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This paper gives a complete answer to the following problem: 
Find the circle companion of the Hardy space of the unit 
disk with values in the space of all bounded linear operators 
between two separable Hilbert spaces. Classically, the problem 
asks whether for each function h on the unit disk, there exists 
a “boundary function” bh on the unit circle such that the 
mapping bh �→ h is an isometric isomorphism between Hardy 
spaces of the unit circle and the unit disk with values in some 
Banach space. For the case of bounded linear operator-valued 
functions, we construct a Hardy space of the unit circle such 
that its elements are SOT measurable, and their norms are 
integrable: indeed, this new space is isometrically isomorphic 
to the Hardy space of the unit disk via a “strong Poisson 
integral.”
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In
 Introduction

We solve an old and outstanding problem in the theory of Hardy spaces. For 1 ≤ p ≤ ∞
d X a Banach space, consider the Hardy space Hp(D, X) of X–valued functions defined 
 the unit disk D. For each h ∈ Hp(D, X), we try to associate a function bh, which 
ptures the boundary values of h. Our goal is to identify a Banach space C of X–valued 
nctions defined on the unit circle T which represent, in a natural and canonical way, 
e boundary values of functions in Hp(D, X). When the mapping h �→ bh is an isometric 
omorphism from Hp(D, X) onto C, we say that C is the “circle companion” of Hp(D, X).
In this paper, we find the circle companion of the Hardy space of the unit disk with 
lues in B(D, E), the space of all bounded linear operators between two separable 
ilbert spaces D and E. That is, we focus on the cases where the above-mentioned 
anach space X is B(D, E).
A study on the boundary values of functions in Banach-space-valued Hardy spaces 

p(D, X) of the unit disk was initiated in 1976 by A.V. Bukhvalov [2]. Since then, 
any researchers have studied the spaces of boundary values of functions in Hp(D, X)
ee the bibliographical references at the end of this paper). In particular, in 1982 A.V. 
ukhvalov and A.A. Danilevich [3] showed that if a Banach space X has the analytic 
adon-Nikodým property (ARNP) (or equivalently, every function in H1(D, X) has 
dial limits a.e. on T ; cf. [1], [3], [7], [6], [8]), then the space of boundary values of 
nctions in Hp(D, X) is Hp(T , X); more precisely, the mapping h �→ bh is an isometric 
omorphism from Hp(D, X) onto Hp(T , X) and moreover, P [bh] = h, where P [·] denotes 
e Poisson integral, or equivalently, the mapping f �→ P [f ] is an isometric isomorphism 
om Hp(T , X) onto Hp(D, X). However, this is no longer true for spaces of operator-
lued functions. Indeed, if X = B(D, E), then X need not satisfy the ARNP in general, 
 that we cannot guarantee that the mapping f �→ P [f ] is an isometric isomorphism 
om Hp(T , X) onto Hp(D, X). In fact, for each 1 ≤ p ≤ ∞, there exists a function 
 ∈ Hp(D, B(�2)) such that h �= P [f ] for any f ∈ Hp(T , B(�2)) (see Example 2.2). Thus, 
e following problem remained unsolved until now:

Find the circle companion of Hp(D, B(D, E)) for 1 ≤ p ≤ ∞. (1)

lthough not necessarily explicitly stated as an open problem, the problem (1) appears 
 Nikolski’s book [10, p. 62, lines 14-15], where it is mentioned implicitly. In this pa-
er, we solve problem (1). Our solution aims to shed additional insights into the study 
 boundary values, and how the Poisson transform serves as a bridge between those 
oundary values and the initial Hardy space function. Towards our solution, we intro-
uce a new space Lp

sot(T , B(X, Y )) (1 ≤ p ≤ ∞) defined by the space of all (equivalence 
asses of) SOT measurable functions f : T → B(X, Y ) such that N(f) ∈ Lp(T ) (where 
(f)(z) := ||f(z)||B(X,Y )); we identify f and g when f(z) = g(z) for almost all z ∈ T . 
 this case, let
||f ||Lp
sot(T , B(X,Y )) := ||N(f)||Lp(T).
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lso for 1 ≤ p ≤ ∞, let Hp
sot(T , B(X, Y )) be defined by the space of functions in 

p
sot(T , B(X, Y )) such that f(·)x ∈ Hp(T , Y ) for every x ∈ X. On the other hand, we 
fine the “strong Poisson integral” Ps[f ] of f in Hp

sot(T , B(X, Y )) by

Ps[f ](ζ)x := P [f(·)x](ζ) (x ∈ X, ζ ∈ D).

he aim of this paper is to prove that for 1 ≤ p ≤ ∞, the mapping f �→ Ps[f ] is an iso-
etric isomorphism from Hp

sot(T , B(D, E)) onto Hp(D, B(D, E)). In [10, p. 53, Theorem 
11.10] it is shown that the mapping f �→ Ps[f ] provides an isometric isomorphism from 
∞
W OT (T , B(D, E)) onto H∞(D, B(D, E)) when D and E are separable Hilbert spaces -
 fact, we can show that H∞

W OT (T , B(D, E)) = H∞
sot(T , B(D, E)) in our language. This 

ovides a sound rationale for denoting this new space as Hp
sot(T , B(D, E)), in a manner 

lly consistent with the well-known result. In fact, we can get a more general version of 
e Banach space setting. The following is the main result of this paper.

heorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying the 
alytic Radon-Nikodým property. Then, for 1 ≤ p ≤ ∞, the mapping f �→ Ps[f ] is an 

ometric isomorphism from Hp
sot(T , B(X, Y )) onto Hp(D, B(X, Y )).

The following corollary is immediate from Theorem 1.1.

orollary 1.2. Let D and E be separable Hilbert spaces. Then, for 1 ≤ p ≤ ∞, 
e mapping f �→ Ps[f ] is an isometric isomorphism from Hp

sot(T , B(D, E)) onto 
p(D, B(D, E)). As a result, Hp

sot(T , B(D, E)) is the circle companion of Hp(D, B(D,

)).

In Section 2, we give a few essential facts that will be needed to prove Theorem 1.1. 
ction 3 is devoted to a proof of Theorem 1.1. In the Appendix, we consider relevant 
sults for strong Hp-spaces.

 Preliminaries

We review here the preliminary background needed to prove the main theorem, using 
] and [10] as general references. Let m be the normalized Lebesgue measure on T . For 
Banach space X, a function f : T → X is said to be essentially separably valued if 
ere exists a Lebesgue measurable set T ′ ⊆ T such that the range f(T ′) is separable 
d m(T \ T ′) = 0.
We begin with:

ettis Measurability Theorem ([9]). Let X be a Banach space and X∗ denote the dual 
ace of X. For a function f : T → X, the following are equivalent:

) f is strongly measurable (i.e., there exists a sequence of simple functions fn such 

that f(z) = limn→∞ fn(z) for almost all z ∈ T );
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) f is essentially separably valued and weakly measurable (i.e., the mapping z �→
〈f(z), x∗〉 is Lebesgue measurable for every x∗ ∈ X∗).

bservation. By the Pettis Measurability Theorem, the almost everywhere limit of a 
quence of strongly measurable functions is also strongly measurable.

