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Abstract
Large language model (LLM) decoding involves generating
a sequence of tokens based on a given context, where each
token is predicted one at a time using the model’s learned
probabilities. The typical autoregressive decoding method re-
quires a separate forward pass through the model for each to-
ken generated, which is computationally inefficient and poses
challenges for deploying LLMs in latency-sensitive scenar-
ios. The main limitations of current decoding methods stem
from their inefficiencies and resource demands. Existing ap-
proaches either necessitate fine-tuning smaller models, which
is resource-intensive, or relying on fixed retrieval schemes to
construct drafts for the next tokens, which lack adaptability
and fail to generalize across different models and contexts.
To address these issues, we introduce a novel methodology
called Adaptix, which accelerates LLM decoding with-
out requiring fine-tuning. Our approach involves an adaptive
draft-verification process that evolves over time to improve
efficiency. We utilize a tri-gram matrix-based LLM represen-
tation to dynamically approximate the output distribution of
the LLM, allowing the model to adjust to changing token
probabilities during the decoding process. Additionally, we
implement a draft construction mechanism that effectively
balances exploration and exploitation, ensuring that the drafts
generated are both diverse and close to the true output distri-
bution of the LLM. The importance of this design lies in its
ability to optimize the draft distribution adaptively, leading to
faster and more accurate decoding. Through extensive experi-
ments on various benchmark datasets and LLM architectures,
we demonstrate that Adaptix accelerates the decoding pro-
cess while maintaining high accuracy, making it suitable for
deployment in a wide range of practical applications.

Code — https://github.com/liuxukun2000/Adaptix

Introduction
Large language model (LLM) decoding involves generating
a sequence of tokens based on a given context, where each
token is predicted one at a time using the model’s learned
probabilities (Brown et al. 2020; Zhang et al. 2022; Tou-
vron et al. 2023a,b). The core mechanism is autoregressive,
where each new token is generated conditioned on the pre-
viously generated tokens and the given context. This pro-
cess is crucial for applications like text generation (Li et al.
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Figure 1: Comparison of different LLM decoding strategies.
In Speculative Decoding, a small LLM generates predictions
(red blocks) from inputs (blue blocks). Yellow blocks indi-
cating intermediate results obtained from language model.
Lookahead uses a large LLM for forward-looking predic-
tions. REST employs a corpus trie for rapid token lookups.
Adaptix integrates Monte Carlo Tree Search with tri-gram
statistics and recent token history to simulate potential out-
puts, refining its recommendations over time. Adaptix’s
adaptive approach offers advantages in terms of speed and
accuracy by continuously evolving its draft constructions.

2024a; Peng et al. 2023; Chang et al. 2023), machine trans-
lation (Zhang, Haddow, and Birch 2023; Moslem et al. 2023;
Hendy et al. 2023), and conversational AI (Shanahan 2024;
Wu et al. 2023; Saka et al. 2023). However, each decod-
ing step involves a forward pass through the model, mak-
ing the process inherently sequential and computationally
expensive. The inefficiencies arise due to the need to reload
the model for each token prediction, leading to high com-
putational costs and memory bandwidth usage. This serial
nature of decoding is a significant bottleneck, especially for
real-time applications (Liu et al. 2023a; Mandvikar 2023;
Antoniol et al. 1994) where latency is critical. Thus, opti-
mizing the decoding speed of LLMs is essential for practical
deployment.

Recent research has explored various strategies to miti-
gate the inefficiencies of LLM decoding. Speculative De-
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coding (Leviathan, Kalman, and Matias 2023; Spector and
Re 2023; Chen et al. 2023) introduces an approach where a
smaller, more efficient model generates several token predic-
tions in parallel, which are then verified by the larger target
model. This method leverages the efficiency of smaller mod-
els to reduce the number of serial forward passes required,
achieving substantial speedups without altering the output
distribution. Lookahead Decoding (Fu et al. 2024a) uses
the full context to predict multiple future tokens, creating a
buffer that reduces the dependency on sequential processing.
REST (He et al. 2024) employs a retrieval-based approach
where relevant tokens are fetched from a pre-constructed
datastore using the current context, forming drafts that are
verified by the LLM. These methods can be summarized
within the draft-verification pipeline, as shown in Figure 1.
Speculative Decoding and Lookahead Decoding both gen-
erate draft tokens through predictive models, while REST
constructs drafts from retrieved tokens based on the context.
In each case, the drafts are then verified by the main LLM,
ensuring that the final output adheres to the model’s learned
probabilities. Despite their advancements, these approaches
face notable limitations. They often require additional train-
ing or fine-tuning, which can be resource-intensive. Fixed
retrieval schemes lack adaptability, making it challenging to
adjust the draft distribution in real-time based on the evolv-
ing LLM output. Additionally, these methods may not gen-
eralize well across different models and contexts, limiting
their effectiveness in dynamic environments.

