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Abstract—Understanding visual attention is key to designing
efficient human-computer interaction, especially for virtual real-
ity (VR) and augmented reality (AR) applications. However, the
relationship between 3D spatial attributes of visual stimuli and
visual attention is still underexplored. To this end, we design
an experiment to collect a gaze dataset in VR, and use it to
quantitatively model the probability of first attention between two
stimuli. First, we construct the dataset by presenting subjects with
a synthetic VR scene containing varying spatial configurations of
two spheres. Second, we formulate their selective attention based
on a probability model that takes as input two view-specific
stimuli attributes: their eccentricities in the field of view and
their sizes as visual angles. Third, we train two models using
our gaze dataset to predict the probability distribution of user’s
preferences of visual stimuli within the scene. We evaluate our
method by comparing model performance across two challenging
synthetic scenes in VR. Our application case study demonstrates
that VR designers can utilize our models for attention prediction
in two-foreground-object scenarios, which are common when
designing 3D content for storytelling or scene guidance. We make
the dataset and the source code to visualize it available alongside
this work.

Index Terms—Gaze, visual perception, attention analysis, in-
teraction, virtual reality, augmented reality.

Aze-contingent techniques, such as foveated render-

ing [1], [2] and gaze-based interaction interfaces [3], can
significantly reduce computation costs and data transportation
workloads of extended reality (XR) applications, because of
the gaze’s capability of reflecting visual attention. To study
user’s visual attention in an XR system, researchers have
explored incorporating higher-level features from gaze data,
or other features taken from the users or the environments.
For example, analysis of saccades (i.e., the quick movements
of the eye between points of fixation) is often used to detect
current attention within a view [4]-[6].

In a 3D scene, researchers often analyze the visual impact
of foreground objects as cohesive entities when studying
attention; the interaction between foreground and background
objects has also garnered interest [7]-[10]. Most research in
this area focuses on images and videos — meaning direct
depth information is absent. There is still very limited research
on how different spatial attributes of foreground objects within
a foreground object group affect visual attention, which is the
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Fig. 1. Given two visual targets (e.g., target A and target B) simultaneously
presented in 3D space, our model predicts the probability for each target that
an observer’s attention is drawn to it first. In the depicted scenario, A and
B are equivalent in terms of visual angle size to the user, but since A is
positioned closer to the center gaze line, our model predicts it is more likely
to draw the user’s attention.

central issue of our study.

We believe that when there is more than one foreground
object, or when the foreground objects occupy a large area of
the visual field, it is key to analyze how they influence the
observer’s attention. To clarify from a semantic perspective, a
foreground object group can be decomposed into N foreground
objects (N > 2), each consisting of a single entity (e.g., a
flower) or multiple entities (e.g., a bouquet). To simplify this
model, we treat the foreground object group as a two-body
problem. As such, this research serves as a foundational, initial
model for understanding how foreground objects affect visual
attention, without implying that all real-world scenarios must
necessarily be categorized into two bodies. Future work may
refine this into a multi-body model in the future.

Effective multi-object visual attention prediction relies on
understanding the complex interactions within the human
visual cortex [I11]. Stereoscopic VR provides a unique
opportunity for studying these interactions, especially with
regards to how various stimuli properties affect visual
perception and attention. Its software can quickly and
accurately report detailed spatial information of all scene
content, providing advantages over other displays and
real-world testing. This raises the question: how do spatial
attributes of objects in VR influence a user’s perceptional
patterns, and in turn, their attention? To answer this, we
investigate the relationship between these variables, seeking
to understand users’ initial selective attention in the perceptual
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Fig. 2. A high-level overview of the logistics of our visual attention prediction
model. We aim to investigate how visual attention is influenced by visual
perception. We collect gaze data during an experiment with varying spatial
attributes of visual stimuli under controlled conditions. Each participant’s
visual attention is captured by an eye-tracking HMD. Our modeling goal
is to predict the attention selection between two foreground objects.

choice process (i.e., the binary choice problem between
two exclusive actions [12]) when presented with two
distinctive visual stimuli with a similar perceptual workload
as the foreground objects.

Towards this end, we construct a gaze dataset, captured in a
eye-tracking head-mounted display (HMD), and present a vi-
sual attention prediction model that considers two foreground
objects with spatial features. Our innovation is to model the
selective attention in a two-object foreground condition [11],
an overview of which is depicted in Fig. 2.

