Journal of Functional Analysis 285 (2023) 110159

Contents lists available at ScienceDirect =

JOURNAL OF

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

Circle companions of Hardy spaces of the unit disk

L))

Check for
Updates

Rail E. Curto®*, In Sung Hwang"”, Sumin Kim ",
Woo Young Lee®

2 Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

P Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

¢ School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul 02245,
Korea

ARTICLE INFO ABSTRACT
Article history: This paper gives a complete answer to the following problem:
Received 7 May 2023 Find the circle companion of the Hardy space of the unit

Accepted 28 August 2023
Available online 7 September 2023
Communicated by K. Seip

disk with values in the space of all bounded linear operators
between two separable Hilbert spaces. Classically, the problem
asks whether for each function h on the unit disk, there exists

MSC: a “boundary function” bh on the unit circle such that the
primary 42B30, 30H10, 46E40, mapping bh — h is an isometric isomorphism between Hardy
46E30 spaces of the unit circle and the unit disk with values in some

Banach space. For the case of bounded linear operator-valued
Keywords: functions, we construct a Hardy space of the unit circle such
Operator-valued Hardy spaces that its elements are SOT measurable, and their norms are
Strong Poisson integrals integrable: indeed, this new space is isometrically isomorphic
Strong boundary functions to the Hardy space of the unit disk via a “strong Poisson
Circle companions integral?

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: raul-curtoQuiowa.edu (R.E. Curto), ihwang@skku.edu (I.S. Hwang),
suminkim1023@gmail.com (S. Kim), wylee@kias.re.kr (W.Y. Lee).

https://doi.org/10.1016/j.jfa.2023.110159
0022-1236/© 2023 Elsevier Inc. All rights reserved.



2 R.E. Curto et al. / Journal of Functional Analysis 285 (2023) 110159

1. Introduction

We solve an old and outstanding problem in the theory of Hardy spaces. For 1 < p < oo
and X a Banach space, consider the Hardy space HP(ID, X) of X—valued functions defined
on the unit disk D. For each h € HP(D, X), we try to associate a function bh, which
captures the boundary values of h. Our goal is to identify a Banach space C of X—valued
functions defined on the unit circle T which represent, in a natural and canonical way,
the boundary values of functions in H? (D, X'). When the mapping h — bh is an isometric
isomorphism from H?(ID, X) onto C, we say that C is the “circle companion” of H?(D, X).

In this paper, we find the circle companion of the Hardy space of the unit disk with
values in B(D, E), the space of all bounded linear operators between two separable
Hilbert spaces D and E. That is, we focus on the cases where the above-mentioned
Banach space X is B(D, E).

A study on the boundary values of functions in Banach-space-valued Hardy spaces
HP(D, X) of the unit disk was initiated in 1976 by A.V. Bukhvalov [2]. Since then,
many researchers have studied the spaces of boundary values of functions in H?(D, X)
(see the bibliographical references at the end of this paper). In particular, in 1982 A.V.
Bukhvalov and A.A. Danilevich [3] showed that if a Banach space X has the analytic
Radon-Nikodym property (ARNP) (or equivalently, every function in H'(D, X) has
radial limits a.e. on T; cf. [1], [3], [7], [6], [8]), then the space of boundary values of
functions in H?(D, X) is HP(T, X); more precisely, the mapping h — bh is an isometric
isomorphism from H?(D, X) onto H?(T, X) and moreover, P[bh] = h, where P[-] denotes
the Poisson integral, or equivalently, the mapping f — P[f] is an isometric isomorphism
from HP(T,X) onto HP(D, X). However, this is no longer true for spaces of operator-
valued functions. Indeed, if X = B(D, F), then X need not satisfy the ARNP in general,
so that we cannot guarantee that the mapping f — P[f] is an isometric isomorphism
from HP(T,X) onto HP(D, X). In fact, for each 1 < p < oo, there exists a function
h € HP(D, B(£?)) such that h # P[f] for any f € HP(T,B(¢?)) (see Example 2.2). Thus,
the following problem remained unsolved until now:

Find the circle companion of H?(D, B(D, E)) for 1 < p < 0. (1)

Although not necessarily explicitly stated as an open problem, the problem (1) appears
in Nikolski’s book [10, p. 62, lines 14-15], where it is mentioned implicitly. In this pa-
per, we solve problem (1). Our solution aims to shed additional insights into the study
of boundary values, and how the Poisson transform serves as a bridge between those
boundary values and the initial Hardy space function. Towards our solution, we intro-
duce a new space LY ,(T,B(X,Y)) (1 < p < o) defined by the space of all (equivalence
classes of) SOT measurable functions f: T — B(X,Y) such that N(f) € LP(T) (where
N(f)(2) == [|f(2)|lgx,v)); we identify f and g when f(z) = g(2) for almost all z € T.
In this case, let

2ot (T, B(X,Y)) = = [IN(H)lze(T)
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Also for 1 < p < oo, let HY ,(T,B(X,Y)) be defined by the space of functions in
LP .(T,B(X,Y)) such that f(-)r € HP(T,Y) for every z € X. On the other hand, we
define the “strong Poisson integral” Py[f] of f in HY (T,B(X,Y)) by

P[fl(Qx = P[f()zl(() (€ X, (D).

The aim of this paper is to prove that for 1 < p < oo, the mapping f — Ps[f] is an iso-
(T,B(D, E)) onto H?(D, B(D, E)). In [10, p. 53, Theorem
3.11.10] it is shown that the mapping f — Ps[f] provides an isometric isomorphism from
Hyor(T,B(D, E)) onto H*(D, B(D, E)) when D and E are separable Hilbert spaces -
in fact, we can show that Hyp o (T,B(D, E)) = HSS, (T, B(D, E)) in our language. This
(T,B(D, E)), in a manner
fully consistent with the well-known result. In fact, we can get a more general version of

metric isomorphism from H? ,

provides a sound rationale for denoting this new space as HE,,

the Banach space setting. The following is the main result of this paper.

Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying the
analytic Radon-Nikodgm property. Then, for 1 < p < oo, the mapping f — Ps[f] is an
isometric isomorphism from HE (T,B(X,Y)) onto H?(D, B(X,Y)).

The following corollary is immediate from Theorem 1.1.

Corollary 1.2. Let D and E be separable Hilbert spaces. Then, for 1 < p < oo,
the mapping f +— Ps[f] is an isometric isomorphism from HY

sot(TaB(DaE)) onto
H?(D,B(D, E)). As a result, H. ,(T,B(D, E)) is the circle companion of HP(D,B(D,

In Section 2, we give a few essential facts that will be needed to prove Theorem 1.1.
Section 3 is devoted to a proof of Theorem 1.1. In the Appendix, we consider relevant
results for strong HP-spaces.

2. Preliminaries

We review here the preliminary background needed to prove the main theorem, using
[9] and [10] as general references. Let m be the normalized Lebesgue measure on T. For
a Banach space X, a function f : T — X is said to be essentially separably valued if
there exists a Lebesgue measurable set T/ C T such that the range f(T') is separable
and m(T \ T') =0.

We begin with:

Pettis Measurability Theorem ([9]). Let X be a Banach space and X* denote the dual
space of X. For a function f: T — X, the following are equivalent:

(a) f is strongly measurable (i.e., there exists a sequence of simple functions f, such
that f(z) = lim,— 0 frn(2) for almost all z € T);
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(b) f is essentially separably valued and weakly measurable (i.e., the mapping z —
(f(2),x*) is Lebesgue measurable for every z* € X*).

Observation. By the Pettis Measurability Theorem, the almost everywhere limit of a
sequence of strongly measurable functions is also strongly measurable.

Given a function f: T — X, let

N()z) = )llx -

For 1 < p < oo, let LP(T,X) be the space of all (equivalence classes of) strongly
measurable functions f : T — X such that N(f) € LP(T). Endowed with the norm

[fllzecr, x) == [IN()llLe(T),

the space LP(T, X) is a Banach space. For f € L'(T, X), the n-th Fourier coefficient of

~

f, denoted by f(n), is defined by

J?(n) = /E"f(z) dm(z) for each n € Z,

T

where the integral is understood in the sense of the Bochner integral. Also, HP(T, X) is

~

defined as the space of functions f € LP(T, X) with f(n) =0 for n < 0.

Hereafter, let X and Y be Banach spaces and B(X,Y’) denote the space of all bounded
linear operators from X to Y, and abbreviate B(X, X) as B(X). We write Hol(D, X)) for
the set of all X-valued functions holomorphic in D.

Equivalent conditions of holomorphic functions ([10]). If A : D — B(X,Y), then the
following are equivalent.

(a) h € Hol(D,B(X,Y));
(b) h(-)x € Hol(D,Y) for all x € X;
(¢) (h()z,y*) € Hol(D,C) for all x € X and y* € Y*.
Let us associate to any function b : D — X, a family of functions A, on T, defined by
hr(z):=h(rz) (z€T,0<r<1).
For 1 < p < oo, let HP(D, X) be the space of all functions h € Hol(D, X) satisfying
||hHHp(]D)7X) = Sup{HN(hr)HLp(’]I‘) r< 1} < 0.

Then H?(D, X) is a Banach space (cf. [6]). If h € Hol (D, X), then we may write



R.E. Curto et al. / Journal of Functional Analysis 285 (2023) 110159 5

h¢) =) zn(" (CED, z, € X).
n=0

Hence for each 0 <r < 1,

he(z) = Zmnr"z" (zeT),
n=0

which implies that h, is essentially separably valued. For each z* € X*,

o0

(hp(2), 2%y = Z<xnr", z*)z" (2 €T),

n=0

which implies that h, is weakly measurable. Thus, by the Pettis Measurability Theorem,
h, is strongly measurable. Therefore we have that

17|l e (D, xy = sup |[|he|lor(T, x)-
0<r<1

For f € LY(T, X), let P[f] denote the Poisson integral of f defined by

PN = [ RS ()dmz) (€ D), @)

T

where P¢(z) is the Poisson kernel.

The following are basic properties of Poisson integrals.

Lemma 2.1 ([10, Lemma 3.11.6.]). If f € LP(T, X) (1 <p < o0), then

@) I(PDrllzecr, x) < | fllercr, x) for all0 <7 < 1;
(b) If p < oo, then lim,—1 [[(P[f])r — fllze(T,x) = 0;
(¢) limy—1 |[(P[f)r(2) — f(2)||x =0 for almost all z € T.

On the other hand, the function P : HP(T,X) — HP(D, X) given by (2), is an
isometry for all 1 < p < oo (cf. [1]). As we noticed in the introduction, if X has the ARNP
and 1 < p < oo, then the function P : H?(T, X) — H?(D, X) given by (2) is an isometric
isomorphism (cf. [3]). However, the function P : H?(T,B(D,E)) — H?(D,B(D, E))
given by (2) is not onto in general, as we see in the following example.

