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Abstract

Motivated by applications to fluid flows with conjugate heat transfer and

electrokinetic effects, we propose a direct forcing immersed boundary method

for simulating general, discontinuous, Dirichlet and Robin conditions at the in-

terface between two materials. In comparison to existing methods, our approach

uses smaller stencils and accommodates complex geometries with sharp corners.

The method is built on the concept of a “forcing pair,” defined as two grid points

that are adjacent to each other, but on opposite sides of an interface. For 2D

problems this approach can simultaneously enforce discontinuous Dirichlet and

Robin conditions using a six-point stencil at one of the forcing points, and a

12-point stencil at the other. In comparison, prior work requires up to 14-point

stencils at both points. We also propose two methods of accommodating sur-

faces with sharp corners. The first locally reduces stencils in sharp corners.

The second uses the signed distance function to globally smooth all corners on

a surface. The smoothing is defined to recover the actual corners as the grid is

refined. We verify second-order spatial accuracy of our proposed methods by

comparing to manufactured solutions to the Poisson equation with challenging

discontinuous fields across immersed surfaces. Next, to explore the performance
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of our method for simulating fluid flows with conjugate heat transport, we cou-

ple our method to the incompressible Navier-Stokes and continuity equations

using a finite-volume projection method. We verify the spatial-temporal accu-

racy of the solver using manufactured solutions and an analytical solution for

circular Couette flow with conjugate heat transfer. Finally, to demonstrate that

our method can model moving surfaces, we simulate fluid flow and conjugate

heat transport between a stationary cylinder and a rotating ellipse or square.

Keywords: Immersed Boundary Methods, Conjugate Heat Transport, Finite

Volume Methods

Nomenclature

Symbols

α, β Coefficients in the Robin boundary condition, see Eqn. (4).

∆t Time step (s).

∆x, ∆y Cell size in x and y-directions (m), see Fig. 1(b).

δ Offset for the smoothing method (m).

θ̇ Angular velocity (s−1).

Γ Surface separating phases A and B, see Fig. 1(a).

NL Nonlinear advection term in the Navier-Stokes equation, see Eq. 25.

n Surface normal unit vector, see Fig. 1(a).

u Velocity vector (ms−1).

xs Point where Γ intersects a grid line, see Fig. 4.

µ Dynamic viscosity (kgm−1s−1).

ΩA Domain occupied by phase A, see Fig. 1(a).

ΩB Domain occupied by phase B, see Fig. 1(a).

ϕ(x) Distance function.

ρ Density (kgm−3).

x̂, ŷ Local Cartesian coordinates, see Fig. 5.

ak, bk Coefficients used to apply the Dirichlet condition at Γ. See Eqns. (8)-(9).

c Specific heat (Jkg−1K−1).
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ck Coefficients used to apply the Robin condition at Γ. See Eqn. (11).

ERR2 L2 norm used to measure error. See Eqn. (15).

ERR∞ L∞ norm used to measure error. See Eqn. (15).

k Thermal conductivity (Wm−1K−1).

L Length and width of computational domain, see Figs. 18(b), and 22.

l Side length of immersed square, see Fig. 22(b).

l1, l2 Semi-major and semi-minor axes of immersed ellipse, see Fig. 22(a).

N Number of finite volume cells in both x and y-directions.

p Pressure (Pa).

r, θ Polar coordinates, see Fig. 18.

RΓ Radius of Γ, see Fig. 18.

Re Radial distance from (x, y) = (0, 0) to the local surface of immersed

ellipse or square, see Eq. (30).

Ri Inner radius of the annular solid region, see Fig. 18.

Ro Outer radius of the annular fluid region, see Fig. 18.

Re Reynolds number.

T Temperature (K).

t Time (s).

x, y Cartesian coordinates (m).

xc, yc Centroid of immersed object (m).

IB Immersed boundary.

1. Introduction

This study is motivated by the challenge of simulating fluid flows over com-

plex surfaces with conjugate heat transfer, as in heat exchangers [1] and porous

media [2, 3]. In such flows, the temperature field must simultaneously satisfy

a Dirichlet and Neumann condition at the fluid-solid interface. In cases where

the surface geometry is also complex, or a parametric study requires simulating

many potential geometries, the generation of body-fitted grids is often a time-

consuming bottleneck [4]. Though not the focus of the current study, when the
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surface also moves, as in particulate flows [5], the use of body-fitted grids can

become altogether untenable. Furthermore, while the current study is moti-

vated by conjugate heat transfer, similar interface conditions arise in flows with

electrodynamic effects [6] and phase changes [7].

Immersed boundary (IB) methods are a popular alternative to body-fitted

grids when simulating fluid flows with complex surface geometries. IB meth-

ods can be roughly divided into two approaches, depending on whether they

use continuous or discrete forcing [8]. Continuous forcing was first proposed by

Peskin [9] for simulating blood flow through a heart valve. Peskin’s approach

approximates an immersed boundary by introducing a smoothly varying forc-

ing function in the momentum equations. The method was originally developed

to simulate elastic boundaries, but was extended to rigid boundaries by Beyer

and Leveque [10] and Goldstein et al. [11]. Though second-order accuracy was

reported, these extensions were subject to stability constraints, and did not

provide a sharp representation of the interface [8]. The subsequent rigid multi-

blob method [12, 13] overcame these stability restrictions, but it is not a sharp

interface method, nor is it capable of handling arbitrary boundary conditions.

The discrete forcing approach [14, 15] alleviates the stability constraints of

continuous forcing by discretely deriving a forcing term that provides a sharp

representation of the surface, with up to second-order accuracy. It should be

noted, however, that recomputing the discrete forcing at each time step can

make the simulation of moving boundaries more difficult than with continu-

ous forcing [8]. Within the family of discrete forcing methods, prior work has

simulated conjugate heat transfer using the cut-cell method [16–18], immersed

interface method [19], and direct forcing method [15]. The cut-cell method cuts

and reshapes finite-volume cells traversed by the immersed boundary. The ap-

proach is physically intuitive and accurately represents advective and diffusive

fluxes through the interface. However, cutting and reshaping finite-volume cells

around complex surfaces is complicated in 3D. In some cases, the method also

generates cut cells with small volumes that reduce numerical stability [20]. As

an alternative, the direct forcing method uses numerical interpolation or ex-
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trapolation to force the desired interface condition at the immersed boundary.

Though several interpolation methods for simulating conjugate heat transfer

have been developed [3–5, 21, 22], the proposed extrapolation and interpola-

tion schemes are complicated. In some cases, the simulation of a 2D problem

requires up to 14-point interpolation stencils at every grid point adjacent to an

immersed surface [22]. Such large stencils work well for smooth surfaces but are

difficult to accommodate in sharp corners.

The objective of the current study is to explore a potentially simpler direct

forcing method that can simulate general discontinuous Dirichlet and Robin

conditions to second-order accuracy over complex surfaces with sharp corners.

Though we are motivated by applications to conjugate heat transfer, we de-

velop and verify the method for general discontinuous boundary conditions for

potential future applications to surfaces with phase changes. Our extrapola-

tion procedure uses the concept of a “forcing pair,” defined as two grid points

that are adjacent to each other, but on opposite sides of an interface. For 2D

problems, we show that we can simultaneously enforce discontinuous Dirichlet

and Robin conditions using a six point stencil at one of the forcing points and

a 12-point stencil at the other. In contrast, prior work requires up to 14-point

stencils at both points. The savings become more apparent in 3D problems,

where our method requires a six point stencil at one point and a 20-point sten-

cil at the other, compared to up to 30-point stencils at each point using prior

methods. Furthermore, the extrapolations used in our approach are comparable

in complexity to those already used in cut cell methods [17], but bypass the need

to cut and reshape computational cells.

We note here that the Ghost Fluid Method (GFM) [23] is another popu-

lar method for solving Poisson problems with jump conditions. As opposed to

the current method, GFM does not achieve second-order accuracy when ther-

mophysical properties such as the thermal conductivity vary widely between

domains [24]. The GFM uses a dimension-by-dimension splitting approach to

apply jump conditions. Generally, only the normal component of the jump con-

dition is sharply resolved, whereas the tangential components are smeared. The
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present method is inherently multidimensional and resolves all components of

the jump condition sharply. We show that our approach remains second-order

accurate, regardless of the conductivity ratio between the two domains.

