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Abstract

Motivated by applications to fluid flows with conjugate heat transfer and
electrokinetic effects, we propose a direct forcing immersed boundary method
for simulating general, discontinuous, Dirichlet and Robin conditions at the in-
terface between two materials. In comparison to existing methods, our approach
uses smaller stencils and accommodates complex geometries with sharp corners.
The method is built on the concept of a “forcing pair,” defined as two grid points
that are adjacent to each other, but on opposite sides of an interface. For 2D
problems this approach can simultaneously enforce discontinuous Dirichlet and
Robin conditions using a six-point stencil at one of the forcing points, and a
12-point stencil at the other. In comparison, prior work requires up to 14-point
stencils at both points. We also propose two methods of accommodating sur-
faces with sharp corners. The first locally reduces stencils in sharp corners.
The second uses the signed distance function to globally smooth all corners on
a surface. The smoothing is defined to recover the actual corners as the grid is
refined. We verify second-order spatial accuracy of our proposed methods by
comparing to manufactured solutions to the Poisson equation with challenging

discontinuous fields across immersed surfaces. Next, to explore the performance
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of our method for simulating fluid flows with conjugate heat transport, we cou-
ple our method to the incompressible Navier-Stokes and continuity equations
using a finite-volume projection method. We verify the spatial-temporal accu-
racy of the solver using manufactured solutions and an analytical solution for
circular Couette flow with conjugate heat transfer. Finally, to demonstrate that
our method can model moving surfaces, we simulate fluid flow and conjugate
heat transport between a stationary cylinder and a rotating ellipse or square.
Keywords: Immersed Boundary Methods, Conjugate Heat Transport, Finite
Volume Methods

Nomenclature

Symbols

a, B Coefficients in the Robin boundary condition, see Eqn. (4).
At Time step (s).

Az, Ay Cell size in x and y-directions (m), see Fig. 1(b).

] Offset for the smoothing method (m).

0 Angular velocity (s71).

r Surface separating phases A and B, see Fig. 1(a).

NL Nonlinear advection term in the Navier-Stokes equation, see Eq. 25.
n Surface normal unit vector, see Fig. 1(a).

u Velocity vector (ms™1).

Xg Point where I" intersects a grid line, see Fig. 4.

W Dynamic viscosity (kgm~!s™1).

QA Domain occupied by phase A, see Fig. 1(a).

Qp Domain occupied by phase B, see Fig. 1(a).

¢(x) Distance function.

) Density (kgm™3).

Z, ¥ Local Cartesian coordinates, see Fig. 5.

ag, by Coeflicients used to apply the Dirichlet condition at I'. See Eqns. (8)-(9).
c Specific heat (Jkg=!K~1).



Ck Coefficients used to apply the Robin condition at T'. See Eqn. (11).
ERRy Ly norm used to measure error. See Eqn. (15).

ERR. L norm used to measure error. See Eqn. (15).

k Thermal conductivity (Wm=1K~1).
L Length and width of computational domain, see Figs. 18(b), and 22.
l Side length of immersed square, see Fig. 22(b).

l1,l  Semi-major and semi-minor axes of immersed ellipse, see Fig. 22(a).

N Number of finite volume cells in both x and y-directions.
D Pressure (Pa).
r, 8  Polar coordinates, see Fig. 18.

Rr Radius of T', see Fig. 18.

R, Radial distance from (z,y) = (0,0) to the local surface of immersed
ellipse or square, see Eq. (30).

R; Inner radius of the annular solid region, see Fig. 18.

R, Outer radius of the annular fluid region, see Fig. 18.

Re Reynolds number.

T Temperature (K).

t Time (s).

xz, y Cartesian coordinates (m).

Ze, Yo Centroid of immersed object (m).

IB Immersed boundary.

1. Introduction

This study is motivated by the challenge of simulating fluid flows over com-
plex surfaces with conjugate heat transfer, as in heat exchangers [1] and porous
media [2, 3]. In such flows, the temperature field must simultaneously satisfy
a Dirichlet and Neumann condition at the fluid-solid interface. In cases where
the surface geometry is also complex, or a parametric study requires simulating
many potential geometries, the generation of body-fitted grids is often a time-

consuming bottleneck [4]. Though not the focus of the current study, when the



surface also moves, as in particulate flows [5], the use of body-fitted grids can
become altogether untenable. Furthermore, while the current study is moti-
vated by conjugate heat transfer, similar interface conditions arise in flows with
electrodynamic effects [6] and phase changes [7].

Immersed boundary (IB) methods are a popular alternative to body-fitted
grids when simulating fluid flows with complex surface geometries. IB meth-
ods can be roughly divided into two approaches, depending on whether they
use continuous or discrete forcing [8]. Continuous forcing was first proposed by
Peskin [9] for simulating blood flow through a heart valve. Peskin’s approach
approximates an immersed boundary by introducing a smoothly varying forc-
ing function in the momentum equations. The method was originally developed
to simulate elastic boundaries, but was extended to rigid boundaries by Beyer
and Leveque [10] and Goldstein et al. [11]. Though second-order accuracy was
reported, these extensions were subject to stability constraints, and did not
provide a sharp representation of the interface [8]. The subsequent rigid multi-
blob method [12, 13] overcame these stability restrictions, but it is not a sharp
interface method, nor is it capable of handling arbitrary boundary conditions.

The discrete forcing approach [14, 15] alleviates the stability constraints of
continuous forcing by discretely deriving a forcing term that provides a sharp
representation of the surface, with up to second-order accuracy. It should be
noted, however, that recomputing the discrete forcing at each time step can
make the simulation of moving boundaries more difficult than with continu-
ous forcing [8]. Within the family of discrete forcing methods, prior work has
simulated conjugate heat transfer using the cut-cell method [16-18], immersed
interface method [19], and direct forcing method [15]. The cut-cell method cuts
and reshapes finite-volume cells traversed by the immersed boundary. The ap-
proach is physically intuitive and accurately represents advective and diffusive
fluxes through the interface. However, cutting and reshaping finite-volume cells
around complex surfaces is complicated in 3D. In some cases, the method also
generates cut cells with small volumes that reduce numerical stability [20]. As

an alternative, the direct forcing method uses numerical interpolation or ex-



trapolation to force the desired interface condition at the immersed boundary.
Though several interpolation methods for simulating conjugate heat transfer
have been developed [3-5, 21, 22|, the proposed extrapolation and interpola-
tion schemes are complicated. In some cases, the simulation of a 2D problem
requires up to 14-point interpolation stencils at every grid point adjacent to an
immersed surface [22]. Such large stencils work well for smooth surfaces but are
difficult to accommodate in sharp corners.

The objective of the current study is to explore a potentially simpler direct
forcing method that can simulate general discontinuous Dirichlet and Robin
conditions to second-order accuracy over complex surfaces with sharp corners.
Though we are motivated by applications to conjugate heat transfer, we de-
velop and verify the method for general discontinuous boundary conditions for
potential future applications to surfaces with phase changes. Our extrapola-
tion procedure uses the concept of a “forcing pair,” defined as two grid points
that are adjacent to each other, but on opposite sides of an interface. For 2D
problems, we show that we can simultaneously enforce discontinuous Dirichlet
and Robin conditions using a six point stencil at one of the forcing points and
a 12-point stencil at the other. In contrast, prior work requires up to 14-point
stencils at both points. The savings become more apparent in 3D problems,
where our method requires a six point stencil at one point and a 20-point sten-
cil at the other, compared to up to 30-point stencils at each point using prior
methods. Furthermore, the extrapolations used in our approach are comparable
in complexity to those already used in cut cell methods [17], but bypass the need
to cut and reshape computational cells.

