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Abstract
Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match
liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets
into liquidity pools. However, the asset trading prices in these pools often trail behind those in
more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is
tackled by adapting market maker bonding curves to trader behavior, based on the classical market
microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for
the market maker’s prices. We derive the differential equation that an optimal adaptive curve
should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality
equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A
key feature of our method is its ability to estimate the external market price without relying on
price or loss oracles. We also provide an equivalent differential equation for the implied dynamics
of canonical static bonding curves and establish conditions for their optimality. Our algorithms
demonstrate robustness to changing market conditions and adversarial perturbations, and we offer
an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.
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1 Introduction

Market making plays a crucial role in enhancing liquidity in financial systems. In traditional
finance, effective market making strategies involve setting buy and sell prices (bid and ask
quotes) as narrowly separated as possible, ensuring these quotes closely mirror the asset’s
true price on a limit order book. This strategy enables market makers to earn a marginal
profit. Such efficacy in market making is driven by sophisticated models that analyze trader
behavior [25, 34, 27]. These models have become fundamental in understanding the principles
of microeconomics and the microstructure of markets.

Market Makers in DeFi. In the field of Decentralized Finance (DeFi), the concept of
automated market making has gained prominence. DeFi employs Automated Market Makers
(AMMs), particularly Constant Function Market Makers (CFMMs) [45][2], offering an
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25:2 Adaptive Curves for Optimally Efficient Market Making

alternative to traditional limit order books. This approach reduces the computational effort
needed to facilitate trades and ensures liquidity is available for tokens that are less frequently
traded. Unlike conventional markets that primarily utilize limit order books for Peer-to-Peer
transactions, decentralized markets implement a Peer-to-Pool-to-Peer structure. In this
model, Liquidity Providers (LPs) aggregate their resources in a contract, which traders then
utilize to meet their liquidity needs. Thus, any DeFi market needs to incentivize both the
LPs and the traders to ensure a fair and efficient market is created.

Market depth and volatility. DeFi markets exhibit a range of distinct characteristics,
primarily differentiated by market depth (or liquidity) and price volatility. Notably, the
trading volume of stablecoins (approximately $11.1 trillion) has recently exceeded the
transaction volumes of centralized entities like MasterCard and PayPal [31]. Markets with
significant liquidity, especially those trading stablecoins, are highlighted in this context [35].
Such markets typically experience minimal volatility, and their substantial depth minimizes
the price impact of retail trades. Conversely, DeFi features hundreds of infrequently traded
tokens, which suffer from a lack of liquidity, leading to high volatility and price sensitivity to
even small-scale retail trades. These markets are also susceptible to swings in price caused
by flash loan transactions [59]. This paper addresses the optimization of market making
strategies for the latter (less liquid) kind of markets.

Incentives of LPs. A key challenge for Constant Function Market Makers (CFMMs) is
motivating Liquidity Providers (LPs) to contribute their tokens to the pool. For this incentive
to work, it is crucial for CFMMs to minimize the average losses on pooled assets. Yet, it is
widely acknowledged that LPs often incur losses due to fluctuations in reserves [36] and a
lack of market insights [43]. This paper concentrates on reducing the losses that stem from
such informational deficiencies. Specifically, static curves in CFMMs frequently lead to LP
losses as a result of arbitrage activities. These losses are intended to be offset by transaction
fees, contrasting with centralized exchanges which benefit from higher liquidity and trading
volumes but impose lower fees. For example, Binance, a centralized exchange, records a
daily trading volume of approximately $15 billion, significantly higher than Uniswap’s $1.1
billion [9], the largest decentralized exchange. The lower liquidity on platforms like Uniswap
results in less current prices, making them more susceptible to arbitrage losses.

Arbitrage Loss. The specific type of arbitrage loss known as loss-versus-rebalancing (LVR)
can be quantified in certain scenarios [43], and these losses continue to occur despite the
implementation of trading fees [41]. In the case of a generic market maker who sets bid and
ask prices for a volatile asset, arbitrage losses are defined relative to the asset’s true market
price. An arbitrageur engages in a buy transaction when the market price surpasses the ask
price, and in a sell transaction when it drops below the bid price. The resultant loss for the
market maker is calculated as the product of the price difference and the volume of the asset
traded.

Trader behavior. In traditional financial systems, arbitrage-related losses are conceptualized
as adverse selection costs, which arise from interactions with informed traders – those who
are privy to the external market price, akin to arbitrageurs. A market maker achieves
optimal operation by balancing these costs against the profits gained from uninformed
traders, also known as noise traders. This balancing principle was first delineated by Glosten
and Milgrom [25]. Within the Decentralized Finance (DeFi) ecosystem, trading parties
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are differentiated into toxic and non-toxic order flows, which correspond to informed and
uninformed traders, respectively [48, 15]. We extend this model to a more nuanced framework
where traders are categorized along a continuous spectrum of information awareness, ranging
from highly informed to completely uninformed, rather than being strictly classified as either
toxic or non-toxic (Section 3).

CFMMs as prediction markets. For CFMMs, a significant portion of their losses also
arises from the need to encourage traders to disclose their genuine price perceptions during
transactions. In essence, CFMMs provide compensation to informed traders in exchange for
their crucial market insights, which mirrors the principles of market scoring rules utilized in
prediction markets to extract valuable information [24].

Conditions for optimality. A straightforward approach to reduce losses to arbitrage would be
aligning the marginal price exactly with the external market price, which would require real-
time data from a price oracle [16]. Yet, integrating oracles with market making strategies can
lead to potential frontrunning risks [37] and necessitates reliance on centralized, potentially
manipulable external entities [21, 67]. To circumvent these issues, our framework explicitly
excludes the use of oracles. The objective is to deduce the hidden market price by analyzing
trade history data, aiming for maximum efficiency in terms of data utilization. Further, the
market maker uses this to adaptively set its bonding curve so that the loss to arbitrageurs is
as close to zero as possible, ensuring an optimally efficient market. The market maker turning
a profit would be undesirable since this would allow a competitor to undercut its prices and
take away their order flow. In other words, it should quote an efficient and competitive
market price, given only the information it has in form of the trading history. Keeping this
objective in mind, we outline the key contributions of this work.

