350781-
hen7wdrxy) for extended phasing. The resulting pseudohaplotype
assemblies and the unassigned contigs were scaffolded separately
and together using YaHS (20). HiC contact maps were generated
with PretextMap v0.1.90 (https://github.com/sanger-tol/
PretextMap) and both haplotypes evaluated simultaneously for
misjoins, haplotype switches and other assembly errors with
PretextView v0.2.5 (https://github.com/sanger-tol/PretextView) as
outlined in https://github.com/Nadolina/Rapid-curation-2.0. Each
manually curated pseudohaplotype consists of 16 chromosome
sized scaffolds and several unplaced contigs with an average
haploid genome size of 1.69G.

Chromosomes containing TRB sequences were identified by
BLASTn using putative variable (V) and constant (C) gene
sequences from the transcriptome analyses (see below). The T.
rugosa chromosome(s) containing TRB was chromosome 2 in both
pseudohaplotypes. The S. punctatus genome assembly
(ASM311381v1, GenBank accession number GCA_003113815.1)
was also searched to identify scaffold(s) containing the TRB locus.
GenBank TRB sequences from the chicken, Gallus gallus, were used
to search the S. punctatus whole-genome assembly (accession
number EF554755.1). The scaffold containing the S. punctatus TRB
was scaffold QEPC01009940.1 (https://www.ncbinlm.nih.gov/).

Chromosomes containing TRE sequences in T. rugosa were
identified by BLASTn using V and C gene sequences identified
from the green anole (Anolis carolinensis), originally identified by
Gambon-Deza (18) (accession number GCA_035594765.1,
NC_085841.1). The T. rugosa chromosome(s) containing TRE was
chromosome 1 in both pseudohaplotypes. The S. punctatus genome
assembly (ASM311381v1, accession number GCA_003113815.1) was
also searched to identify scaffold(s) containing either TRE or the TRE
flanking genes (accession number QEPC01002436.1). Flanking genes
were also identified in A. carolinensis (accession number
GCA_035594765.1, NC_085841.1) and the American alligator
(Alligator mississippiensis) (accession number GCA_030867095.1,
NC_081825.1).

Transcriptome analysis

Previously published sequences were used to identify the TRB
transcripts in T. rugosa (21). The TRBC region identified was used
to identify transcripts in a previously published 454 transcriptome
dataset (22). The outputs were analyzed for V regions and C regions
based on conserved motifs. Identified partial sequences were then
used to screen for full length sequences containing V or C regions.
Sequences identified were then used to search the PacBio Isoseq
transcriptomes with BLASTn in a local database, using the same
process described above. Transmembrane regions were identified
with DeepTMHMM-2.0 (23). The T. rugosa TRB sequences were
previously deposited under GenBank accession numbers
OL311598-0OL311653 (https://www.ncbi.nlm.nih.gov/). The S.
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punctatus transcriptome assembly (GGNQO00000000.1) was
searched using similar methods. GenBank accession numbers of
all TRB sequences identified in the S. punctatus transcriptome are
found in Supplementary Table 1.

To identify transcripts for TRE, the TREC region identified in the
T. rugosa genome was used to analyze the same T. rugosa PacBio
transcriptome (see above). Transcripts were then utilized to screen
for sequences containing full-length V or C regions. Transmembrane
regions were identified with DeepTMHMMS-2.0 (23).

Annotation and characterization

Non-TCR gene models were predicted using GenSAS with
references from non-mammalian vertebrates (24). BLAST was
then used on all predicted coding sequences against the GenBank
database. Genomic V, D, and ] sequences were identified by
recombination signal sequences (RSS) or comparison to available
transcriptomic sequences (25). To identify or confirm RSS
sequences, an RSS information content model (RIC) was used
(26; https://www.itb.cnr.it/rss/index.html). NCBI’s BLASTp or
tBLASTn algorithms were used to confirm V sequences and
assess their similarity to TCR homologs from various species
retrieved from GenBank (27). V gene nucleotide segments were

10.3389/fimmu.2024.1524471

then aligned with ClustalW (28). Gene segments were annotated
following the international ImMunoGeneTics information system
nomenclature (29). Gene segments were named according to their
location from 5’ to 3’ end on the locus. V gene families were defined
by sharing >80% nucleotide sequence identity based on ClustalW
alignments (28).