Given a function f : T → X, let

N(f)(z) := ‖f(z)‖X .

or 1 ≤ p ≤ ∞, let Lp(T , X) be the space of all (equivalence classes of) strongly 
easurable functions f : T → X such that N(f) ∈ Lp(T ). Endowed with the norm

||f ||Lp(T , X) := ||N(f)||Lp(T),

e space Lp(T , X) is a Banach space. For f ∈ L1(T , X), the n-th Fourier coefficient of 
, denoted by f̂(n), is defined by

f̂(n) :=
∫
T

znf(z) dm(z) for each n ∈ Z,

here the integral is understood in the sense of the Bochner integral. Also, Hp(T , X) is 
efined as the space of functions f ∈ Lp(T , X) with f̂(n) = 0 for n < 0.

Hereafter, let X and Y be Banach spaces and B(X, Y ) denote the space of all bounded 
near operators from X to Y , and abbreviate B(X, X) as B(X). We write Hol(D, X) for 
e set of all X-valued functions holomorphic in D.

quivalent conditions of holomorphic functions ([10]). If h : D → B(X, Y ), then the 
llowing are equivalent.

) h ∈ Hol(D, B(X, Y ));
) h(·)x ∈ Hol(D, Y ) for all x ∈ X;
) 〈h(·)x, y∗〉 ∈ Hol(D, C) for all x ∈ X and y∗ ∈ Y ∗.

Let us associate to any function h : D → X, a family of functions hr on T , defined by

hr(z) := h(rz) (z ∈ T , 0 ≤ r < 1).

or 1 ≤ p ≤ ∞, let Hp(D, X) be the space of all functions h ∈ Hol(D, X) satisfying

||h||Hp(D, X) := sup
{

||N(hr)||Lp(T) : r < 1
}

< ∞.
hen Hp(D, X) is a Banach space (cf. [6]). If h ∈ Hol (D, X), then we may write
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h(ζ) =
∞∑

n=0
xnζn (ζ ∈ D, xn ∈ X).

ence for each 0 ≤ r < 1,

hr(z) =
∞∑

n=0
xnrnzn (z ∈ T ),

hich implies that hr is essentially separably valued. For each x∗ ∈ X∗,

〈hr(z), x∗〉 =
∞∑

n=0

〈
xnrn, x∗〉

zn (z ∈ T ),

hich implies that hr is weakly measurable. Thus, by the Pettis Measurability Theorem, 
r is strongly measurable. Therefore we have that

||h||Hp(D, X) = sup
0≤r<1

||hr||Lp(T , X).

For f ∈ L1(T , X), let P [f ] denote the Poisson integral of f defined by

P [f ](ζ) :=
∫
T

Pζ(z)f(z)dm(z) (ζ ∈ D), (2)

here Pζ(z) is the Poisson kernel.

The following are basic properties of Poisson integrals.

emma 2.1 ([10, Lemma 3.11.6.]). If f ∈ Lp(T , X) (1 ≤ p ≤ ∞), then

) ||(P [f ])r||Lp(T , X) ≤ ||f ||Lp(T , X) for all 0 ≤ r < 1;
) If p < ∞, then limr→1 ||(P [f ])r − f ||Lp(T , X) = 0;
) limr→1 ||(P [f ])r(z) − f(z)||X = 0 for almost all z ∈ T .

On the other hand, the function P : Hp(T , X) → Hp(D, X) given by (2), is an 
ometry for all 1 ≤ p ≤ ∞ (cf. [1]). As we noticed in the introduction, if X has the ARNP 
d 1 ≤ p ≤ ∞, then the function P : Hp(T , X) → Hp(D, X) given by (2) is an isometric 

omorphism (cf. [3]). However, the function P : Hp(T , B(D, E)) → Hp(D, B(D, E))
ven by (2) is not onto in general, as we see in the following example.

xample 2.2. Let h : D → B(�2) be defined by (h(ζ)x)(n) := ζnx(n) for each x ∈ �2. Then 
 ∈ Hol(D, B(�2)) and ||h||H∞(D, B(�2)) = 1, so that h ∈ Hp(D, B(�2)) for all 1 ≤ p ≤ ∞. 
ppose that there exists p ∈ [1, ∞] such that P : Hp(T , B(�2)) → Hp(D, B(�2)) is onto. 

hen there exists a function f ∈ Hp(T , B(�2)) such that P [f ] = h. For each z ∈ T , 

fine a “strong boundary function” bh : T → B(�2) by
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(bh)(z)x := lim
r→1

hr(z)x = (znx(n)) (x ≡ (x(n)) ∈ �2). (3)

hen it follows from Lemma 2.1(c) that for all x ∈ �2,

(bh)(z)x = lim
r→1

(P [f ])r(z)x = f(z)x

r almost all z ∈ T , which implies f = bh. Let z1 �= z2 in T . For k = 1, 2, write zk = eiθk

 ≤ θk < 2π). Then there exists n0 ∈ N such that π
2 < n0|θ2 − θ1| ≤ π (mod 2π). Let 

n : n = 1, 2, · · · } be the canonical orthonormal basis for �2. Then it follows from (3)
at ∥∥(

f(z1) − f(z2)
)
en0

∥∥
�2 = |zn0

1 − zn0
2 | = |1 − (z2z1)n0 | >

√
2,

hich implies that f is not essentially separably valued. Thus, by the Pettis Measurability 
heorem, f is not strongly measurable, a contradiction. Therefore, P : Hp(T , B(�2)) →
p(D, B(�2)) is not onto for any p ∈ [1, ∞]. �
 Proof of the main result

A function f : T → B(X, Y ) is called SOT measurable if the mapping z �→ f(z)x is 
rongly measurable for every x ∈ X.
We introduce a new normed space.

efinition 3.1. For 1 ≤ p ≤ ∞, define Lp
sot(T , B(X, Y )) by the space of all (equivalence 

asses of) SOT measurable functions f : T → B(X, Y ) such that N(f) ∈ Lp(T ); we 
entify f and g when f(z) = g(z) for almost all z ∈ T . In this case, define

||f ||Lp
sot(T , B(X,Y )) := ||N(f)||Lp(T).