The remaining article is organized as follows. In section 2, we present our

IB method for the case of a 2D Poisson problem. In section 3, we verify the

spatial accuracy for eight different immersed surfaces, including cases with sharp

corners. We compare the performance of two approaches of accommodating

sharp corners. The first uses reduced stencils and cuts sharp corners along a

grid line when necessary. The second approach uses the signed distance function

to globally smooth all corners. The smoothing is defined to recover the actual

corners as the grid is refined. In section 4, we extend our IB method to fluid

flows with conjugate heat transport. For that, we couple our method to the

incompressible Navier-Stokes and continuity equations using the finite-volume

projection method of Bell et al. [25]. We verify the spatial-temporal accuracy

of the method by comparing with a manufactured solution. We then apply our

method to the simulation of a circular Couette flow with conjugate heat transfer

through the inner cylinder, which is a test problem considered previously in

[21, 22]. Finally, to demonstrate that our method can model moving surfaces,

we simulate fluid flow and conjugate heat transfer in a circular Couette flow for

which the inner cylinder is replaced with a rotating ellipse or square. To verify

our results, simulations are repeated using both a fixed frame and a frame that

rotates with the ellipse or square. Section 5 summarizes our conclusions. For

completeness, we also provide a comparison of our method with prior work in

the Supplementary Information.

2. Methodology

We present our approach by considering a 2D Poisson equation in the domain

x ∈ [0, 2π] and y ∈ [0, 2π] sketched in Fig. 1(a). Two stationary phases A and B

occupy the domains ΩA and ΩB , respectively, and are separated by the surface
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Figure 1: (a) A two-dimensional test problem where phase B is immersed in phase A. The

phases are separated by surface Γ. The unit normal n points from phase B to phase A. (b) The

Cartesian, non-uniform, finite volume grid. The temperature is stored at the cell centroids

(solid dots). Cell boundaries are drawn using solid lines. Point G is a ghost node used to

apply boundary conditions on the external boundary x = 0.

Γ. The temperature T (x, y) satisfies the following Poisson equations,

∇2TA = fA(x, y) for x ∈ ΩA, (1)

∇2TB = fB(x, y) for x ∈ ΩB , (2)

where fA and fB are prescribed forcing functions, and the subscripts A and B

denote quantities in the A and B phases, respectively. On the surface Γ, we

consider general discontinuous Dirichlet and Robin boundary conditions,

TA

∣∣∣
Γ
− TB

∣∣∣
Γ
= g(x, y) (3)[

αATA + βA(∇TA · n)
]
Γ
−
[
αBTB + βB(∇TB · n)

]
Γ
= h(x, y), (4)

where αA, αB , βA, and βB are constant coefficients, and g and h are prescribed

forcing terms. In a conjugate heat transport problem with continuous temper-

ature and diffusive heat flux at Γ, the terms g, h, αA, and αB are typically all

zero. On the exterior boundary, we apply the homogeneous Dirichlet conditions

TA

∣∣∣
x=0,2π

= TA

∣∣∣
y=0,2π

= 0. (5)
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Figure 2: (a) The direct forcing method of Fadlun et al. [15]. The solid dots denote grid

points where temperature is stored, and the dashed lines denote grid lines passing through

the grid points. Temperature values at points 1 and 2 are computed by linear extrapolation

from the boundary condition. (b) Method proposed by Balaras [27]. Temperature at the

fictitious point f is interpolated using the neighbouring points so that the Dirichlet condition

at the boundary is satisfied.

We discretize Eqns. (1) and (2) using standard, second-order, finite volume

methods [26] on a non-uniform Cartesian grid, as sketched in Fig. 1(b). The

temperature is stored at the cell centroids (solid dots), and cell boundaries

are drawn using solid lines. For the cell shaded gray, the discretized Poisson

equation (1) can be written as

1

∆x

[
TE − TP

xE − xP
− TP − TW

xP − xW

]
+

1

∆y

[
TN − TP

yN − yP
− TP − TS

yP − yS

]
= fA(xP , yP ), (6)

where ∆x and ∆y are the cell dimensions, and the subscripts denote evaluation

at the grid points labeled in Fig. 1(b). The exterior boundary conditions are

applied using ghost nodes. For example, the Dirichlet condition at x = 0 is

approximated as (TW + TG)/2 = 0, where TG is labeled in Fig. 1(b).

2.1. Immersed boundary method

Our IB method can be described as an extension of the original direct forcing

method of Fadlun et al. [15], which was developed to apply Dirichlet conditions
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Figure 3: (a) The forcing points (solid blue dots) do not share the same surface point. This

complicates applying conjugate heat transfer conditions. (b) Method by Nagendra et al. [22].

Four fictitious points (red circles) and their respective interpolation stencils (solid blue dots)

are used to model conjugate heat transfer at Γ.

on immersed surfaces. For demonstration, consider the segment of Γ in Fig. 2(a),

where the solid dots denote grid points where the temperature is stored, and

the dashed lines denote grid lines passing through the grid points. Suppose we

want to solve the Poisson equation (1) for TA, subject to a desired temperature

TΓ on the surface Γ. The method of Fadlun et al. begins by designating the

point T1 as a “forcing point,” because it has a neighbour in phase B. At the

forcing point, the discretized Eqn. (6) is replaced with the condition

T1(1 + σ)− σT2 = TΓ, (7)

where σ = (xs − x1)(x1 − x2). This condition applies TΓ at xs using linear

extrapolation from points 1 and 2. The method is second-order accurate, but

has some ambiguity as to whether the forcing point T1 should be used to force

the boundary condition at xs or the point labeled with a solid triangle in Fig.

2(a). To remove this ambiguity, Balaras [27] used bilinear extrapolation to apply

TΓ to the point x⊥, which is the closest surface point to T1, as shown in Fig.

2(b). For that, they introduce a fictitious point f whose value is approximated

using linear extrapolation along the normal n passing through T1 and xs. Tf is

then approximated in terms of T1, T2, T3, and T4.
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A1A2A3 B1 B2 B3

n

Figure 4: Forcing pair A1-B1 circled by a blue dashed line, and the six point extrapolation

stencil used for the Dirichlet condition.

The method of Balaras has been extended to Neumann boundary conditions

by several authors [28–30]. This is usually done by adding a second fictitious

point along the surface normal to allow an approximation of the Neumann con-

dition at the immersed surface. However, this approach becomes less straight-

forward when modeling conjugate heat transfer, because the forcing points on

opposite sides of Γ do not share a common surface point, as shown in Fig. 3(a).

Nagendra et al. [22] addressed this issue using a procedure that introduces four

fictitious points, labelled f1, f2, f3, and f4 in Fig. 3(b), that lie on a line normal

to the surface, passing through the forcing point, labelled T1 in Fig. 3(b). The

temperatures at these fictitious points are interpolated using neighbouring grid

points, labelled 1-14 in Fig. 3(b). Consequently, each forcing point requires an

interpolation stencil of up to 14 points for 2D simulations, or up to 30 points

for 3D problems. For an unsteady problem, the complexity can be reduced by

using the temperature field from a previous time step for the interpolation [3],

though this may impact numerical stability.

2.2. Current work

The current work builds on that of Nagendra et al. [22] and Das et al. [2, 3],

but leverages the concept of a “forcing pair,” defined as two adjacent grid points

on a common grid line, but on opposite sides of Γ. In Fig. 4, the points labelled

A1 and B1 (circled by a blue dashed line) are a forcing pair. These two points

are used to apply the discontinuous Dirichlet and Robin conditions (3)-(4) at

the shared surface point xs, where Γ intersects the grid line. This is similar to
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Figure 5: Extrapolation stencils to approximate ∇TA. (a) shows a case where a forcing pair

lies on a horizontal grid line, ŷ1, and (b) where a forcing pair lies on a vertical grid line x̂1.

the original approach of Fadlun et al., which uses surface points xs on the grid

lines. This allows the Dirichlet condition (3) to be applied by approximating

TA and TB at xs using quadratic extrapolation along the grid line,

TA

∣∣∣
xs

≈ a1TA1 + a2TA2 + a3TA3, (8)

TB

∣∣∣
xs

≈ b1TB1 + b2TB2 + b3TB3, (9)

where the extrapolation coefficients aj and bj are provided in Appendix A. In

Fig. 4, xs lies on a horizontal grid line, but the same method applies when xs

lies on a vertical grid line. Substituting these approximations into condition (3)

produces a six point stencil. Note that when setting a desired temperature on

an immersed surface, the method of Fadlun et al. [15] achieves second-order

accuracy using linear extrapolation. For conjugate heat transfer, however, we

found that quadratic extrapolation is required to consistently produce second-

order accuracy for the problems considered in section 3.

The application of the Robin condition (4) requires estimates for ∇TA · n

and ∇TB · n. For that, consider the two cases in Fig. 5. Panel (a) shows a

case where xs lies on the horizontal grid line labelled ŷ1. Panel (b) shows a case
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n

xs

Figure 6: Forcing pair A1-B1 circled by a blue dashed line, and the 12-point extrapolation

stencil for the Robin condition.

where xs lies on a vertical grid line labelled x̂1. To approximate ∇TA · n, we

first approximate TA using a second-order polynomial of the form

TA(x̂, ŷ) = c1 + c2x̂+ c3x̂
2 + c4ŷ + c5ŷ

2 + c6x̂ŷ, (10)

where the spatial coordinates x̂ and ŷ are measured relative to the node A1.