Example 2.2. Let h : D — B(¢?) be defined by (h(¢)z)(n) := ("z(n) for each = € ¢2. Then
h € Hol(D, B(¢?)) and ||h|| g, B(ez)) = 1, so that h € HP(D, B(¢?)) for all 1 < p < oo.
Suppose that there exists p € [1, 00] such that P : HP(T,B(¢?)) — HP(D, B(¢?)) is onto.
Then there exists a function f € HP(T,B(¢?)) such that P[f] = h. For each z € T,
define a “strong boundary function” bh : T — B(¢?) by
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(bh)(2)z == li_>rq he(2)x = (z"x(n)) (z = (z(n)) € £?). (3)
Then it follows from Lemma 2.1(c) that for all z € ¢2,

() (2)e = L (PIF), (2)e = £(2)a

for almost all z € T, which implies f = bh. Let 2, # 25 in T. For k = 1, 2, write 2, = e'*
(0 < 0 < 2m). Then there exists ng € N such that § < ng|f2 — 61| < 7 (mod 27). Let
{en :m =1,2,---} be the canonical orthonormal basis for ¢2. Then it follows from (3)
that

[(f(21) = f(22)) enoll o = [ = 23°| = 1 = (2271)™| > V2,

which implies that f is not essentially separably valued. Thus, by the Pettis Measurability
Theorem, f is not strongly measurable, a contradiction. Therefore, P : HP(T, B((?)) —
HP(D, B(¢£?)) is not onto for any p € [1,00]. O

3. Proof of the main result

A function f: T — B(X,Y) is called SOT measurable if the mapping z — f(2)x is
strongly measurable for every z € X.

We introduce a new normed space.
Definition 3.1. For 1 < p < oo, define L2 ,(T,B(X,Y)) by the space of all (equivalence
classes of) SOT measurable functions f : T — B(X,Y) such that N(f) € LP(T); we
identify f and g when f(z) = g(z) for almost all z € T. In this case, define

[1£]

2,1, 8(x,v)) = [IN(Hllze(r)-

We can easily check that L? ,(T,B(X,Y)) is a normed space and L ,(T,B(X,Y)) C

sot sot

LP(T,B(X,Y)) if 1 < p < ¢ < oo. Further, the space LY ,(T,B(X,Y)) is a Banach
space.
Lemma 3.2. For 1 <p < oo, L? (T, B(X,Y)) is a Banach space.
Proof. The proof follows from a slight variation of the standard proof (cf. [12]) for the
completeness of scalar-valued LP-spaces, except for SOT-measurability. To be completely
rigorous, we sketch a proof of the validity of SOT-measurability.

Suppose (f,) is a Cauchy sequence in L% ,(T, B(X,Y)). Then we can choose a sub-
sequence (fy,) such that

Hfm+1 - f’m'

L, (T, B(X,Y)) < 27 forall i =1,2,3,--- .
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If we put g := Y ;0 (fn, 1 — fn,), then it is easy to show that g(z) € B(X,Y) for almost
all z € T and in turn,

f(2) = fni(2) + 9(2)

converges for almost all z € T. Therefore for each x € X, f(2)r = lim;_, o0 fn,(2)x for
almost all z € T. Since f,, is SOT measurable, the mapping z — f,,(z)z is strongly
measurable, so that the mapping z — f(2)z is also strongly measurable. Therefore f is
SOT measurable. O

Remark 3.3. In the definition of L%

bo(T,B(X,Y)), we implicitly suppose N(f) is
(Lebesgue) measurable. In fact, we don’t guarantee that if f is SOT measurable then
N(f) is measurable in general. To see this, let £2(T) be the set of all functions z : T — C
2

such that z(z) = 0 for all but a countable number of 2’s and ) .y |#(2)]* < oo. For x

and y in £2(T) define

(@,y) =Y z(2)y(2).

zeT

Then ¢2(T) is a (non-separable) Hilbert space. Let F' be a nonmeasurable set in T. For
zeT,let f: T — B({*(T)) be defined by

x(z), ifs=z€F

(z))le) = {O, if z¢ F or s # z.

Then for each z € £2(T), we have that f(z)z = 0 for almost all z € T, and hence f is
SOT measurable.
We now claim that

N(f) =1 (1 denotes the indicator function of the set F'), (4)

which implies that N(f) is not measurable because F' is a nonmeasurable set. To see
this, for each z € T, let

1, ifs=
xz(s):{7 ifs=z

0, if s# z.
Then, z, € (*(T) and ||z.|| = 1. If 2 € F, then (f(2)z,)(s) = z.(s), so that
|| f(2)z:|l;2T) = 1. But since f(z) is a contraction, it follows that N(f)(z) = 1 for
all z € F. If instead z ¢ F, then f(z) = 0, so that N(f)(z) = 0. This proves (4). O

We note that in the above remark, #2(T) is not separable. However, we can show that
the SOT-measurability of f implies the measurability of N(f) if X is a separable Banach
space.
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Lemma 3.4. Let X be a separable Banach space. If f: T — B(X,Y) is SOT measurable
then N(f) is measurable.

Proof. Suppose that f : T — B(X,Y) is SOT measurable. Then for all x € X, the
mapping z — f(z)x is strongly measurable, and hence the mapping z — ||f(z)z|| is
measurable. Thus the mapping z — %

a countable dense subset Xy of X. Then we can easily see that

|| (2)]|
||

Thus the mapping z — N(f)(z) is measurable. O

is measurable for all nonzero x € X. Choose

N(f)(2) = sup{ 0fue XO}.

We now introduce a space which fits our purpose:

Definition 3.5. For 1 < p < oo, let HY ,(T,B(X,Y)) be the space of all (equivalence

classes of) functions f € LY ,(T,B(X,Y)) such that f(-)z € HP(T,Y) for every z € X.

Observe that for 1 < p < oo, H? ,(T, B(X,Y)) is a closed subspace of L%
Y)), so that by Lemma 3.2, H?

(T, B(X,Y)) is a Banach space.