We can easily check that Lp
sot(T , B(X, Y )) is a normed space and Lq

sot(T , B(X, Y )) ⊆
p
sot(T , B(X, Y )) if 1 ≤ p ≤ q ≤ ∞. Further, the space Lp

sot(T , B(X, Y )) is a Banach 
ace.

emma 3.2. For 1 ≤ p ≤ ∞, Lp
sot(T , B(X, Y )) is a Banach space.

roof. The proof follows from a slight variation of the standard proof (cf. [12]) for the 
mpleteness of scalar-valued Lp-spaces, except for SOT-measurability. To be completely 
gorous, we sketch a proof of the validity of SOT-measurability.
Suppose (fn) is a Cauchy sequence in Lp

sot(T , B(X, Y )). Then we can choose a sub-
quence (fni

) such that
||fni+1 − fni
||Lp

sot(T , B(X,Y )) < 2−i for all i = 1, 2, 3, · · · .
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 we put g :=
∑∞

i=1(fni+1 − fni
), then it is easy to show that g(z) ∈ B(X, Y ) for almost 

l z ∈ T and in turn,

f(z) := fn1(z) + g(z)

nverges for almost all z ∈ T . Therefore for each x ∈ X, f(z)x = limi→∞ fni
(z)x for 

most all z ∈ T . Since fni
is SOT measurable, the mapping z �→ fni

(z)x is strongly 
easurable, so that the mapping z �→ f(z)x is also strongly measurable. Therefore f is 
T measurable. �

emark 3.3. In the definition of Lp
sot(T , B(X, Y )), we implicitly suppose N(f) is 

ebesgue) measurable. In fact, we don’t guarantee that if f is SOT measurable then 
(f) is measurable in general. To see this, let �2(T ) be the set of all functions x : T → C

ch that x(z) = 0 for all but a countable number of z’s and 
∑

z∈T |x(z)|2 < ∞. For x
d y in �2(T ) define

〈x, y〉 :=
∑
z∈T

x(z)y(z).

hen �2(T ) is a (non-separable) Hilbert space. Let F be a nonmeasurable set in T . For 
∈ T , let f : T → B(�2(T )) be defined by

(f(z)x)(s) :=
{

x(z), if s = z ∈ F

0, if z /∈ F or s �= z.

hen for each x ∈ �2(T ), we have that f(z)x = 0 for almost all z ∈ T , and hence f is 
T measurable.
We now claim that

N(f) = 1F (1F denotes the indicator function of the set F ), (4)

hich implies that N(f) is not measurable because F is a nonmeasurable set. To see 
is, for each z ∈ T , let

xz(s) :=
{

1, if s = z

0, if s �= z.

hen, xz ∈ �2(T ) and ||xz|| = 1. If z ∈ F , then (f(z)xz)(s) = xz(s), so that 
(z)xz||�2(T) = 1. But since f(z) is a contraction, it follows that N(f)(z) = 1 for 

l z ∈ F . If instead z /∈ F , then f(z) = 0, so that N(f)(z) = 0. This proves (4). �
We note that in the above remark, �2(T ) is not separable. However, we can show that 
e SOT-measurability of f implies the measurability of N(f) if X is a separable Banach 

ace.
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emma 3.4. Let X be a separable Banach space. If f : T → B(X, Y ) is SOT measurable 
en N(f) is measurable.

roof. Suppose that f : T → B(X, Y ) is SOT measurable. Then for all x ∈ X, the 
apping z �→ f(z)x is strongly measurable, and hence the mapping z �→ ||f(z)x|| is 
easurable. Thus the mapping z �→ ||f(z)x||

||x|| is measurable for all nonzero x ∈ X. Choose 
countable dense subset X0 of X. Then we can easily see that

N(f)(z) = sup
{

||f(z)x||
||x|| : 0 �= x ∈ X0

}
.

hus the mapping z �→ N(f)(z) is measurable. �
We now introduce a space which fits our purpose:

efinition 3.5. For 1 ≤ p ≤ ∞, let Hp
sot(T , B(X, Y )) be the space of all (equivalence 

asses of) functions f ∈ Lp
sot(T , B(X, Y )) such that f(·)x ∈ Hp(T , Y ) for every x ∈ X.

Observe that for 1 ≤ p ≤ ∞, Hp
sot(T , B(X, Y )) is a closed subspace of Lp

sot(T , B(X,

)), so that by Lemma 3.2, Hp
sot(T , B(X, Y )) is a Banach space.

xample 3.6. In general, Hp(T , B(X, Y )) �= Hp
sot(T , B(X, Y )) for all 1 ≤ p ≤ ∞. To see 

is, let H2 ≡ H2(T ) and define the function f : T → B(H2) by

f(z)x(s) := x(zs).

ince the set of all polynomials on T is dense in H2, it follows that the mapping z �→
(z)x is (uniformly) continuous for each x ∈ H2. Thus, by the Pettis Measurability 
heorem, f is SOT measurable. Since N(f)(z) = 1 for all z ∈ T , it follows that f ∈
∞
sot(T , B(H2)) with ||f ||L∞

sot(T , B(H2)) = 1. Moreover for each x ∈ H2 and n ∈ Z,

(
f̂(n)x

)
(s) =

∫
T

znf(z)x(s)dm(z) =
〈
x(zs), zn

〉
H2 = x̂(n)sn,

hich implies that f ∈ H∞
sot(T , B(H2)) ⊆ Hp

sot(T , B(H2)) for all 1 ≤ p ≤ ∞. However 
e have that f /∈ Hp(T , B(H2)). To see this we use the same argument as Example 2.2. 
et z1 �= z2 in T . Write zk = eiθk (0 ≤ θk < 2π). Then there exists n0 ∈ N such that 
< n0|θ2 − θ1| ≤ π (mod 2π). We thus have

||(f(z1) − f(z2))sn0 ||2H2 =
∫
T

|(z1s)n0 − (z2s)n0 |2dm(s)

=
∫

|1 − (z2z1)n0 |2dm(s) > 2,
T
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hich implies that f is not essentially separably valued. Thus, by the Pettis Measurability 
heorem, f is not strongly measurable, so that, f /∈ Hp(T , B(H2)). �
efinition 3.7. For f ∈ H1

sot(T , B(X, Y )) and x ∈ X, let Ps[f ](·)x : D → Y be defined 

Ps[f ](ζ)x := P [f(·)x](ζ) (ζ ∈ D),

here P [·] denotes the Poisson integral. In this case, Ps[f ] is called the strong Poisson 
tegral of f .

emma 3.8. For 1 ≤ p ≤ ∞, the mapping f �→ Ps[f ] is a contraction from 
p
sot(T , B(X, Y )) to Hp(D, B(X, Y )).