Our contributions
Optimal algorithms for adapting curves. (Section 4) We provide the differential equation
that the demand curve of an optimally efficient market should follow (Theorem 1). When
the statistics governing trader and price behavior are known and Gaussian/Lognormal, we
show that this differential equation can be solved exactly using a dynamic bonding curve
that changes its operating point using the Kalman Filter (Theorem 2 and Theorem 3).

Adapting to unknown market conditions. When the statistics governing trader and price
behavior are unknown, we extend the previous approach by using an Adaptive Kalman Filter.
We empirically show that both these approaches suffer significantly lower arbitrage losses
compared to a static CFMM. (Section 5.2)

Robustness to adversarial manipulation. In presence of irrational traders that seek to
make the price of the market maker deviate from the external market, we present a robust
version of the adaptive curve algorithm that tolerates upto 50% of trader population being
adversarial. (Section 5.3)

Comparisons with static curves. (Section 6) We provide theoretical comparisons of static
and the proposed adaptive curve models by showing that the error in the adaptive AMM
price, when viewed as an oracle, decays with more trades, while that of a static curve remains
unchanged (Theorem 4).
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25:4 Adaptive Curves for Optimally Efficient Market Making

Implied dynamics of static curves. (Section 6)We derive a differential equation (30) that
governs the implied dynamical model given the static CFMM curves that are used in practice.
We show that these CFMMs can only be optimally efficient in a model where inter-block time
for the underlying blockhchain vanishes, the CFMM has more liquidity than the external
market, and that the trader and price behaviour is severely constrained. (Theorem 5)

On-chain Implementation. We specify the end-to-end system design for our proposed
market maker. Furthermore, we provide an implementation of our algorithm using the
recently released Uniswap v4 [57] platform and an off-chain machine learning co-processor
Axiom [51]. This co-processor provides guarantees that the algorithms derived in this work
are executed, and the result is put securely on-chain. (Section 8)

2 Related work

In this section, we reprise relevant literature surrounding the problem formulated in this
paper. Although the motivation of the problem stems from literature studying AMMs in
DeFi, our formulation derives heavily from classical works in market microstructure. The
algorithms that we present in our work derive heavily from literature on control and robust
filtering.

Automated Market Makers. Automated Market Makers (AMMs), particularly in the form
of Constant Function Market Makers (CFMMs) [66, 45], are designed to incentivize trades
that align prices with a more liquid external market [3]. However, this mechanism imposes
costs on CFMM liquidity providers while generating profits for arbitrageurs [23, 29, 61].
This arbitrage profit, often quantified as “loss-versus-rebalancing” in scenarios where only
arbitrageurs (informed traders) interact with the market maker, is proportional to external
price volatility [43]. Various methods have been proposed to capture this loss, including
on-chain auctions [39] and the application of auction theory to dynamically recommend ask
and bid prices for an AMM [42]. Another recent study [26] suggests an optimal curve for a
CFMM based on liquidity providers’ price beliefs. However, this study does not consider a
dynamic model where traders react to market maker price settings. In [42], a dynamic trading
model is examined, deriving optimal ask and bid prices. Yet, this approach necessitates
the market maker’s knowledge of underlying model parameters, limiting adaptability to
market conditions. Additionally, while [42] focuses on a monopolistic market maker, our
work examines a competitive market maker. Our research aligns closely with [46], which
addresses competitive market conditions but only within a liquid, non-volatile market with
restricted trade sizes. Reinforcement learning algorithms to adapt CFMM bonding curves
have been explored in [14], though the primary objectives there are fee revenue control and
minimization of failed trades.

Optimal market making. The trader behavior model we employ is derived from the Glosten-
Milgrom model [25], which is widely used in market microstructure literature. However, we
modify it to incorporate a continuously changing external price. Several subsequent studies
[17, 18] develop optimal market-making rules within a modified Glosten-Milgrom framework,
but they assume that the underlying model parameters are known and that external price
changes are communicated to the market maker. A more data-driven reinforcement learning
approach is taken in [12], but their reward function presupposes direct information about
the external hidden price, whereas we assume no access to a price oracle. Another aspect of
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optimal market making in traditional market microstructure literature focuses on inventory
management [30, 7], rather than the information asymmetry between traders and market
makers. Our goal is to design a market maker that mitigates losses due to information
asymmetry, similar to the Glosten-Milgrom model, without imposing inventory constraints.
The Glosten-Milgrom model has been considered for AMMs in DeFi, though only for
individual trades [5, 4].

Optimal filtering and control. The classical filtering and control literature underpins many
contemporary automated systems, offering theoretical foundations and practical applications
for dynamic system regulation. Kalman filtering, a robust statistical method, is widely used for
estimating the state of a linear dynamic system from incomplete and noisy measurements [32].
This technique combines real-time measurements with prior estimates to produce updated
predictions, proving crucial for systems requiring high accuracy and responsiveness, such
as navigation systems, aerospace engineering, and automated trading. In control theory,
concepts like optimal control and feedback mechanisms are fundamental for designing systems
that maintain desired output levels despite external condition changes. These principles
have been extensively explored in works such as [65], and further developed through modern
control theories addressing non-linearities and uncertainties in system dynamics [68]. The
integration of filtering and control methodologies has led to the development of Adaptive
Kalman Filtering [40], which adjusts its parameters based on observed errors, enhancing
performance in varying conditions. Adaptive Kalman Filtering has seen applications in
diverse areas, including robotics [63], automotive systems [28], and finance [20], illustrating
its versatility and robustness in handling dynamic, uncertain environments.