(T, B(X

sot

Example 3.6. In general, H?(T,B(X,Y)) # HE ,(T,B(X,Y)) for all 1 < p < co. To see
this, let H?> = H*(T) and define the function f : T — B(H?) by

f(2)x(s) := x(zs).

Since the set of all polynomials on T is dense in H?, it follows that the mapping z
f(2)x is (uniformly) continuous for each z € H?. Thus, by the Pettis Measurability
Theorem, f is SOT measurable. Since N(f)(z) = 1 for all z € T, it follows that f €
L25,(T, B(H?)) with ||f]

sot

L=, (T, B(H?)) = 1. Moreover for each x € H?andne?Z,

(A(n)x) (s) = /E"f(z)x(s)dm(z) = <gc(zs)7 z”>H2 =Z(n)s",

T

which implies that f € H,(T,B(H?)) € H?,(T,B(H?)) for all 1 < p < co. However
we have that f ¢ HP(T,B(H?)). To see this we use the same argument as Example 2.2.
Let 21 # 2o in T. Write 2, = €% (0 < 6, < 27). Then there exists ny € N such that

T <mnolfy — 01| <7 (mod 27). We thus have

1(f(21) = f(22))s™ 72 = /I 218)" = (228)" [dm(s)

_ /|1 — (207)™ Pdm(s) > 2
T
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which implies that f is not essentially separably valued. Thus, by the Pettis Measurability
Theorem, f is not strongly measurable, so that, f ¢ HP(T,B(H?)). O

Definition 3.7. For f € H.,(T,B(X,Y)) and z € X, let Ps[f](-)z : D — Y be defined
by

P[f1(Qx = P[f(-)z](¢) (¢ € D),

where P[-] denotes the Poisson integral. In this case, Ps[f] is called the strong Poisson
integral of f.

Lemma 3.8. For 1 < p < oo, the mapping f — Ps[f] is a contraction from
Hgot(TaB(XaY)) to HP(D,B(X,Y))

Proof. Let f € HY ,(T,B(X,Y)) (1 <p < 00) and ¢ = re?? € D. Clearly, Ps[f](¢) is
linear on X. For each z € X,

11710l = | [ Pelo)e)adme)|
T
< T Wl cr syl

which implies that Ps[f](¢) € B(X,Y). Since Ps[f](-)z € HY(D,Y) for every x € X, it
follows Ps[f] € Hol (D, B(X,Y)). We now claim that

Bi[f] € H/(D, B(X,Y)) and || Ps[f]l[gr @, B(x,v)) < [I/]

Lot (T, B(X,Y))

For each ¢ € D and a unit vector x € X,

[1Ps[f1(C)]| < /Pc(Z)Hf(Z)IIdm(Z) = PIN(H](©)-

T

Thus || Ps[f](¢)|| < P[N(f)](¢) for all ( € D and hence, by Lemma 2.1(a), we have

1Pl Dellzecr, sexyy < [[(PINUODe|| oy < I llzz,cr 50230

which implies that Py[f] € HP(D,B(X,Y)) and

Ps[fllae, Bx,vy) < |fllze, (T, B(x,v))-

This completes the proof. 0O
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We are ready to prove our main theorem. Before doing it, we would like to underline
a reason why our proof is little intricate. Let h € H'(D,B(X,Y)) and assume that YV
has the ARNP. Since h(-)z € H*(D,Y) for each 2 € X, there exists the following radial
strong limit bh a.e. on T: i.e., for each z € X,

bh(z)x := l:nll hre(z)x (z€T).
Write

E, :={z € T :bh(z)x does not exist} and FE := U E,..
reX

Then m(E;) = 0 for each z € X, but we don’t guarantee m(E) = 0. Thus the function
bh may not be defined almost everywhere on T. Therefore bh is not appropriate for a
boundary function of h. The crucial point of our proof is how to construct a “boundary
function” defined almost everywhere on T for a function in H?(D, B(X,Y)).

We will now prove Theorem 1.1, which we restate for the reader’s convenience:

Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying
the analytic Radon-Nikodym property. Then, for 1 < p < co, the mapping f — Ps[f] is
an isometric isomorphism from H? ,(T,B(X,Y)) onto H?(D, B(X,Y)).

Proof. Let X be a separable Banach space and Y be a Banach space satisfying the
analytic Radon-Nikodym property. Let h € H'(D, B(X,Y)). Our first task is to define
a “boundary function” bsh a.e. on T for h. To do so, let Xg ={z, € X :n=1,2,---}
be a countable dense subset of X. Then for each n = 1,2,-- -, there exists a measurable
set B, with m(FE,) = 0 such that bh(z)z, = lim,_1 h,(2)z, exists for all z € T \ E,,.
Then bh(-)z,, € HY(T,Y) for each n = 1,2,---. Put Ey := Up>1E,. Then m(Ep) = 0.
For z € T \ Ey, let

|[bh(z)|]
[l

q(2) :zsup{ :O;éxeXo}. (5)
Observe that for all z € T \ Ey and each = € X,
b (=)a] = lim | ()a] < timin |, (2)] - 1] (©)

Let u(z) := liminf,_,; N(h,)(z). Since h € HY(D,B(X,Y)), N(h,) is in L*(T) for each
0 < r < 1, so that u is measurable. Also by (5) and (6), we have

0<gq(z) <u(z) forall ze€ T \ Ey. (7)

On the other hand, by Fatou’s lemma, we have
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/u(z)dm(z) < lim inf,_; /N(hr)(z)dm(z) < |IM| a1, B(x,v)) < 0,
T T

which implies that v € L'(T). Thus there exists a subset £, of T with m(E,) = 0 such
that u(z) < oo for all z € T\ E,. Hence, by (7), ¢(z) < u(z) < oo forall z € T\ (EgUE,).
Therefore bh(z) can be extended to a bounded linear operator bsh(z) on X for almost
all ze T: for each z € T \ (Eg U E,) and z € X, define

bsh(z)z := lim bh(z)xp,, (8)

n—oo

where (z,,) is a sequence in X such that x,, — x. We note that (8) is independent of the
particular choice of the dense subset Xy of X and a sequence (x,) in Xo: indeed let Yy
be another countable dense subset of X and (y,,) is a sequence in Yy such that y, — x.
By the same argument above, we see that for almost all z € T,

|[bh(2)z|]
|l

q’(z):—sup{ :O;EwEXOUYO}<oo.