Phylogenetic analysis

MEGAX was used to convert nucleotide sequences for both
variable (V) genes and constant region genes (C) into amino acid
residues which were then aligned with MUSCLE (30, 31). The
aligned sequences were then used to construct phylogenetic trees
using the neighbor-joining method (32). The trees were then
visualized using iTOL (33).

Variable and constant gene sequences with accession numbers
used in all phylogenetic analyses are found in Supplementary Tables
2-5. 8. punctatus TRBV are found on scaffold QEPC01009940.1
(https://www.ncbinlm.nih.gov/). The Chinese alligator (Alligator
sinensis) TRBV sequences were provided by Wang et al. (34).
Opossum (Monodelphis domestica) TRB are also found in Parra
et al. (35). Xenopus tropicalis and Ambystoma mexicanum TRBV
sequences were provided by Jesus Martinez.
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FIGURE 1

Map of the TRB loci. TRBV designated V (red), TRBD designated D (yellow), TRBJ designated J (orange), TRBC designated CB (blue), and the TRB
transmembrane region designated TM (light blue) gene segments are numbered by their corresponding location in order across the locus. 23bp
spacers are shown in light green near V segments. Other RSS are not shown for space. The flanking genes on the 5" end of the locus was DBH-like
monooxygenase protein 2 (DBHL). The 3’ flanking gene is ephrin type-b receptor 5-like (EPHB5-like). V segments are designated with a family
member number followed by a period and a designated number according to their gene family. Transcriptional orientation is indicated by the
direction of the arrow on each gene segment or exon. Arrows are not proportionate to the actual gene sizes. Gray boxes indicate flanking genes.
Gaps in the genome are indicated by hatch marks. (A) Shows the skink TCR B locus in pseudohaplotype 2. The locus is ~373kb in length. Shown in
the TRB locus on haplotype 2. (B) Shows the tuatara TCR B locus. The locus ~718kb in length.
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Percent nucleotide identity matrix

Germline nucleotide sequences were collected from both T.
rugosa and S. punctatus (see above). Sequences were aligned via
ClustalW (28). Gene segments were annotated following IMGT
nomenclature. Families were defined by having >80% nucleotide
identity in the ClustalW alignment (28). Analysis and visualization
of the percent identity matrix generated by ClustalW was conducted
using the R packages ggplot2 and reshape2 (28; RStudio
2024.4.2.764; 36-39).

Constant region analysis

TCR constant region sequences from Gallus gallus TRAC
(MN646854.1), Gallus gallus TRBC (BAC67174), S. punctatus TRBC
(GGNQO1096868.1), S. punctatus TRGC (GGNQ01074423.1), S.
punctatus TRDC (GGNQO01087842.1), and T. rugosa TRAC
(UYS90863.1), T. rugosa TRBC (UYS90848.1), and T. rugosa TREC
were aligned via ClustalW (28). Sequences were then analyzed for
transmembrane regions using DeepTMHMMS-2.0 (23).

Results

Initially, we set out to characterize the TRB loci in the skink T.
rugosa using the tuatara S. punctatus for comparative purposes. The
T. rugosa TRB locus is located on chromosome 2 and is
approximately 373kb in length (Figure 1A). The S. punctatus TRB
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locus is at least 718kb in length (Figure 1B). There is conserved
synteny surrounding the TRB loci, which are flanked by DBHL
(DBH-like monooxygenase protein 2) at the 5’ end and EPHB5-like
(ephrin type-b receptor 5-like) at the 3’ end in both species
(Figures 1, 2). This conserved synteny is maintained in several
amniote species (Figure 2) (34, 35, 40-43).