roof. Let f ∈ Hp
sot(T , B(X, Y )) (1 ≤ p ≤ ∞) and ζ = reiθ ∈ D. Clearly, Ps[f ](ζ) is 

ear on X. For each x ∈ X,

||Ps[f ](ζ)x|| =
∣∣∣∣∣∣∫
T

Pζ(z)f(z)xdm(z)
∣∣∣∣∣∣

≤ 1 + r

1 − r
· ||f ||L1

sot(T , B(X,Y ))||x||,

hich implies that Ps[f ](ζ) ∈ B(X, Y ). Since Ps[f ](·)x ∈ H1(D, Y ) for every x ∈ X, it 
llows Ps[f ] ∈ Hol (D, B(X, Y )). We now claim that

Ps[f ] ∈ Hp(D, B(X, Y )) and ||Ps[f ]||Hp(D, B(X,Y )) ≤ ||f ||Lp
sot(T , B(X,Y )).

or each ζ ∈ D and a unit vector x ∈ X,

||Ps[f ](ζ)x|| ≤
∫
T

Pζ(z)||f(z)||dm(z) = P [N(f)](ζ).

hus ||Ps[f ](ζ)|| ≤ P [N(f)](ζ) for all ζ ∈ D and hence, by Lemma 2.1(a), we have

||(Ps[f ])r||Lp(T , B(X,Y )) ≤
∣∣∣∣(P [N(f)])r

∣∣∣∣
Lp(T) ≤ ||f ||Lp

sot(T , B(X,Y )),

hich implies that Ps[f ] ∈ Hp(D, B(X, Y )) and

||Ps[f ]||Hp(D, B(X,Y )) ≤ ||f ||Lp
sot(T , B(X,Y )).
his completes the proof. �
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We are ready to prove our main theorem. Before doing it, we would like to underline 
reason why our proof is little intricate. Let h ∈ H1(D, B(X, Y )) and assume that Y

as the ARNP. Since h(·)x ∈ H1(D, Y ) for each x ∈ X, there exists the following radial 
rong limit bh a.e. on T : i.e., for each x ∈ X,

bh(z)x := lim
r→1

hr(z)x (z ∈ T ).

rite

Ex := {z ∈ T : bh(z)x does not exist} and E :=
⋃

x∈X

Ex.

hen m(Ex) = 0 for each x ∈ X, but we don’t guarantee m(E) = 0. Thus the function 
may not be defined almost everywhere on T . Therefore bh is not appropriate for a 

oundary function of h. The crucial point of our proof is how to construct a “boundary 
nction” defined almost everywhere on T for a function in Hp(D, B(X, Y )).

We will now prove Theorem 1.1, which we restate for the reader’s convenience:

heorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying 
e analytic Radon-Nikodým property. Then, for 1 ≤ p ≤ ∞, the mapping f �→ Ps[f ] is 
 isometric isomorphism from Hp

sot(T , B(X, Y )) onto Hp(D, B(X, Y )).

roof. Let X be a separable Banach space and Y be a Banach space satisfying the 
alytic Radon-Nikodým property. Let h ∈ H1(D, B(X, Y )). Our first task is to define 
“boundary function” bsh a.e. on T for h. To do so, let X0 = {xn ∈ X : n = 1, 2, · · · }
e a countable dense subset of X. Then for each n = 1, 2, · · · , there exists a measurable 
t En with m(En) = 0 such that bh(z)xn = limr→1 hr(z)xn exists for all z ∈ T \ En. 
hen bh(·)xn ∈ H1(T , Y ) for each n = 1, 2, · · · . Put E0 := ∪n≥1En. Then m(E0) = 0. 
or z ∈ T \ E0, let

q(z) := sup
{

||bh(z)x||
||x|| : 0 �= x ∈ X0

}
. (5)

bserve that for all z ∈ T \ E0 and each x ∈ X0,

||bh(z)x|| = lim
r→1

||hr(z)x|| ≤ lim inf
r→1

||hr(z)|| · ||x||. (6)

et u(z) := lim infr→1 N(hr)(z). Since h ∈ H1(D, B(X, Y )), N(hr) is in L1(T ) for each 
≤ r < 1, so that u is measurable. Also by (5) and (6), we have

0 ≤ q(z) ≤ u(z) for all z ∈ T \ E0. (7)
n the other hand, by Fatou’s lemma, we have
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∫
T

u(z)dm(z) ≤ lim infr→1

∫
T

N(hr)(z)dm(z) ≤ ||h||H1(D, B(X,Y )) < ∞,

hich implies that u ∈ L1(T ). Thus there exists a subset Eu of T with m(Eu) = 0 such 
at u(z) < ∞ for all z ∈ T \Eu. Hence, by (7), q(z) ≤ u(z) < ∞ for all z ∈ T \(E0∪Eu). 
herefore bh(z) can be extended to a bounded linear operator bsh(z) on X for almost 
l z ∈ T : for each z ∈ T \ (E0 ∪ Eu) and x ∈ X, define

bsh(z)x := lim
n→∞

bh(z)xn, (8)

here (xn) is a sequence in X0 such that xn → x. We note that (8) is independent of the 
rticular choice of the dense subset X0 of X and a sequence (xn) in X0: indeed let Y0

e another countable dense subset of X and (yn) is a sequence in Y0 such that yn → x. 
y the same argument above, we see that for almost all z ∈ T ,

q′(z) := sup
{

||bh(z)x||
||x|| : 0 �= x ∈ X0 ∪ Y0

}
< ∞.

hus

||bh(z)xn − bh(z)yn|| ≤ q′(z)||xn − yn|| → 0 as n → ∞,

hich implies that the function bsh(z) is well-defined on X for almost all z ∈ T . (We 
ll bsh the strong boundary function of h.)
Now let 1 ≤ p ≤ ∞ and suppose h ∈ Hp(D, B(X, Y )). Then bsh(z) ∈ B(X, Y ) for 

most all z ∈ T and it is easy to show that bsh is SOT measurable and hence, by 
emma 3.4, N(bsh) is measurable because X is separable. We claim that

bsh ∈ Hp
sot(T , B(X, Y )). (9)

o see this, we first observe that, by (7), N(bsh)(z) = q(z) ≤ lim infr→1 N(hr)(z) for 
most all z ∈ T . Thus for 1 ≤ p < ∞, it follows from Fatou’s lemma that∫

T

N(bsh)(z)pdm(z) ≤ lim infr→1

∫
T

N(hr)(z)pdm(z)

≤ ||h||pHp(D, B(X,Y )) < ∞.