In this work, our focus is on fine-tuning-free draft-
verification to address these limitations. The draft-
verification pipeline can be viewed as a rejection sampling
procedure where the similarity between the proposal distri-
bution (draft) and the target distribution (LLM output) is cru-
cial for the acceptance rate and convergence speed. Higher
similarity results in a higher acceptance rate and faster de-
coding speed. Very few fine-tuning-free approaches, e.g.,
REST (He et al. 2024), typically use fixed retrieval-based
schemes to construct drafts. These schemes lack the adapt-
ability to adjust the draft distribution based on the evolving
LLM output distribution, resulting in a persistent gap be-
tween the draft and the actual LLM output. This gap reduces
the draft acceptance rate and limits the potential for improv-
ing decoding speed. To address this issue, we raise the fol-
lowing question:

Research Question: How to design an adaptive draft
construction process that can evolve itself and accurately
approximate LLM outputs during decoding?

To introduce adaptability and find drafts that are increas-
ingly close to the LLM output distribution during decod-
ing, we not only need to have an adaptive draft construction
pipeline but also need to maintain a balance between explo-
ration and exploitation. This balance ensures that speedups
can be achieved by leveraging existing knowledge of draft
construction while continuously exploring better draft con-
struction capabilities. To achieve this, we propose a novel
methodology called Adaptix. Adaptix incorporates a
tri-gram-matrix-based adaptive LLM representative to con-
trol the conditional probability distribution of the next token,
which can be updated during the decoding process to adjust

the draft construction accordingly. To balance exploration
and exploitation, we design a draft maker inspired by Monte
Carlo Tree Search (MCTS) (Coulom 2007; Browne et al.
2012; James, Konidaris, and Rosman 2017; Świechowski
et al. 2023). This draft maker uses a token preference score
to maintain the balance during the search process. The score
consists of two parts: the first part is based on the approx-
imate conditional probability distribution of the next token
obtained from the LLM representative, reflecting the draft
maker’s current knowledge of the LLM output; the second
part encourages the draft maker to explore unexplored or
less-explored draft spaces. Theoretically, we show that our
method can be viewed as a constrained optimization prob-
lem to encourage the draft distribution to converge to the
LLM output distribution. Using the token preference score,
the draft maker can effectively search the draft space and
generate candidate tokens. After the draft construction and
verification are completed, the information is fed back to
the LLM representative to update its approximation of the
LLM output. This feedback loop enriches the draft maker’s
knowledge in subsequent rounds of draft-verification, en-
abling adaptability and self-improvement in the draft con-
struction process.

In summary, our contributions are concluded as follows:

• We design a tri-gram matrix-based representation that
dynamically approximates the LLM output distribution,
enhancing adaptability without the need for fine-tuning.
It addresses the limitation of fixed retrieval schemes by
continuously evolving with the model’s predictions.

• We develop a draft maker that effectively balances ex-
ploration and exploitation to generate high-quality drafts.
This mechanism improves decoding speed and accuracy
by ensuring that the drafts are closely aligned with the
LLM’s output distribution. Our experiments show a 2.5X
improvement in decoding speed compared to baselines.

• Through extensive experiments on various benchmark
datasets and LLM architectures, we demonstrate that
Adaptix accelerates the decoding process while main-
taining high accuracy. Specifically, we achieve up to a
2.5X speedup in latency and an average acceptance rate
improvement of 20% over existing methods.