Both available T. rugosa TRB pseudohaplotypes were annotated
and found to contain 15 and 16 TRBV gene segments in
pseudohaplotypes 1 and 2, respectively. These gene segments
could be classified into eight families based on nucleotide identity
(Supplementary Figure 1A). All families were found in both
pseudohaplotypes. Noteworthy was a single TRBV gene segment
in an inverted reading frame relative to the rest of the locus on the 3’
side of TRBC (Figure 1A). As will be discussed later, inverted TRBV
at the extreme 3’ end of the TRB locus is a feature shared with many
other amniote species. Both T. rugosa pseudohaplotypes contained
three TRBD, six TRBJ, and a single TRBC gene (Figure 1A). The T.
rugosa TRBV sequences were flanked by a 23 base pair (bp) spacer
and canonical CACAGTG heptamer (Figure 1A; 25, 44). The TRBD
gene segments were flanked by a 12 bp spacer on the V proximal
side and a 23 bp spacer on the C proximal side. Similarly, the TRBJ
segments were flanked by a 12 bp spacer (not shown). In T. rugosa
100% of the RSS flanking the TRB V, D, and ] segments were
canonical (not shown). In other squamate species, the RSS appeared
uniformly non-canonical e.g. CACAGCA (not shown). However,
non-canonical RSS have been routinely shown to be functional (44).
Across a wide variety of vertebrates, there is nucleotide conservation
of TRBD genes (45). The most V proximal T. rugosa D segment,
TRBDI, contains this conserved sequence (GGGACAGGGGGCQC)

bB JB CB1 DB JB CB2 VB EPHB6

e D —-D-—4—__—
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—{Heeee—— D —D-D-—— |
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Comparison of the region containing TRB. Dashed lines connect genes with conserved synteny in this genomic region between species shown.
Flanking genes are shown in grey. Monooxygenase, DBH-like 2 (MOXD2P/MOXD2/DBHL), ephrin type B receptor 6 or ephrin type b receptor 5-like
(EPHB6 or EPHB5-like), claudin 23 (CLDN23), and adenosine deaminase containing protein 1 (ADADI) are shown. Regions containing TRBV genes are
labeled as VB shown in red, TRBD are labeled as DB shown in yellow, TRBJ are labeled as JB shown in blue, and TRBC are labeled as CB shown

in black.
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and is identical to TRBD sequences found in the A. carolinensis, the
common lizard (Zootoca vivipara), and the mainland tiger snake
(Notechis scutatus) (Supplementary Table 6).

Sphenodon punctatus has 17 TRBV gene segments which are
classified into 11 gene families based on nucleotide identity
(Figure 1B; Supplementary Figure 1B). Furthermore, five TRBV
genes were inverted and found on the 3’ side of the single TRBC
gene (Figure 1B). Two TRBJ gene segments were identified in S.
punctatus, but no TRBD gene segments could be identified in the
current genome, most likely due to gaps in the genome
assembly (Figure 1B).

We compared the T. rugosa and S. punctatus TRBV sequences
to TRBV of other vertebrate species in a phylogenetic analysis
(Figure 3). TRBVs of both T. rugosa and S. punctatus were
interspersed amongst the V genes of other vertebrates consistent
with TRBV germline diversity being evolutionarily ancient

1
s gy,
M 3.
oS tcaTrey
33.

10.3389/fimmu.2024.1524471

(Figure 3). The exception is one clade that includes only
mammalian TRBV (Figure 3). The 3’-inverted TRBV formed their
own clade in the phylogenetic analysis despite low bootstrap values
in multiple iterations of the tree including minimum evolution and
maximum likelihood (Figure 3; Supplementary Figure 3A). This is
consistent with a common ancestral inversion. We note that several
amphibian TRBV from the axolotl Ambystoma mexicanum that are
not inverted, also fall into this clade, whereas non-inverted TRBV
from Xenopus tropicalis did not (Supplementary Figure 3).

There were 38 TRB transcripts identified from the two T. rugosa
spleen transcriptomes. Of those 38 sequences, 20 (52.6%) were
complete enough at the 5 end to show evidence of V(D)J
recombination. Of those 20 transcripts, 16 (80%) were
productively rearranged (Supplementary Figure 2A). The
remaining transcripts contained out of frame V(D)]
rearrangements that would not encode a functional TRB V domain.
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Neighbor-joining tree of vertebrate TRBV genes based on an amino acid alignment of TRBV sequences. Numbers on branches indicate bootstrap
values on 1,000 replicates. Tree containing TRBV from 6 mammals, 1 squamate reptile, 1 Rhynchocephalian, 3 archelosaurs, 2 amphibians, 1 teleost
fish, and 1 cartilaginous fish. The clade containing the inverted TRBVs is bolded and labeled with an arrow and “Invert”. Mammalian specific clade
marked by arrow and “M." TRBV families of squamates intersperse amongst the tree and 3'-inverted TRBVs consistently cluster together. Mammals
included were short-tailed opossum (M. domestica), human (H. sapiens), mouse (M. musculus), cow (B. taurus), sheep (O. aries), and rabbit (O.
cuniculus); the squamate is skink (T. rugosa); the Rhynchocephalian is tuatara (S. punctatus); the archelosaurs are Chinese alligator (A. sinensis),
chicken (G. gallus), and duck (A. platyrhynchos); the amphibians are axolotl (A. mexicanum), African clawed frog (X. laevis), and Western clawed frog
(X. tropicalis); the teleost is cod (G. morhua), and the cartilaginous fish is nurse shark (G. cirratum). Accession numbers of sequences used in the tree