The coefficients cj are determined by fitting Eqn. (10) to six temperature nodes.

A unique solution requires the six nodes to include three points with a unique

x-coordinate, three points with unique a y-coordinate, and a maximum of three

points along any one grid line. Whenever possible, we choose the six points

labelled A1 to A6 in Fig. 5. The points A2 and A3 lie on the horizontal grid

line passing through A1, while A4 and A5 lie on the vertical grid line passing

through A1. The points A2 and A3 are taken to the left of A1 when nx < 0,

and to the right of A1 when nx > 0. The points A4 and A5 follow a similar rule

with respect to ny. Leveraging the fact that ŷ = 0 for A2 and A3, and x̂ = 0

for A4 and A5, the expansion coefficients have the solution
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(a)

xs

A1 B1

n

(b)

xs

Figure 7: (a) Special case where the forcing point A1 lies on Γ. (b) Orphan point (green star)

and its corresponding surface point, (xs, ys).

c2 =
(x2

2 − x2
3)TA1 + x2

3TA2 − x2
2TA3

x2x3(x3 − x2)
, c3 =

(x3 − x2)TA1 − x3TA2 + x2TA3

x2x3(x3 − x2)
,

c4 =
(y22 − y23)TA1 + y23TA4 − y22TA5

y2y3(y3 − y2)
, c5 =

(y3 − y2)TA1 − y3TA4 + y2TA5

y2y3(y3 − y2)
,

c1 = TA1, c6 =
TA1 − TA2 − TA4 + TA6

x2y2
.

(11)

The normal gradient ∇TA · n can then be approximated at xs as

∇TA · n = nx(c2 + 2c3x̂s + c6ŷs) + ny(c4 + 2c5ŷs + c6x̂s). (12)

Expression (12) avoids the need to invert a six-by-six matrix, as in some cut-cell

methods [17]. On a uniform grid, the coefficients cj can also be precomputed.

In the special case where n points along a grid line, the polynomial Ta(x̂, ŷ)

reduces to a one-dimensional expression. For example, when ny = 0, Eqn. (10)

simplifies to

TA(x̂) = TA1 + c2x̂+ c3x̂
2, (13)

requiring only three grid points along ŷ1 for a second-order extrapolation. Fi-

nally, to apply the Robin condition (4), we repeat this procedure in phase B to

approximate ∇TB · n at xs. We also approximate TA and TB at xs as demon-

strated in Eqns. (8)-(9). This produces the 12-point stencil shown in Fig. 6.
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(a) (b)

Figure 8: Prioritizing forcing pairs in the horizontal direction (a), and vertical direction (b).

Prioritizing forcing pairs in the surface normal direction reduces the number of orphan points.

2.3. Special cases

We found four cases in which the procedure in section 2.2 must be modified.

The cases labelled 1 and 2 below can arise on smooth surfaces, such as a circle.

The cases labelled 3 and 4 tend to arise on surfaces with corners. It is worth

noting that cases 1, 3, and 4 occur in other IB methods as well [3, 30, 31]. Case

2, however, is unique to our method.

2.3.1. Case 1. Forcing point on Γ

When a forcing point lies on Γ, we arbitrarily treat it as a forcing point in

phase A, paired to a neighbouring point in phase B. Fig. 7(a) shows an example

where node A1 lies on Γ, and point B1 is assigned as a partner. Dirichlet and

Robin boundary conditions are then applied as before.

2.3.2. Case 2: Orphan points

Orphan points are forcing points whose only potential partner has already

been paired to another point. Fig. 7(b) shows an orphan point labelled with a

green star symbol. Orphan points only allow the application of one boundary

condition. For simplicity, we apply the Dirichlet condition.

The number of orphan points can be minimized by optimizing the pairing

algorithm. Fig. 8 shows a case where prioritizing pairs along horizontal grid lines

(panel a) produces four orphan points, while prioritizing pairs along vertical grid

lines (panel b) produces no orphans. More generally, we find that if a forcing
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B4

B1

xs

n

B2

A1

Figure 9: The extrapolation stencil search area shaded in red. There are only four eligible

extrapolation points in phase B for the forcing pair circled by a blue dashed line.

point has two potential partners, the partner along the vertical grid line should

be prioritized when
∣∣ny

∣∣ > ∣∣nx

∣∣, and vice versa when
∣∣nx

∣∣ > ∣∣ny

∣∣.
2.3.3. Case 3: Alternate stencils

In cases where the local surface geometry cannot accommodate a preferred

extrapolation stencil, we seek an alternative six-point stencil within a maximum

preset search window. If six suitable points are found, we determine the extrap-

olation coefficients using a matrix inversion method detailed in Appendix B.

In cases where a six-point stencil is not found, we consider reduced stencils of

four and five points. Figure 9 shows a reduced four point stencil, labelled B1

- B4. Note that the minimum number of points required to extrapolate the

Robin condition is three, assuming that n does not point along a grid line. The

three-point stencil must be formed so that there is a maximum of two points

along one grid line. An example of a valid three-point stencil would be points B1

- B3 in Fig. 9. However, in our experience, the surface modifications discussed

in Case 4 below prevent the need for such three-point stencils, at least for all

geometries considered in this study.
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(a)

P

(b)

xs

xs

xs

P

(c)

B1

xs

n

A1

Figure 10: (a) A problem point (labelled P ) that can be resolved by refining the grid. (b) A

problem point (labelled P ) that cannot be resolved by grid refinement. (c) Resolution of the

problem point shown in panel (b) using the cutting method.

2.3.4. Case 4: Points requiring surface modification

Some surface geometries generate problem points at which no suitable stencil

can be formed within a reasonable search window. In some cases, the problem

point can be resolved by refining the grid, such as the problem point labelled

P in Fig. 10(a). Other cases, however, require special treatment. These cases

tend to occur in sharp corners. For example, the problem point labelled P in

Fig. 10(b) has three potential forcing partners (labelled as purple triangles) that

can only pair with P ; however, there is no reasonable stencil for approximating

∂TB/∂x at any of the surface points xs. Refining the grid tends to simply push

the issue further into the corner.

We explore two remedies for such problem points. The first cuts the surface

along a grid line passing through the problem point, as in Fig. 10(c). The

problem point is then considered as lying on Γ, and treated as in Case 1 above.

By cutting along the grid line, the surface normal points along the perpendicular

grid line, permitting a co-linear three-point stencil.

The second approach eliminates problem points by rounding all sharp cor-

ners on the surface Γ. This is done as “preprocessing,” before seeking forcing

pairs, and has the added benefit of reducing the number of Case 3 points. How-
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Figure 11: (a) The contour levels of a signed distance function ϕ(x). (b) Smoothing applied to

a equilateral triangle. The true shape is shown as the shaded area, and the smoothed object

in blue dashed line. The smoothing is exaggerated for illustrative purposes.

ever, it has the disadvantage that all corners are rounded, regardless of whether

they contain problem points. We implement the smoothing using an approach

detailed in Fayolle et al. [32]. The approach uses the signed distance function

ϕ(x), for which Γ is the zero isocontour. For demonstration, Fig. 11(a) shows

isocontours of ϕ(x) for an equilateral triangle. The original, unsmoothed, tri-

angle is given by the isocontour ϕ = 0 (solid line). The isocontours ϕ = −0.3,

ϕ = 0.3, and ϕ = 0.6 are shown as dashed lines. We see that positive isocontours

(ϕ > 0) smooth convex corners, but also expand the object. In contrast, nega-

tive isocontours (ϕ < 0) preserve convex corners, but compress the object. To

smooth the convex corners of an object, while otherwise preserving the original

surface away from the corners, Fayolle et al. first compute the distance function

ϕc(x) to the compressed surface Γc, where Γc is defined as the zero isocontour of

the function f(x) = ϕ(x)− δ, where δ is a positive number. The final smoothed

surface is then set to the isocontour ϕc(x) = δ. Fig. 11(b) demonstrates the

smoothed surface (blue dashed line) when δ = 0.5. The original unsmoothed

triangle is shaded grey. By setting δ proportional to some measure of the cell
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size (such as the maximum ∆x or ∆y in the domain), the smoothing recovers

the original object as the grid is refined. Using a similar approach, one can also

smooth concave corners [32].

It is worth noting that both methods above (cutting and smoothing) modify

Γ from its original shape, which is a common issue when simulating sharp corners

using immersed boundary methods [30, 31, 33]. Though beyond the scope of

this study, future applications to multi-phase fluid-fluid flows may prefer the

cutting method, because it has a smaller impact on the volume of the phases,

particularly on coarse grids.