• Our method’s ability to adapt to evolving LLM outputs
and continuously refine draft construction sets it apart
from existing ones, addressing the need for more flexi-
ble and dynamic decoding solutions.

Methodology
We propose a new fast fine-tuning-free draft-verification
LLM decoding method by introducing adaptability into the
decoding and learning from LLM, which is illustrated in
Figure 2. Existing accelerated decoding algorithms either re-
quire additional fine-tuning or lack adaptability to LLM’s
output distributions, resulting in additional cost or insuffi-
cient acceleration. To address these issues, we design an
adaptive LLM representation based on a tri-gram matrix to
adaptively approximate the output distribution of the LLM,
develop a draft maker that balances exploration and exploita-
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Figure 2: The data processing workflow of Adaptix. Ini-
tially, the input tokens undergo preprocessing to calculate
their tri-grams, which serve to update the tri-gram matrix.
Subsequently, the updated matrix, in conjunction with the
last two tokens of the input, is used to retrieve potential to-
ken sequences. These sequences are ranked, and the top-k
sequences are selected, and then appended to the original in-
put. Finally, these extended sequences are inputted into the
Large Language Model for prediction.

tion for self-improvement towards high-quality drafts, and
verify the drafts using tree attention.

Preliminary
Speculative decoding is a method to accelerate language
model inference by using a smaller auxiliary model to gen-
erate a draft sequence, reducing the computational load on
the larger model (Leviathan, Kalman, and Matias 2023).
Retrieval-based speculative decoding extends this by in-
corporating a retrieval system instead of the smaller model,
leveraging pre-stored corpus segments for relevant text gen-
eration. Monte Carlo Tree Search (MCTS) (Coulom 2007;
Browne et al. 2012; James, Konidaris, and Rosman 2017;
Świechowski et al. 2023) is an algorithm that optimizes
decision-making by balancing exploration and exploitation
of future states. It selects nodes for further exploration us-
ing a combination of node visit counts and estimated values,
aiming to maximize overall outcomes. For a comprehensive
discussion of these methods, please refer to Appendix E.

Adaptive LLM Representative
To approximate the output token distribution of the LLM
without fine-tuning the small model, we distill linguistic
knowledge from a small corpus and construct a tri-gram ma-
trix as an initial representation of the LLM, which allows us
to leverage the statistical regularities of language at a gran-
ular level. Specifically, we summarize and count each set of
three tokens that appear in the corpus and compute the prob-
ability of the third token appearing conditional on the first
two tokens. The formula is defined in Eq. (1):

P (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
, (1)

where P (wi|wi−2, wi−1) is the conditional probability of
a word wi given the two preceding words wi−2 and wi−1,
C(wi−2, wi−1, wi) is the count of the tri-gram occurrence
in the corpus, and C(wi−2, wi−1) is the count of the preced-
ing bi-gram (Mori, Nishimura, and Itoh 1998).

In this way, we can obtain a good initial LLM represen-
tative at a much lower cost, which can generate an approx-
imate distribution of the next token based on the previous
tokens. This LLM representative will collaborate with our
draft maker to generate drafts and get feedback to update
the tri-gram matrix for adaptability and self-improvement.
Please see Section 2.3 for more details.

Draft Maker and Self-Improvement
With the help of the LLM representative, we further pro-
pose a draft maker that balances exploration and exploita-
tion while searching for candidate drafts that are closer to
the LLM output. On the one hand, the draft maker leverages
the conditional probabilities from the LLM representative,
which include current knowledge of the LLM output. On
the other hand, the draft maker is encouraged to search more
in the unexplored or less explored draft space to find bet-
ter draft candidates. Then, with the feedback from the LLM
output, the LLM representative can update its understanding
of the LLM output, improve the draft maker’s search, and
achieve self-improvement. Details are provided below.

Draft Search Score: Given the initial tokens, we exploit
Monte Carlo Tree Search (MCTS) (Coulom 2007) to guide
the search process of the drafts of the next tokens, where
we prioritize candidate tokens according to the conditional
probability from the tri-gram matrix-based LLM represen-
tative and the node visitation counts during the tree search.
The score plays a key role in balancing exploration and uti-
lization during the Monte Carlo tree search and is defined as
Eq. (2).