(10)

et x ∈ X be arbitrary and (xn) be a sequence in X0 such that xn → x. Then it follows 
om (10) that

||bsh(·)x − bh(·)xn||Lp(T ,Y ) =
(∫
T

||bsh(z)(x − xn)||pdm(z)
) 1

p

≤ ||h||Hp(D, B(X,Y ))||x − xn|| → 0 as n → ∞.
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ut since Hp(T , Y ) is a closed subspace of Lp(T , Y ) and bh(·)xn ∈ Hp(T , Y ), we have 
h(·)x ∈ Hp(T , Y ), which together with (10) implies that bsh ∈ Hp

sot(T , B(X, Y )) and

||bsh||Hp
sot(T ,B(X,Y )) ≤ ||h||Hp(D, B(X,Y )).

 instead p = ∞, then h ∈ H1(D, B(X, Y )), so that bsh ∈ H1
sot(T , B(X, Y )). Also, it 

llows from (6) that

||bsh||L∞
sot(T , B(X,Y )) ≤ ||h||H∞(D, B(X,Y )). (11)

hus bsh ∈ H∞
sot(T , B(X, Y )). This proves (9).

We next claim that

Ps[bsh] = h. (12)

et x ∈ X be arbitrary. Then for each ζ = reiθ ∈ D,

||Ps[bsh](ζ)x|| ≤ 1 + r

1 − r

∫
T

||bsh(z)x||dm(z)

≤ 1 + r

1 − r
· ||bsh||L1

sot(T , B(X,Y )) · ||x||.
(13)

hoose a sequence (xn) in X0 such that xn → x. Then for each ζ ∈ D,

h(ζ)x = lim
n→∞

h(ζ)xn = lim
n→∞

Ps[bsh](ζ)xn = Ps[bsh](ζ)x,

here the last equality follows from (13). This proves (12). Thus the mapping f �→ Ps[f ]
 a surjection from Hp

sot(T , B(X, Y )) to Hp(D, B(X, Y )). Therefore, by Lemma 3.8, 
0) and (11), the mapping f �→ Ps[f ] is an isometry from Hp

sot(T , B(X, Y )) onto 
p(D, B(X, Y )). This completes the proof. �
Theorem 1.1 may fail if the separability condition on X is dropped. For z ∈ T and 

 ∈ �2(T ), let f : T → B(�2(T )) be defined by

(f(z)x)(s) :=
{

x(z), if s = z

0, if s �= z.

hen by the argument in Remark 3.3, we have N(f) = 1, and hence f ∈ Hp
sot(T ,

(�2(T ))) with ||f ||Hp
sot(T ,B(�2(T))) = 1 for all 1 ≤ p ≤ ∞. Since (f(z)x)(s) is zero for all 

�= s, it follows that for each x ∈ �2(T ), ζ ∈ D and s ∈ T ,

(
Ps[f ](ζ)x

)
(s) =

∫
Pζ(z)(f(z)x)(s)dm(z) = 0,
T
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hich implies that Ps[f ] = 0 in Hp(D, B(�2(T ))). Therefore, the mapping f �→ Ps[f ] is 
t an isometry.

We conclude with consideration on adjoints of functions in Hp
sot(T , B(X, Y )).

For a function f : T → B(X, Y ), define the “adjoint” f∗ : T → B(Y ∗, X∗) of f by

f∗(z) := f(z)∗ (z ∈ T ).

e may ask the following question: for 1 ≤ p ≤ ∞, does it follow that

f ∈ Hp
sot(T , B(X, Y )) =⇒ f∗ ∈ Hp

sot(T , B(Y ∗, X∗)) ?

 the sequel, we give an affirmative answer to this question if X is reflexive. To begin 
ith we review some definitions.
A function f : T → X is called weakly integrable if 〈f, x∗〉 ∈ L1(T ) for every x∗ ∈ X∗. 

 f is weakly integrable then the function Tf : X∗ → L1(T ), defined by Tf x∗ := 〈f, x∗〉, 
 a bounded linear operator. A weakly integrable function f : T → X is called Pettis 
tegrable if the adjoint T ∗

f of the operator Tf maps L∞(T ) into X. It is well known that

f is Bochner integrable =⇒ f is Pettis integrable =⇒ f is weakly integrable.

lso it is known (cf. [9, Proposition 1.2.36.]) that for a weakly integrable function f :
→ X, the following are equivalent:

) f is Pettis integrable;
) for each measurable set B in T , there exists an element xB ∈ X such that for every 

x∗ ∈ X∗ we have 〈xB, x∗〉 =
∫

B
〈f(z), x∗〉dm(z).

 this case, we shall write

xB =: (p) −
∫
B

f(z)dm(z),

d call it the Pettis integral of f over B.
We then have:

emma 3.9. Let X be a reflexive Banach space, and let f ∈ L1
sot(T , B(X, Y )). Then for 

ch y∗ ∈ Y ∗ and ζ ∈ D, we have

Ps[f ]∗(ζ)y∗ = (p) −
∫
T

Pζ(z)f∗(z)y∗dm(z),
here Ps[f ]∗(ζ) := Ps[f ](ζ)∗.
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roof. Let X be reflexive and f ∈ L1
sot(T , B(X, Y )). Then for all x ∈ X and y∗ ∈ Y ∗, 

e mapping z �→
〈
x, f∗(z)y∗〉

=
〈
f(z)x, y∗〉

is measurable. But since X is reflexive, the 
apping z �→ f∗(z)y∗ is weakly measurable. Thus the mapping z �→ Pζ(z)f∗(z)y∗ is 
eakly measurable for each ζ = reiθ ∈ D. For each x ∈ X,∫

T

∣∣〈x, Pζ(z)f∗(z)y∗〉
∣∣dm(z) =

∫
T

Pζ(z)
∣∣〈f(z)x, y∗〉∣∣dm(z)

≤ 1 + r

1 − r
· ||y∗|| · ||x|| · ||f ||L1

sot(T , B(X,Y ))

< ∞,

hich implies that Pζ(·)f∗(·)y∗ is weakly integrable and hence Pettis integrable. Thus 
r all x ∈ X and ζ ∈ D,

〈
Ps[f ](ζ)x, y∗〉

=
∫
T

〈
x, Pζ(z)f∗(z)y∗〉

dm(z)

=
〈

x, (p) −
∫
T

Pζ(z)f∗(z)y∗dm(z)
〉

,

hich gives the result. �
We now have:

heorem 3.10. Let X be a reflexive Banach space and 1 ≤ p ≤ ∞. If f ∈
p
sot(T , B(X, Y )), then f∗ ∈ Hp

sot(T , B(Y ∗, X∗)). Moreover, Ps[f∗] = Ps[f ]∗.

roof. Let X be reflexive, 1 ≤ p ≤ ∞, and f ∈ Hp
sot(T , B(X, Y )). Since 

〈
x, Ps[f ]∗(ζ)y∗〉〈

Ps[f ](ζ)x, y∗〉
for all x ∈ X and y∗ ∈ Y ∗, it follows from Lemma 3.8 that Ps[f ]∗ ∈

ol (D, B(Y ∗, X∗)). For all y∗ ∈ Y ∗ and ζ ∈ D,

||Ps[f ]∗(ζ)y∗|| = sup
||x||=1

∣∣〈x, Ps[f ]∗(ζ)y∗〉∣∣
≤

∫
T

Pζ(z)||f(z)||dm(z) · ||y∗||

= P [N(f)](ζ) · ||y∗||,

hich implies that ||Ps[f ]∗(ζ)|| ≤ P [N(f)](ζ). It thus follows from Lemma 2.1(a) that∫
T

||
(
Ps[f ]∗

)
r
(z)||dm(z) ≤

∫
T

(P [N(f)])r(z)dm(z) ≤ ||f ||L1
sot(T , B(X,Y )).