3. Verification of spatial accuracy for the Poisson equation

Appendix C describes an algorithm we coded in MATLAB to solve the

Poisson problem (1)-(5). Here, we use the algorithm to explore the spatial

accuracy of our method with respect to the following exact solution of Eqns.

(1)-(2),

Te =

sin(x) sin(y) x ∈ ΩA,

cos(x) cos(y) x ∈ ΩB ,

(14)

which is forced by setting fA = −2 sin(x) sin(y) and fB = −2 cos(x) cos(y).

Equation (14) is a challenging test solution with discontinuous values and gra-

dients on Γ. We consider the eight surface geometries sketched in Fig. 12. Panel

(a), which we refer to as a “puzzle piece,” shows a case where both phases are

subject to Dirichlet conditions on the external boundary. The remaining pan-

els show cases where phase B is fully immersed in phase A. The shapes are a

circle (b), square (c), cross (d), hexagram (e), equilateral triangle (f ), isosce-

les triangle (g), and a right triangle (h) with angles of 30◦, 60◦, and 90◦. In

panels (b)-(h), we place the centroid of phase B at (xc, yc) = (3.68, 3.68). The

distance functions for the geometries in panels (b)-(h) are available in [34]. For

all shapes, we repeat our numerical tests using immersed Neumann conditions

(αA = αB = 0) and Robin conditions. For the Neumann conditions, we consider
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Figure 12: Eight geometries used to verify the method for the Poisson equation. Phases A

and B are labelled in white font. In panel (a) phase B is shaped similar to a puzzle piece. In

the remaining panels phase B is a circle (b), square (c), cross (d), hexagram (e), equilateral

triangle (f ), isosceles triangle (g), and right triangle (h), surrounded by phase A.

the simpler case where βA = βB = 1, as well as the more challenging case where

βA = 1 and βB = 100. The latter models a case where the thermal conductivity

of the two phases differ by two orders-of-magnitude. For the Robin conditions,

we set αA = 3, αB = 2 and βA = βB = 1. In all cases, we set h(x, y) and g(x, y)

to the forcing terms required by the analytical solution (14). For completeness,

tests were repeated for uniform and non-uniform grids. The results shown here

are produced using a non-uniform grid detailed in Appendix D.
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Geometry Surface modification
Slope of fit R2

ERR∞ ERR2 ERR∞ ERR2

Puzzle piece Not applied -1.89 -1.90 0.996 0.996

Circle Not applied -2.00 -2.00 0.998 0.998

Square
Cut -2.07 -2.00 0.998 0.998

Smooth -2.07 -2.00 0.998 0.998

Cross
Cut -2.03 -2.03 0.991 0.991

Smooth -2.00 -2.00 0.990 0.988

Hexagram
Cut -1.97 -1.99 0.948 0.955

Smooth -2.05 -2.05 0.996 0.996

Equilateral triangle
Cut -2.12 -2.11 0.987 0.988

Smooth -2.02 -2.00 0.974 0.975

Isosceles triangle
Cut -1.97 -1.98 0.889 0.894

Smooth -2.09 -2.08 0.950 0.954

Right triangle
Cut -1.84 -1.90 0.947 0.954

Smooth -2.03 -2.02 0.994 0.994

Table 1: The slopes of the linear fits and coefficients of determination (R2) of the ERR∞ and

ERR2 errorplots for the Neumann case with βA = 1, βB = 100.

We measure the spatial error using the two common norms below,

ERR∞ =
∣∣∣∣Te − Tn

∣∣∣∣
∞, ERR2 =

[∫ Lx

0

∫ Ly

0

(Te − Tn)
2dxdy

]0.5

, (15)

where Tn is the numerical answer. For ERR∞, we use the maximum absolute

error over the internal grid points (excluding ghost nodes). For ERR2, we

approximate the integral using the mid-point method. In cases where cutting

or smoothing Γ causes a grid point to change phase, we set Te to that of the

modified surface. For example, in Fig. 10, the exact solution at problem point

P is set to TA, not TB . For the smoothing method, the offset δ is set to the

smallest possible value that eliminates all problem points. This value is problem

20



(a) (b)

Figure 13: Results for the puzzle piece. Panel (a) shows results for the Neumann conditions

(βA = βB = 1 and βA = 1, βB = 100). Panel (b) shows results for the Robin condition.

specific, and related to the grid resolution.

To explore spatial accuracy, we use N finite volume cells in each direction (a

total of N2 cells), and we investigate the variation of ERR∞ between N = 75

and N = 500. We use linear regression to find the best fit for all error plots,

and report the coefficient of determination (R2) values for each plot. Figure

12 shows the numerically approximated temperature fields for each geometry

when N = 500 and αA = αB = 0, βA = βB = 1. When comparing ERR∞

and ERR2, we found both methods produce similar results. Therefore, we only

present error plots for the ERR∞ norm. Table 1, however, presents the observed

order-of-accuracies and R2 values for each shape, using both norms.

3.1. Puzzle piece

The puzzle piece is the only geometry considered where phase B is not im-

mersed in phase A. No surface modification is applied, because Γ produces no

problem points. Figure 13(a) shows ERR∞ versus N for the immersed Neu-

mann condition with βA = βB = 1 (squares), and βA = 1, βB = 100 (solid

dots). Figure 13(b) shows ERR∞ versus N for the immersed Robin condition.

The dashed black lines show 1/N2, the red dash-dotted lines show 1/N , and

solid green lines show best fit power laws. All cases show second-order spatial

accuracy, though ERR∞ in panel(a) is roughly five times larger when βB = 100.
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Figure 14: Results for circle. Panel (a) shows results for the Neumann conditions (βA = βB =

1 and βA = 1, βB = 100). Panel (b) shows results for the Robin condition.

3.2. Circle

The circle is the simplest of the fully immersed geometries, because the

preferred extrapolation stencil is available for all forcing points, and no surface

modification is needed. Figure 14(a) shows ERR∞ versus N for the Neumann

conditions with βA = βB = 1 (squares) and βA = 1, βB = 100 (solid dots).

Figure 14(b) shows ERR∞ for the Robin condition. All cases show second-order

spatial accuracy. In panel (a), however, the error is roughly 100 times larger

when βB = 100. We observe this trend for all cases where phase B is fully

immersed in phase A. We hypothesize that it occurs because the temperature

field in a fully immersed object is no longer fixed by Dirichlet conditions on

the external boundary, in contrast to the puzzle piece. It is also worth stressing

that the manufactured solution is an unphysical test problem chosen to challenge

our IB method. In a physical heat transfer problem, the coefficients βA and βB

appear in the governing equations, and strongly influence TA and TB .

For all immersed geometries considered, the Neumann and Robin conditions

produce nearly identical orders-of-accuracy. Hereinafter, we only present results

for the Neumann condition with βA = 1, βB = 100, and we focus our discussion

on the treatment of Case 4 points using cutting and smoothing.
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Figure 15: Spatial error plots for the cross produced by the cutting (a) and smoothing (b)

methods.

3.3. Square and Cross

Figure 15 shows error plots for the cross using the cutting method (panel a)

and smoothing (panel b). The error plots for the square are nearly identical to

those in Fig. 15, and are not shown for brevity. Though the cross and square

have 90◦ angles, the number of Case 3 and 4 points are few. The cutting and

smoothing methods consequently produce similar second-order accuracy.

3.4. Hexagram

The hexagram is more prone to Case 4 problem points, because it has 60◦

angles. Figure 16 shows the error plots generated by the cutting (a) and smooth-

ing (b) methods. We observe second-order accuracy for both methods; however,

the cutting method produces a cloudier error plot. This likely arises because

smoothing eliminates many Case 3 points, whereas cutting only eliminates Case

4 points.

3.5. Triangles

The error plots for the equilateral and isosceles triangles are qualitatively

similar to those observed for the hexagram, and are not shown for brevity.

Figure 17 shows the error plot for the right triangle. As observed for the hex-

agram, the cutting method produces a cloudier plot, which likely explains the
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Figure 16: Spatial error plots for the hexagram produced by the cutting (a) and smoothing

(b) methods.

slight reduction in the order-of-accuracy to 1.84. The smoothing has an order-of-

accuracy of 2.03. It is worth noting that the right triangle is the only geometry

we tested for which the cutting method decreased the order-of-accuracy below

1.97.