3 Preliminaries and model

We now describe the framework used for modeling trader behavior in response to the evolution
of an external price process, that is hidden from the market maker, and the prices set by the
market maker. We also state the objective that the market maker seeks to optimize, and
provide the motivation behind it. The model and the objective are based on the canonical
Glosten-Milgrom model [25] studied extensively in market microstructure literature. We
assume that the market maker has access to an inventory of the asset and numeraire. The
price of the asset is expressed in terms of the numeraire. We assume that time is discrete
and indexed by t.

External price process. The external price process pt
ext of a risky asset is assumed to follow

a discrete time random walk, where the distribution of a price jump at any t is parametrized
by σ. That is, we have

pt+1
ext = pt

ext + ∆pt
ext (1)

where ∆pt
ext is i.i.d. ∼ Dσ,pt

ext
. Intuitively, the parameter σ can be thought of as a measure

of volatility of the external price. Further, the random process pt
ext can either represent the

price of the asset in a larger and much more liquid exchange, or some underlying “true” value
of the asset. In both cases, we assume that it is hidden from the market maker. To put it in
DeFi terms, the market maker does not have an access to any “price oracle” that can tell it
information about this external price.

AFT 2024
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Market Maker. The market maker consists of a pool containing an asset and a numeraire.
It then publishes a demand curve gt(p) [42] before each trade. All traders have full access to
the demand curve at any time. The demand curve specifies how the price of the asset changes
based on the inventory available. In particular, g(pt

0) specifies the amount of asset when
the initial operating point of the demand curve is pt

0. That is, the price of an infinitesimal
amount dx of asset is pt

0dx. The amount of numeraire in the inventory at the same operating
point is −

∫ pt
0

0 pdg(p). For an incentive compatible market maker, we constrain g(.) to be
non-increasing (Proposition 2.1 in [42]). Equivalently, the market maker may be represented
by the canonical bonding curve ϕt(x, y) [66] which is a function (of reserves x, y of the asset,
numeraire respectively) that stays constant over any single trade.

Trader behavior. We assume that a trader appears at every time step t, and sees a noisy
version of the external price in each time step, denoted by pt

trad, with the noise distribution
being parametrized by η.

pt
trad = pt

ext + ∆pt
trad (2)

where ∆pt
trad is i.i.d. noise ∼ Dη,pt

ext
sampled at each time step. Intuitively, the parameter η

can be construed as measuring the level of “toxicity” or informed nature of the traders.

Trade actions. As mentioned before, the market maker publishes a demand curve gt(p) at
each time step. The trader performs a trade that brings the operating point of the demand
curve from pt

0 to pt
trad. Thus, the trader behaves as if it is performing arbitrage between a

market with price pt
trad and the demand curve published. For instance, if the operating point

pt
0 of the market maker is less than the trader price pt

trad, then a trader would buy asset from
the market maker to sell on the external market until the operating point shifts to pt

trad.

Objective. Our objective is to design an algorithm to set ask and bid prices for the market
maker, such that the expected loss with respect to the external market is minimized and the
market maker stays competitive. Taking inspiration from [25], but extending to the modified
trader behaviour, we get the following condition

pt = E[pt
ext|Ht−1, pt

trad] ∀pt
trad (3)

where Ht−1 = ⟨(pτ
trad, gτ (.))⟩t−1

τ=0 is the history of trades and demand curves until time t− 1,
and pt is the net price of the trade (the ratio of change in the reserves of the numeraire with
the change in the reserves of the asset).

Interpreting the objective. Setting the prices as per the above objective makes the expected
loss of the market makers to traders vanish, since

E[(pt
ext − pt)|Ht−1] = 0 (4)

Note that the expression above quantifies the expected loss for per unit trade of the asset.
The market maker can obtain a strictly positive profit by choosing a curve with slightly

higher prices (than the ones obtained in (3)) on the ask side or slightly lower prices on the
bid side (in other words, by choosing a CFMM with a higher curvature [4]). However, doing
this would make it less competitive, since any other market maker with slightly greater bid
or a slightly lesser ask would offer a better price and take away the trade volume. Although
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we do not explicitly model other market makers, their presence is implicit in setting prices
according to (3). This equation represents the ideal conditions for capital efficiency, where
both the trader gets the best price possible while the market maker avoids a loss.

Also, note that the market maker incurs a loss in every trade made by an perfectly
informed trader. Thus, to make the expected loss vanish, it should learn to set prices so
that the loss to more informed traders is balanced by the profit obtained from less informed
traders. The equation (3) can also be interpreted as striking this balance.

4 Differential Equation for the optimal curve

As mentioned in Section 3, we make use of the general demand curve formulation for market
makers. Assume that the amount of asset in reserves at any price pt

0 is gt(pt
0), while the

amount of numeraire is −
∫ pt

0
0 pdgt(p), where the function gt needs to be non-increasing for

the AMM to be incentive compatible [42]. Here, pt
0 is the initial operating point of the AMM

at the beginning of the time slot t. Let ft(p) be the belief (probability distribution function)
of the AMM over the price p of the asset at time t. Let fη(p) be the distribution of noise
through which the price is observed by the traders. Let pt

trad be the price that the trader
observes. Then, the trader would make a trade with the AMM such that the marginal price
of the asset just after the trade is pt

trad. We now solve the optimal market conditions given
by (3).