are found in Supplementary Table 2.
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Map of the skink TRE locus. TREV (red), TREJ (orange), TRED (yellow), TREC (blue), and the TRE transmembrane region (light blue) gene segments

are numbered by their corresponding location in order across the locus (homenclature as seen in Figure 1). 23bp spacers are shown in light green
near V segments. Other RSS are not shown for space. TREV segments are designated with a family member number. Transcriptional orientation is
indicated by the direction of the arrow on each gene segment or exon. Arrows are not proportionate to the actual gene sizes. Gray boxes indicate
flanking genes. (A) The skink TRE locus is ~16kb in length from V1 to TM region. (B) The flanking genes on the 5’ end of the locus are equilibrative

nucleobase transporter 1 (SLC43A3) and reticulon-4 receptor-like 2 (RTN4RL2). The 3’ flanking gene is large neutral amino acids transporter small

subunit (SLC43A1). The syntenic block containing TRE and the flanking genes is ~176kb.
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TRE locus in the skink are equilibrative nucleobase transporter 1 (SLC43A3) (pink) and reticulon-4 receptor-like 2 (RTN4RL2) (dark purple) on the 5
end and large neutral amino acids transporter small subunit (SLC43A1) (light green) on the 3" end. The skink TRE locus is located between these
genes (nomenclature as in Figures 1, 3). These same flanking genes were also identified in the tuatara, anole, and American alligator. Distance
between RTN4RL2 and SCL43A1 shown next to each locus. The absence in the tuatara is either due to the absence of the locus or due to gaps in
the scaffold. Gaps are indicated by hatch marks. Lengths of the complete loci are shown beneath each organism.
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Analysis of the T. rugosa genome uncovered the presence of a
third putative TCR locus similar to that recently described by
Gambon-Deza, who designated it as TCR epsilon (TCRe or TRE)
(18). The T. rugosa TRE locus is on chromosome 1 and is
approximately 16kb in length from the most 5 V to the 3° C
(Figure 4A). It contains 2 TREV, 1 TRED, 1 TRE] gene segments,
and a single TREC in both pseudohaplotypes. As with the TRBV, the
T. rugosa TREV sequences were both flanked by a 23 bp spacer and
canonical heptamer (Figure 4; 25). The T. rugosa TRED gene
segment was flanked by a 12 bp spacer on the V proximal side
and a 23 bp spacer on the J proximal side. The T. rugosa TRE]
segment was flanked by a 12 bp spacer (not shown). This pattern of
spacers in the TRE locus is the same in several squamate species
examined save for A. carolinensis (not shown). A. carolinensis had
Vs flanked by both 12 bp spacers and 23 bp spacers and Js similarly
flanked by both 12 and 23 bp spacers, demonstrating inversions that
took place in the A. carolinensis TRE locus (not shown). We were
unable to identify A. carolinensis TRED gene segments and
therefore don’t know their RSS types (not shown, Supplementary
Table 6). TRE was found in the genomes of Gekkonidae,
Phrynosomatidae, Varanidae, Elapidae, Scincidae, Dactyloidae,
Lacertidae, and Amphisbaenidae and was likely present in the last
common ancestor of Squamates (Supplementary Table 6). In
comparison to the genomes of other squamates, the T. rugosa
TRE locus has among the lowest number of TREV gene segments
(Table 1; Supplementary Table 6).

There were 40 TRE sequences identified in two T. rugosa spleen
transcriptomes. Twenty two of the 40 sequences (55%) were
complete enough at the 5 end to have evidence of being
transcribed from a TRE locus that had undergone V(D)J

TABLE 1 TRB and TRE V comparison between multiple species.

10.3389/fimmu.2024.1524471

recombination. Only three of the 22 (13.6%) were productively
rearranged (Supplementary Figure 2B). Both TREV gene segments
were found to be used in rearrangements (Supplementary
Figure 2B). The majority of the transcripts contained out of frame
V(D)] rearrangements that would not encode a functional TRE
V domain.