We note here that the Ghost Fluid Method (GFM) [23] is another popu-
lar method for solving Poisson problems with jump conditions. As opposed to
the current method, GFM does not achieve second-order accuracy when ther-
mophysical properties such as the thermal conductivity vary widely between
domains [24]. The GFM uses a dimension-by-dimension splitting approach to
apply jump conditions. Generally, only the normal component of the jump con-

dition is sharply resolved, whereas the tangential components are smeared. The



present method is inherently multidimensional and resolves all components of
the jump condition sharply. We show that our approach remains second-order
accurate, regardless of the conductivity ratio between the two domains.

The remaining article is organized as follows. In section 2, we present our
IB method for the case of a 2D Poisson problem. In section 3, we verify the
spatial accuracy for eight different immersed surfaces, including cases with sharp
corners. We compare the performance of two approaches of accommodating
sharp corners. The first uses reduced stencils and cuts sharp corners along a
grid line when necessary. The second approach uses the signed distance function
to globally smooth all corners. The smoothing is defined to recover the actual
corners as the grid is refined. In section 4, we extend our IB method to fluid
flows with conjugate heat transport. For that, we couple our method to the
incompressible Navier-Stokes and continuity equations using the finite-volume
projection method of Bell et al. [25]. We verify the spatial-temporal accuracy
of the method by comparing with a manufactured solution. We then apply our
method to the simulation of a circular Couette flow with conjugate heat transfer
through the inner cylinder, which is a test problem considered previously in
[21, 22]. Finally, to demonstrate that our method can model moving surfaces,
we simulate fluid flow and conjugate heat transfer in a circular Couette flow for
which the inner cylinder is replaced with a rotating ellipse or square. To verify
our results, simulations are repeated using both a fixed frame and a frame that
rotates with the ellipse or square. Section 5 summarizes our conclusions. For
completeness, we also provide a comparison of our method with prior work in

the Supplementary Information.

2. Methodology

We present our approach by considering a 2D Poisson equation in the domain
x € [0,27] and y € [0, 27| sketched in Fig. 1(a). Two stationary phases A and B

occupy the domains Q4 and g, respectively, and are separated by the surface
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Figure 1: (a) A two-dimensional test problem where phase B is immersed in phase A. The
phases are separated by surface I'. The unit normal n points from phase B to phase A. (b) The
Cartesian, non-uniform, finite volume grid. The temperature is stored at the cell centroids
(solid dots). Cell boundaries are drawn using solid lines. Point G is a ghost node used to

apply boundary conditions on the external boundary = = 0.

I'. The temperature T'(z,y) satisfies the following Poisson equations,

V2TA = fA(x7y) for x€ QA7 (1)

V3Tp = fp(z,y) for x € Qp, (2)

where f4 and fp are prescribed forcing functions, and the subscripts A and B
denote quantities in the A and B phases, respectively. On the surface T', we

consider general discontinuous Dirichlet and Robin boundary conditions,

Ta| ~Ts| = g(@y) (3)

[0ATa+ Ba(VTa - 0)] = [anTs +B5(VTa 0)] =h(zy), @

where a4, ap, 84, and Sp are constant coefficients, and g and h are prescribed
forcing terms. In a conjugate heat transport problem with continuous temper-
ature and diffusive heat flux at I", the terms g, h, a4, and ap are typically all

zero. On the exterior boundary, we apply the homogeneous Dirichlet conditions

- TA‘ —0. (5)
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Figure 2: (a) The direct forcing method of Fadlun et al. [15]. The solid dots denote grid

points where temperature is stored, and the dashed lines denote grid lines passing through
the grid points. Temperature values at points 1 and 2 are computed by linear extrapolation
from the boundary condition. (b) Method proposed by Balaras [27]. Temperature at the
fictitious point f is interpolated using the neighbouring points so that the Dirichlet condition

at the boundary is satisfied.

We discretize Eqns. (1) and (2) using standard, second-order, finite volume
methods [26] on a non-uniform Cartesian grid, as sketched in Fig. 1(b). The
temperature is stored at the cell centroids (solid dots), and cell boundaries
are drawn using solid lines. For the cell shaded gray, the discretized Poisson

equation (1) can be written as

1 | Tp—Tp Tp—Tw

Ax|zg—2x2p zp—2ow

1

Ay

Ty —Tp Tp—Ts

Yn —Yyp Yyp — Ys

= fA(l’P7yP), (6)

where Az and Ay are the cell dimensions, and the subscripts denote evaluation
at the grid points labeled in Fig. 1(b). The exterior boundary conditions are
applied using ghost nodes. For example, the Dirichlet condition at x = 0 is

approximated as (Tyw + T)/2 = 0, where T is labeled in Fig. 1(b).

2.1. Immersed boundary method

Our IB method can be described as an extension of the original direct forcing

method of Fadlun et al. [15], which was developed to apply Dirichlet conditions
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Figure 3: (a) The forcing points (solid blue dots) do not share the same surface point. This
complicates applying conjugate heat transfer conditions. (b) Method by Nagendra et al. [22].
Four fictitious points (red circles) and their respective interpolation stencils (solid blue dots)

are used to model conjugate heat transfer at I'.

on immersed surfaces. For demonstration, consider the segment of " in Fig. 2(a),
where the solid dots denote grid points where the temperature is stored, and
the dashed lines denote grid lines passing through the grid points. Suppose we
want to solve the Poisson equation (1) for T4, subject to a desired temperature
Tt on the surface I'. The method of Fadlun et al. begins by designating the
point 77 as a “forcing point,” because it has a neighbour in phase B. At the

forcing point, the discretized Eqn. (6) is replaced with the condition
T1(1+CT)70T2:TF, (7)

where 0 = (x5 — x1)(x1 — x2). This condition applies Tr at Xg using linear
extrapolation from points 1 and 2. The method is second-order accurate, but
has some ambiguity as to whether the forcing point 7; should be used to force
the boundary condition at x5 or the point labeled with a solid triangle in Fig.
2(a). To remove this ambiguity, Balaras [27] used bilinear extrapolation to apply
Tt to the point x,, which is the closest surface point to T3, as shown in Fig.
2(b). For that, they introduce a fictitious point f whose value is approximated
using linear extrapolation along the normal n passing through 77 and xs. T is

then approximated in terms of 17, 15, T3, and Tj.
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Figure 4: Forcing pair A;1-Bj circled by a blue dashed line, and the six point extrapolation

stencil used for the Dirichlet condition.

The method of Balaras has been extended to Neumann boundary conditions
by several authors [28-30]. This is usually done by adding a second fictitious
point along the surface normal to allow an approximation of the Neumann con-
dition at the immersed surface. However, this approach becomes less straight-
forward when modeling conjugate heat transfer, because the forcing points on
opposite sides of I' do not share a common surface point, as shown in Fig. 3(a).
Nagendra et al. [22] addressed this issue using a procedure that introduces four
fictitious points, labelled f1, fa, f5, and f4 in Fig. 3(b), that lie on a line normal
to the surface, passing through the forcing point, labelled T} in Fig. 3(b). The
temperatures at these fictitious points are interpolated using neighbouring grid
points, labelled 1-14 in Fig. 3(b). Consequently, each forcing point requires an
interpolation stencil of up to 14 points for 2D simulations, or up to 30 points
for 3D problems. For an unsteady problem, the complexity can be reduced by
using the temperature field from a previous time step for the interpolation [3],

though this may impact numerical stability.