PUCT(s, a) = Q(s, a) + E · P (s, a) ·
√∑

b N(s, b)

1 +N(s, a)
. (2)

The score design is motivated by PUCT Score (Rosin 2011;
Silver et al. 2017). In particular, Q(s, a) assesses the qual-
ity of taking action a in state s, while P (s, a) represents the
prior probability of selecting action a in state s. The term
N(s, a) denotes the number of times the action a has been
taken from state s, and

∑
b N(s, b) sums the counts for all

actions from state s. Eq. (3) plays a critical role in determin-
ing the balance between exploration and exploitation within
the MCTS framework.

E = C1 + log

(∑
b N(s, b) + C2 + 1

C2

)
, (3)

The constant C1 acts as a base level adjustment, while C2

modulates the logarithmic term to scale the exploration fac-
tor dynamically based on the total visitation counts. This
formula ensures that our draft choices are contextually ap-
propriate and optimizes the robustness and coherence of text
generation.

Self-Improvement Strategy Transfer: Based on the final
search score obtained during the search, we can construct
draft candidates and verify them to get the final decoding
output (please see Section 2.4 ) and feed it back for self-
improvement. This final output decoding represents LLM’s
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output distribution, which would be a good learning material
for the LLM representative. Therefore, we feed this knowl-
edge into the LLM representative in order to obtain updated
conditional probability distributions, thus providing the draft
maker with more accurate and exploitable knowledge, which
is illustrated in Figure 2. Specifically, this technique operates
by first extracting tri-grams from recent outputs of the LLM.
Each tri-gram’s frequency is then used to update its proba-
bility as potential outputs. These adjusted probabilities are
fed into the MCTS as part of the policy network, influencing
the selection of the tree search. The updated tri-gram proba-
bilities essentially serve as a dynamic policy guide, enhanc-
ing the model’s ability to generate contextually relevant and
coherent sequences. By incorporating learned tri-gram prob-
abilities into the tree search algorithm, we effectively create
a feedback loop where the search strategy itself evolves over
time. This strategy adjustment is executed by recalibrating
the exploration-exploitation balance based on the empirical
data derived from the model’s own outputs.

Draft Construction and Verification
It is important to note that candidate drafts generated by
the draft maker often have common starting segments that
can cause redundant recalculations in the Transformer lay-
ers if not managed correctly. To address the issue, a pseudo-
sequence that guarantees that each draft is a sub-sequence
and that any common prefix appears only once is created (He
et al. 2024). Motivated by this observation, we use a specific
attention mask for each attention layer, called tree atten-
tion (Miao et al. 2023; Cai et al. 2024). This mask aligns the
computations for each token with its dependencies accord-
ing to the original draft sequence, preserving the draft’s con-
textual integrity and preventing unnecessary computations.
The approval of drafts relies on a comparison with the con-
ditional distribution from the LLM. At each position, new
tokens are sampled and compared to the draft tokens. If a
sampled token corresponds to the draft token, it is approved;
otherwise, the draft is discarded from that point. This selec-
tive approval ensures that the output sequence aligns with
what would be produced by a typical autoregressive process,
thus upholding the authenticity of the generated text.

Theoretical Insight: Why Adaptix uses MCTS
In this section, we provide a theoretical justification for
the design of Adaptix. We show that the draft search in
Adaptix using MCTS can be viewed as a form of policy
optimization, while the inference mechanism of LLMs can
be viewed as a similar form of penalty optimization.
MCTS in Adaptix: The token selection procedure in

Adaptix decoding can be viewed as an action selection
process. The MCTS algorithm optimizes its policy by iter-
atively building a search tree and updating visit counts for
each node (state-action pair) based on the search paths. The
visit count distribution π̂(a | x) is defined as:

π̂(a | x) ≜
1 + n(x, a)

|A|+
∑

b n(x, b)
, (4)

where n(x, a) represents the visit count for action a in state
x, and |A| represents the total number of possible actions at

state x. Then, the action selection in MCTS can be written as
selecting the action a∗:

a∗(x) ≜ argmax
a

[Q(x, a) + λN ·
πθ(a | x)
π̂(a | x)

] (5)

Following (Grill et al. 2020), we use q ∈ R|A| to denote the
vector of Q-function Q(x, a). With proper choice of hyper-
parameters, the MCTS algorithm can be viewed as search-
ing for the optimum solution to a policy optimization prob-
lem (Grill et al. 2020) as below:

π̄ ≜ argmax
y∈S

[
q⊤y − λNKL[πθ, y]

]
, (6)

where S is the |A|-dimensional simplex, λN is a regu-
larization parameter that depends on hyperparameters and
balances exploration and exploitation, and KL is the KL-
divergence.