To investigate the evolutionary origins of TRE, we searched for
areas of synteny in the genomes of non-squamate reptiles, which lack
TRE, compared with squamate TRE. In T. rugosa, TRE is flanked by
RTN4RL2 (reticulon-4 receptor-like 2) and SLC43A3 (equilibrative
nucleobase transporter 1) on the 5’ side and SLC43A1 (large neutral
amino acids transporter small subunit 3) on the 3’ side (Figure 4B).
This syntenic block was conserved in all reptiles examined (Figure 5).
In T. rugosa, the flanking genes are 99 kb apart (Figure 5). In contrast,
in the American alligator (Alligator mississippiensis), the distance
between these genes is only 15kb (Figure 5). TRE could not be
identified in the current S. punctatus genome, although absence due
to gaps in the current assembly could not be ruled out (Figure 5).
However, we had no difficulty identifying the S. punctatus TRA/D,
TRB, and TRG loci (Figure 1B; 16). Moreover, we were unable to find
TRE transcripts in an available S. punctatus blood transcriptome
dataset, even though there was no difficulty identifying TRA, TRD,
TRB, and TRG transcripts in this same dataset (Supplementary
Table 1; 16).

TREV genes were compared to other V genes found in immune
receptors. There are five known TCR loci in amniotes, TRA, TRB,
TRG, TRD, and TRM, and V genes from all five were included in the
analysis (14, 35, 47; Figure 6A). Also included were V genes from
the immunoglobulin heavy chain locus and both amniote light
chain loci, kappa and lambda (Figure 6A). TREV consistently

Common Name Species TRBV TREV Total Vs Reference
Tuatara Sphenodon punctatus 17 0 17 Current Study; (16)
Sleepy Lizard (Skink) Tiliqua rugosa 15/16" 2 17-18 Current Study; (16)
(Scincidae)
Green Anole Anolis carolinensis 7 4 11 Current Study; (46; 18)
(Dactyloidae)
Leopard Gecko Eublepharis macularius 9 1 10 Current Study; (46; 18)
(Gekkonidae)
Common Lizard Zootoca vivipara 8 5 13 Current Study
(Lacertidae)
Komodo Dragon Varanus komodoensis 2 1 3 Current Study: (18)
(Varanidae)
Water Monitor Varanus salvator 2 ND 2 Current Study
(Varanidae)
Mainland Tiger Snake Notechis scutatus 4 2 6 Current Study; (18)
(Elapidae)
Fence Lizard Sceloporus undulatus 10 1 11 Current Study
(Phrynosomatidae)
Florida Worm Lizard Rhineura floridana 8 4 12 Current Study
(Amphisbaenidae)

“Depending on haplotype.
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TCRe

FIGURE 6
Neighbor-joining trees based on amino acid alignments of vertebrate variable (V) genes and constant regions (C). (A) V genes from both TCRs and
Igs from several species. Vs from IgL are shown in light blue, IgK are shown in pink, IgH are shown in gold, TCRu are shown in green, TCRP are
shown in light purple, TCRe are shown in dark purple, TCRy are shown in red, and TCRo/3 are shown in red. (B) TCR constant regions from multiple
species. Cs from TCRu are shown in green, TCRy are shown in red, TCRe are shown in dark purple, TCRp are shown in light purple, TCRa are shown
in orange, and TCR& are shown in gold. Mammals included are humans (H. sapiens), crab eating macaque (M. fascicularis), sheep (O. aries), cow (B.
taurus), pig (S. scrofa), rabbit (O. cuniculus), rat (R. norvegicus), cat (F. catus), short-tailed opossum (M. domestica), Tammar wallaby (N. eugenii),
brushtail possum (T. vulpecula), and platypus (O. anatinus); squamates included are skink (T. rugosa), anole (A. carolinensis), mainland tiger snake (N.
scutatus), and fence lizard (S. undulatus); the Rhynchocephalian is tuatara (S. punctatus); the archelosaurs are Chinese alligator (A. sinensis), Western
bronze ground-dove (A. beccarii), chicken (G. gallus), duck (A. platyrhynchos), big headed turtle (P. megacephalum), Reeve's turtle (M. reevesii), and
green sea turtle (C. mydas), the amphibian is African clawed from (X. laevis), the teleost fish are cod (G. morhua), and zebrafish (D. rerio); and the
cartilaginous fish are nurse shark (G. cirratum), and horned shark (H. francisci). Accession numbers of sequences used in 6A and 6B are found in
Supplementary Tables 3 and 4 respectively.
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clustered with TRBV genes in multiple iterations of the tree
including maximum likelihood and minimum evolution trees
(Figure 6A; Supplementary Figure 3). Specifically, TREVs are the
sister lineage to the 3’-inverted TRBV gene segments (Figure 6A;
Supplementary Figure 3). We also compared the gene encoding the
constant (C) domain of TRE to the C regions of the other five TCR,
and it was most related to the C region genes encoding the TCRf
constant region (Figure 6B).