Thus
[bh(2)zn — Dh(2)yn|| < ' (2)l|2n — yull = 0 asn — oo,

which implies that the function bsh(z) is well-defined on X for almost all z € T. (We
call bgh the strong boundary function of h.)

Now let 1 < p < oo and suppose h € HP(D,B(X,Y)). Then bsh(z) € B(X,Y) for
almost all z € T and it is easy to show that bsh is SOT measurable and hence, by
Lemma 3.4, N(bsh) is measurable because X is separable. We claim that

bsh € H”,(T,B(X,Y)). (9)

sot
To see this, we first observe that, by (7), N(bsh)(z) = ¢(z) < liminf,_,; N(h,)(z) for
almost all z € T. Thus for 1 < p < oo, it follows from Fatou’s lemma that
/N@m@wm@gmmﬁﬂ/mmwwmw
T T (10)
<Pl @, 5x.vy) < °-

Let z € X be arbitrary and (z,) be a sequence in X, such that x,, — z. Then it follows
from (10) that

[bah () — bh()ealloer.y: = ( [ Ibneya - xn>||Pdm<z>) ’
T

< ||hl|ge, x|z — 20]| = 0 as n— cc.
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But since HP(T,Y) is a closed subspace of LP(T,Y") and bh(-)x,, € HP(T,Y), we have
bsh(-)xz € HP(T,Y), which together with (10) implies that bsh € HY (T, B(X,Y)) and

[1bsh]

a2, (T,8x,v)) < [|Mmr @, xv))-

sot

If instead p = oo, then h € H'(D,B(X,Y)), so that bsh € HL ,(T,B(X,Y)). Also, it
follows from (6) that

|1bsh]

L2, (T, B(x,v)) < [Pl D, B(x,v))- (11)

sot

Thus bsh € HZS, (T, B(X,Y)). This proves (9).

sot
We next claim that

P,[bsh] = h. (12)

Let 2 € X be arbitrary. Then for each ¢ = re’® € D,

1+r
1P [bsh] (Q)z|| < 1_T/||bsh(z):c||dm(z)
' (13)
1+7r
< 7, lbshllny, v, soxyy - Ml

Choose a sequence (z,,) in Xy such that x,, — . Then for each ¢ € D,

n—oo n—oQ
where the last equality follows from (13). This proves (12). Thus the mapping f — Ps[f]
is a surjection from H? (T,B(X,Y)) to H?(D,B(X,Y)). Therefore, by Lemma 3.8,
(10) and (11), the mapping f +— Ps[f] is an isometry from H? ,(T,B(X,Y)) onto
HP(D,B(X,Y)). This completes the proof. O

Theorem 1.1 may fail if the separability condition on X is dropped. For z € T and
x € %(T),let f: T — B(¢*(T)) be defined by

x(z), ifs=z
0, if s # 2.

Then by the argument in Remark 3.3, we have N(f) = 1, and hence f € HY (T,
B(¢*(T))) with || flzz (T 52Ty = 1 for all 1 < p < oc. Since (f(z)z)(s) is zero for all
z # s, it follows that for each x € £2(T), (€D and s € T,

(Ps[f1(C)z)(s) = /Pc(Z)(f(Z)x)(S)dm(Z) =0,

T
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which implies that Ps[f] = 0 in H?(D, B(¢*(T))). Therefore, the mapping f — Ps[f] is
not an isometry.
We conclude with consideration on adjoints of functions in H? ,(T,B(X,Y)).

For a function f: T — B(X,Y), define the “adjoint” f*: T — B(Y™*, X*) of f by
f[1(2):=fz)7" (2€T).
We may ask the following question: for 1 < p < oo, does it follow that
feH? (T,B(X,Y)) = f"eH (T,B(Y*",X"))?

In the sequel, we give an affirmative answer to this question if X is reflexive. To begin
with we review some definitions.

A function f: T — X is called weakly integrable if (f,x*) € L'(T) for every o* € X*.
If f is weakly integrable then the function T : X* — L(T), defined by Tyz* := (f,z*),
is a bounded linear operator. A weakly integrable function f : T — X is called Pettis
integrable if the adjoint Ty of the operator Ty maps L*>°(T) into X. It is well known that

f is Bochner integrable = f is Pettis integrable = f is weakly integrable.

Also it is known (cf. [9, Proposition 1.2.36.]) that for a weakly integrable function f :
T — X, the following are equivalent:

(a) f is Pettis integrable;
(b) for each measurable set B inT, there exists an element zp € X such that for every
z* € X* we have (zp,2*) = [5(f(2),2*)dm(z).