2.2. Current work

The current work builds on that of Nagendra et al. [22] and Das et al. [2, 3],
but leverages the concept of a “forcing pair,” defined as two adjacent grid points
on a common grid line, but on opposite sides of I'. In Fig. 4, the points labelled
Ay and Bj (circled by a blue dashed line) are a forcing pair. These two points
are used to apply the discontinuous Dirichlet and Robin conditions (3)-(4) at

the shared surface point x5, where I' intersects the grid line. This is similar to

10
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Figure 5: Extrapolation stencils to approximate VT4. (a) shows a case where a forcing pair

lies on a horizontal grid line, 71, and (b) where a forcing pair lies on a vertical grid line Z7.

the original approach of Fadlun et al., which uses surface points x5 on the grid
lines. This allows the Dirichlet condition (3) to be applied by approximating

T4 and T at xs using quadratic extrapolation along the grid line,

Ta

~ a1Ta1 + a2Taz + azTys, (8)

Xs

Tp

~ biTp1 + b2TBa + b3TB3, 9)

Xs
where the extrapolation coefficients a; and b; are provided in Appendix A. In
Fig. 4, x5 lies on a horizontal grid line, but the same method applies when xg
lies on a vertical grid line. Substituting these approximations into condition (3)
produces a six point stencil. Note that when setting a desired temperature on
an immersed surface, the method of Fadlun et al. [15] achieves second-order
accuracy using linear extrapolation. For conjugate heat transfer, however, we
found that quadratic extrapolation is required to consistently produce second-
order accuracy for the problems considered in section 3.

The application of the Robin condition (4) requires estimates for VT4 - n
and VT - n. For that, consider the two cases in Fig. 5. Panel (a) shows a

case where xg lies on the horizontal grid line labelled 7;. Panel (b) shows a case

11
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Figure 6: Forcing pair A;1-Bj circled by a blue dashed line, and the 12-point extrapolation

stencil for the Robin condition.

where xg lies on a vertical grid line labelled Z;. To approximate VT4 - n, we

first approximate T4 using a second-order polynomial of the form
TA(.%\, @\) =1+ + 033,‘\2 + C4§+ 05272 + C6./f:l/j\, (10)

where the spatial coordinates Z and 7 are measured relative to the node Aj;.
The coefficients ¢; are determined by fitting Eqn. (10) to six temperature nodes.
A unique solution requires the six nodes to include three points with a unique
z-coordinate, three points with unique a y-coordinate, and a maximum of three
points along any one grid line. Whenever possible, we choose the six points
labelled A; to Ag in Fig. 5. The points As and As lie on the horizontal grid
line passing through A;, while A4 and Az lie on the vertical grid line passing
through A;. The points As and Ag are taken to the left of A; when n, < 0,
and to the right of A; when n, > 0. The points A4 and Aj follow a similar rule
with respect to n,. Leveraging the fact that § = 0 for A, and Az, and ¥ =0

for A4 and As, the expansion coefficients have the solution

12



Figure 7: (a) Special case where the forcing point A lies on I". (b) Orphan point (green star)

and its corresponding surface point, (zs,ys).

o = (@ = 23T + 23Tas — 25Ty oo (8= 22)Ta1 — 25Tap + 29 Tag
2 — ) 3 = )
xow3 (T3 — T2) Tow3 (23 — T2)
C{Jﬁ-ﬁﬂh+ﬁﬂrﬂ@% C_Jw-wﬁm—%ﬂrWﬂm
- ) 5 — )

Y2y3(ys — y2) Yoy3(ys — y2)

::TA1-Th2—-Tk4ﬁ-TMG

c1 =Ta1, Co
T2Y2
(11)
The normal gradient VT4 - n can then be approximated at xg as
VTa-n=mng.(co+2c375 + c¥s) + ny(ca + 2¢57s + c67s). (12)

Expression (12) avoids the need to invert a six-by-six matrix, as in some cut-cell
methods [17]. On a uniform grid, the coefficients ¢; can also be precomputed.
In the special case where n points along a grid line, the polynomial T, (Z, )
reduces to a one-dimensional expression. For example, when n, = 0, Eqn. (10)
simplifies to

Ta(Z) = Ta1 + 2 + ¢37°, (13)

requiring only three grid points along 7; for a second-order extrapolation. Fi-
nally, to apply the Robin condition (4), we repeat this procedure in phase B to
approximate VT'p - n at xs. We also approximate T4 and Tp at x5 as demon-

strated in Eqns. (8)-(9). This produces the 12-point stencil shown in Fig. 6.

13
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Figure 8: Prioritizing forcing pairs in the horizontal direction (a), and vertical direction (b).

Prioritizing forcing pairs in the surface normal direction reduces the number of orphan points.

2.8. Special cases

We found four cases in which the procedure in section 2.2 must be modified.
The cases labelled 1 and 2 below can arise on smooth surfaces, such as a circle.
The cases labelled 3 and 4 tend to arise on surfaces with corners. It is worth
noting that cases 1, 3, and 4 occur in other IB methods as well [3, 30, 31]. Case

2, however, is unique to our method.

2.8.1. Case 1. Forcing point on T’

When a forcing point lies on I', we arbitrarily treat it as a forcing point in
phase A, paired to a neighbouring point in phase B. Fig. 7(a) shows an example
where node A; lies on I', and point Bj is assigned as a partner. Dirichlet and

Robin boundary conditions are then applied as before.

2.8.2. Case 2: Orphan points

Orphan points are forcing points whose only potential partner has already
been paired to another point. Fig. 7(b) shows an orphan point labelled with a
green star symbol. Orphan points only allow the application of one boundary
condition. For simplicity, we apply the Dirichlet condition.

The number of orphan points can be minimized by optimizing the pairing
algorithm. Fig. 8 shows a case where prioritizing pairs along horizontal grid lines
(panel a) produces four orphan points, while prioritizing pairs along vertical grid

lines (panel b) produces no orphans. More generally, we find that if a forcing

14



Figure 9: The extrapolation stencil search area shaded in red. There are only four eligible

extrapolation points in phase B for the forcing pair circled by a blue dashed line.

point has two potential partners, the partner along the vertical grid line should

be prioritized when |ny’ > |nx , and vice versa when |nz| > ‘ny|

2.8.8. Case 3: Alternate stencils

In cases where the local surface geometry cannot accommodate a preferred
extrapolation stencil, we seek an alternative six-point stencil within a maximum
preset search window. If six suitable points are found, we determine the extrap-
olation coefficients using a matrix inversion method detailed in Appendix B.
In cases where a six-point stencil is not found, we consider reduced stencils of
four and five points. Figure 9 shows a reduced four point stencil, labelled B;
- B4. Note that the minimum number of points required to extrapolate the
Robin condition is three, assuming that n does not point along a grid line. The
three-point stencil must be formed so that there is a maximum of two points
along one grid line. An example of a valid three-point stencil would be points By
- B3 in Fig. 9. However, in our experience, the surface modifications discussed
in Case 4 below prevent the need for such three-point stencils, at least for all

geometries considered in this study.

15
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Figure 10: (a) A problem point (labelled P) that can be resolved by refining the grid. (b) A
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problem point (labelled P) that cannot be resolved by grid refinement. (c¢) Resolution of the

problem point shown in panel (b) using the cutting method.

2.8.4. Case 4: Points requiring surface modification

Some surface geometries generate problem points at which no suitable stencil
can be formed within a reasonable search window. In some cases, the problem
point can be resolved by refining the grid, such as the problem point labelled
P in Fig. 10(a). Other cases, however, require special treatment. These cases
tend to occur in sharp corners. For example, the problem point labelled P in
Fig. 10(b) has three potential forcing partners (labelled as purple triangles) that
can only pair with P; however, there is no reasonable stencil for approximating
O0Tp/0x at any of the surface points xs. Refining the grid tends to simply push
the issue further into the corner.

We explore two remedies for such problem points. The first cuts the surface
along a grid line passing through the problem point, as in Fig. 10(¢). The
problem point is then considered as lying on I', and treated as in Case 1 above.
By cutting along the grid line, the surface normal points along the perpendicular
grid line, permitting a co-linear three-point stencil.