LLM Inference Mechanism: Large language models,
particularly those based on the Transformer architecture,
generate text by predicting the probability distribution of the
next token given the previous tokens. During training, the
model maximizes the log-likelihood of the observed data,
which is equivalent to minimizing the cross-entropy loss:

L(θ) = −
T∑

t=1

logP (wt | w1:t−1; θ) +
λ

2
∥θ∥22, (7)

where P denotes the conditional probability of LLM, w de-
notes the tokens, and θ denotes the model parameters.

Comparative Analysis: As shown in Eq (6) and Eq. (7),
both MCTS and LLMs can be viewed as regularized op-
timization problems for selecting the distribution of the
next tokens. On the one hand, the Q-function in MCTS for
Adaptix can be viewed as an approximation to the log-
likelihood of LLMs:

Q(x, a) = −
T∑

t=2

log P̂ (wt | wt−1, wt−2; θ)

≈ logP (w0, w1, · · · , wT ; θ)

= −
T∑

t=2

logP (wt | w1:t−1; θ), (8)

where P̂ and P are the conditional probability distribution
from tri-gram-matrix-based LLM representative and LLMs,
respectively. On the other hand, both MCTS and LLMs em-
ploy regularization to improve the optimization procedure.
As a result, we verify the similarities between MCTS and
LLM Inference in terms of optimization and regularization.

Experiments
Experimental Setup
Models and Datasets. We conduct a series of experi-
ments with five distinct models on three datasets to eval-
uate the efficacy of Adaptix. In particular, We use three
Vicuna models (Chiang et al. 2023) (7B, 13B, 33B) and
two LLaMA2-chat models (Touvron et al. 2023b) (7B,
13B) to evaluate the acceleration capabilities across different
model sizes and types. Our assessment incorporates the Hu-
manEval (Chen et al. 2021), MT-Bench (Zheng et al. 2023),
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Latency Average Accept Length

Benchmark Model REST REST Single Lookahead Autoregressive Adaptix REST REST Single Lookahead Adaptix

MT-Bench

Vicuna-7B 16.31 17.36 18.93 24.77 12.95 1.97 1.98 1.89 2.42
Vicuna-13B 25.43 25.99 32.73 44.07 22.94 1.98 1.99 1.85 2.39
Vicuna-33B 28.63 28.62 40.53 52.97 24.96 1.95 1.96 1.83 2.29
Llama2-7B 16.08 17.67 18.84 25.58 13.85 1.96 1.95 1.96 2.30

Llama2-13B 27.13 29.80 31.24 44.76 25.13 1.95 1.95 1.96 2.32

Alpaca

Vicuna-7B 14.24 14.58 18.73 24.49 12.81 2.22 2.22 1.89 2.33
Vicuna-13B 22.94 23.01 32.60 43.60 24.06 2.21 2.21 1.86 2.26
Vicuna-33B 26.03 25.89 40.58 52.52 24.62 2.11 2.12 1.82 2.21
Llama2-7B 14.13 14.87 19.28 25.38 12.90 2.21 2.20 1.97 2.37

Llama2-13B 23.66 24.07 31.18 44.04 23.57 2.15 2.13 1.96 2.32

Human Eval

Vicuna-7B 14.90 15.56 18.99 25.49 11.24 2.21 2.23 2.10 2.67
Vicuna-13B 20.17 20.61 27.43 45.13 19.96 2.50 2.50 2.23 2.81
Vicuna-33B 24.91 25.06 31.34 52.32 21.19 2.29 2.30 2.02 2.62
Llama2-7B 14.37 15.57 15.28 25.91 11.68 2.19 2.19 2.27 2.63