In this case, we shall write

:m=wm—/fwmma

B
and call it the Pettis integral of f over B.
We then have:

Lemma 3.9. Let X be a reflexive Banach space, and let f € Ll ,(T,B(X,Y)). Then for
each y* € Y* and ¢ € D, we have

PA QW = ) = [ P (2)ydm(e),

T

where Ps[f]*(C) := Ps[f]()*
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Proof. Let X be reﬂexwe and f € Lsot(T B(X,Y)). Then for all x € X and y* € Y*,
the mapping z — <x 1( > = < f(z > is measurable. But since X is reflexive, the
mapping z — f*(z)y
weakly measurable for each ¢ = re? € D. For each z € X,

* s weakly measurable. Thus the mapping z — P:(2)f*(2)y* is

[l Pi@r @) = [ R@|@y) ()
T T
< 5Tl el 11, sy
<oo,

which implies that Pe(-) f*(-)y* is weakly integrable and hence Pettis integrable. Thus
forallz € X and ( € D,

(P, y™) = / (z, P(2) f* (2)y"dm(z)

which gives the result. O
We now have:

Theorem 3.10. Let X be a reflerive Banach space and 1 <
HP (T,B(X,Y)), then f* € H? (T,B(Y*, X*)). Moreover, Ps[f*]

sot

p < oo If f €
= P[f]".

Proof. Let X be reflexive, 1 < p < oo, and f € H?,(T,B(X,Y)). Since (z, P,[f]*({)y*)
= (P[f](Q)z,y*) for all z € X and y* € Y*, it follows from Lemma 3.8 that P [f] €
Hol (]D),B(Y*,X*)). For all y* € Y* and ¢ € D,

P (Qy* [l = sup [z, Ps[f]"(Q)y™)]

[lzl[=1

< /Pc(Z)Hf(Z)Hdm(Z) Ayl

T
= PIN(HIQ) - [y,

which implies that ||Ps[f]*(C)|] < P[N(f)](€). It thus follows from Lemma 2.1(a) that

Lio(T,B(X,)Y))

/ (PP, )dm(z) < [ (PN, (dm(z) < 117
T

This proves that Ps[f]* € H(D,B(Y*, X*)). On the other hand, for all z € X and
y* € Y*, we have that for almost all z € T,
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lim (2, Polf)* (r2)y") = lim (Po[f)(r2)a,y)

r— r—1

= lim (P[(f(")z,y")]),() (14)

r—1

= (=, [*(2)y"),

where the last equality follows from the fact that (f(-)z,y*) € LP(T). Since X* has the
ARNP and P,[f]*(-)y* € HY(D, X*), it follows that

DRI (2)y" = lim P[] (r2)y”
exists for almost all z € T. Since X is reflexive, by the Hahn-Banach Theorem and (14),
*()y* = bPs[f1*(-)y* € HY(T,X*). In particular, f* is SOT measurable, and hence

f* € HE (T,B(Y*,X*)). On the other hand, since f € H},(T,B(X,Y)), it follows
from Lemma 3.9 that for each y* € Y* and { € D,

P (Qy" = (p) - /Pc(Z)f*(Z)y*dm(Z) = P[]y

T

which implies Ps[f*] = Ps[f]*. This completes the proof. O

Theorem 3.10 may fail if the reflexive condition on X is dropped. To see this, let
f: T — B(¢*) be defined by

(f(2)a)(n) = z"z(n) (z=(x(n)) € L).

Then it is not difficult to show that f € HSS,(T,B(¢')) and f* is not SOT measurable

sot

(cf. Example 2.2), so that f* ¢ HSS, (T, B(¢>°)). Note that ¢! is not reflexive.
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Appendix A. Strong HP-spaces

We devote this section to a general discussion of the circle companions of strong
HP-spaces.

For 1 < p < oo, let H?(D, B(X,Y)) be the space of all functions h in Hol(D, B(X,Y))
such that h(-)x € HP(D,Y) for every z € X: HP(D, B(X,Y)) is called a strong HP-space
(cf. [10]). If h € HP(D,B(X,Y)), then we can easily show that the mapping x — h(-)x
is a closed linear transformation from X into H?(D,Y), so that by the Closed Graph
Theorem, it is bounded. Let

1A

H_f(]D),B(Xﬂ/)) = Sup{||h(')x||Hp(]D)7y) X e X Wlth Hl‘” § ].}

Then H?(D,B(X,Y)) is a normed space and
HP(D,B(X,Y)) C H'(D,B(X,Y)) (1<p<o0). (15)

Also we can easily check that H*(D,B(X,Y)) = H*(D, B(X,Y)). However, if 1 <p <
oo then the inclusion in (15) may be proper.

Example A.1. Let 1 < p < co. For ¢ € D, define h(¢) : H?(T) — C by

hQ)f = PIfIC)  (f € HP(T)).

Then for each ¢ = re?? € D,

A ()5 (),c) = sup{[|PLA(re™)| < | fllgro(ry = 1}
< 1+7r
—1-r
< 1—|—7’7
—1—-r

-sup{[|fIlzrcry < e Ty = 1}
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which implies that h(¢) is a bounded linear operator. Thus it is easy to show that h €
HSP(D,B(HP(T),(C)) and ||h| H;’(D7B(Hp(’]r)7c)) =1. HOWGVG].", h ¢ HP(D,B(HP(T)7C))
indeed, for each z € T, let

f2(s) = = (seT).
Then f, is inner, so that ||f.||g»(T) = 1. Thus

r+

he(2)]| > [hr(2) fo| = €7

1
1
7

so that

=

swp | [l GIPdnt) | = s e =,
0<r<1 J 0<r<1

which implies that h ¢ H?(D, B(H?(T),C)). O

Let £(X,)) be the set of all linear transformations between normed spaces X and
Y. For a subset F' of a Banach space X, let sp(F) denote the linear span of F. For
1<p<oo,let L2(T, L(sp(F),Y)) be the space of all (equivalence classes of) functions
f:T — L(sp(F),Y) satisfying

(i) f(-)z e LP(T,Y) for all x € sp(F); as usual, we identify f and g when f(-)z = g(-)x
in LP(T,Y) for all « € sp(F');
(i) | fllzer, ceper).yy) = sup{|[f()zllLocr v @ € sp(F) with [[z]] < 1} < oo