The second approach eliminates problem points by rounding all sharp cor-
ners on the surface I'. This is done as “preprocessing,” before seeking forcing

pairs, and has the added benefit of reducing the number of Case 3 points. How-

16
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Figure 11: (a) The contour levels of a signed distance function ¢(x). (b) Smoothing applied to

a equilateral triangle. The true shape is shown as the shaded area, and the smoothed object

in blue dashed line. The smoothing is exaggerated for illustrative purposes.

ever, it has the disadvantage that all corners are rounded, regardless of whether
they contain problem points. We implement the smoothing using an approach
detailed in Fayolle et al. [32]. The approach uses the signed distance function
@(x), for which T is the zero isocontour. For demonstration, Fig. 11(a) shows
isocontours of ¢(x) for an equilateral triangle. The original, unsmoothed, tri-
angle is given by the isocontour ¢ = 0 (solid line). The isocontours ¢ = —0.3,
¢ = 0.3, and ¢ = 0.6 are shown as dashed lines. We see that positive isocontours
(¢ > 0) smooth convex corners, but also expand the object. In contrast, nega-
tive isocontours (¢ < 0) preserve convex corners, but compress the object. To
smooth the convex corners of an object, while otherwise preserving the original
surface away from the corners, Fayolle et al. first compute the distance function
¢.(x) to the compressed surface I, where T, is defined as the zero isocontour of
the function f(x) = ¢(x) — d, where ¢ is a positive number. The final smoothed
surface is then set to the isocontour ¢.(x) = ¢. Fig. 11(b) demonstrates the
smoothed surface (blue dashed line) when § = 0.5. The original unsmoothed

triangle is shaded grey. By setting § proportional to some measure of the cell

17



size (such as the maximum Az or Ay in the domain), the smoothing recovers
the original object as the grid is refined. Using a similar approach, one can also
smooth concave corners [32].

It is worth noting that both methods above (cutting and smoothing) modify
I" from its original shape, which is a common issue when simulating sharp corners
using immersed boundary methods [30, 31, 33]. Though beyond the scope of
this study, future applications to multi-phase fluid-fluid flows may prefer the
cutting method, because it has a smaller impact on the volume of the phases,

particularly on coarse grids.

3. Verification of spatial accuracy for the Poisson equation

Appendix C describes an algorithm we coded in MATLAB to solve the
Poisson problem (1)-(5). Here, we use the algorithm to explore the spatial

accuracy of our method with respect to the following exact solution of Eqns.

(1)-(2),

sin(zx) sin(y X € Qa,

5 Jsn@sin "
cos(x) cos(y) x € Qp,

which is forced by setting fa = —2sin(z)sin(y) and fp = —2cos(z) cos(y).

Equation (14) is a challenging test solution with discontinuous values and gra-
dients on I'. We consider the eight surface geometries sketched in Fig. 12. Panel
(a), which we refer to as a “puzzle piece,” shows a case where both phases are
subject to Dirichlet conditions on the external boundary. The remaining pan-
els show cases where phase B is fully immersed in phase A. The shapes are a
circle (b), square (c), cross (d), hexagram (e), equilateral triangle (f), isosce-
les triangle (g), and a right triangle (h) with angles of 30°, 60°, and 90°. In
panels (b)-(h), we place the centroid of phase B at (x.,y.) = (3.68,3.68). The
distance functions for the geometries in panels (b)-(h) are available in [34]. For
all shapes, we repeat our numerical tests using immersed Neumann conditions

(ea = ap = 0) and Robin conditions. For the Neumann conditions, we consider

18



Figure 12: Eight geometries used to verify the method for the Poisson equation. Phases A
and B are labelled in white font. In panel (a) phase B is shaped similar to a puzzle piece. In
the remaining panels phase B is a circle (b), square (c), cross (d), hexagram (e), equilateral

triangle (f), isosceles triangle (g), and right triangle (h), surrounded by phase A.

the simpler case where 54 = g = 1, as well as the more challenging case where
B4 =1and B = 100. The latter models a case where the thermal conductivity
of the two phases differ by two orders-of-magnitude. For the Robin conditions,
we set aq =3, ag =2 and f4 = Bp = 1. In all cases, we set h(z,y) and g(z, y)
to the forcing terms required by the analytical solution (14). For completeness,
tests were repeated for uniform and non-uniform grids. The results shown here

are produced using a non-uniform grid detailed in Appendix D.
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Slope of fit R?
Geometry Surface modification

ERR. | ERRy | ERR~ | ERRy
Puzzle piece Not applied -1.89 -1.90 0.996 0.996
Circle Not applied -2.00 -2.00 0.998 0.998
Cut -2.07 -2.00 0.998 0.998

Square
Smooth -2.07 -2.00 0.998 0.998
Cut -2.03 -2.03 0.991 0.991

Cross
Smooth -2.00 -2.00 0.990 0.988
Cut -1.97 -1.99 0.948 0.955

Hexagram
Smooth -2.05 -2.05 0.996 0.996
Cut -2.12 -2.11 0.987 0.988
Equilateral triangle
Smooth -2.02 -2.00 0.974 0.975
Cut -1.97 -1.98 0.889 0.894
Isosceles triangle
Smooth -2.09 -2.08 0.950 0.954
Cut -1.84 -1.90 0.947 0.954
Right triangle

Smooth -2.03 -2.02 0.994 0.994

Table 1: The slopes of the linear fits and coefficients of determination (R?) of the ERRoo and
ERRy errorplots for the Neumann case with 4 = 1, 8 = 100.

We measure the spatial error using the two common norms below,

/OLI /OLy (T, Tn)dedy] 0'5, (15)

where T, is the numerical answer. For ERR.,, we use the maximum absolute

For FRRsy, we

ERRy = ||T. — T, _, ERRsy =

error over the internal grid points (excluding ghost nodes).
approximate the integral using the mid-point method. In cases where cutting
or smoothing I" causes a grid point to change phase, we set T, to that of the
modified surface. For example, in Fig. 10, the exact solution at problem point
P is set to T4, not Ts. For the smoothing method, the offset § is set to the

smallest possible value that eliminates all problem points. This value is problem
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Figure 13: Results for the puzzle piece. Panel (a) shows results for the Neumann conditions

(Ba=PBp=1and B4 =1, Bp = 100). Panel (b) shows results for the Robin condition.

specific, and related to the grid resolution.

To explore spatial accuracy, we use N finite volume cells in each direction (a
total of N2 cells), and we investigate the variation of ERR., between N = 75
and N = 500. We use linear regression to find the best fit for all error plots,
and report the coefficient of determination (R?) values for each plot. Figure
12 shows the numerically approximated temperature fields for each geometry
when N = 500 and ay = ap = 0, B4 = Bp = 1. When comparing EFRR,
and FRR,, we found both methods produce similar results. Therefore, we only
present error plots for the FRR., norm. Table 1, however, presents the observed

order-of-accuracies and R? values for each shape, using both norms.

3.1. Puzzle piece

The puzzle piece is the only geometry considered where phase B is not im-
mersed in phase A. No surface modification is applied, because I' produces no
problem points. Figure 13(a) shows FRR, versus N for the immersed Neu-
mann condition with 84 = B = 1 (squares), and S4 = 1, S = 100 (solid
dots). Figure 13(b) shows ERR., versus N for the immersed Robin condition.
The dashed black lines show 1/N?2, the red dash-dotted lines show 1/N, and
solid green lines show best fit power laws. All cases show second-order spatial

accuracy, though ERR in panel(a) is roughly five times larger when S = 100.
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Figure 14: Results for circle. Panel (a) shows results for the Neumann conditions (84 = 8 =

1 and B84 =1, Bp = 100). Panel (b) shows results for the Robin condition.