4. Conjugate heat transport with fluid flow

This section verifies the accuracy of our method when simulating fluid flows

with conjugate heat transport. First, we use the method of manufactured solu-

tions to verify the spatial and temporal accuracy of our method when coupled

to the incompressible Navier-Stokes and continuity equations. Next, we sim-

ulate a circular Couette flow with conjugate heat transfer through the inner

cylinder, which is a test problem considered previously in Refs. [21, 22]. Fi-

nally, to demonstrate that our method can model moving surfaces, we simulate

fluid flow and conjugate heat transfer in a circular Couette flow for which the

inner cylinder is replaced with a rotating ellipse or square. To verify our results,

we repeat the simulations using both a fixed reference frame and a frame that

rotates with the same angular velocity as the ellipse or square.
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(a) (b)

Figure 17: Spatial error plots for the right triangle produced by the cutting (a) and smoothing

(b) methods.

4.1. Verification with manufactured solutions

To verify the spatial-temporal accuracy of our method when coupled to a

fluid flow, we consider the 2D domain x ∈ [0, 2π], y ∈ [0, 2π] sketched in Fig.

18(a). Phase B is a solid stationary circle of radius 1.5 centered at (xc, yc) =

(π, π). Phase A is a Newtonian fluid, in which the velocity u, pressure p, and

temperature T are governed by the incompressible Navier-Stokes, continuity,

and heat equations,

∇ · u = 0, (16)

ρA

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+ µA∇2u+ F, (17)

ρAcA

[
∂TA

∂t
+ (u ·∇)TA

]
= kA∇2T + qA, (18)

where ρA, µA, cA, and kA are the fluid’s density, dynamic viscosity, specific

heat, and thermal conductivity, respectively. In phase B, TB satisfies

ρBcB
∂TB

∂t
= kB∇2T + qB , (19)

where ρB , cB , and kB are the solid’s density, specific heat, and thermal con-

ductivity, respectively. In Eqns. (17) - (19), the terms F, qA, and qB are added

to force the following manufactured solution,
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Figure 18: (a) A solid circle (phase B) immersed in a Newtonian fluid (phase A). Phase B is

centered at (xc, yc) = (π, π). (b) Circular Couette flow with conjugate heat transfer through

the inner cylinder. The inner cylinder occupies Ri ≤ r < RΓ, the fluid occupies the region

RΓ ≤ r ≤ Ro, and the outer cylinder occupies r > Ro. Constant temperatures are applied at

r = Ri and R = Ro, driving conjugate heat transfer through the inner cylinder and fluid.

Te =

sin(x) sin(y) cos(ωt), x ∈ ΩA,

cos(x) cos(y) cos(ωt), x ∈ ΩB ,

(20)

ue = sin(x) sin(y) cos(ωt), x ∈ ΩA, (21)

ve = − cos(x) sin(y) cos(ωt), x ∈ ΩA, (22)

pe = sin(x) sin(y) cos(ωt), x ∈ ΩA. (23)

The solution is steady when ω = 0. We apply the following homogeneous

Dirichlet conditions at the exterior boundaries,

TA

∣∣∣
x=0,2π

= TA

∣∣∣
y=0,2π

= 0, u
∣∣∣
x=0,2π

= u
∣∣∣
y=0,2π

= 0. (24)

On the immersed surface, we apply the temperature conditions (3)-(4) with

αA = αB = 0, βA = βB = 1. We also apply the velocity conditions u
∣∣
Γ
= ue

∣∣
Γ

using the linear extrapolation method of Fadlun et al. [15].

We approximate Eqns. (16)-(19) numerically using the methods detailed

in Ref. [30], which are only briefly summarized here. Equations (16)-(19) are
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Figure 19: (a) A section of a staggered grid where temperature and pressure are stored at the

cell centroids (solid dots), and velocity components u and v are stored at the cell faces (squares

and triangles, respectively). The shaded area illustrates the control volume for discretizing

the x-component of the Navier–Stokes equations. Nodes P, N, E, W, S, ne, nw, se, and sw

form the stencil for discretizing the nonlinear advection term. (b) A special case where node

P is a regular fluid node but node ne is in the solid.

discretized temporally using a second-order semi-implicit method in which the

diffusion terms are approximated using the Crank-Nicolson method, and the

advection terms are approximated using the Adams-Bashforth method. For

example, the semi-discrete Navier-Stokes equations take the form

ρ
un+1 − un

∆t
+

3NLn −NLn−1

2
= −∇pn+1/2+

µ

2
∇2(un+1+un)+

Fn+1 + Fn

2
,

(25)

where ∆t is the time step, the superscript n denotes time t = n∆t, andNL refers

to the nonlinear advection term. Equations (16)-(19) are discretized spatially

using standard, second-order, finite volume methods on a uniform staggered

grid [26]. The pressure coupling is approximated using the projection method

of Bell et al. [25].

Staggered grids can require special treatment when spatially discretizing the

nonlinear advection term (NL) in Eqn. (25) near an immersed boundary. Con-

sider the section of staggered grid in Fig. 19(a), where the temperature and

pressure are stored at cell centroids (solid dots), while the velocity components

u and v are stored at the cell faces (squares and triangles, respectively). The

shaded region represents the control volume used to discretize the x-component
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of the Navier–Stokes equations. Following Ferziger and Perić [26], the discretiza-

tion of NL at node P depends on the u-values at nodes P, E, W, N, and S, as

well as the v-values at nodes ne, nw, se, and sw. However, a complication arises

near an immersed surface, as shown in Fig. 19(b). Here, node P is a normal fluid

point, but node ne lies in the solid (shaded area bounded by the dashed line)

and has no physical value for v. To compute NL at node P, we approximate

vne using linear extrapolation from neighbouring fluid nodes along a grid line.

A similar technique was employed by Yang and Balaras [35], who extended the

velocity and pressure fields into a layer of nodes in the solid domain.

We verify spatial accuracy by setting ω = 0 and integrating from the ini-

tial condition u = p = TA = TB = 0 to steady-state using N finite volume

cells in each direction. We then measure the relative error of each flow field

using the infinity norm (ERR∞) defined in Eqn. (15). The pressure error is

not computed in cells with forcing points. We set all thermophysical properties

to unity. Figure 20(a) shows ERR∞ versus N for u (asterisks), v (circles), p

(squares), and T (solid dots). The dashed and dash-dotted lines show 1/N2

and 1/N , respectively. We observe second-order spatial accuracy for u, v, and

T , and first-order accuracy for p. Note that the reduced accuracy of the pres-

sure field is a documented issue with projection methods, even in simulations

without immersed boundaries [36–40], and is not related to our proposed IB

method. In our experience, the accuracy of the pressure field produced by the

projection method of Bell et al. [25] is problem dependent, and even in sim-

ulations without immersed surfaces, typically varies between roughly first to

second-order. Though projection methods are used extensively in the immersed

boundary literature, studies often do not report the order of accuracy of the

pressure field. We consequently note here that all remaining simulations in this

section produced first-order spatial accuracy for pressure, similar to that in Fig.

20(a), and are not shown for brevity.

We verify the temporal accuracy by setting ω = 4π and integrating from

t = 0 to t = 1 using exact initial conditions. The error ERR∞ of each flow field

is then measured at time t = 1. Fig. 20(b) shows the resulting ERR∞ versus ∆t.
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(a) (b)

Figure 20: (a) Spatial error plot and (b) temporal error plot. Velocity components u and v,

pressure p, and temperature T shown in asterisks, circles, squares, and solid dots, respectively.

The dashed and dash-dotted lines show ∆t2 and ∆t, respectively. We observe

second-order accuracy for u, v, and T , and nearly second-order accuracy for p.

4.2. Circular Couette flow

As further validation, we consider a 2D circular Couette flow with conjugate

heat transfer through the inner cylinder, as sketched in Fig. 18(b). A stationary

solid (phase B) occupies the annular region Ri ≤ r < RΓ. A fluid (phase A)

occupies the annular region RΓ ≤ r ≤ Ro. The temperature field is subjected

to the following Dirichlet conditions,

Tn+1
∣∣∣
r=Ri

= Ti, Tn+1
∣∣∣
r=Ro

= To. (26)

At r = RΓ we apply the continuity of temperature and heat flux

Tn+1
A

∣∣∣
r=RΓ

= Tn+1
B

∣∣∣
r=RΓ

, kA

(
n ·∇TA

)n+1

r=RΓ

= kB

(
n ·∇TB

)n+1

r=RΓ

. (27)

The outer cylinder (r = Ro) rotates with a steady angular velocity θ̇, subjecting

the velocity field to the Dirichlet conditions

un+1
r

∣∣∣
r=RΓ,Ro

= 0, un+1
θ

∣∣∣
r=RΓ

= 0, un+1
θ

∣∣∣
r=Ro

= θ̇Ro, (28)

where ur and uθ are the velocity components in the r and θ directions, respec-

tively. Note that the immersed conditions (26)-(28) are all discretized implicitly

in time. Analytical solutions for u, p, and T are provided in Appendix E.
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Figure 21: Error plot for the circular Couette flow. Velocity components u and v, and tem-

perature T shown in asterisks, circles, and solid dots, respectively.