Then L2(T, L(sp(F'),Y)) is a normed space and

LT, L(sp(F),Y)) € LT, L(sp(F),Y)) if1<p<q<oo.
We now define HP(T, L(sp(F),Y)) as the space of all (equivalence classes of) func-
tions f € LP(T,L(sp(F),Y)) such that f(-)r € HP(T,Y) for all x € sp(F). We

note that Definition 3.7 is still well-defined for functions in H!(T,L(sp(F),Y)); i.e.,
for f € HX(T,L(sp(F),Y)) and z € sp(F),

B[fl(Qz := P[f(-)z](¢) (Ce€D).
We then have:

Lemma A.2. Let X,Y be Banach spaces and F C X. Suppose f € HY(T, L(sp(F),Y)). If
(xn) is a Cauchy sequence in sp(F'), then the sequence (Ps[f](-)xy) converges uniformly
on every compact subset of D.
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Proof. Suppose f € HX(T,L(sp(F),Y)) and K is a compact subset of D. Then r =
max{|(| : ¢ € K} < 1. Let (z,,) be a Cauchy sequence in sp(F) and € > 0 be arbitrary.
For all ¢ = re? € K, there exists N > 0 such that if m > n > N, then

IPLFI(C)n — PoLFICmll = H [ 1@ e rmdim)
T

1+7r
< i 1@ @ = 2)ldm(z) (16)
T
1+r €
< 17— Wz, cepm ypllzn = zmll < 5

Thus (Ps[f](-)xzn) converges pointwise to a function h : D — Y. Fixing n > N and
letting m — oo, (16) leads to

IPLAQn — MOl = Tim [|PF(Qzn — PolAIQwmll < € forall ¢ € K,

which implies (Ps[f](-)z,) converges uniformly on K. 0O

Now if X is separable Banach space, we may define P,[f](¢) on X for all ( € D by
virtue of Lemma A.2. This is a reason why we introduce sp(F’). Indeed, let X, Y be
Banach spaces and assume that X is separable and F' is a dense subset of X. Then
by Lemma A.2, given a function f € HX(T,L(sp(F),Y)), we may define an extension
P4[f](C) of P[f](¢) to X for each ¢ € D: in other words, if + € X, then there exists
a sequence (z,) in sp(F) such that z, — x, so that by Lemma A.2, (Ps[f]({)x,) is a
convergent sequence for each ¢ € D and hence, we can define, for each z € X,

Py[f](¢)z := lim P[f](()zn (¢ € D). (17)
n—roo
We note that the limit in (17) is independent of the particular choice of (z,,) because if
(yn) is another sequence in sp(F') such that y, — z, then by the same argument as in
(16) we have, for all { € D,

[[Ps[f1(Q)zn — Ps[f1(Q)ynll — 0 as n — oo,

which implies that the function P,[f](¢) is well-defined on X. For simplicity, and since
doing so will not lead to confusion, we will keep denoting by Ps[f] the extension Pj|[f]
defined by (17).

We then have:
Theorem A.3. Let XY be Banach spaces and F be a dense subset of X. Then the

mapping f — Ps[f] is an isometry from H?(T, L(sp(F),Y)) to H?(D,B(X,Y)) for each
1<p<oo.
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Proof. Let f € HP(T,L(sp(F),Y)) (1 < p < o0) and ¢ = re?® € D. Clearly, Ps[f](¢)
is linear on X. If € X, then there exists a sequence () in sp(F') such that x,, — .
Thus we have

IPA1(all = Jim | / Pe(2)f (2)endm(a)|

n—oo

1+7r
. HfHL (T, £(sp(F),v)) 2],

IA

which implies that Ps[f]({) € B(X,Y). For each y* € Y*, it follows from Lemma A.2
that (P[f]({)x,, y*) converges uniformly to (Ps[f](¢)z, y*) on every compact subset
of D. Thus Ps[f] € Hol (D, B(X,Y)). Now we claim that

Ps[f] € HY(D, B(X,Y)) and || Ps[f]l|arm, Bx,vy) < IfllLocr, cespe)y))- (18)

We split the proof into two cases.

Case 1 (1 < p < o0): Let z be an arbitrary unit vector in X and (z,) be a
sequence in sp(F') such that z, — =z. Since P[f(-)z,] € HP(D,Y), the mapping
z = ||(Ps[f])r(2)xn||P is measurable for all n € N. Thus it follows from Fatou’s lemma
and Lemma 2.1(a) that

IR el = [ i IR ol Pims) )
T

< lim infn—>®©||(P8[f])r('>xn”LP(T,Y)

< lim inf, o || fC)znllLr (T, v)

£(T, L(sp(F),Y))>

which proves (18).
Case 2 (p = 00): Assume to the contrary that

|1Ps[f]

(F),Y))-

Then there exists a unit vector zo in X and (o € D such that ||Ps[f](¢o)zol| >
(T, £(sp(F),y))- Choose a sequence (z,) in sp(F) such that x, — x¢. Then for
sufﬁ(nently large N

1PL1Co)zn |l > (1 f [l e (x, cspr)vy) = [1Fznlle(,y),

which is a contradiction by Lemma 2.1(a). This proves (18) with p = oo.
Now for all x € sp(F), it follows that || f(-)z[|zr(T,v) = [|Ps[f](-)2]|m»,v) and hence

(T, £(sp(F),v)) < ||Pslf]llar,B(x,v))- Therefore, by (18), the mapping f ~ Ps[f] is
an isometry from H?(T, L(sp(F),Y)) to H?(D,B(X,Y)). This completes the proof. O
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Corollary A.4. Let X, Y be Banach spaces, and assume that X is separable and Y has
the ARNP. For a countable dense subset F of X and 1 < p < oo, the mapping f — Ps|[f]
is an isometric isomorphism from HP(T,L(sp(F),Y)) onto HP(D,B(X,Y)).