We accomplish this through a controlled perceptual experi-
ment conducted in VR using the HTC Vive Pro Eye, in which
subject gaze data is recorded over time and compiled into a
dataset. For each experiment trial, we also capture three key
spatial characteristics for two visual stimuli within the scene,
each of which can have two or three distinct levels:

e Eccentricity — the angle of deviation of the stimuli from

the center of the user’s view — (5°, 15°, 25°).

e Depth — the distance along the viewing direction of the

stimuli from the gaze origin — (2m, 5m, 8m).

o Size — the visual angle, i.e., the angle subtended at the

eye by the stimulus [13], [14] — (4°, 8°).
These spatial characteristics of each foreground object do not
change within an experiment trial.

We use discrete levels for each characteristic to test all
subjects across all combinations, ensuring maximal, balanced
coverage. By providing all users with the same conditions,
we can effectively measure our dependent variable: given the
properties of an object and that of another competing for
attention, the percentage of users that pay first attention to
the former over the latter.

We consider our work as a foundational approach, creating
an initial model that explores eccentricity, depth, size and
showing that there are simple yet effective methods for approx-
imating and quantifying user attention. It is important to note
that horizontal and vertical eccentricity are reported to have an
unequivalent effect on attention in the paracentra view [15],
[16]. While separating horizontal and vertical eccentricities
would offer greater precision, it would significantly extend the
trial duration — in our case, from 45 minutes to an estimated 6
hours and 45 minutes per participant — raising concerns about
fatigue, dropout, and attention drift. Furthermore, even with
this separation, it would still be an approximation, as existing

research shows that attention and perception vary across all
cardinal directions [17]. Moreover, these asymmetries vary
with deviation from the vertical meridian [18], adding further
complexity and extending testing time. To comprehensively
investigate the interaction between these three key spatial
characteristics without excessively prolonging the user study
or imposing undue burden on participants, we choose to utilize
a unified eccentricity term.

With eccentricity, depth, and visual angle constrained to two
or three unique values, we treat them as categorical variables
and conduct an exploratory three-way ANOVA to gain insight
into the relationship between these spatial characteristics and
the first attentional selection of the user. From these findings,
we generate two models: a quasi-binomial generalized linear
model (GLM) providing easy-to-understand coefficients and
an ensemble machine learning (ML) model for capturing
complex behaviors. To determine their viability, we evaluate
and compare their performance on additional user data from
realistic VR environments.

The results show that both models perform effectively at
predicting attentional preference between two objects, even in
complex scenes. To demonstrate their applicability, we develop
a prototype visualization tool for VR designers to foresee
people’s attention allocation in the virtual environment given
a specific object placement.

Our findings significantly benefit content creators; given a
3D scene, the models can predict likely perceptual patterns and
user attention without actual user data. This information can
benefit scene design, helping designers focus user attention
on certain areas or objects. In addition, the prediction model
can enhance foveated rendering techniques and complement
existing attention analysis prediction algorithms [19].

Our contributions are summarized as the follows:

o« We design a perceptual experiment to understand the
choice process during perception, and examining the re-
lationship between spatial attributes of 3D visual stimuli
(eccentricity, depth, and visual angle size) and attention
(Sec. II).

¢ We formulate and compare two quantitative models for
attentional selection prediction: a GLM and an ML model
(Sec. IID).

o We design evaluation scenes to validate our models in
detailed VR environments, finding strong performance
for both, with the GLM matching the ML model, of-
fering explainable coefficients, and running efficiently in
resource-limited settings (Sec. IV).

o We design and present prototypes of attention prediction
tools for content designers to estimate VR users’ attention
allocation during the design process (Sec. VI).

« We compile a dataset, and construct supplementary code
which facilitates its visualization and analysis (Appendix
D).

The dataset and supplementary code can be found at
https://github.com/matcastellan/TVCG-2024-Attention-
Prediction.
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I. RELATED WORK

The study of the human visual system is a broad re-
search domain; our work focuses on selective visual attention
models [11], [20]. We organize the relevant literature into
three subsections, based on pertinent subcategories of attention
analysis: foundational models from psychology and cognition,
research on gaze data and its applications, and gaze-based
attention models in practical scenarios.

A. Attention Models in Psychology and Cognition

Attention is defined as a procedure in which perceived
information is selectively focused on and processed by the
human nervous system [21]. Closely related to perception
and cognition, it reflects engagement in an activity [22], [23].
Researchers have developed several models to capture aspects
of this mechanism of attention. Anderson [24] has reviewed
the evidence for the value-driven mechanism of attentional
selection, concluding that reward learning underpins both goal-
driven and salience-driven attentional selection. The drift-
diffusion model proposes a conceptual framework regarding
an arbitrary choice process in consumption tasks [12], where
binary choices are determined based on the choice imbal-
ance measured using the relative entropy of the probability
of choosing one of the two targets. Baek et al. [25] have
developed an observer model to study how spatial cues impact
visual search, while Tsotsos et al. [26] have proposed a
selective tuning model for visual attention.