We simulate the problem using the square computational domain x ∈ [−L/2,

L/2], y ∈ [−L/2, L/2], as shown in Fig. 18(b). The cylinders are centered at

(x, y) = (0, 0). On the outer boundary, we apply

u
∣∣∣
x=±L/2

= u
∣∣∣
y=±Ly/2

= 0, T
∣∣∣
x=±L/2

= T
∣∣∣
y=±L/2

= To. (29)

We set all thermophysical properties to unity, except for the thermal conductiv-

ity of the solid, which is set to kB = 120. The dimensions of the system are set

to L = 2π, Ri = 0.45, RΓ = 1.2, and Ro = 2.4. We also set Ti = 200, To = 0,

and θ̇ = 1. We initialize the simulations with u = 0, T = 0, p = 0, and integrate

in time to steady-state. The error ERR∞ is then computed for each field in the

physical domain Ri ≤ r ≤ Ro. Figure 21 shows ERR∞ versus N . We observe

second-order accuracy for u (asterisks), v (circles), and T (solid dots).

4.3. Moving solids

Though not the focus of our study, here we demonstrate the ability of our

method to simulate moving solids. For that, we consider fluid flow and conjugate

heat transport in the rotating Couette flows shown in Fig. 22. In panel (a), fluid

occupies the region labelled ΩA, between an outer circular cylinder of radius Ro

and an inner co-axial elliptic cylinder with semi-major and semi-minor axes l1
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Figure 22: A rotating Couette flow where the inner cylinder is replaced with a (a) rotating

ellipse of size l1 by l2, or (b) rotating square of size l by l. The fluid and the rotating

inner cylinder occupy regions ΩA, and ΩB , respectively. A constant temperature difference

is applied between r = Ri and R = Ro, driving conjugate heat transfer through the inner

cylinder and fluid. The outer cylinder is fixed, and immersed in a domain of L by L.

and l2, respectively. The outer cylinder is stationary, while the elliptic cylinder

rotates about its axis (x = 0, y = 0) with constant angular velocity θ̇. On the

outer cylinder we apply u = 0. On the inner cylinder, we apply

un+1
r

∣∣∣
r=Re

= 0, un+1
θ

∣∣∣
r=Re

= θ̇Re, (30)

where Re refers to the radial distance from (x, y) = (0, 0) to the local surface of

the elliptic cylinder. As in section 4.2, we drive conjugate heat transport through

the fluid and inner cylinder by applying the fixed temperature conditions (26)

at r = Ri and r = R0. On the surface of the rotating ellipse, we apply the

continuity of temperature and heat flux, as in Eqn. (27).

In addition to the flow in Fig. 22(a), we also consider that in Fig. 22(b),

where the ellipse is replaced with a square of size l by l, rotating about its axis

(x = 0, y = 0) with angular velocity θ̇. For both cases in Fig. 22, we set L = 2π,

Ri = 0.45, and Ro = 2.4. The size of the ellipse is l1 = 1.2, l2 = 1.0, and the

size of the square is l = 2.12. To eliminate potential Case 4 problem points

on the square, we apply a smoothing of δ = 2∆x, where ∆x is the cell size
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Figure 23: A staggered finite volume grid, and surface Γ (dashed line) moving to the right at

three consecutive time levels. At time tn−1 point P is a solid point, at tn a forcing point, and

at tn+1 a fluid point.

of the uniform grid. All thermophysical properties are set to unity, except for

kB = 120. We also set Ti = 200, To = 0, and θ̇ = π/4.

Simulating a moving solid raises a new challenge when grid points change

their phase from solid to fluid. These grid points, sometimes called “freshly

cleared cells” [41, 42], do not have the required time history to compute terms

such as NLn−1 in the semidiscrete equation (25). This is a common issue in

sharp interface IB methods, including the cut-cell [43], direct forcing [35], and

ghost-cell methods [42]. For demonstration, Fig. 23 illustrates a section of a

staggered finite volume grid. The dashed lines show an interface Γ moving to

the right at three consecutive time levels tn−1, tn, and tn+1. At time t = tn−1,

the u-velocity node labelled P in Fig. 23 lies in the solid (shaded grey), and does

not have a physically meaningful velocity. At t = tn, the surface Γ moves to the

right, and node P becomes a forcing point in the fluid. Because we apply the

immersed boundary conditions implicitly in time, node P requires no special

treatment at this time step. However, at t = tn+1, node P becomes a regular

fluid point, and we must apply the discretized momentum Eqn. (25). This raises

issues when computing the explicit terms NLn−1, ∇2un, and ∇pn.

Because node P lies in the solid at time tn−1, we discretize advection terms

in the momentum and energy equations using the forward Euler method on
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T

Figure 24: (a) Errorplot for the rotating ellipse. Velocity components u and v, and tem-

perature T are shown using asterisks, circles, and solid dots, respectively. (b) Temperature

contour plot with streamlines.

freshly cleared cells, as suggested by Udaykumar et al. [41]. This avoids the

computation of NLn−1. For the case shown in Fig. 23, the approximation of

∇2un, and ∇pn require un
E and pnE , which both lie in the solid. We address

this issue as previously illustrated in Fig. 19, using the field extension method

of Yang and Balaras [35]. Finally, we restrict the time step to ensure that no

grid point transitions from a solid point to a regular fluid point in a single time

step. Such a scenario would result in the absence of velocity data at tn. This

time step restriction is common in sharp IB methods [8, 35, 44].

Because there is no analytical solution for the flows in Fig. 22, we establish

reference solutions by simulating the flows using a fine grid (N = 600) with

respect to a coordinate system that rotates with constant angular velocity θ̇. In

this rotating coordinate system, the ellipse and square in Fig. 22 are stationary,

while the outer cylinder rotates with an angular velocity −θ̇. Note that Eqns.

(16)-(19) must also be modified in the non-inertial rotating frame [45], as de-

tailed in Appendix F. The reference simulations are initialized with u = 0,

T = Ti, and p = 0, and are integrated in time until they reach steady-state,

which occurs within a full revolution.

To evaluate the spatial accuracy of our method, we run a series of simulations

on grids with N ≤ 320 in the stationary coordinate system. All simulations are
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Figure 25: (a) Errorplot for the rotating square. Velocity components u and v, and tem-

perature T are shown using asterisks, circles, and solid dots, respectively. (b) Temperature

contour plot with streamlines.

initialized with u = 0, T = Ti, and p = 0, and integrated in time until the

ellipse or square completes one revolution. We then use bicubic interpolation to

approximate the velocity and temperature at 40 points equally distributed along

a circle of radius r = 1.8, centered at (x = 0, y = 0). ERR∞ is computed by

comparing results obtained in the stationary coordinate system to the reference

solution in the rotating coordinate system.

Figure 24(a) shows the error plots for the ellipse. The results demonstrate

second-order accuracy for u (asterisks), v (circles), and T (solid dots). Figure

24(b) shows the temperature contour plot overlaid with streamlines. Figure

25(a) shows the corresponding error plots for the square. We again observe

second-order accuracy for both velocity components and temperature for N ≥

150. The reduced accuracy for N ≤ 150 likely arises due to the strong impact

of smoothing on coarse grids. Figure 25(b) shows the temperature contour plot

overlaid with streamlines. Note that from the streamlines in Figs. 24(b) and

25(b) that the rotating ellipse and square did not generate vortical structures.

This is because the Reynolds number for these simulations, Re = ρURo/µ,

where U = Roθ̇ is only 4.5.
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5. Summary and Conclusion

In this work, we developed a direct forcing IB method that simulates general

discontinuous Dirichlet and Robin boundary conditions. Our method is built

on the concept of a forcing pair, defined as two grid points that are adjacent

to each other, but on opposite sides of an interface. For 2D problems, we

can simultaneously enforce discontinuous Dirichlet and Robin conditions using

a six-point stencil at one of the forcing points, and a 12-point stencil at the

other. In comparison, prior work requires up-to 14-point stencils at both points.

We identified four cases (Cases 1-4) that require special treatment. Cases 1,

and 2 can arise for any surface geometry, whereas Cases 3 and 4 tend to arise

only on surfaces with corners. Case 4 occurs when an extrapolation stencil

cannot be formed in a sharp corner, requiring surface modification. We proposed

two surface modification methods (cutting and smoothing) to eliminate Case 4

points. We verified the spatial accuracy of our method by solving the Poisson

equation for eight geometries using a manufactured solution with discontinuous

Dirichlet, Neumann, and Robin conditions. We observed second-order spatial

accuracy for all cases except three, which nevertheless had spatial accuracies

above 1.8. In some cases, we also observed that the cutting method produces

cloudier error plots than smoothing. We also explored the performance of our

IB method for simulating fluid flows with conjugate heat transport over fixed

and moving solids. For that, we coupled our method to the incompressible

Navier-Stokes and continuity equations. First, we verified the spatial-temporal

accuracy of the solver using manufactured solutions and an analytical solution

for circular Couette flow with conjugate heat transfer. We observed second-order

spatial and temporal accuracies for velocity and temperature. For pressure, we

observed first-order spatial, and nearly second-order temporal accuracy, which

is consistent with the projection method [36] used in our discretization of the

Navier-Stokes and continuity equations. Finally, we simulated fluid flow and

conjugate heat transport between a stationary cylinder and a rotating ellipse

or square. Because no analytical solution for flow around a rotating ellipse or
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square exists, we used results obtained in a non-inertial rotating frame as a

reference solution. Second-order spatial accuracy was observed for velocity and

temperature, and first-order for pressure.