In this case, the effective price of a trade at time t is given by

pt =
−

∫ pt
trad

pt
0

pdgt(p)
gt(pt

0)− gt(pt
trad) , (5)

where pt
0 is the operating point of the AMM just before the trade. Further, by definition of

conditional expectation of the external market price, we also have

E[pt
ext|Ht−1, pt

trad] =
∫ ∞

0 pfη(pt
trad − p)ft(p)dp∫ ∞

0 fη(pt
trad − p)ft(p)dp

. (6)

since the noise at time t is independent of the external price at time t. Substituting (6) and
(5) in (3) gives us

−
∫ pt

trad

pt
0

pdgt(p)
gt(pt

0)− gt(pt
trad) =

∫ ∞
0 pfη(pt

trad − p)ft(p)dp∫ ∞
0 fη(pt

trad − p)ft(p)dp
∀pt

trad (7)

Rearranging gives us

gt(pt
trad) = gt(pt

0) +

∫ pt
trad

pt
0

pg′
t(p)dp

β(pt
trad) ∀pt

trad (8)

where βt(pt
trad) =

∫ ∞

0
pfη(pt

trad−p)ft(p)dp∫ ∞

0
fη(pt

trad
−p)ft(p)dp

. On the other hand, if we let pt
trad → pt

0 in (7), we
get

pt
0 = βt(pt

0) (9)

Thus, using (8) and (9), the demand curve of the optimal market maker can be given by the
following theorem.

AFT 2024
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▶ Theorem 1. Let the amounts of asset and numeraire in the reserves of a market maker
be xt

0, yt
0. Then, the optimal demand curve gt(p) for a market maker obeys the following

differential equation

(βt(p)− p)g′
t(p) + β′

t(p)gt(p)− β′
t(p)xt

0 = 0 (10)

with the constraints limδ→0− g(pt
0 + δ) ≥ xt

0 and limδ→0− −
∫ pt

0+δ

0 pdg(p) ≥ yt
0. This equation

can be solved separately for p > pt
0 and p < pt

0. Furthermore, the initial operating point pt
0 is

a solution to the fixed point equation

p = βt(p). (11)

The differential equation (10) is obtained by simply applying the Leibniz rule of the
derivative of a definite integral on (8). Note that we can rewrite (8) as∫ pt

trad

pt
0

(
1− p

βt(pt
trad)

)
dgt(p) = 0 (12)

We see that a discontinuity at pt
0 implies that dgt(p) is not a differential but is a negative

real number. Since p = βt(p) at pt
0, we have the term inside the integral → 0 as pt

trad → pt
0.

This implies that a discontinuity in gt(p) is allowed at pt
0. Further, since the (12) holds for

pt
trad > pt

0 and for pt
trad < pt

0, the differential equation can be solved separately for p > pt
0

and p < pt
0.

Finally, assuming that the AMM finds solutions to (10) and (11), the trader is free to
move the market to pt

trad. The market maker then simply uses Bayes’ rule to update its
beliefs over the external prices as

ft+1(p) = fη(pt
trad − p)ft(p)∫ ∞

0 fη(pt
trad − p)ft(p)dp

(13)

The updated belief ft+1(p) is now used to compute βt+1(p), thus completing the market
making algorithm. Equations (10), (11) and (13) describe the complete dynamics of an
optimally efficient market maker.

5 Optimal Solutions for special cases

In this section, we present solutions to the differential equation derived in Theorem 1 for
some special cases: Gaussian and Lognormal price jumps and trader noises. That is, we
assume that both ∆pt

ext and ∆pt
trad follow a Gaussian or Lognormal distribution. Under

these assumptions, we get the following key results.

5.1 Kalman Filter algorithm for known market parameters
▶ Theorem 2. If ∆pt

ext ∼ N (0, σ2) and ∆pt
trad ∼ N (0, η2) where σ, η are known to the

market maker, then the fixed point equation pt
0 = βt(pt

0) (11) has a unique solution given by
the Kalman filter [32] estimate of pt

ext, that is, we have

pt
0 = E[pt

ext|Ht−1]. (14)

Further, the differential equation (10) has a family of solutions, given by

gt(p) =

xt
0 + yt

0
pt

0
if p ≤ pt

0

max(0, x̃t
0 − Ct(p− pt

0)
Kt

1−Kt ) if p > pt
0

(15)

where Kt is the Kalman gain, and Ct, x̃t
0 are non-negative constants, such that x̃t

0 ≤ xt
0.
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Algorithm 1 A Kalman filter based algorithm to adapt the AMM curve.

Require: Known η, σ, Reserves x0, y0
1: t← 0
2: T ← Number of total time slots
3: Initial price estimate p

0|0
ext ← p0

ext

4: P0|0 = 0
5: while t ≤ T do
6: θt ←

p
t−1|t−1
ext xt−1

p
t−1|t−1
ext xt−1+yt−1

7: Publish bonding curve xθty1−θt = xθt
t−1y1−θt

t−1
8: Observe trader action pt

trad

9: Kt ←
Pt−1|t−1+σ2

Pt−1|t−1+σ2+η2 ▷ Update Kalman gain

10: p
t|t
ext ← (1−Kt)pt−1|t−1

ext + Ktp
t
trad ▷ Update Kalman estimate of the external price

11: Pt|t = (1−Kt)(Pt−1|t−1 + σ2) ▷ Update Kalman uncertainty
12: end while

The above solution corresponds to a CFMM with the initial slope of the bonding curve
given by the Kalman estimate of pt

ext by treating pt
trad as noisy observations. Thus, we only

need to calculate a single quantity E[pt
ext|Ht] (see Algorithm 1), and set the other parameters

of the demand curve according to (15). We get a similar solution if we assume that the
external price follows geometric Brownian motion.

▶ Theorem 3. If log pt
ext

pt−1
ext

∼ N (0, σ2) and log pt
trad

pt
ext
∼ N (0, η2) where σ, η are known to the

market maker, then the fixed point equation pt
0 = βt(pt

0) (11) has a unique solution which is
a function of the Kalman filter [32] estimate of log pt

ext, that is, we have

pt
0 = exp

(
E[log pt

ext|Ht−1] +
Pt|t

2(1−Kt)

)
, (16)

where Kt is the Kalman gain, and Pt|t is the variance of the Kalman estimate of log pt
ext.

Further, the differential equation (10) has a solution given by

gt(p) =

xt
0 + yt

0
pt

0
if p ≤ pt

0

max(0, x̃t
0 − Ct(p1−Kt − κt)

Kt
1−Kt pKt) if p > pt

0

(17)

where Ct, κt, x̃t
0 are non-negative constants such that x̃t

0 ≤ xt
0.