3.2. Circle

The circle is the simplest of the fully immersed geometries, because the
preferred extrapolation stencil is available for all forcing points, and no surface
modification is needed. Figure 14(a) shows ERR., versus N for the Neumann
conditions with 84 = 8p = 1 (squares) and S4 = 1, Bp = 100 (solid dots).
Figure 14(b) shows ERR., for the Robin condition. All cases show second-order
spatial accuracy. In panel (a), however, the error is roughly 100 times larger
when Sp = 100. We observe this trend for all cases where phase B is fully
immersed in phase A. We hypothesize that it occurs because the temperature
field in a fully immersed object is no longer fixed by Dirichlet conditions on
the external boundary, in contrast to the puzzle piece. It is also worth stressing
that the manufactured solution is an unphysical test problem chosen to challenge
our IB method. In a physical heat transfer problem, the coefficients 84 and Sp
appear in the governing equations, and strongly influence T4 and Ts.

For all immersed geometries considered, the Neumann and Robin conditions
produce nearly identical orders-of-accuracy. Hereinafter, we only present results
for the Neumann condition with 54 = 1, 8 = 100, and we focus our discussion

on the treatment of Case 4 points using cutting and smoothing.
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Figure 15: Spatial error plots for the cross produced by the cutting (a) and smoothing (b)
methods.

3.8. Square and Cross

Figure 15 shows error plots for the cross using the cutting method (panel a)
and smoothing (panel b). The error plots for the square are nearly identical to
those in Fig. 15, and are not shown for brevity. Though the cross and square
have 90° angles, the number of Case 3 and 4 points are few. The cutting and

smoothing methods consequently produce similar second-order accuracy.

3.4. Hexagram

The hexagram is more prone to Case 4 problem points, because it has 60°
angles. Figure 16 shows the error plots generated by the cutting (@) and smooth-
ing (b) methods. We observe second-order accuracy for both methods; however,
the cutting method produces a cloudier error plot. This likely arises because
smoothing eliminates many Case 3 points, whereas cutting only eliminates Case

4 points.

8.5. Triangles

The error plots for the equilateral and isosceles triangles are qualitatively
similar to those observed for the hexagram, and are not shown for brevity.
Figure 17 shows the error plot for the right triangle. As observed for the hex-

agram, the cutting method produces a cloudier plot, which likely explains the

23



[-=1N
- N2
— Linear fit
100 200 300 400 200
N N

300 400

Figure 16: Spatial error plots for the hexagram produced by the cutting (a) and smoothing
(b) methods.

slight reduction in the order-of-accuracy to 1.84. The smoothing has an order-of-
accuracy of 2.03. It is worth noting that the right triangle is the only geometry
we tested for which the cutting method decreased the order-of-accuracy below

1.97.

4. Conjugate heat transport with fluid flow

This section verifies the accuracy of our method when simulating fluid flows
with conjugate heat transport. First, we use the method of manufactured solu-
tions to verify the spatial and temporal accuracy of our method when coupled
to the incompressible Navier-Stokes and continuity equations. Next, we sim-
ulate a circular Couette flow with conjugate heat transfer through the inner
cylinder, which is a test problem considered previously in Refs. [21, 22]. Fi-
nally, to demonstrate that our method can model moving surfaces, we simulate
fluid flow and conjugate heat transfer in a circular Couette flow for which the
inner cylinder is replaced with a rotating ellipse or square. To verify our results,
we repeat the simulations using both a fixed reference frame and a frame that

rotates with the same angular velocity as the ellipse or square.
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Figure 17: Spatial error plots for the right triangle produced by the cutting (a) and smoothing
(b) methods.

4.1. Verification with manufactured solutions

To verify the spatial-temporal accuracy of our method when coupled to a
fluid flow, we consider the 2D domain z € [0,27], y € [0, 27] sketched in Fig.
18(a). Phase B is a solid stationary circle of radius 1.5 centered at (z¢,y.) =
(m, 7). Phase A is a Newtonian fluid, in which the velocity u, pressure p, and
temperature T are governed by the incompressible Navier-Stokes, continuity,

and heat equations,

V.ou=0, (16)

0
pA 67;1 + (u- V)u] = —-Vp+puaV?u+F, (17)

oT
PACA [(9;4 +(u-V)T4| = kAVQT +qa, (18)

where pa, pa, ca, and ka are the fluid’s density, dynamic viscosity, specific

heat, and thermal conductivity, respectively. In phase B, Tp satisfies

0T,
pBCBTtB :ka2T+QB, (19)

where pp, cp, and kp are the solid’s density, specific heat, and thermal con-
ductivity, respectively. In Eqns. (17) - (19), the terms F, ¢4, and ¢p are added

to force the following manufactured solution,
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Figure 18: (a) A solid circle (phase B) immersed in a Newtonian fluid (phase A). Phase B is
centered at (zc,yc) = (m, 7). (b) Circular Couette flow with conjugate heat transfer through
the inner cylinder. The inner cylinder occupies R; < r < Rr, the fluid occupies the region
Rr < r < R,, and the outer cylinder occupies r > R,. Constant temperatures are applied at

r = R; and R = R,, driving conjugate heat transfer through the inner cylinder and fluid.

T sin(x) sin(y) cos(wt), x € Qy4, (20)
cos(x) cos(y) cos(wt), x € Qp,
ue = sin(z) sin(y) cos(wt), x € Qy, (21)
ve = — cos(x) sin(y) cos(wt), x €y, (22)
Pe = sin(x) sin(y) cos(wt), x € Q4. (23)
The solution is steady when w = 0. We apply the following homogeneous

Dirichlet conditions at the exterior boundaries,

Ta

~0. (24)

y=0,27

=0, u
y=0,27

r=0,27

r=0,27

On the immersed surface, we apply the temperature conditions (3)-(4) with
ap=ap =0, 84 =B =1. We also apply the velocity conditions u}r = ue’F
using the linear extrapolation method of Fadlun et al. [15].

We approximate Eqns. (16)-(19) numerically using the methods detailed

in Ref. [30], which are only briefly summarized here. Equations (16)-(19) are

26



(a) (b)

b . h . I
N N[\
nw ne nw N\ ne
A A A S A
\\\\
. m . m . m . \\M“~
TW P TE w P E
A A A A
sw se sw se

(I R oo o fs 0 F
Figure 19: (a) A section of a staggered grid where temperature and pressure are stored at the
cell centroids (solid dots), and velocity components u and v are stored at the cell faces (squares
and triangles, respectively). The shaded area illustrates the control volume for discretizing
the z-component of the Navier—Stokes equations. Nodes P, N, E, W, S, ne, nw, se, and sw
form the stencil for discretizing the nonlinear advection term. (b) A special case where node

P is a regular fluid node but node ne is in the solid.

discretized temporally using a second-order semi-implicit method in which the
diffusion terms are approximated using the Crank-Nicolson method, and the
advection terms are approximated using the Adams-Bashforth method. For
example, the semi-discrete Navier-Stokes equations take the form

u"t! —u”  3NL" — NL" !
+

N Fn+1 + F"
At 2

2 )
(25)

p = _wprti/2 g gv2(un+1 Fu)
where At is the time step, the superscript n denotes time ¢t = nAt, and NL refers
to the nonlinear advection term. Equations (16)-(19) are discretized spatially
using standard, second-order, finite volume methods on a uniform staggered
grid [26]. The pressure coupling is approximated using the projection method
of Bell et al. [25].

Staggered grids can require special treatment when spatially discretizing the
nonlinear advection term (NL) in Eqn. (25) near an immersed boundary. Con-
sider the section of staggered grid in Fig. 19(a), where the temperature and
pressure are stored at cell centroids (solid dots), while the velocity components
u and v are stored at the cell faces (squares and triangles, respectively). The

shaded region represents the control volume used to discretize the z-component
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of the Navier—Stokes equations. Following Ferziger and Peri¢ [26], the discretiza-
tion of NL at node P depends on the u-values at nodes P, E, W, N, and S, as
well as the v-values at nodes ne, nw, se, and sw. However, a complication arises
near an immersed surface, as shown in Fig. 19(b). Here, node P is a normal fluid
point, but node ne lies in the solid (shaded area bounded by the dashed line)
and has no physical value for v. To compute NL at node P, we approximate
Une Using linear extrapolation from neighbouring fluid nodes along a grid line.
A similar technique was employed by Yang and Balaras [35], who extended the
velocity and pressure fields into a layer of nodes in the solid domain.