Llama2-13B 25.46 25.85 26.72 45.25 21.82 2.01 2.01 2.17 2.60

Table 1: Latency and Average Accept Length Comparison between Adaptix and Baselines. In most test cases, Adaptix has
the lowest latency, longer accept length, and higher efficiency.
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Figure 3: Comparison of Adaptix’s throughput for different models on MT-Bench, Alpaca, and Human-Eval. The perfor-
mance of Adaptix shows stable and significant improvements across different models and benchmarks.

and Alpaca (Taori et al. 2023) datasets to ascertain gen-
eral natural language understanding and generation compe-
tencies. These datasets are meticulously chosen to guaran-
tee a comprehensive analysis of the acceleration techniques
across various tasks.

Corpus. We construct two corpora. The first one is built
using a portion of the Python pre-training code from The
Stack (Kocetkov et al. 2022), comprising about 2.7M Python
code samples with a resulting size of 1007MB. The second
is constructed using data derived from UltraChat (Ding et al.
2023), consisting of around 774K ChatGPT conversations,
producing a corpus with a size of 574MB. The experiments
on the MT-Bench and Alpaca are conducted using the Ultra-
Chat corpus, while the Human-Eval benchmark utilize the
corpus from The Stack.

Metrics. To assess the acceleration performance on large
language models, we use two main metrics: speedup ratio
and average acceptance length. Speedup ratio, calculated
as the ratio of the time required by the baseline models to
complete inference tasks without acceleration to the time re-
quired by our Adaptix, measures the efficiency gains in-
troduced by the algorithm. The second metric, average ac-
ceptance length, measures the average number of tokens ac-
cepted per forward pass by the target large language models,
excluding any overhead of retrieving and constructing draft
tokens, indicating the maximum possible acceleration.

Baselines. We compare various foundational approaches
to improve the decoding speed of large language models.
We examine Lookahead Decoding (Fu et al. 2024a), a pre-
cise and parallel decoding algorithm that cuts down latency
without relying on draft models. We compare REST (He
et al. 2024) (Retrieval-Based Speculative Decoding), which
adopts a retrieval-based strategy to create draft tokens, in
contrast to conventional speculative decoding methods that
rely on a draft model.For fairness in comparison, we in-
clude REST Single, a single-threaded version of REST, to
evaluate performance under constrained processing condi-
tions. We also include the traditional Autoregressive method,
which represents the standard decoding approach, serving as
a baseline to highlight the improvements offered by the other
methods. All experiments are conducted on NVIDIA A6000
GPUs, except for the 33B model, which utilizes an NVIDIA
H100. The experiments default to Greedy sampling.

Main Results1

In the experiments, we compare the efficacy of different
baselines applied to various models, utilizing three datasets:
MT-Bench, Human-Eval, and Alpaca. We focus on met-
rics of Accept Length, Latency, and Speedup Ratio. Table 1

1Due to space constraints, we provide detailed settings for each
set of experiments in Appendix F.
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summarizes the latency and average accept length on the
three datasets. Adaptix consistently demonstrates lower
latency, particularly for the vicuna-7B and llama2-13B mod-
els. For instance, on MT-Bench, Adaptix achieves a la-
tency of 12.95 ms for vicuna-7B, which is lower than REST
(16.31 ms), REST Single Thread (17.36 ms), and Lookahead
(18.93 ms). Notably, the memory required for Adaptix
(574MB) is only 5.6% of that required for REST (12GB).
According to Table 2, even when Adaptix uses a smaller
corpus (253MB, which is just 2.5% of REST’s require-
ments), it still achieves lower latency than REST. This
trend is also observed on Alpaca, where Adaptix achieves
a latency of 12.81 ms for vicuna-7B, compared to 14.24 ms
for REST, 14.58 ms for REST Single Thread, and 18.73 ms
for Lookahead.

The accept length results in Table 1 indicate the quality
of the generated outputs, with longer accept lengths sug-
gesting more coherent and contextually relevant text. Our
method, Adaptix, outperforms other methods across dif-
ferent models on both MT-Bench and Alpaca datasets. For
example, on MT-Bench, Adaptix achieves the highest ac-
cept length for vicuna-33B and llama2-13B models, show-
casing its superior language generation capabilities.