Ongoing work focuses on implementing our method in a parallelized 3D CFD

algorithm, with the intent of modelling conjugate heat transport in heat ex-

changers and porous media. Our longer term objective is to extend our method

to moving particles and explore applications to active colloids and packed bed

heat exchangers.
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Appendix A. Extrapolation coefficients for Dirichlet conditions

Consider the example shown in Fig. 4. The extrapolation coefficients a1, a2,

and a3 in Eqn. (8) can be derived by fitting a one-dimensional, second-order

Lagrange polynomial to nodes A1, A2, and A3. If the extrapolation nodes lie

along a horizontal grid line, the coefficients become

a1 =
(xs − x2)(xs − x3)

(x1 − x2)(x1 − x3)
, a2 =

(xs − x1)(xs − x3)

(x2 − x1)(x2 − x3)
, (A.1)

a3 =
(xs − x1)(xs − x2)

(x3 − x1)(x3 − x2)
, (A.2)

where x1, x2, x3 are the x-coordinates of nodes A1, A2, and A3, respectively.

Coefficients bi are similarly computed using the nodes B1, B2 and B3.
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Appendix B. Matrix method for Robin conditions

When the preferred extrapolation stencil is not available, we compute the

coefficients for the discretized Robin condition (4) as follows. Consider the term[
αATA + βA(∇TA · n)

]
Γ

(B.1)

in Eqn. (4). Assuming a six-point extrapolation stencil, we approximate (B.1)

as [
αATA + βA(∇TA · n)

]
Γ
=

6∑
j=1

ĉjTAj (B.2)

where ĉj are coefficients, and TAj are the temperatures at the six nodes. To

determine ĉj , we expand the temperatures TAj in a 2D Taylor series about xs,

TAj = TA

∣∣∣
xs

+∆xj
∂TA

∂x

∣∣∣∣∣
xs

+∆yj
∂TA

∂y

∣∣∣∣∣
xs

+
∆x2

j

2

∂2TA

∂x2

∣∣∣∣∣
xs

+ ...

∆y2j
2

∂2TA

∂y2

∣∣∣∣∣
xs

+
∆yj∆xj

2

∂2TA

∂y∂x

∣∣∣∣∣
xs

, (B.3)

where ∆xj = xs − xAj , and ∆yj = ys − yAj . Substituting these expansions

in Eqn. (B.2) and comparing coefficients, one can show that a second-order

approximation requires

1 1 1 1 1 1

∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6

∆y1 ∆y2 ∆y3 ∆y4 ∆y5 ∆y6

∆x2
1 ∆x2

2 ∆x2
3 ∆x2

4 ∆x2
5 ∆x2

6

∆y21 ∆y22 ∆y23 ∆y24 ∆y25 ∆y26

∆y1∆x1 ∆y2∆x2 ∆y3∆x3 ∆y4∆x4 ∆y5∆x5 ∆y6∆x6





ĉ1

ĉ2

ĉ3

ĉ4

ĉ5

ĉ6


=



αA

βAnx

βAny

0

0

0


.

(B.4)

Note that the coefficients ĉj obtained using this approach are input directly into

the global matrix, and are therefore not equivalent to the coefficients cj given

in Eqn. (11). However, the approach shown here is equivalent to the procedure

in Section 2.2, where we approximate TA in the vicinity of Γ as a biquadratic

polynomial (10).
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Appendix C. Practical implementation in MATLAB

Here we summarize the algorithm we coded in MATLAB to solve the Poisson

problem (1)-(5). The algorithm is used in Section 3 to explore the spatial

accuracy of our method. For a given grid with a total of M = (Nx +2)(Ny +2)

grid points, the algorithm builds a sparse matrix problem AT = b, where T is

a M x 1 vector containing the unknown temperatures at the grid nodes, b is a

M x 1 vector containing the forcing terms (e.g. fA, fB , g, h), and A is a M

x M matrix containing the spatial discretization of the differential operators in

(1)-(5).

To identify forcing points and compute the normal n to the interface, we use

the signed distance function ϕ(x), defined as positive in phase A and negative

in phase B. For example, if phase B is a circle of radius R centered at (x, y) =

(xc, yc), as in Fig. 12(b), the distance function is given by

ϕ(x, y) =
√

(x− xc)2 + (y − yc)2 −R. (C.1)

Consider the grid point labelled P in Fig. 1(b). The point is defined a non-

forcing point if ϕP is non-zero and has the same sign as ϕE , ϕN , ϕW , ϕS , where

the subscripts denote ϕ evaluated at the points labeled in Fig. 1(b). We build

the corresponding row ofA and b by applying the Poisson equation (1) if ϕP > 0

and (2) if ϕP < 0. For ghost nodes, we apply boundary condition (3).

Any grid point for which ϕP = 0, or for which ϕP has a different sign than

any of its four neighbours, is a forcing point. In that case, the computation of

the corresponding rows in A and b depend on the procedure for Case 4 points.

Smoothing: In the case of smoothing, we compute ϕ(x) using the method

detailed in Section 2.3.4, prior to defining forcing and non-forcing points. We

set the smoothing factor to δ = γ∆xmax, where ∆xmax is the maximum cell

width in the domain. As the algorithm loops through the grid, defining forcing

and non-forcing points, it defines a forcing point as a problem point if the point

has three potential partners that can only pair with the forcing point, as in
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Fig. 10(b). If a problem point is found, the algorithm terminates and displays a

warning to increase γ. Though this process was sufficient for our purposes, the

algorithm could be automated to find the minimum required smoothing.

If no problem points are found, the algorithm loops through all forcing points

searching for points with two potential partners. If found, pairs are formed

based on the surface normal, as detailed in section 2.3.2. The surface normal,

n is computed from the signed distance function using centered differencing.

When a forcing pair is formed, both grid points are flagged so that they cannot

be used to form another pair. After all forcing points with two potential partners

have been identified and paired, the algorithm then loops through the remaining

forcing points to either pair them, or label them as orphan points.

The algorithm then loops through every forcing pair, building extrapolation

stencils as detailed in Section 2.2, and computing the extrapolation coefficients,

and forcing terms (g, h) for the Dirichlet and Robin conditions. When seeking

an extrapolation stencil for the Robin condition, the algorithm first checks if

the preferred stencil is available. If not, the algorithm searches for other six-

point stencils where the points A2 and A3 lie on the horizontal grid line passing

through A1, while A4 and A5 lie on the vertical grid line passing through A1,

as labelled in Fig. 5. The extrapolation coefficients for these stencils can be

computed analytically. If such stencils are not found, the algorithm seeks any

six-point stencil containing three points with a unique x-coordinate, three points

with unique a y-coordinate, and a maximum of three points along any one grid

line. If found, the extrapolation coefficients can be computed using the method

detailed in Appendix B. If a six point-stencil is not found, the algorithm uses

a Case 3 alternate stencil. If a problem point with no suitable extrapolation

stencil is encountered, as in Fig. 10(a), the algorithm terminates and displays a

warning to refine the grid. Once the extrapolation coefficients and forcing terms

are computed for every forcing pair and orphan point, they are input into the

corresponding rows of A and b. The matrix is then solved using MATLAB’s

sparse direct solver.
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(a)

P1

(b)

P2

(c)

xs

n

A1

B1

Figure C.26: (a) Problem point P1 requiring cutting. (b) Surface after cutting along the grid

line passing through P1 and its two potential partners. Cutting created a new problem point

P2 that also requires cutting. (c) Surface after cutting along grid line passing through P2 and

its two potential partners. Point A1 is not a problem point, and is paired with B1.

Cutting: Using the unsmoothed distance function, the cutting method loops

through all grid points and labels them as forcing or non-forcing points. When

the algorithm encounters a problem point with three neighbours in the opposite

phase that can only be paired with the problem point, it cuts the surface along

the grid line passing through the problem point and its two potential partners.

For the case shown in panels (b) and (c) of Fig. 10, the problem point P is

treated as though it belongs to phase A, and paired with point B1. Note from

Fig. 10(c) that after cutting, point B1 now has three neighbours in phase A.