Family of optimal demand curves. We note that both Theorem 2 and Theorem 3 recommend
a family of demand curves that satisfy the Glosten-Milgrom condition (3). The simplest
curve in this family is the one where x̃t

0 = Ct = 0. This gives the simple demand curve which
is constant except for a discontinuity at pt

0. This corresponds to a constant sum market
maker with bonding curve y + pt

0x = k with an adaptive slope given by the Kalman estimate
of the external price conditioned on trader behavior.

An apparent contradiction, and a resolution. A feature of the optimal demand curves
derived is the fact that they do not make it possible for a trader to express any price
pt

trad between 0 and ∞. For instance, if we take the constant sum instance of the family
of curves, it only allows the trader to express if the price of the trade is greater than or

AFT 2024
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less than pt
0, but not the exact value of pt

trad, which contradicts our assumption that the
market maker can observe all of the history of trader prices ⟨pτ

trad⟩tτ=1. We can resolve this
contradiction by approximating the optimal demand curve as a sum of two demand curves
gt(p) = gopt

t (p) + gexp
t (p), where the former curve is the optimal solution with most of the

liquidity, and the latter curve with low liquidity to improve its price expressiveness. For
instance, we can have gt(p) = (1− ϵ)gCSMM

t (p) + ϵgCP MM
t (p) where we have

gCSMM
t (p) =

{
xt

0 + yt
0

pt
0

if p ≤ pt
0

0 if p > pt
0

(18)

gCP MM
t (p) = 1/

√
p (19)

with ϵ << 1. This combines the demand curves of the constant sum market maker (the
optimal solution) and a constant product market maker (the expressive solution) as an
approximation.

Other practical approximations. Another way we can parametrize the curve of the market
maker is to choose it from a family of curves such that the initial marginal price matches pt

0
as prescribed by Theorem 2 and Theorem 3, and processing a trade on any curve in that
family is computationally simple. To that end, we can use the Constant Mean Market Makers
[22, 38] with its weighting factor as our variable parameter. Note that the CMMMs performs
trades along the curve xθy1−θ = k where k is a constant, and x, y are the quantities of the
asset and the numeraire in the market maker [22]. This ensures that no trade can exhaust
either the asset or the numeraire from the AMM reserves. We know that the marginal price
of the asset at any state of the reserves is given by p = θy

(1−θ)x . Therefore, in our case, we set

the value of parameter as θt = pt
0x

pt
0x+y

. This ensures that the starting price of any trade is pt
0,

and the market maker can only get a better price than that for a large trade.

5.2 Adaptive Kalman Filter algorithm for unknown market parameters
Need for more adaptivity. A major assumption while solving for the optimal demand curve
in the Gaussian/Lognormal model was that the market parameters σ, η that control the
variances of the price jump and noise were known to the AMM. These can indeed be obtained
by analysing historical trading data in any market, and can be assumed to change slowly
on the timescale that prices undergo changes. However, this assumption might not always
hold for assets or tokens that are less well known or have no historical data. To deal with
this case, we propose a modification to Algorithm 1. This ensures that we simultaneously
estimate the parameters η, σ and hence help estimate the hidden external market price. To
that end, we observe that we can write the likelihood function of all random variables and
parameters of our model at time t as follows

Lt = L(⟨pτ
trad, pτ

ext⟩tτ=1, η, σ) =
t∏

τ=1

1
2π
√

ησ
exp

(
− (pτ

ext − pτ−1
ext )2

2σ2 − (pτ
trad − pτ

ext)2

2η2

)
,

(20)

which gives us the conditional log-likelihood given the trader actions as

E[log Lt|⟨pτ
trad⟩tτ=1] = − t log σ

2 − t log η

2 −
∑t

τ=1 Aτ

2σ2 −
∑t

τ=1 Bτ

2η2 , (21)
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Algorithm 2 Adaptive Kalman filter : EM algorithm estimating unknown parameters at time
step t.

Require: Trader data ⟨pτ
trad⟩tτ=1, Error Tolerance ϵ

1: σ ← Initial guess σ0
2: η ← Initial guess η0
3: i← 0
4: LogLikelihood = −∞
5: while LogLikelihood < −ϵ do
6: E step: Set Aτ , Bτ as per Equations (22) and (23), assuming guesses σ, η

7: M step: Set σ =
√

2
∑t

τ=1 Aτ /t, η =
√

2
∑t

τ=1 Bτ /t

8: LogLikelihood ← Equation (21)
9: i← i + 1

10: end while

where Aτ , Bτ are given by

Aτ = E[(pτ
ext)2|⟨pτ

trad⟩tτ=1] + E[(pτ−1
ext )2|⟨pτ

trad⟩tτ=1] + 2E[pτ
extp

τ−1
ext |⟨pτ

trad⟩tτ=1], (22)
Bτ = (pτ

trad)2 + E[(pτ
ext)2|⟨pτ

trad⟩tτ=1] + 2pτ
tradE[pτ

ext|⟨pτ
trad⟩tτ=1]. (23)

Estimating the unknowns. We now estimate the market parameters σ, η using the EM
algorithm [19]. This can be done by first setting the terms Aτ , Bτ using (22) and (23) with
the expectations on the RHS calculated via forward and backward runs of the Kalman
filter assuming an initial guess estimate of σ, η. The forward runs of the algorithm involve
computing E[pτ

ext|⟨pτ
trad⟩τi=1] for all τ = 1, · · · , t. These are estimates of the external price

given only the data in the past. This can be done using the Kalman filter updates given in
Algorithm 1. Next, we use the Rauch-Tung-Striebel smoother [60], an essentially backward
run of the Kalman filter algorithm given all the statistics obtained from the forward run.
This computes statistics such as E[pτ

ext|⟨pτ
trad⟩ti=1], that is, the estimate of the external price

in the past given all of the observations till the present time slot. This evaluates all of the
terms in Aτ and Bτ , and completes the E-step of the EM algorithm.