We verify spatial accuracy by setting w = 0 and integrating from the ini-
tial condition u = p = Ty = T = 0 to steady-state using N finite volume
cells in each direction. We then measure the relative error of each flow field
using the infinity norm (ERR.) defined in Eqn. (15). The pressure error is
not computed in cells with forcing points. We set all thermophysical properties
to unity. Figure 20(a) shows ERR,, versus N for u (asterisks), v (circles), p
(squares), and T (solid dots). The dashed and dash-dotted lines show 1/N?
and 1/N, respectively. We observe second-order spatial accuracy for u, v, and
T, and first-order accuracy for p. Note that the reduced accuracy of the pres-
sure field is a documented issue with projection methods, even in simulations
without immersed boundaries [36-40], and is not related to our proposed IB
method. In our experience, the accuracy of the pressure field produced by the
projection method of Bell et al. [25] is problem dependent, and even in sim-
ulations without immersed surfaces, typically varies between roughly first to
second-order. Though projection methods are used extensively in the immersed
boundary literature, studies often do not report the order of accuracy of the
pressure field. We consequently note here that all remaining simulations in this
section produced first-order spatial accuracy for pressure, similar to that in Fig.
20(a), and are not shown for brevity.

We verify the temporal accuracy by setting w = 4w and integrating from
t =0 to t = 1 using exact initial conditions. The error FRR, of each flow field

is then measured at time ¢t = 1. Fig. 20(b) shows the resulting ERR, versus At.
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Figure 20: (a) Spatial error plot and (b) temporal error plot. Velocity components u and v,

pressure p, and temperature T shown in asterisks, circles, squares, and solid dots, respectively.

The dashed and dash-dotted lines show At? and At, respectively. We observe

second-order accuracy for u, v, and T, and nearly second-order accuracy for p.

4.2. Clircular Couette flow

As further validation, we consider a 2D circular Couette flow with conjugate
heat transfer through the inner cylinder, as sketched in Fig. 18(b). A stationary
solid (phase B) occupies the annular region R; < r < Rp. A fluid (phase A)
occupies the annular region Rr < r < R,. The temperature field is subjected

to the following Dirichlet conditions,

Tn-‘rl _ Ti Tn+1

T:Ri

-7, 26
. (26)

At r = Rr we apply the continuity of temperature and heat flux

n+1

n+1

=k (n-VTB> . (27)

r=Rr

n—+1 _ gm—+1
TA - TB

r=Rr

, kA(n-VTA>

r=Rr r=

The outer cylinder (r = R,) rotates with a steady angular velocity 0, subjecting

the velocity field to the Dirichlet conditions

=0, UZH
r=Rpr,R,

n+1 _ n+1
U, =0,

=0R,, 28
r—Rp Ug (28)

where u, and ugy are the velocity components in the r and 6 directions, respec-
tively. Note that the immersed conditions (26)-(28) are all discretized implicitly

in time. Analytical solutions for u, p, and T are provided in Appendix E.
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Figure 21: Error plot for the circular Couette flow. Velocity components v and v, and tem-

perature T shown in asterisks, circles, and solid dots, respectively.

We simulate the problem using the square computational domain = € [—L/2,
L/2], y € [-L/2,L/2], as shown in Fig. 18(b). The cylinders are centered at
(z,y) = (0,0). On the outer boundary, we apply

- T’ =T, (29)
x=+L/2 y==+L/2

ax=+L/2 - u’y::l:Ly/Q -
We set all thermophysical properties to unity, except for the thermal conductiv-
ity of the solid, which is set to kg = 120. The dimensions of the system are set
to L = 2w, R; = 0.45, Rr = 1.2, and R, = 2.4. We also set T; = 200, T, = 0,
and § = 1. We initialize the simulations with u = 0,7 =0, p=0, and integrate
in time to steady-state. The error ERR, is then computed for each field in the
physical domain R; < r < R,. Figure 21 shows FRR,, versus N. We observe

second-order accuracy for u (asterisks), v (circles), and T' (solid dots).

4.3. Moving solids

Though not the focus of our study, here we demonstrate the ability of our
method to simulate moving solids. For that, we consider fluid flow and conjugate
heat transport in the rotating Couette flows shown in Fig. 22. In panel (a), fluid
occupies the region labelled €2 4, between an outer circular cylinder of radius R,

and an inner co-axial elliptic cylinder with semi-major and semi-minor axes [y
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Figure 22: A rotating Couette flow where the inner cylinder is replaced with a (a) rotating
ellipse of size l1 by l2, or (b) rotating square of size [ by [. The fluid and the rotating
inner cylinder occupy regions €24, and €2p, respectively. A constant temperature difference
is applied between r = R; and R = R,, driving conjugate heat transfer through the inner

cylinder and fluid. The outer cylinder is fixed, and immersed in a domain of L by L.

and [y, respectively. The outer cylinder is stationary, while the elliptic cylinder
rotates about its axis (x = 0,y = 0) with constant angular velocity 6. On the
outer cylinder we apply u = 0. On the inner cylinder, we apply

et =0 et =0R, 30
tr r=R. ’ U9 r=R. ’ ( )

where R, refers to the radial distance from (z,y) = (0,0) to the local surface of
the elliptic cylinder. As in section 4.2, we drive conjugate heat transport through
the fluid and inner cylinder by applying the fixed temperature conditions (26)
at r = R; and r = Ry. On the surface of the rotating ellipse, we apply the
continuity of temperature and heat flux, as in Eqn. (27).

In addition to the flow in Fig. 22(a), we also consider that in Fig. 22(b),
where the ellipse is replaced with a square of size [ by [, rotating about its axis
(z =0,y = 0) with angular velocity 6. For both cases in Fig. 22, we set L = 2,
R; = 0.45, and R, = 2.4. The size of the ellipse is I; = 1.2, I = 1.0, and the
size of the square is [ = 2.12. To eliminate potential Case 4 problem points

on the square, we apply a smoothing of § = 2Ax, where Az is the cell size
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Figure 23: A staggered finite volume grid, and surface I" (dashed line) moving to the right at
three consecutive time levels. At time t”~! point P is a solid point, at t" a forcing point, and

at t"t1 a fluid point.

of the uniform grid. All thermophysical properties are set to unity, except for
kp = 120. We also set T} = 200, T, = 0, and 6 = /4.

Simulating a moving solid raises a new challenge when grid points change
their phase from solid to fluid. These grid points, sometimes called “freshly
cleared cells” [41, 42], do not have the required time history to compute terms
such as NL"™! in the semidiscrete equation (25). This is a common issue in
sharp interface IB methods, including the cut-cell [43], direct forcing [35], and
ghost-cell methods [42]. For demonstration, Fig. 23 illustrates a section of a
staggered finite volume grid. The dashed lines show an interface I' moving to
the right at three consecutive time levels t"~!, ", and t"*1. At time ¢t = t"!,
the u-velocity node labelled P in Fig. 23 lies in the solid (shaded grey), and does
not have a physically meaningful velocity. At ¢t = t", the surface I' moves to the
right, and node P becomes a forcing point in the fluid. Because we apply the
immersed boundary conditions implicitly in time, node P requires no special
treatment at this time step. However, at ¢t = t"*!, node P becomes a regular
fluid point, and we must apply the discretized momentum Eqn. (25). This raises
issues when computing the explicit terms NL" !, V2u”, and Vp".