Given TRE appears most related to TRB, we predicted the TCRe
chain would likely pair with TCRa. For proper TCR heterodimer
formation and interaction with the CD3 signaling complex, each
TCR chain contains conserved arginine (Arg) and lysine (Lys)
residues in the transmembrane region (47, 48). These conserved
residues have an asymmetric pattern in the heterodimer, where one
chain contains both Arg and Lys, while the other only Lys (Figure 7;
Supplementary Figure 4) (47, 48). In a conventional ofTCR pair,
the TCRa has Arg/Lys and the TCRp has Lys only (Figure 7;
Supplementary Figure 4). The same is true of squamate ofTCR
(Figure 7; Supplementary Figure 4). The translated TCRe sequence
has a conserved Lys at position 768, which is consistent with its
ability to pair with TCRo and create a the TCR-CD3 complex
(Figure 7; Supplementary Figure 4; 18).

Discussion

Squamate reptiles are amongst the most successful vertebrate
lineages. More than 10,000 species occupy a broad range of
ecosystems, from sea snakes to desert horned lizards. Despite their
broad distribution and diversity, the squamates, and reptiles in
general, remain amongst the least studied vertebrate lineages with
respect to their immune systems, a shortcoming noted two decades

ap T cell vy T cell

TRA TRB TRG TRD

10.3389/fimmu.2024.1524471

ago (49). Indeed, most Sauropsid immunology has focused on a small
number of species, mostly Archelosaurs, and has largely excluded the
Lepidosaurs (9-12). What is known of reptile immune responses has
primarily centered on innate immune responses with the conclusion
that they may depend less on the adaptive response (11). Thankfully,
the tools of genomics have increased the accessibility of many species
to investigation, substantially enhancing the field of comparative
biology, including comparative immunology.

The Australian skink species, T. rugosa, has several
characteristics useful for a model squamate. They are abundant,
widely distributed, and there is a 40 plus-year record of pathogen
studies (50-54). Tiliqua rugosa is a host to multiple tick species that
have been found to be vectors for blood pathogens such as rickettsia
and apicomplexan protozoans (53-56). In the past, these tick
species occupied distinct ecological zones (56). The tick boundary
is known to shift between drier and wetter years, demonstrating
how climate change might influence pathogen distribution (52,
56, 57).

We previously reported the lack of y§ T cells in squamates was
due to deletions of the TRG and TRD loci needed to encode the
TCRyand TCRS chains, respectively (16). Here, we investigate how
the absence of the TCRy and TCRJ chains may have influenced the
remaining TCR genes. Our previous work showed little increase in
the complexity of the TRA locus at the genomic level in the T.
rugosa (16). Indeed, there is a relative decrease in complexity in the
T. rugosa TRA locus, relative to S. punctatus which retains the TCRy
and TCRS chains. Overall, there is comparatively low complexity in
the available TRBV genes needed to assemble the exon encoding the
TCRP variable domain. Low numbers of TRBV genes appears to be
the norm for Lepidosaurs (21, 46, 58). It is unlikely that an increase
in the clonal diversity of oy T cells, therefore, compensates for the
loss of ¥0 T cells in squamates.

vyu T cell ag T cell

TRG TRM

TRA TRE

® ® ® ®

FIGURE 7

® ®
¥

® ®
(9

Representative TCRs with the amino acids in their transmembrane regions. of, Y3, and yu represent the known amniote T cell receptors. In all three,
there is an asymmetry of amino acids found in the transmembrane regions. One of the TCRs has an arginine (R) and a lysine (K) while the other has a
single lysine (K). TRA, TRD, and TRM all have the R and K while TRB and TRG have the single K. In the potential squamate TCR, TRA still has the R and
K while TRE has the single K that would allow it to potentially pair with TRA allowing for the possibility of oe T cells. Created in BioRender. Miller, R