However, it is not a problem point, because the neighbour to the right can be

paired with a different partner. The point to the left of B1 can be treated as

an orphan. In some cases, however, a problem point requires two cuts. An

example is shown in Fig. C.26, where point P1 in panel (a) is a problem point

that requires cutting. Panel (b) shows the surface after cutting along the grid

line passing through P1 and two of its potential partners. In this case, cutting

through P1 created a new problem point, labelled P2 in panel (b), that requires
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cutting again. Panel (c) shows the surface after cutting through the grid line

passing through P2 and its two potential partners. As a result, point A1 is not

a problem point and is paired with B1.

All forcing pairs formed through cutting are flagged so that the algorithm

treats them as Case 4 pairs when computing the extrapolation coefficients. No

changes are made to the signed distance function to account for the cut. After all

problem points are paired, the algorithm follows the same steps as the smoothing

method.

Appendix D. Non-uniform grid

Our non-uniform grid places the vertical cell faces at the x-locations

xj = π

[
1 + cos

(
πj

N

)]
, j = 0, 1, 2, ..., N. (D.1)

We similarly place the horizontal cell faces at the y-locations

yj = π

[
1 + cos

(
πj

N

)]
, j = 0, 1, 2, ..., N. (D.2)

Appendix E. Analytical solution for circular Couette flow with con-

jugate heat transfer

The circular Couette flow in Fig. 18(b) has the analytical solution,

ur = 0 for all r, (E.1)

uθ(r) =

C1r +
C2

r for r ∈ ΩA,

0 otherwise,

(E.2)

p(r) =

C2
1
r2

2 + 2C1C2ln(r)− C2
2

2r2 for r ∈ ΩA,

0 otherwise,

(E.3)

T (r) =


Ti +

To − Ti

ln
(
RΓ

Ri

)
+ kA

kB
ln
(
Ro

RΓ

) ln( r

Ri

)
for r ∈ ΩB ,

To −
To − Ti

kA

kB
ln
(
RΓ

Ri

)
+ ln

(
Ro

RΓ

) ln(Ro

r

)
for r ∈ Ωf ,

(E.4)
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where

C1 =
θ̇R2

o

R2
o −R2

Γ

, C2 =
θ̇R2

ΓR
2
o

R2
m −R2

o

. (E.5)

Appendix F. Governing equations in non-inertial rotating frame

Modelling Eqns. (16)-(19) in a non-inertial rotating coordinate frame re-

quires the addition of centripetal and centrifugal terms to the Navier-Stokes

equation [45]. The heat equation in the fluid (phase A) remains unchanged, but

requires an additional term in the solid (phase B). The governing equations in

the rotating coordinate system are

∇ · urot = 0, (F.1)

ρA

[
∂urot

∂t
+ (urot ·∇)urot

]
= −∇p+ µA∇2urot + Fcor + Fcf , (F.2)

ρAcA

[
∂TA

∂t
+ (urot ·∇)TA

]
= kA∇2T, (F.3)

ρBcB
∂TB

∂t
= kB∇2T + FB , (F.4)

where urot, Fcor and Fcf denote the velocity in the rotating frame, coriolis force,

and centrifugal force, respectively. The extra term FB in Eqn. (F.4) arises from

transforming the temporal derivative of TB from stationary to rotating frame

[46]. The additional terms are defined as

Fcor = 2ρAr× θ̇, (F.5)

Fcf = ρA(θ̇ × r)× θ̇, (F.6)

FB = (θ̇ × r) ·∇T, (F.7)

and are discretized explicitly in time. The boundary conditions for velocity in

the rotating frame can be written as

un+1
rot,r

∣∣∣
r=Rs,Ro

= 0, un+1
rot,θ

∣∣∣
r=Rs

= 0, un+1
rot,θ

∣∣∣
r=Ro

= −θ̇Ro, (F.8)

whereas the boundary conditions for temperature remain unchanged.
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[26] J. H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, 3rd

Edition, Springer, 2002.

[27] E. Balaras, Modeling complex boundaries using an external force field on

fixed Cartesian grids in large-eddy simulations, Computers & Fluids 33 (3)

(2004) 375–404. doi:10.1016/S0045-7930(03)00058-6.

[28] K. Luo, Z. Zhuang, J. Fan, N. E. L. Haugen, A ghost-cell immersed bound-

ary method for simulations of heat transfer in compressible flows under dif-

ferent boundary conditions, International Journal of Heat and Mass Trans-

fer 92 (2016) 708–717. doi:10.1016/j.ijheatmasstransfer.2015.09.024.

[29] M. Yousefzadeh, I. Battiato, High order ghost-cell immersed

boundary method for generalized boundary conditions, Interna-

tional Journal of Heat and Mass Transfer 137 (2019) 585–598.

doi:10.1016/j.ijheatmasstransfer.2019.03.061.

[30] J. Lou, J. Johnston, N. Tilton, Application of projection and im-

mersed boundary methods to simulating heat and mass transport

in membrane distillation, Computers & Fluids 212 (2020) 104711.

doi:10.1016/j.compfluid.2020.104711.

[31] J. Finn, S. V. Apte, Relative performance of body fitted and fic-

titious domain simulations of flow through fixed packed beds of

spheres, International Journal of Multiphase Flow 56 (2013) 54–71.

doi:10.1016/j.ijmultiphaseflow.2013.05.001.

46



[32] P.-A. Fayolle, O. Fryazinov, A. Pasko, Rounding, filleting and smoothing of

implicit surfaces, Computer-Aided Design and Applications 15 (3) (2018)

399–408. doi:10.1080/16864360.2017.1397890.

[33] R. Thirumalaisamy, N. A. Patankar, A. P. S. Bhalla, Handling Neumann

and Robin boundary conditions in a fictitious domain volume penaliza-

tion framework, Journal of Computational Physics 448 (2022) 110726.

doi:10.1016/j.jcp.2021.110726.

[34] I. Quilez, 2D Distance Functions, https://iquilezles.org/articles/distfunctions2d/.

[35] J. Yang, E. Balaras, An embedded-boundary formulation for large-

eddy simulation of turbulent flows interacting with moving bound-

aries, Journal of Computational Physics 215 (1) (2006) 12–40.

doi:10.1016/j.jcp.2005.10.035.

[36] J. L. Guermond, P. Minev, J. Shen, An overview of projection methods

for incompressible flows, Computer Methods in Applied Mechanics and

Engineering 195 (44) (2006) 6011–6045. doi:10.1016/j.cma.2005.10.010.

[37] J. Johnston, J. Lou, N. Tilton, Application of projection methods to simu-

lating mass transport in reverse osmosis systems, Computers & Fluids 232

(2022) 105189. doi:10.1016/j.compfluid.2021.105189.

[38] D. L. Brown, R. Cortez, M. L. Minion, Accurate projection methods for the

incompressible Navier–Stokes equations, Journal of Computational Physics

168 (2) (2001) 464–499. doi:10.1006/jcph.2001.6715.

[39] R. D. Guy, A. L. Fogelson, Stability of approximate projection methods

on cell-centered grids, Journal of Computational Physics 203 (2) (2005)

517–538. doi:10.1016/j.jcp.2004.09.005.

[40] J. Kim, P. Moin, Application of a fractional-step method to incompressible

Navier-Stokes equations, Journal of Computational Physics 59 (2) (1985)

308–323. doi:10.1016/0021-9991(85)90148-2.

47



[41] H. S. Udaykumar, R. Mittal, W. Shyy, Computation of solid–liquid phase

fronts in the sharp interface limit on fixed grids, Journal of Computational

Physics 153 (2) (1999) 535–574. doi:10.1006/jcph.1999.6294.

[42] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. von

Loebbecke, A versatile sharp interface immersed boundary method for

incompressible flows with complex boundaries, Journal of Computational

Physics 227 (10) (2008) 4825–4852. doi:10.1016/j.jcp.2008.01.028.

[43] H. S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp in-

terface Cartesian grid method for simulating flows with complex moving

boundaries, Journal of Computational Physics 174 (1) (2001) 345–380.

doi:10.1006/jcph.2001.6916.

[44] A. Gilmanov, F. Sotiropoulos, A hybrid Cartesian/immersed bound-

ary method for simulating flows with 3D, geometrically complex, mov-

ing bodies, Journal of Computational Physics 207 (2) (2005) 457–492.

doi:10.1016/j.jcp.2005.01.020.

[45] J. R. Taylor, Classical Mechanics, University Science Books, 2005.

[46] F. Cariglino, N. Ceresola, R. Arina, External aerodynamics simulations in a

rotating frame of reference, International Journal of Aerospace Engineering

2014 (1) (2014) 654037. doi:10.1155/2014/654037.

48