his proves that Ps[f ]∗ ∈ H1(D, B(Y ∗, X∗)). On the other hand, for all x ∈ X and 

∗ ∈ Y ∗, we have that for almost all z ∈ T ,
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lim
r→1

〈
x, Ps[f ]∗(rz)y∗〉

= lim
r→1

〈Ps[f ](rz)x, y∗〉

= lim
r→1

(
P [〈f(·)x, y∗〉]

)
r
(z)

= 〈x, f∗(z)y∗〉,

(14)

here the last equality follows from the fact that 〈f(·)x, y∗〉 ∈ Lp(T ). Since X∗ has the 
RNP and Ps[f ]∗(·)y∗ ∈ H1(D, X∗), it follows that

bPs[f ]∗(z)y∗ := lim
r→1

Ps[f ]∗(rz)y∗

ists for almost all z ∈ T . Since X is reflexive, by the Hahn-Banach Theorem and (14), 
∗(·)y∗ = bPs[f ]∗(·)y∗ ∈ H1(T , X∗). In particular, f∗ is SOT measurable, and hence 
∗ ∈ Hp

sot(T , B(Y ∗, X∗)). On the other hand, since f ∈ H1
sot(T , B(X, Y )), it follows 

om Lemma 3.9 that for each y∗ ∈ Y ∗ and ζ ∈ D,

Ps[f ]∗(ζ)y∗ = (p) −
∫
T

Pζ(z)f∗(z)y∗dm(z) = Ps[f∗](ζ)y∗,

hich implies Ps[f∗] = Ps[f ]∗. This completes the proof. �
Theorem 3.10 may fail if the reflexive condition on X is dropped. To see this, let 

: T → B(�1) be defined by

(f(z)x)(n) := znx(n) (x ≡ (x(n)) ∈ �1).

hen it is not difficult to show that f ∈ H∞
sot(T , B(�1)) and f∗ is not SOT measurable 

f. Example 2.2), so that f∗ /∈ H∞
sot(T , B(�∞)). Note that �1 is not reflexive.
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ppendix A. Strong Hp-spaces

We devote this section to a general discussion of the circle companions of strong 
p-spaces.
For 1 ≤ p ≤ ∞, let Hp

s (D, B(X, Y )) be the space of all functions h in Hol(D, B(X, Y ))
ch that h(·)x ∈ Hp(D, Y ) for every x ∈ X: Hp

s (D, B(X, Y )) is called a strong Hp-space
f. [10]). If h ∈ Hp

s (D, B(X, Y )), then we can easily show that the mapping x �→ h(·)x
 a closed linear transformation from X into Hp(D, Y ), so that by the Closed Graph 
heorem, it is bounded. Let

||h||Hp
s (D, B(X,Y )) := sup

{
||h(·)x||Hp(D,Y ) : x ∈ X with ||x|| ≤ 1

}
.

hen Hp
s (D, B(X, Y )) is a normed space and

Hp(D, B(X, Y )) ⊆ Hp
s (D, B(X, Y )) (1 ≤ p ≤ ∞). (15)

lso we can easily check that H∞
s (D, B(X, Y )) = H∞(D, B(X, Y )). However, if 1 ≤ p <

then the inclusion in (15) may be proper.

xample A.1. Let 1 ≤ p < ∞. For ζ ∈ D, define h(ζ) : Hp(T ) → C by

h(ζ)f := P [f ](ζ) (f ∈ Hp(T )).

hen for each ζ = reiθ ∈ D,

||h(ζ)||B(Hp(T),C) = sup
{

||P [f ](reiθ)|| : ||f ||Hp(T) = 1
}

≤ 1 + r

1 − r
· sup

{
||f ||H1(T) : ||f ||Hp(T) = 1

}
1 + r
≤ 1 − r

,
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hich implies that h(ζ) is a bounded linear operator. Thus it is easy to show that h ∈
p
s (D, B(Hp(T ), C)) and ||h||Hp

s (D, B(Hp(T),C)) = 1. However, h /∈ Hp(D, B(Hp(T ), C)): 
deed, for each z ∈ T , let

fz(s) := e
s+z
s−z (s ∈ T ).

hen fz is inner, so that ||fz||Hp(T) = 1. Thus

||hr(z)|| ≥ |hr(z)fz| = e
r+1
r−1 ,

 that

sup
0≤r<1

⎛⎝∫
T

||hr(z)||pdm(z)

⎞⎠
1
p

≥ sup
0≤r<1

e
r+1
r−1 = ∞,

hich implies that h /∈ Hp(D, B(Hp(T ), C)). �
Let L(X , Y) be the set of all linear transformations between normed spaces X and 

. For a subset F of a Banach space X, let sp(F ) denote the linear span of F . For 
≤ p ≤ ∞, let Lp

s(T , L(sp(F ), Y )) be the space of all (equivalence classes of) functions 
: T → L(sp(F ), Y ) satisfying

i) f(·)x ∈ Lp(T , Y ) for all x ∈ sp(F ); as usual, we identify f and g when f(·)x = g(·)x
in Lp(T , Y ) for all x ∈ sp(F );

i) ||f ||Lp
s (T , L(sp(F ),Y )) := sup

{
||f(·)x||Lp(T ,Y ) : x ∈ sp(F ) with ||x|| ≤ 1

}
< ∞.

hen Lp
s(T , L(sp(F ), Y )) is a normed space and

Lq
s(T , L(sp(F ), Y )) ⊆ Lp

s(T , L(sp(F ), Y )) if 1 ≤ p ≤ q ≤ ∞.

e now define Hp
s (T , L(sp(F ), Y )) as the space of all (equivalence classes of) func-

ons f ∈ Lp
s(T , L(sp(F ), Y )) such that f(·)x ∈ Hp(T , Y ) for all x ∈ sp(F ). We 

te that Definition 3.7 is still well-defined for functions in H1
s (T , L(sp(F ), Y )); i.e., 

r f ∈ H1
s (T , L(sp(F ), Y )) and x ∈ sp(F ),

Ps[f ](ζ)x := P [f(·)x](ζ) (ζ ∈ D).