After that, we use (21) to find values of σ, η that maximize the conditional log-likelihood
function. This involves setting the gradient of the expected log likelihood function to zero

∇σE[log Lt|⟨pτ
trad⟩tτ=1] = 0, ∇ηE[log Lt|⟨pτ

trad⟩tτ=1] = 0. (24)

While doing this, we ignore the dependence of Aτ , Bτ on η, σ to obtain

σ∗ =

√
2

∑t
τ=1 Aτ

t
, η∗ =

√
2

∑t
τ=1 Bτ

t
(25)

which completely specifies the M-step of the EM algorithm. This has been summarized in
Algorithm 2.

Managing computation, and adapting to a non-stationary market. While Algorithm 2
added on top of our AMM helps us estimate the unknown market parameters, its com-
putational complexity keeps growing linearly with each additional trade. This is because
every trade adds another term in the series that computes the log-likelihood function, hence
increasing the number of iterations in both the forward and backward runs of the Kalman

AFT 2024
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filter. Additionally, this algorithm also assumes there is no change in the market parameters
η, σ with time, that is, the market conditions are stationary. We can make the algorithm
less computationally heavy and adapt to non-stationarities by truncating the trading data to
a recent history of pτ

trad. This approach keeps track of all price estimates of the past, since
they get refined with every backward run of the Adaptive Kalman algorithm, but only runs
the algorithm on the recent history of price estimates and trading data.

5.3 Adversarial robustness
A prominent danger to the proper functioning of market making protocols is the presence of
adversarial trader behavior. The model described so far and the optimal solutions presented
remain valid only when traders interacting with the market are rational with respect to the
external market. However, there is always the possibility that an AMM is being manipulated
for profits extracted from other protocols (e.g. lenders[6], derivative markets, etc.) relying
on the AMM as a price oracle [2]. Although any protocol using an AMM as a price oracle
usually takes necessary precautions, such as ensuring a diverse portfolio of price signals, using
outlier-robust statistics such as medians rather than means, etc. we show that our market
making algorithms can be made robust to such market adversaries, when the proportion of
such adversarial is less than half of all trading interactions.

Adversary model. The adversarial behavior we seek to guard against is the manipulation of
pt

trad that the AMM observes and not the external price pt
ext. We assume that the external

price is inferred from a deep market that is not easily manipulated. We further assume
that a proportion α of the trader population is adversarial and the rest behave as per the
rational model in Section 3. However, since the AMM does not know which trades are being
manipulated by the adversary, we assign a sequence of learnable weights wτ for all trade
observations in the past ⟨pτ

trad⟩tτ=1. To successfully manipulate the price, the adversary needs
to push pt

trad in a specific direction so as to induce a large discrepancy in the marginal prices
of the AMM curve and pt

ext.

Robust adaptive curve algorithm. A simple modification of the EM algorithm enables us to
distinguish adversarial trades from honest trades [13, 64]. We first rewrite the log-likelihood
function of the AMM as

E[log Lt|⟨pτ
trad⟩tτ=1] = − t log σ

2 − t log η

2 +
t∑

τ=1

(
log wτ

4 − Aτ

2σ2 −
wτ Bτ

2η2

)
, (26)

which basically assumes that each datapoint has a different variance in noise η2/wτ . This
implies that data with low weights have a higher variance, and are hence the adversarial
outliers. We start our algorithm with an equal weight given to all datapoints, and then
estimate Aτ , Bτ assuming those weights and running the forward and backward runs of the
Kalman Filtering algorithm. After that, we set new weights by getting the critical points for
the log-likelihood maximization using

∇wτ
E[log Lt|⟨pτ

trad⟩tτ=1] = 0 =⇒ w∗
τ = η2

2Bτ
. (27)

This completes the adversarially robust version of the Kalman filtering algorithm. We
empirically demonstrate the effectiveness of the approach for α < 0.5 compared to static
curves, and a naive Kalman filtering approach (Section 7).
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6 Implications for AMMs with static curves

If we view the market maker as a price oracle, then one can compare the performance
of different algorithms based on how the mean squared error of the AMM changes with
the incoming trades. In particular, one can compare how quickly the error goes down in
the adaptive protocol proposed in Section 5.2 and a static curve such as Uniswap. This
comparison has already been done for liquid markets [46], where we observe an exponential
decay of the error for an adaptive protocol compared to a linear decay for a static one.

Error performance with trades. For our case, let us assume that we are comparing how
Algorithm 1 performs in contrast to a static curve, if we assume that it is deployed on a
blockchain with T trades in a block. Then, we can prove that the error decreases with
number of trades for Algorithm 1 and stays constant for a static curve.

▶ Theorem 4. Let there be T trades in a single block of transactions, with the external price
at the creation of the block being pext. We denote by pT

KF and pT
SC the marginal prices of the

Algorithm 1 and a static curve at the end of the block. Then, we have

E[(pext − pT
KF )2] = η2σ2

Tσ2 + η2 (28)

E[(pext − pT
SC)2] = η2 (29)

Implied dynamics of static curves. We see that static curves are worse oracles because
they do not use the realistic dynamical model to get the best estimate of the external price.
The question then arises if there is any dynamical model that a particular static curve is
optimal for. Note that the differential equation (10) can be viewed as an equation in βt(p) if
the curve gt(p) is given. We now use this observation to work out the implied dynamical
model underlying commonly used static curves. More formally, given the demand curve of
a static AMM g(p), we can find the corresponding βt(p) function by solving the following
differential equation

β′
t(p)(gt(p)− xt

0) + βt(p)g′
t(p)− pg′

t(p) = 0 (30)

with the initial operating point pt
0 satisfying the constraint p = βt(p). We now solve

this equation for some common CFMM curves to get the underlying implied price/trader
dynamics.