(2025). https://BioRender.com/v19g154.
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Surprising was the discovery that squamates have an additional
locus that contains V, D and ] segments like the genes encoding the
conventional TCR and Ig. The T. rugosa locus is clearly homologous
to alocus described recently by Gambon-Deza, who designated it as
T cell receptor epsilon (TRE; 18). Analyses of the T. rugosa TRE
gene segments are consistent with it being from a partial duplication
of the TRB locus.

TRE was only found in the genomes of squamates, which lack y0
T cells, and not in non-squamate reptiles like S. punctatus, and A.
mississippiensis (Figure 8) (16). This is consistent with the
duplication giving rise to TRE occurring after the split between
Rhynchocephalia and Squamata 250-280 MYA, and prior to the
divergence of squamates more than 150 MYA (2, 5, 61). Analysis of
the TREV genes revealed their relationship to a clade of TRBV that

10.3389/fimmu.2024.1524471

are in an inverted orientation and 3’ position in the TRB locus of
most amniotes (34, 35, 40, 42, 43, 62). This inversion is also found
in salmonids and some amphibians, consistent with it occurring
earlier in vertebrate evolution (63; Jesus Martinez personal
communication). From these observations emerges a model for
the evolution of the TRB locus in amniotes and the origin of the
TRE locus in squamates (Figure 9). Beginning with an ancestral
TRB locus (Figure 9A) a family of TRBV translocated to an inverted
location 3’ of the constant region genes (Figure 9B). Within the
squamates, there was a translocation of a cluster of TRBV-D-]J-C
genes likely to another giving rise to TRE (Figure 9C). These
duplications and translocations have resulted in the current
conventional TRB locus in all amniotes and TRE in
squamates (Figure 9D).
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Phylogenetic relationship illustrating the diversity of TCR content in representative sauropsids. Representatives from several families were used
including the Florida worm lizard (Amphisbaenidae), common lizard (Lacertidae), green anole (Dactyloidae), Komodo dragon (shown) and water
monitor (not shown) (Varanidae), mainland tiger snake (Elapidae), skink (Scincidae), fence lizard (Phrynosomatidae), leopard gecko (Gekkonidae),
tuatara (Sphenodontidae), and American alligator (Alligatoridae) (59). The number on each clade indicates approximate predicted divergence times in
millions of years (MYA) (2, 5, 60). Heterodimer pairs are indicated at the top of each TCR chain type. TRA is shown in blue, TRB is shown in orange,
TRG is shown in purple, TRD is shown in grey, and TRE is shown in green.
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Proposed model for the evolution of the TRB and TRE loci. (A) Proposed model of the ancestral TRB locus. Highlighted in yellow is the TRBV gene segment
(s) that is/are ancestral to the extant inverted TRBV and TREV gene segments. Other TRBV families are shown in additional colors. (B) Model hypothesizing
(arrow 1) the duplication and inversion of the TRBV gene segment(s) within the TRB locus, currently found in several species. (C) The duplication and
translocation of the TRB V-D-J-C (arrow 2) region to create the TRE locus. (D) Generic common TRB locus including the locus found in squamates and the
squamate specific TRE locus. Presence of TRBV gene that gave rise to the inversion is species dependent and shown with dashed arrow.

Inverted V gene segment(s) are common to amniote TRB loci,
are recombined in the off T cell repertoires, and detectable in
transcriptomes. (34, 35, 40, 42, 43, 62-66; Supplementary
Figure 2A). Indeed, inversions of genomic regions at the Ig and
TCR loci are not uncommon throughout evolution (64, 65).
Therefore, it is not clear if there is a fitness advantage to having
these inverted V genes. The evidence that the TREV are most related
to the inverted TRBV may simply reflect the plasticity of the locus
that gave rise to the inversions in the first place locus that gave rise
to the inversions in the first place.