Speedup ratio are used to evaluate the efficiency.
Adaptix consistently shows a significant improvement in
speed up across all datasets in Figure 3. This efficiency
is noticeable on the MT-Bench, Alpaca and Human-Eval
datasets, where Adaptix not only reduces latency but
also enhances the overall processing speed. For instance,
Adaptix achieves a speedup of 1.92x on MT-Bench with
the vicuna-13B model, outperforming REST, REST Single
Thread, and Lookahead. On the HumanEval dataset, the
vicuna-33B model, for example, demonstrates a speedup of
nearly 2.5x when using Adaptix.

Stability of Adaptix
In this section, we analyze the stability of In this section, we
evaluate the stability of Adaptix across various task cat-
egories, including writing, roleplay, reasoning, math, cod-
ing, extraction, STEM, and humanities. Adaptix main-
tains consistent performance across all categories, achiev-
ing the highest speedup in coding (×2.69) and the lowest in
extraction (×2.17). The average accept length remains sta-
ble, confirming that Adaptix can effectively handle di-
verse tasks without significant performance variations.

To further evaluate the robustness of Adaptix, we an-
alyze the effects of top-p and temperature on performance.
Figures 4b and 4c show that variations in these parameters
have minimal impact on the average accept length. Specifi-
cally, Figure 4b indicates that Adaptix’s performance re-
mains stable across different top-p values, while Figure 4c
demonstrates similar consistency for temperature changes.
These results confirm the robustness of Adaptix to param-
eter variations.

Ablation Study
To gain insight into our method, we conduct a series of ab-
lation studies. Full studies are summarized in Appendix D.

Effect of the adaptive strategy. Figure 4a illustrates the
performance of our adaptive strategy on Vicuna-7B, with
the analysis of average accept lengths over varying token
counts. We find that the adaptive strategy maintains a higher
average accept length over the entire range compared to the
non-adaptive strategy. The adaptive strategy’s success is at-
tributed to its dynamic adjustment of the model’s probabil-
ity distributions based on the tri-gram frequencies from prior
outputs. This allows the model to better manage longer con-
texts and maintain relevance, enhancing stability and coher-
ence in longer interactions.

Effect of the corpus size. Table 2 shows the impact of the
increase in corpus size from 121k to 774k on various per-
formance metrics. With the expansion of the corpus, there
is a gradual improvement in the Accept Length from 2.30
to 2.42. This increase suggests that larger datasets provide
a broader array of language patterns, which enhances the
model’s ability to generate more coherent and contextually
relevant outputs. Despite the increase in data size from 253
MB to 574 MB, the system maintains efficient data pro-
cessing capability. The small differences in latency affirm
Adaptix’s consistent performance, even with smaller cor-
pus sizes, which further extends its potential for use on
resource-constrained devices. The modest rise in retrieval

Corpus Size Corpus Size Latency Accept Length Speed up

121k 253 MB 13.09 ms 2.30 1.89

774k 574 MB 12.95 ms 2.42 1.93

Table 2: Effect of Corpus Size.

time underscores the efficiency of the retrieval algorithms,
which can manage larger datasets without significantly com-
promising response speed. In summary, the results show that
larger corpus sizes can improve the quality of the model’s
output while maintaining good system performance.

Effect of MCTS. Figure 5 presents the results for Vicuna-
7B model on the MT-Bench dataset, showing the impact
of different MCTS search counts on performance. Increas-
ing the number of searches improves performance, while
the optimal number varies by model size. The average ac-
cept length and latency are plotted against the number of
searches, illustrating the trade-off between performance and
computational cost. We further compare greedy search with
MCTS (full traversal is not feasible due to the huge search
space) while keeping the number of 150 search iterations
constant. The results show that the average accept length of
the greedy search is only 1.493, significantly lower than that
obtained by MCTS, demonstrating the superiority of MCTS
in efficiently managing the vast decision spaces.