We then have:

emma A.2. Let X, Y be Banach spaces and F ⊆ X. Suppose f ∈ H1
s (T , L(sp(F ), Y )). If 

n) is a Cauchy sequence in sp(F ), then the sequence (Ps[f ](·)xn) converges uniformly 

 every compact subset of D.
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roof. Suppose f ∈ H1
s (T , L(sp(F ), Y )) and K is a compact subset of D. Then r ≡

ax
{

|ζ| : ζ ∈ K
}

< 1. Let (xn) be a Cauchy sequence in sp(F ) and ε > 0 be arbitrary. 
or all ζ = reiθ ∈ K, there exists N > 0 such that if m > n > N , then

||Ps[f ](ζ)xn − Ps[f ](ζ)xm|| =
∣∣∣∣∣∣∣∣∫
T

Pζ(z)f(z)(xn − xm)dm(z)
∣∣∣∣∣∣∣∣

≤ 1 + r

1 − r
·
∫
T

||f(z)(xn − xm)||dm(z)

≤ 1 + r

1 − r
· ||f ||L1

s(T , L(sp(F ),Y ))||xn − xm|| <
ε

2 .

(16)

hus (Ps[f ](·)xn) converges pointwise to a function h : D → Y . Fixing n > N and 
tting m → ∞, (16) leads to

||Ps[f ](ζ)xn − h(ζ)|| = lim
m→∞

||Ps[f ](ζ)xn − Ps[f ](ζ)xm|| < ε for all ζ ∈ K,

hich implies (Ps[f ](·)xn) converges uniformly on K. �
Now if X is separable Banach space, we may define Ps[f ](ζ) on X for all ζ ∈ D by 

irtue of Lemma A.2. This is a reason why we introduce sp(F ). Indeed, let X, Y be 
anach spaces and assume that X is separable and F is a dense subset of X. Then 
y Lemma A.2, given a function f ∈ H1

s (T , L(sp(F ), Y )), we may define an extension 

s[f ](ζ) of Ps[f ](ζ) to X for each ζ ∈ D: in other words, if x ∈ X, then there exists 
sequence (xn) in sp(F ) such that xn → x, so that by Lemma A.2, (Ps[f ](ζ)xn) is a 
nvergent sequence for each ζ ∈ D and hence, we can define, for each x ∈ X,

P s[f ](ζ)x := lim
n→∞

Ps[f ](ζ)xn (ζ ∈ D). (17)

e note that the limit in (17) is independent of the particular choice of (xn) because if 
n) is another sequence in sp(F ) such that yn → x, then by the same argument as in 
6) we have, for all ζ ∈ D,

||Ps[f ](ζ)xn − Ps[f ](ζ)yn|| → 0 as n → ∞,

hich implies that the function P s[f ](ζ) is well-defined on X. For simplicity, and since 
oing so will not lead to confusion, we will keep denoting by Ps[f ] the extension P s[f ]
efined by (17).

We then have:

heorem A.3. Let X, Y be Banach spaces and F be a dense subset of X. Then the 
apping f �→ Ps[f ] is an isometry from Hp

s (T , L(sp(F ), Y )) to Hp
s (D, B(X, Y )) for each 
≤ p ≤ ∞.
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roof. Let f ∈ Hp
s (T , L(sp(F ), Y )) (1 ≤ p ≤ ∞) and ζ = reiθ ∈ D. Clearly, Ps[f ](ζ)

 linear on X. If x ∈ X, then there exists a sequence (xn) in sp(F ) such that xn → x. 
hus we have

||Ps[f ](ζ)x|| = lim
n→∞

∣∣∣∣∣∣∫
T

Pζ(z)f(z)xndm(z)
∣∣∣∣∣∣

≤ 1 + r

1 − r
· ||f ||L1

s(T , L(sp(F ),Y ))||x||,

hich implies that Ps[f ](ζ) ∈ B(X, Y ). For each y∗ ∈ Y ∗, it follows from Lemma A.2
at 

〈
Ps[f ](ζ)xn, y∗〉

converges uniformly to 
〈
Ps[f ](ζ)x, y∗〉

on every compact subset 
 D. Thus Ps[f ] ∈ Hol (D, B(X, Y )). Now we claim that

Ps[f ] ∈ Hp
s (D, B(X, Y )) and ||Ps[f ]||Hp

s (D, B(X,Y )) ≤ ||f ||Lp
s (T , L(sp(F ),Y )). (18)

e split the proof into two cases.

Case 1 (1 ≤ p < ∞): Let x be an arbitrary unit vector in X and (xn) be a 
quence in sp(F ) such that xn → x. Since P [f(·)xn] ∈ Hp(D, Y ), the mapping 
�→ ||(Ps[f ])r(z)xn||p is measurable for all n ∈ N. Thus it follows from Fatou’s lemma 
d Lemma 2.1(a) that

||(Ps[f ])r(·)x||Lp(T ,Y ) =
(∫
T

lim
n→∞

||(Ps[f ])r(z)xn||pdm(z)
) 1

p

≤ lim infn→∞||(Ps[f ])r(·)xn||Lp(T ,Y )

≤ lim infn→∞||f(·)xn||Lp(T ,Y )

≤ ||f ||Lp
s (T , L(sp(F ),Y )),

hich proves (18).
Case 2 (p = ∞): Assume to the contrary that

||Ps[f ]||H∞
s (D, B(X,Y )) > ||f ||L∞

s (T , L(sp(F ),Y )).

hen there exists a unit vector x0 in X and ζ0 ∈ D such that ||Ps[f ](ζ0)x0|| >

||L∞
s (T , L(sp(F ),Y )). Choose a sequence (xn) in sp(F ) such that xn → x0. Then for 

fficiently large N ,

||Ps[f ](ζ0)xN || > ||f ||L∞
s (T , L(sp(F ),Y )) ≥ ||f(·)xN ||L∞(T ,Y ),

hich is a contradiction by Lemma 2.1(a). This proves (18) with p = ∞.
Now for all x ∈ sp(F ), it follows that ||f(·)x||Lp(T ,Y ) = ||Ps[f ](·)x||Hp(D,Y ) and hence 
||Lp

s (T , L(sp(F ),Y )) ≤ ||Ps[f ]||Hp
s (D,B(X,Y )). Therefore, by (18), the mapping f �→ Ps[f ] is 
 isometry from Hp
s (T , L(sp(F ), Y )) to Hp

s (D, B(X, Y )). This completes the proof. �
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orollary A.4. Let X, Y be Banach spaces, and assume that X is separable and Y has 
e ARNP. For a countable dense subset F of X and 1 ≤ p ≤ ∞, the mapping f �→ Ps[f ]
 an isometric isomorphism from Hp

s (T , L(sp(F ), Y )) onto Hp
s (D, B(X, Y )).