Because node P lies in the solid at time ¢" !, we discretize advection terms

in the momentum and energy equations using the forward Euler method on
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Figure 24: (a) Errorplot for the rotating ellipse. Velocity components u and v, and tem-
perature T are shown using asterisks, circles, and solid dots, respectively. (b) Temperature

contour plot with streamlines.

freshly cleared cells, as suggested by Udaykumar et al. [41]. This avoids the

computation of NL" L.

For the case shown in Fig. 23, the approximation of
V2u", and Vp" require u? and p%, which both lie in the solid. We address
this issue as previously illustrated in Fig. 19, using the field extension method
of Yang and Balaras [35]. Finally, we restrict the time step to ensure that no
grid point transitions from a solid point to a regular fluid point in a single time
step. Such a scenario would result in the absence of velocity data at ¢t™. This
time step restriction is common in sharp IB methods [8, 35, 44].

Because there is no analytical solution for the flows in Fig. 22, we establish
reference solutions by simulating the flows using a fine grid (N = 600) with
respect to a coordinate system that rotates with constant angular velocity 6. In
this rotating coordinate system, the ellipse and square in Fig. 22 are stationary,
while the outer cylinder rotates with an angular velocity —6. Note that Eqns.
(16)-(19) must also be modified in the non-inertial rotating frame [45], as de-
tailed in Appendix F. The reference simulations are initialized with u = 0,
T = T;, and p = 0, and are integrated in time until they reach steady-state,
which occurs within a full revolution.

To evaluate the spatial accuracy of our method, we run a series of simulations

on grids with IV < 320 in the stationary coordinate system. All simulations are
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Figure 25: (a) Errorplot for the rotating square. Velocity components v and v, and tem-
perature T are shown using asterisks, circles, and solid dots, respectively. (b) Temperature

contour plot with streamlines.

initialized with u = 0, T = T}, and p = 0, and integrated in time until the
ellipse or square completes one revolution. We then use bicubic interpolation to
approximate the velocity and temperature at 40 points equally distributed along
a circle of radius r = 1.8, centered at (z = 0,y = 0). ERR is computed by
comparing results obtained in the stationary coordinate system to the reference
solution in the rotating coordinate system.

Figure 24(a) shows the error plots for the ellipse. The results demonstrate
second-order accuracy for u (asterisks), v (circles), and T (solid dots). Figure
24(b) shows the temperature contour plot overlaid with streamlines. Figure
25(a) shows the corresponding error plots for the square. We again observe
second-order accuracy for both velocity components and temperature for N >
150. The reduced accuracy for N < 150 likely arises due to the strong impact
of smoothing on coarse grids. Figure 25(b) shows the temperature contour plot
overlaid with streamlines. Note that from the streamlines in Figs. 24(b) and
25(b) that the rotating ellipse and square did not generate vortical structures.
This is because the Reynolds number for these simulations, Re = pUR,/p,

where U = R,0 is only 4.5.
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5. Summary and Conclusion

In this work, we developed a direct forcing IB method that simulates general
discontinuous Dirichlet and Robin boundary conditions. Our method is built
on the concept of a forcing pair, defined as two grid points that are adjacent
to each other, but on opposite sides of an interface. For 2D problems, we
can simultaneously enforce discontinuous Dirichlet and Robin conditions using
a six-point stencil at one of the forcing points, and a 12-point stencil at the
other. In comparison, prior work requires up-to 14-point stencils at both points.
We identified four cases (Cases 1-4) that require special treatment. Cases 1,
and 2 can arise for any surface geometry, whereas Cases 3 and 4 tend to arise
only on surfaces with corners. Case 4 occurs when an extrapolation stencil
cannot be formed in a sharp corner, requiring surface modification. We proposed
two surface modification methods (cutting and smoothing) to eliminate Case 4
points. We verified the spatial accuracy of our method by solving the Poisson
equation for eight geometries using a manufactured solution with discontinuous
Dirichlet, Neumann, and Robin conditions. We observed second-order spatial
accuracy for all cases except three, which nevertheless had spatial accuracies
above 1.8. In some cases, we also observed that the cutting method produces
cloudier error plots than smoothing. We also explored the performance of our
IB method for simulating fluid flows with conjugate heat transport over fixed
and moving solids. For that, we coupled our method to the incompressible
Navier-Stokes and continuity equations. First, we verified the spatial-temporal
accuracy of the solver using manufactured solutions and an analytical solution
for circular Couette flow with conjugate heat transfer. We observed second-order
spatial and temporal accuracies for velocity and temperature. For pressure, we
observed first-order spatial, and nearly second-order temporal accuracy, which
is consistent with the projection method [36] used in our discretization of the
Navier-Stokes and continuity equations. Finally, we simulated fluid flow and
conjugate heat transport between a stationary cylinder and a rotating ellipse

or square. Because no analytical solution for flow around a rotating ellipse or
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square exists, we used results obtained in a non-inertial rotating frame as a
reference solution. Second-order spatial accuracy was observed for velocity and
temperature, and first-order for pressure.

Ongoing work focuses on implementing our method in a parallelized 3D CFD
algorithm, with the intent of modelling conjugate heat transport in heat ex-
changers and porous media. Our longer term objective is to extend our method
to moving particles and explore applications to active colloids and packed bed

heat exchangers.
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Appendix A. Extrapolation coefficients for Dirichlet conditions

Consider the example shown in Fig. 4. The extrapolation coefficients a1, aso,
and a3 in Eqn. (8) can be derived by fitting a one-dimensional, second-order
Lagrange polynomial to nodes A;, As, and As. If the extrapolation nodes lie

along a horizontal grid line, the coefficients become

_ (@ — )@, —2y) a — (zs —@1)(zs — 23)
ay = (1 — z2) (@1 — x3)’ 2= (@2 — 1) (22 —23)’ (A1)
as = (xs — 21)(T5 — 2) A2)

(3 — 21)(z3 — 22)’
where 1, xo, x3 are the z-coordinates of nodes Ay, Ao, and As, respectively.

Coefficients b; are similarly computed using the nodes By, By and Bs.
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Appendix B. Matrix method for Robin conditions

When the preferred extrapolation stencil is not available, we compute the

coefficients for the discretized Robin condition (4) as follows. Consider the term
[aATA 4 BA(VT - n)} ) (B.1)

in Eqn. (4). Assuming a six-point extrapolation stencil, we approximate (B.1)

as

6
[aATA +BA(VTy - n)} =Ty, (B.2)
j=1

where ¢; are coefficients, and T4, are the temperatures at the six nodes. To

determine ¢;, we expand the temperatures T4; in a 2D Taylor series about xs,

oT oT Az? 92T
TAj :TA % +Al‘j67; +ij ayA 2j asz + ...
AyF 9Ty Ay;jAx; 9Ty

, (B3)

Xs

2 0y? 2 Qyox

Xs
where Az; = xs — x4;, and Ay; = ys — ya;. Substituting these expansions
in Eqn. (B.2) and comparing coefficients, one can show that a second-order

approximation requires

1 1 1 1 1 1 a ol
Axq Axy Axs Axy Axs Axg Ca Bang
Ay Ay Ays Ay Ays Ays ez  |Bany
Az} Az Az} Ax? Az? Az} al | o
Ayt Ays Ay3 Ayj Ay3 Ayg | |6 0

_Aylel Ay Axs  AysAxs AysAzy AysAxs AyﬁAxg_ _cAﬁ_ I 0 |
(B.4)

Note that the coefficients ¢; obtained using this approach are input directly into
the global matrix, and are therefore not equivalent to the coefficients c¢; given
in Eqn. (11). However, the approach shown here is equivalent to the procedure
in Section 2.2, where we approximate T4 in the vicinity of I' as a biquadratic

polynomial (10).
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Appendix C. Practical implementation in MATLAB

Here we summarize the algorithm we coded in MATLAB to solve the Poisson
problem (1)-(5). The algorithm is used in Section 3 to explore the spatial
accuracy of our method. For a given grid with a total of M = (N, +2)(N, +2)
grid points, the algorithm builds a sparse matrix problem AT = b, where T is
a M x 1 vector containing the unknown temperatures at the grid nodes, b is a
M x 1 vector containing the forcing terms (e.g. fa, fB, g, h), and A is a M
x M matrix containing the spatial discretization of the differential operators in
(1)-(5).