Effect of N-gram Model Choice. Our studies extensively
evaluate the impact of different n-gram configurations on de-
coding performance. In tests conducted on the MT-Bench
dataset using the Vicuna-7B model, bi-grams and 4-grams
result in accept lengths of 1.80 and 1.82, respectively. These
results are significantly lower compared to the 2.30 accept
length achieved with tri-grams. Bi-gram models demon-
strate limited capability in effectively utilizing contextual in-
formation, often leading to outputs that appear more random
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Figure 4: (4a) Adaptive Strategy comparison on MTBench: Performance of Vicuna-7B model with and without the adaptive
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Adaptix on top-p and temperature.

50 100 150 200 250 300 350
MCTS Search Counts

2.225

2.250

2.275

2.300

2.325

2.350

2.375

Av
er

ag
e 

Ac
ce

pt
 L

en
gt

h

13.0

13.1

13.2

13.3

13.4

13.5

La
te

nc
y 

(m
s)

Average Accept Length Latency

(a) Vicuna-7B

Figure 5: Comparison of Search Counts on MT-Bench.

and less coherent. Conversely, 4-grams exhibit overly de-
terministic behavior, constraining the diversity of the gener-
ated text due to their restrictive nature in capturing extensive
prior context. Tri-grams strike an optimal balance, provid-
ing enough contextual depth to enhance the coherence and
relevance of outputs while still allowing for sufficient vari-
ability and diversity in text generation. This balance makes
tri-grams particularly effective in large language model de-
coding, as they encapsulate the ideal compromise between
randomness and contextual awareness.

Related Work
A number of research efforts on decoding strategies for large
language models have used draft models to improve de-
coding efficiency. Techniques such as Speculative Decod-
ing (Leviathan, Kalman, and Matias 2023; Spector and Re
2023; Chen et al. 2023; Stern, Shazeer, and Uszkoreit 2018),
Madusa (Cai et al. 2024), Eagle (Li et al. 2024b), vari-
ous other approaches requiring draft models (Zhang et al.
2024; Liu et al. 2023b; Kim et al. 2024; Fu et al. 2024b)
fall into this category, utilizing models to generate drafts.
Specifically, Speculative Decoding uses an advanced sam-
pling technique where the auxiliary model generates a set
of potential token sequences, and the primary model selects
the most sequences, resulting in a good balance between
speed and accuracy. Although these methods primarily aim
to enhance the accuracy of generated texts and significantly

accelerate the response time during initial text generation,
their adoption comes with drawbacks. The primary issue
is the necessity for additional training specific to the draft
models, which could be resource-intensive. Moreover, these
techniques generally depend on GPU resources (Kwon et al.
2023; Sheng et al. 2023; Park et al. 2024) for inference,
potentially limiting their application in environments where
such hardware is unavailable or when operating under strict
resource constraints.

A significant portion of recent advances has focused on
improving efficiency without relying on draft models (Fu
et al. 2024a; He et al. 2024). Two notable approaches in
this realm are Lookahead decoding (Fu et al. 2024a) and
Retrieval-Based Speculative Decoding (REST) (He et al.
2024). Lookahead decoding is an approach that enhances the
efficiency of the decoding process through the prediction of
subsequent tokens via Jacobi Iteration (Sleijpen and Van der
Vorst 2000). It employs a heuristic to estimate the future cost
of a sequence without the need to explicitly create a draft.
REST introduces a retrieval-enhanced generation model that
speculatively decodes sequences without the need for pro-
ducing preliminary drafts. It instead searches and prioritizes
possible continuations from an already established sequence
database. However, these methods exhibit lower accuracy
and greater resource use compared to our approach. They
demand more memory and GPU processing power, posing
challenges in resource-scarce settings.

Conclusion
Adaptix improves the LLM decoding process by intro-
ducing adaptability and efficiency, significantly reducing la-
tency and computational demands. This method achieves up
to a 2.5X speedup in decoding and a 20% improvement
in acceptance rates, outperforming traditional techniques.
Unlike existing approaches, Adaptix dynamically adjusts
the draft distribution using a tri-gram matrix and enhances
draft quality through MCTS, eliminating the need for fine-
tuning. The continuous feedback loop ensures ongoing im-
provements in draft generation. While Adaptix demon-
strates robust performance across various benchmarks, fu-
ture work will focus on exploring its application in more di-
verse real-world scenarios. Addressing potential limitations
in extremely large-scale deployments will be a priority.
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