Proof. A similar argument to (12) shows that the mapping f — Ps[f] is a surjection
from HP(T,L(sp(F),Y)) into H?(D,B(X,Y)). Thus the result follows at once from
Theorem A.3. O

For 1 < p < oo, let LE(T,B(X,Y)) be the space of all (equivalence classes of) SOT
measurable functions f : T — B(X,Y) such that f(-)zr € LP(T,Y) for all z € X;
we identify f and g when f()z = g(-)x in LP(T,Y) for all z € X (cf. [5]). If f €
L2(T,B(X,Y)), then it follows from the Closed Graph Theorem that

171

LE(T,B(X,Y)) ‘= Sup{||f(‘)l'||Lp(’]1‘7Y) :x € X with ||f£|| < 1} < 0.

Then LE(T,B(X,Y)) is a normed space (cf. [4], [9], [11]). In general, the space
LP(T,B(X,Y)) is not complete (cf. [9, p.64]). Also we define HP(T,B(X,Y)) by the
space of all (equivalence classes of) functions f € LP(T,B(X,Y)) such that f(-)z €
HP(T,Y) for every z € X.

Example A.5. In view of Lemma 3.4, we may ask whether or not L2(T,B(X,Y)) =
LP (T,B(X,Y)) if X and Y are separable Banach spaces. The answer, however, is
negative. To see this, we use the notation

Ar®@z)(z) =1p(z)z forze X, FCT.

Write H2 = H?(T) and define a function f: T — B(H?) by
(f(2)x)(s) :==Z(0) + Z(lFﬂ ® \/%f(:\(n))(z)s” (x € H?), (19)

where F,, = {e"? : (2— L)r <60 <2} forn=1,2, . Let
Ey:={e®:0<0<7} and E,:=F,\F, forn=1,2---.

Then for each 1 # z € T, there exists N > 0 such that z € Ey. Thus, by (19), we have
that for N > 1,

N
(f(z)2)(s) = 2(0) + > _V2nZ(n)s" (z € En), (20)
n=1

which implies f(z) € B(H?). For x € H?, it follows from (20) that
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15Ol i = 3 [ IrGIelam(s

NOE

1 2 = 2 al 2

§|§(0)| +> <]§(0)] +3 " 2n|3(n)| )m(EN)
N=1 n=1

20)]” + " 2nfz(n)*m(F,)

= ||zl

which proves that f € L2(T,B(H?)). However, we have f ¢ L2 ,(T,B(H?)): indeed if
z € Ep, (n > 1) then it follows from (20) that ||f(z)s"||g2 = v2n. Thus

/Hf 2 Z/uf Weam(s) = 5+

which implies that f ¢ L2 ,(T,B(H?)). O

The following diagram summarizes the preceding arguments.

Let X be a separable Banach space, Y be a Banach space satisfying the ARNP and
F be a countable dense subset of X. Then for all 1 < p < oo,

H”(T,B(X,Y)) S H,

sot

(T,B(X,Y)) & H{(T,B(X,Y)) S HY(T, L(sp(F),Y))

2l JPS Al J P (21)
HP(D,B(X,Y)) H?(D,B(X,Y)).

We note that all the inclusions on the first line of (21) are strict. Indeed, in Exam-
ple 3.6, we saw HP(T,B(X,Y)) # H? ,(T,B(X,Y)) in general. We give some examples
such that the other two inclusions are strict.

Example A.6. (a) In general, H? ,(T,B(X,Y)) # HP(T,B(X,Y)). Indeed, for a sep-
arable Hilbert space E, there exists a function ¢ € HZ(T,B(E)) such that g ¢

H2,(T,B(E)). To see this, we introduce some notations. For f € L2(T,B(E)), we
denote by f_ and fy the functions

f-(R)z = (P_(f()2))(®) (2€T, z€E);

f(z)z = (P+(f().’L‘))(Z) (2€T, z€ E),
where P, and P_ are the orthogonal projections from L?(T,E) onto H?(T,E) and
L*(T,E)© H*(T, E), respectively (cf. [11]). Then, f_, fi € H2(T,B(E)) and we may

write
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f2) = f+() + f-() (z€T).

Let f be the function given in (19). Assume that f, € H2
H2,(T,B(H?)). Observe that for z € T,

(T,B(H?)) and f_ €

sot

1F NP < =@ + £+ @I + 201 /- @ £+ )II-

It thus follows from Holder’s inequality that

/Hf | dm(:) /||f | dm(:) /||f+ I dm(:)
+2(/|f )= ></||f+ a3

< 00,

which is a contradiction. We thus have fy ¢ HZ2,(T,B(H?)) or f_ ¢ HZ2,(T,B(H?)).
Note that H? is a separable Hilbert space.

(b) In general, H?(T,B(X,Y)) # HP?(T,L(sp(F),Y)). To see this, define f : T —
L(¢%,C) by

= Z x(n)z" (z = (x(n)) € £2).

Then f(z) is not bounded for all z € T because for any zg € T, if we let

=n
.’Eo(n) ::;0 (7121,2,"'),

then f(z0)zo = Y pey + = oco. Thus, f ¢ HZ(T,B(¢?,C)). On the other hand, let

F = {Z apey, o, € Q and  is a finite subset of N},
neQ

where Q is a countable dense subset of C and {e, : n = 1,2,---} is the canonical
orthonormal basis for £2. Then F' is a countable dense subset of £2 and we can easily see
that f € H2(T, L(sp(F),C)).
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