To identify forcing points and compute the normal n to the interface, we use
the signed distance function ¢(x), defined as positive in phase A and negative
in phase B. For example, if phase B is a circle of radius R centered at (x,y) =

(e, ye), as in Fig. 12(b), the distance function is given by

gb((E,y) = \/(1' - xc)2 + (y - yc)2 - R. (Cl)

Consider the grid point labelled P in Fig. 1(b). The point is defined a non-
forcing point if ¢p is non-zero and has the same sign as ¢g, ¢, dw, ds, where
the subscripts denote ¢ evaluated at the points labeled in Fig. 1(b). We build
the corresponding row of A and b by applying the Poisson equation (1) if ¢p > 0
and (2) if ¢p < 0. For ghost nodes, we apply boundary condition (3).

Any grid point for which ¢p = 0, or for which ¢p has a different sign than
any of its four neighbours, is a forcing point. In that case, the computation of

the corresponding rows in A and b depend on the procedure for Case 4 points.

Smoothing: In the case of smoothing, we compute ¢(x) using the method
detailed in Section 2.3.4, prior to defining forcing and non-forcing points. We
set the smoothing factor to § = YAZqe, Where Ax,,q, is the maximum cell
width in the domain. As the algorithm loops through the grid, defining forcing
and non-forcing points, it defines a forcing point as a problem point if the point

has three potential partners that can only pair with the forcing point, as in
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Fig. 10(b). If a problem point is found, the algorithm terminates and displays a
warning to increase . Though this process was sufficient for our purposes, the
algorithm could be automated to find the minimum required smoothing.

If no problem points are found, the algorithm loops through all forcing points
searching for points with two potential partners. If found, pairs are formed
based on the surface normal, as detailed in section 2.3.2. The surface normal,
n is computed from the signed distance function using centered differencing.
When a forcing pair is formed, both grid points are flagged so that they cannot
be used to form another pair. After all forcing points with two potential partners
have been identified and paired, the algorithm then loops through the remaining
forcing points to either pair them, or label them as orphan points.

The algorithm then loops through every forcing pair, building extrapolation
stencils as detailed in Section 2.2, and computing the extrapolation coefficients,
and forcing terms (g, h) for the Dirichlet and Robin conditions. When seeking
an extrapolation stencil for the Robin condition, the algorithm first checks if
the preferred stencil is available. If not, the algorithm searches for other six-
point stencils where the points Ay and As lie on the horizontal grid line passing
through A, while A4 and As lie on the vertical grid line passing through Ay,
as labelled in Fig. 5. The extrapolation coefficients for these stencils can be
computed analytically. If such stencils are not found, the algorithm seeks any
six-point stencil containing three points with a unique z-coordinate, three points
with unique a y-coordinate, and a maximum of three points along any one grid
line. If found, the extrapolation coefficients can be computed using the method
detailed in Appendix B. If a six point-stencil is not found, the algorithm uses
a Case 3 alternate stencil. If a problem point with no suitable extrapolation
stencil is encountered, as in Fig. 10(a), the algorithm terminates and displays a
warning to refine the grid. Once the extrapolation coefficients and forcing terms
are computed for every forcing pair and orphan point, they are input into the
corresponding rows of A and b. The matrix is then solved using MATLAB's

sparse direct solver.
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Figure C.26: (a) Problem point P; requiring cutting. (b) Surface after cutting along the grid
line passing through P; and its two potential partners. Cutting created a new problem point
P» that also requires cutting. (c¢) Surface after cutting along grid line passing through P» and

its two potential partners. Point A; is not a problem point, and is paired with Bj.

Cutting: Using the unsmoothed distance function, the cutting method loops
through all grid points and labels them as forcing or non-forcing points. When
the algorithm encounters a problem point with three neighbours in the opposite
phase that can only be paired with the problem point, it cuts the surface along
the grid line passing through the problem point and its two potential partners.
For the case shown in panels (b) and (c¢) of Fig. 10, the problem point P is
treated as though it belongs to phase A, and paired with point B;. Note from
Fig. 10(¢) that after cutting, point By now has three neighbours in phase A.
However, it is not a problem point, because the neighbour to the right can be
paired with a different partner. The point to the left of By can be treated as
an orphan. In some cases, however, a problem point requires two cuts. An
example is shown in Fig. C.26, where point P; in panel (a) is a problem point
that requires cutting. Panel (b) shows the surface after cutting along the grid
line passing through P; and two of its potential partners. In this case, cutting

through P; created a new problem point, labelled P in panel (b), that requires
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cutting again. Panel (¢) shows the surface after cutting through the grid line
passing through P, and its two potential partners. As a result, point A; is not
a problem point and is paired with Bj.

All forcing pairs formed through cutting are flagged so that the algorithm
treats them as Case 4 pairs when computing the extrapolation coefficients. No
changes are made to the signed distance function to account for the cut. After all
problem points are paired, the algorithm follows the same steps as the smoothing

method.

Appendix D. Non-uniform grid

Our non-uniform grid places the vertical cell faces at the xz-locations

zj =7r[1+cos (%)} j=0,1,2,..,N. (D.1)
We similarly place the horizontal cell faces at the y-locations
n —W{l—i—cos C\?)} j=0,1,2,...N. (D.2)

Appendix E. Analytical solution for circular Couette flow with con-

jugate heat transfer

The circular Couette flow in Fig. 18(b) has the analytical solution,

up, =0 for all r, (E.1)
C’l’l“—‘y-c2 for r € Qgu,
ug(r) (E.2)
otherwise,
+ 20, CaIn(r) — % for r € Q4, (F.3)
otherwise,
_T r
! In( — for r € Qp,
:—;ln(%‘j) (Rz) B
E.4
o R (E.4)
& n(52)  forreqy,
() +n(z) N r
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where
OR2 O0R2R2
Ro 02 RI‘RO

Cy = ——0 = o
""" RZ-RY R2 — R?

(E.5)

Appendix F. Governing equations in non-inertial rotating frame

Modelling Eqns. (16)-(19) in a non-inertial rotating coordinate frame re-
quires the addition of centripetal and centrifugal terms to the Navier-Stokes
equation [45]. The heat equation in the fluid (phase A) remains unchanged, but
requires an additional term in the solid (phase B). The governing equations in

the rotating coordinate system are

V- Uyot = O, (Fl)
au'r’ot 2
PA 7 + (urot : V)u'rot = _Vp + NAV Ut + Feor + Fcf7 (F2)
oT’
paca| =5+ (Uror - V)T | = kaV°T, (F.3)
oT;
pBCBTf =kpV>T + Fp, (F.4)

where U,;, Feor and F.y denote the velocity in the rotating frame, coriolis force,
and centrifugal force, respectively. The extra term Fp in Eqn. (F.4) arises from
transforming the temporal derivative of T from stationary to rotating frame

[46]. The additional terms are defined as

Feor = 2PAI‘ X év (F5)
Fof = pa(f xr) x0, (F.6)
Fp=(@xr) VT, (F.7)

and are discretized explicitly in time. The boundary conditions for velocity in

the rotating frame can be written as
n+1 _ n+1 o n+1 .
Urot,r r=R.. R, =0, Upot,0 r—R. =0, Upot,0 r=R, - aRoa (F8)

whereas the boundary conditions for temperature remain unchanged.
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