In conventional T cells, the pairing of TCRo with TCRB and
TCRy with TCRS appears strictly enforced and remarkably conserved
(14, 67, 68). However, there is precedence for T cell receptor gene
duplications giving rise to novel TCR forms. To date, these novel TCR
forms have involved specifically duplications of the TRD locus. In
some birds, the TRD locus has been duplicated with the second locus
using antibody heavy chain V gene segments in place of conventional
TRVD (69, 70). Although it has not been physically demonstrated, it is
likely the chains encoded by this second TRD locus also pair with the
TCRy chain. In mammals, duplications of the TRD locus gave rise to
the genes encoding the T cell receptor 1 chain (47, 71). The TCRu
chain has an unusual structure by having three extracellular
immunoglobulin domains, however TCRu has been shown to
physically pair with TCRy creating the YUTCR (72). yu T cells are
unique to mammals and only found in extant marsupials and
monotremes (47, 73). The TRE locus would represent the first
example of the evolution of a novel TCR due to duplications of the
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TRB locus which, like TRD undergoes recombination of V, D, and ]
gene segments. Marsupials and monotremes also have conventional Y5
T cells, consistent with TRG pairing with either TRD or TRM. If TRE
pairs with TRA, as predicted, this would demonstrate that, like TRG,
TRA can pair with multiple partners, TRB or TRE in this case. This
would be consistent with the TCR loci that undergo V to J
recombination having greater promiscuity in their pairing possibilities.

As noted above, the TCR locus duplications found so far have
involved either TRB or TRD and not TRA or TRG. The TRB and
TRD loci are rearranged first in developing af3 and yd T cells,
respectively. Although much of early ¥8 T cell development remains
a mystery, much is known about o T cell development, notably the
role the TCRP chain plays as a developmental checkpoint (74).
Having a second TRB or TRB-like locus that encodes chains that
pair with TCRo may provide additional options for successful o8 T
cell development. This may be particularly important for species
dependent on o3 T cells due to lacking yd T cells. In addition, TCR
chains encoded by combinations of V, D, and ] gene segments, such
as TRD and TRB, typically have increased diversity. Such increased
diversity may again provide an evolutionary advantage to species
lacking T cell subsets.

Most transcripts encoded by the TRE locus found in two T.
rugosa spleen transcriptome databases were non-functional.
Nonetheless they contained evidence of having been transcribed
from genes assembled by somatic V(D)] recombination. There is
also evidence of TRE being transcribed in other squamate reptiles
including in a transcriptome of the many-banded krait, Bungarus
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multicinctus (18). Similarly, the majority of TRB transcripts (58%)
were also non-functional. It was surprising to find such a large
percentage (86.4%) of non-functional transcripts for TRE in a T.
rugosa peripheral lymphoid organ. Though there were more
functional transcripts for TRB than TRE it appears common for
TCRs to have fewer functional transcripts in T. rugosa. Whether
this is due to poor selection in the thymus, development occurring
outside the thymus, or nonsense-mediated decay of TCR transcripts
remains unknown (75). The high percentage of non-functional
transcripts does not appear to be common to all recombined
immune genes, however, as most of the Ig transcripts for both
heavy and light chains are productively rearranged (not shown,
unpublished data).

It is also possible that the spleen is not the primary site of
mature o€ T cells in squamates. Indeed, oe T cells may be found in
locations that are associated with yd T cells, such as the skin, gut, or
other epithelial sites (76-78). It is known that the thymus of certain
reptiles including squamates can develop seasonally, however, how
this affects the development of T cells, when o3 T cells develop in
squamates, and their relationship to potential oie T cells is unknown
(9,79). Further research into the location of o€ T cells, the timing of
their development, their function, and their ligands is necessary.

Conclusion

The lack of ¥ T cells in squamates provides natural models with
which to study evolutionary compensation to the wholesale loss of
cell lineages in the adaptive immune system. Here, we confirm that
the lack of ¥ T cells has not resulted in increased genomic complexity
of the genes encoding the potential oS TCR repertoire. Indeed, we
have confirmed that o TCR complexity is generally low in squamates
compared to other amniote lineages. Noteworthy is duplication of the
TRB locus giving rise to the TRE locus in squamates. TRE adds to the
list of gene duplications giving rise to extra TCR loci not found in
well-studied model species such as laboratory mice or humans.
Whether e T cells are compensating for the loss of Y8 T cells in
squamates is unknown. They do not appear to increase the potential
overall diversity of T cells available to the host animal. The presence
of functional or location differences between conventional o3 and the
oe T cells remains to be determined.
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