Constant Sum Market Makers. The demand curve for a constant sum market maker is
given by

gt(p) =
{

xt
0 + yt

0/pt
0 if p ≤ pt

0

0 if p > pt
0

(31)

where pt
0 = p0 stays constant with time. Note that substituting the demand curve in (30)

gives a trivial equation β′
t(p) = 0. This, coupled with the condition on the initial operating

point implies that βt(p) = p0 for all t. Clearly, this implies a dynamical model where
∆pt

ext = ∆pt
trad = 0. In other words, a CSMM assumes that the external price stays constant

with time and that the traders have a noiseless view of the price at all times.
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Constant Mean Market Makers. The demand curve for Constant Mean Market Makers is
given by

gt(p) = c

p1−θ

(
θ

1− θ

)1−θ

(32)

where the bonding curve for the constant mean market maker is of the form xθy1−θ =
constant, where x, y denote the reserves for the asset and numeraire respectively.

Substituting this in (30) and solving for βt(p) gives us the following function

βt(p) = 1− θ

θ
pθ(pt

0)1−θ 1− (pt
0/p)θ

1− (pt
0/p)1−θ

(33)

which also satisfies βt(pt
0) = pt

0. In particular, if we look at constant product market makers,
we have θ = 1/2, giving us βt(p) =

√
pt

0p. For this βt(.) function, we have the following
result.

▶ Theorem 5. The following price and trader behavior dynamics yields βt(p) which obeys
(33). Equivalently, the following model has a constant mean market maker with weight
parameter θ as its optimally efficient solution,

log pt
ext = log pt−1

trad + ϵt
σ (34)

log pt
trad = log pt

ext + ϵt
η, (35)

where ϵσ, ϵη are independent Gaussian random variables with zero mean and variances σ, η

respectively, where the variances satisfy the following conditions.

σ ≪ 1 (36)

η = σ
(√

1/θ − 1
)

(37)

The above theorem sheds light on why static curves fail to prevent arbitrage loss as
effectively – the implied dynamic model that they assume is mismatched with more realistic
trader behavior. This mismatch manifests itself in the following ways, as indicated by (36)
and (37).

Low latency blockchain. Firstly, static curves assume that the price jumps between
consecutive trades have a very small variance. This is equivalent to assuming that the inter-
block times on the underlying blockchain go to 0. This is because the standard deviation of
price jumps σ between blocks depends on the price volatility σ′ as σ = σ′

√
∆t, where ∆t is

the inter-block arrival time. This observation confirms the conclusion reached in [41] and the
broader DeFi community [62], where the arbitrage loss (or LVR) is calculated for the special
case of all of the trader population being arbitrageurs and concludes that this loss indeed
approaches 0 as the inter-block time goes to 0.

Constraints on noise traders. Secondly, the noise in the price that the traders see obeys a
specific structure – η2 = σ2(1/θ − 1). For a constant product market maker, this specifically
assumes that the variance of price jumps is exactly the same as the variance of the noise
in trader beliefs about the price. This implies additional restrictions on price and trader
behaviour that might not always be true in real markets. However, these constraints can
potentially help decide how toxic and non-toxic trade flow is guided in “DEX-aggregator”
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such as UniswapX [58], 1inch [1], CoWSwap [52], etc. to ensure that passive LPs (that invest
in pools) get a fair price as defined by (3). The main threat that such aggregators pose
to passive LPs is that much of the non-toxic (or uninformed, or noise) trades get satisfied
internally without any trades flowing through the pools, while the surplus (usually toxic or
informed) gets routed though the passive pools [8]. The equation (36) prescribes how much
non-toxic flow should be “added in the mix” to ensure fairness to the passive pool LPs.

Dominance of DEXes. Thirdly, (34) highlights another key assumption – the external
market also reacts to the price on the AMM. This is only true when the AMM has an amount
of liquidity that is more than the external market, which is not true for most AMM pools or
decentralized exchanges today [11]. This means that static curves are guaranteed to make a
loss to arbitrageurs unless decentralized exchanges become the main sources of liquidity, and
the inter-block arrival time on the underlying blockchain become negligible.

7 Empirical Results

In this section, we present the empirical performance of the algorithms discussed so far in
this work1.
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Figure 1 Percentage monetary loss per trade of our market making algorithms (Kalman Filtering
and Adaptive Kalman Filtering) is much less than a static Uniswap curve for a Gaussian price jump
and trader noise models.

Comparison with static curves. We simulate the model described in Section 3 and compare
the performance of the algorithms we proposed (Figure [1]). We see that adapting the AMM
curve according to algorithms 1 and 2 give a much lower monetary loss per trade than a
static constant product curve that is used in Uniswap. Furthermore, the Adaptive Kalman
Filter algorithm estimates the unknown market parameters correctly, leading to it achieving
close performance with the optimal Kalman Filtering algorithm.

The same observation holds for prices that follow a geometric Brownian motion, as seen
in Figure [2].

1 Code for running all experiments has been shared here
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Figure 2 Percentage monetary loss per trade of our making algorithms (Kalman Filtering and
Adaptive Kalman Filtering) is much less than a static Uniswap curve for a Lognormal price jump
and trader noise models.
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Figure 3 If the AMM is treated as an oracle, then we can use the Robust Kalman Filtering to
get a more accurate reading of the hidden external price.

Robustness to adversarial traders. In presence of adversarial traders, the Robust Kalman
Filtering algorithm is used to change the curve of the AMM gives us a more accurate reading
of the hidden external price in the presence of less than 50% of the population of traders
being adversarial (Figure [3]). The adversarial traders, in this case, are assumed to perform
large buy trades (with price belief pt

trad about 5-7 standard deviations beyond normal trading
size) to keep the AMM price above the external market. We also note that the monetary loss
of the AMMs against the adversary stays in the profitable region for the adaptive curves,
while the static curve suffers a loss to arbitrageurs even if the adversary is making trades
that are irrational.