roof. A similar argument to (12) shows that the mapping f �→ Ps[f ] is a surjection 
om Hp

s (T , L(sp(F ), Y )) into Hp
s (D, B(X, Y )). Thus the result follows at once from 

heorem A.3. �
For 1 ≤ p ≤ ∞, let Lp

s(T , B(X, Y )) be the space of all (equivalence classes of) SOT 
easurable functions f : T → B(X, Y ) such that f(·)x ∈ Lp(T , Y ) for all x ∈ X; 
e identify f and g when f(·)x = g(·)x in Lp(T , Y ) for all x ∈ X (cf. [5]). If f ∈
p
s(T , B(X, Y )), then it follows from the Closed Graph Theorem that

||f ||Lp
s (T ,B(X,Y )) := sup

{
||f(·)x||Lp(T ,Y ) : x ∈ X with ||x|| ≤ 1

}
< ∞.

hen Lp
s(T , B(X, Y )) is a normed space (cf. [4], [9], [11]). In general, the space 

p
s(T , B(X, Y )) is not complete (cf. [9, p.64]). Also we define Hp

s (T , B(X, Y )) by the 
ace of all (equivalence classes of) functions f ∈ Lp

s(T , B(X, Y )) such that f(·)x ∈
p(T , Y ) for every x ∈ X.

xample A.5. In view of Lemma 3.4, we may ask whether or not Lp
s(T , B(X, Y )) =

p
sot(T , B(X, Y )) if X and Y are separable Banach spaces. The answer, however, is 
egative. To see this, we use the notation

(1F ⊗ x)(z) := 1F (z)x for x ∈ X, F ⊆ T .

rite H2 ≡ H2(T ) and define a function f : T → B(H2) by

(f(z)x)(s) := x̂(0) +
∞∑

n=1

(
1Fn

⊗
√

2n x̂(n)
)
(z)sn (x ∈ H2), (19)

here Fn := {eiθ : (2 − 1
n )π ≤ θ < 2π} for n = 1, 2, · · · . Let

E0 := {eiθ : 0 < θ < π} and En := Fn \ Fn+1 for n = 1, 2, · · · .

hen for each 1 �= z ∈ T , there exists N ≥ 0 such that z ∈ EN . Thus, by (19), we have 
at for N ≥ 1,

(f(z)x)(s) = x̂(0) +
N∑

n=1

√
2n x̂(n)sn (z ∈ EN ), (20)
hich implies f(z) ∈ B(H2). For x ∈ H2, it follows from (20) that
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||f(·)x||2L2(T , H2) =
∞∑

N=0

∫
EN

||f(z)x||2dm(z)

= 1
2

∣∣x̂(0)
∣∣2 +

∞∑
N=1

(∣∣x̂(0)
∣∣2 +

N∑
n=1

2n
∣∣x̂(n)

∣∣2
)

m(EN )

=
∣∣x̂(0)

∣∣2 +
∞∑

n=1
2n

∣∣x̂(n)
∣∣2

m(Fn)

= ||x||2H2 ,

hich proves that f ∈ L2
s(T , B(H2)). However, we have f /∈ L2

sot(T , B(H2)): indeed if 
∈ En (n ≥ 1) then it follows from (20) that ||f(z)sn||H2 =

√
2n. Thus

∫
T

||f(z)||2dm(z) =
∞∑

n=0

∫
En

||f(z)||2dm(z) ≥ 1
2 +

∞∑
n=1

1
n + 1 = ∞,

hich implies that f /∈ L2
sot(T , B(H2)). �

The following diagram summarizes the preceding arguments.

Let X be a separable Banach space, Y be a Banach space satisfying the ARNP and 
be a countable dense subset of X. Then for all 1 ≤ p ≤ ∞,

Hp(T , B(X, Y )) �Hp
sot(T , B(X, Y )) � Hp

s (T , B(X, Y ))�Hp
s (T , L(sp(F ), Y ))

∼ =

⏐⏐⏐� Ps ∼ =

⏐⏐⏐� Ps (21)

Hp(D, B(X, Y )) Hp
s (D, B(X, Y )).

We note that all the inclusions on the first line of (21) are strict. Indeed, in Exam-
e 3.6, we saw Hp(T , B(X, Y )) �= Hp

sot(T , B(X, Y )) in general. We give some examples 
ch that the other two inclusions are strict.

xample A.6. (a) In general, Hp
sot(T , B(X, Y )) �= Hp

s (T , B(X, Y )). Indeed, for a sep-
able Hilbert space E, there exists a function g ∈ H2

s (T , B(E)) such that g /∈
2
sot(T , B(E)). To see this, we introduce some notations. For f ∈ L2

s(T , B(E)), we 
note by f− and f+ the functions

f−(z)x :=
(
P−(f(·)x)

)
(z) (z ∈ T , x ∈ E);

f+(z)x :=
(
P+(f(·)x)

)
(z) (z ∈ T , x ∈ E),

here P+ and P− are the orthogonal projections from L2(T , E) onto H2(T , E) and 
2(T , E) � H2(T , E), respectively (cf. [11]). Then, f−, f+ ∈ H2

s (T , B(E)) and we may 

rite
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[

f(z) = f+(z) + f−(z) (z ∈ T ).

et f be the function given in (19). Assume that f+ ∈ H2
sot(T , B(H2)) and f− ∈

2
sot(T , B(H2)). Observe that for z ∈ T ,

||f(z)||2 ≤ ||f−(z)||2 + ||f+(z)||2 + 2||f−(z)||||f+(z)||.

 thus follows from Hölder’s inequality that∫
T

||f(z)||2dm(z) ≤
∫
T

||f−(z)||2dm(z) +
∫
T

||f+(z)||2dm(z)

+ 2
(∫
T

||f−(z)||2dm(z)
) 1

2
(∫

T

||f+(z)||2dm(z)
) 1

2

< ∞,

hich is a contradiction. We thus have f+ /∈ H2
sot(T , B(H2)) or f− /∈ H2

sot(T , B(H2)). 
ote that H2 is a separable Hilbert space.

(b) In general, Hp
s (T , B(X, Y )) �= Hp

s (T , L(sp(F ), Y )). To see this, define f : T →
(�2, C) by

f(z)x :=
∞∑

n=1
x(n)zn (x ≡ (x(n)) ∈ �2).

hen f(z) is not bounded for all z ∈ T because for any z0 ∈ T , if we let

x0(n) := zn
0

n
(n = 1, 2, · · · ),

en f(z0)x0 =
∑∞

n=1
1
n = ∞. Thus, f /∈ H2

s (T , B(�2, C)). On the other hand, let

F :=
{∑

n∈Ω
αnen : αn ∈ Q and Ω is a finite subset of N

}
,

here Q is a countable dense subset of C and {en : n = 1, 2, · · · } is the canonical 
thonormal basis for �2. Then F is a countable dense subset of �2 and we can easily see 
at f ∈ H2

s (T , L(sp(F ), C)).
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