Robustness to non-stationary markets. Figure [4] tests the truncated version of the
adaptive Kalman algorithm for changing market conditions. This algorithm is compared
with the Kalman Filter algorithm, that knows the underlying market parameters exactly at
every time step, and the static Uniswap curve. The monetary loss incurred by the AMMs is
measured against changing variability of market conditions, measured by the volatility of
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Figure 4 Percentage monetary loss per trade of our market making algorithms (Kalman Filtering
and Adaptive Kalman Filtering) is much less than a static Uniswap curve for continously changing
market conditions.

price jump variance and trader noise (termed as volatility of volatility ση,σ). This metric
measures the standard deviation of changing η, σ after every trade, with a sample path of
these changing variables shown in Figure [4b] for ση,σ = 0.04. Recall that η, σ themselves
govern how the external price is percieved by the traders and how it changes after every
trade respectively. We see that the Adaptive Kalman Filter is able to perform almost as well
as the Kalman Filter when the market changes are slow enough. However, the performance
advantage over static curves vanishes as the changing market conditions become more erratic.
This happens because the timescale over which market parameters suffer large changes
becomes comparable to the timescale of the recent history considered by the truncated
adaptive Kalman filter. This observation offers guidance to AMM designers on choosing the
timescale over which adaptivity can offer an advantage over static markets.

8 On-chain System Implementation

Many prior works [14, 46] seek to implement adaptive market makers on a blockchain, where
the adapting is done using machine learning algorithms that must be necessarily performed
off-chain because of their computational load [53]. To that end, a group of protocol validators
(separate from the validators of the underlying blockchain) are assumed, who run the bulk
of the computation off-chain and post their results (such as satisfied orders, their prices,
etc.) on-chain. However, recent developments in Layer 2 or rollup [33, 49] infrastructure,
machine learning co-processors with zero-knowledge guarantees [51, 10], has given rise to
several platforms that can be utilized directly to implement the adaptive market makers (or
machine learning algorithms in general) we derived in the previous sections, without any need
of additional validators. We draw upon these innovations for the blockchain implementation,
and divide the approach into two parts. The overall design has been shown in Figure [5].

Hook Contract. The first part of such an implementation is the liquidity pool contract,
which allows the canonical interactions with LPs and traders given a specific demand/bonding
curve. In the Ethereum DeFi ecosystem, a recent proposal [57] by the Uniswap protocol
(called Uniswap-v4) presents a highly customizable platform for adaptive market making.
The main innovation is the introduction of a “hook” smart contract [54]. While prior versions
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[55, 56] of the protocol presented market making in a canonical manner where the exact
bonding curve followed during trade execution was static and only gave freedoms to LPs
in terms of the distribution of liquidity along that fixed curve, the new platform allows the
LP to specify changes to the bonding curve just before/after every single trade via the hook
contract. We use this functionality to execute trades and add/remove liquidity according to
the curve xθty1−θt = constant. When traders/LPs put in canonical swap/liquidity addition
transactions, they are first routed through the PoolManager contract. This maps a pool
to a specific Hook contract that specifies all modifications to the curve before/after trade
execution. All interactions with this contract are collected as input data by the second part
of the system.

Traders

1. Swap request using pool key

PoolManager . sol

xθty1−θt = k

Hook . sol

AKF Algorithm

ZKcircuit . ts

(Uniswap − v4)

(Uniswap − v4)

2. Swap request

3. Collect all swaps through the pool

4. Append new data, execute iteration of AKF

(Axiom)

θt, ̂σt, ̂ηt

Prover . sol
(Axiom)

θt+1, ̂σt+1, ̂ηt+1

Prover . sol
(Axiom)

xθt+1y1−θt+1 = k

Hook . sol
(Uniswap − v4)

PoolManager . sol
(Uniswap − v4)

Block t Block t + 1

5. Post new params and ZK proof

6. Callback to atomically change curve parameters

Key → Hook map Key → Hook map

LPs

7. Similar procedure to add/remove liquidity

Figure 5 System design for an on-chain implementation of our algorithms.

Off-Chain Co-processor. The second part runs the algorithm used to change the demand/-
bonding curve given the history of trader interactions. This is done off-chain due to the high
computational load of running the EM algorithm as part of Adaptive Kalman Filtering. For
our implementation, we chose Axiom [51] as a platform to run this off-chain computation.
The main part of this implementation is a typescript file ZKcircuit containing the details
of Algorithm 2 implemented as a algebraic circuit, so that a zero-knowledge proof can be
generated corresponding to the computation [50]. This file also verifiably collects data from
the previous block, and runs the algorithm to come up with new estimates for the market
parameters σ, η and hence the curve parameter θ. The off-chain Axiom client [50] posts this
in the next block and is verified by the on-chain Prover contract of Axiom. This also invokes
a callback to the Hook where the changes to the curve parameters are finally implemented.
We provide open access to all files used in our implementation 2.

2 Code for the proof-of-concept implementation has been shared here

https://anonymous.4open.science/r/AdaptiveCurves-AFT24/
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9 Conclusion and Future Work

Generalising to non-Gaussian and non-stationary behavior. Traders usually do not per-
fectly conform to the distributional assumptions we use to derive optimal solutions in Section
5.1. Our approach can be potentially be extended to such situations by the use of Neural
Kalman Filters [44], which claim to work for non-Gaussian/non-stationary state space models.

Balancing toxic and non-toxic orderflow. The blockchain-level conditions for the optimality
of static curves, as outlined in Section 6, provide guidance on how toxic/non-toxic orderflow,
if discriminated correctly [62], should be allowed to use passive liquidity and still give LPs a
fair price. Developing DEX aggregators that aware of these conditions would help limit the
dangers to passive LPs in DeFi.

Extensions to other adaptive protocols. In this work, we have derived a correspondence
between a dynamical model for prices and its optimal market making curve. This principle
can be extended for stable control of other DeFi protocols, such as lending, that currently
use static curves.
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