B. Gaze and Attention

Advances in eye-tracking equipment and techniques have
enhanced our understanding of the underlying mechanisms
behind the human gaze, and in turn, their effect on atten-
tion. Two types of eye movement play a fundamental role
in gaze behavior: saccades and fixations. A saccade is a
type of rapid eyeball movement with a speed up to 500°/s
that typically lasts less than 100ms; during this time, visual
sensitivity to external visual stimuli decreases [5]. In contrast,
a fixation involves more stable eye movements that maintain
visual clarity [27], Fixational eye movement greatly influences
visual perception; ocular drift increases spatial acuity, and
microsaccades relocate the target in the fovea, causing a
momentary adjustment in vision [28]. Due to their importance
in understanding attention [29], numerous techniques have
been developed to detect saccades and fixations [7], [30]-[32].
However, this information alone is not sufficient to determine
a user’s attention — gaze origin and direction are needed
also to compute the gaze-object intersection. This data can be
captured and computed using a variety of existing techniques
and systems [33], [34].

To support the research community with gaze-based at-
tention analysis research, we introduce a gaze visualization
tool capable of fixation detection and tracking gaze-object
interactions from VR and AR log data. This tool enables
researchers to effectively analyze where users focus their
attention on specific objects within the virtual space.

C. Gaze-Based Attention Models in Applications

Applications of gaze-based attention models have garnered
significant interest in fields like graphics and computer vision.
Some of this research focuses on lower-level characteristics
and behaviors of the eye. For example, the influence of 2D
image features (i.e., contrast, frequency, and eccentricity) on
reaction time and saccade behavior has been studied and
modeled in Duinkharjav et al. [35]. Similarly, Krajancich et
al. [36] have measured participants’ contrast sensitivity in
their peripheral view and demonstrated that their contrast
tolerance is higher when they concentrate on a task visible
within their fovea. To improve saccade prediction across
different environments, Arabadzhiyska et al. have investigated
the effect variability of saccade orientation in 3D space and
the smooth pursuit of eye-motion among users [37]. Our
research focus shares some similarities with Tursun et al. [38],
which presented new psychophysical experiments to measure
sensitivity to spatial-temporal stimuli across a wide field of
view. However, we concentrate on spatial attributes of visual
stimuli — and in particular, on finding the attention pattern
when multiple perceptually-comparable visual stimuli appear
simultaneously.

Higher-level gaze analysis research develops gaze-based
attention models for application-level use. As immersive dis-
plays are becoming more accessible and widespread, recent re-
search has focused on attention-related applications for visual
media such as 360° images [8], [39]-[41], 360° videos [9],
[10], [42]-[45], and 3D dynamic scenes [19], [46]-[48]. Some
have developed methods for real-time gaze prediction [19],
[45], [47], [49], [50], many of which incorporate deep learning
architectures; others have built up relevant datasets [48], [51],
[52]. Our work can be used to supplement these approaches.
Additionally, it can provide insight into predicted user at-
tention when there is no real-time gaze available. Moreover,
because of our use of a GLM, our solution is more straightfor-
ward and interpretable, and can easily be integrated into lower-
level applications or applications with resource constraints.

II. PERCEPTUAL EXPERIMENT

Various attributes can affect visual attention, including
color-based and structural features. As discussed in Sec. I,
image features such as contrast, frequency, and eccentricity
have been studied for their effects on visual attention. How-
ever, visual attention is also significantly influenced by the 3D
characteristics of objects, such as an object spatial location and
size. Given the lack of systematic research on 3D characteris-
tics in this context, we focused on three fundamental attributes
of a visual stimulus in 3D space: eccentricity, depth, and size,
as previously defined.

Our goal was to answer the question: in a 3D environment,
given two visual stimuli with the same mental workload,
which draws the observer’s attention first? To this end, we
designed and conducted an experiment using VR HMDs,
as their binocular views enable 3D visual perception and
cognition. A high-level experiment description is provided in
Fig. 3 for context. The core difference between our work and
existing visual attention analysis studies is that we investigated
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Fig. 3. From left to right: trial procedure. Prior to trial start (/nitial time), the user focuses on a grey point in the middle of their field of view to set their
initial gaze position. When the trial begins (Stimuli onset), the point is replaced by two spheres overlaid with arrow textures; each varies in its size and
placement. After several seconds, the arrows disappear, and a question mark appears in each sphere (Question for stimuli), first in one, and then the other.

User responses are recorded.

the spatial attributes of 3D stimuli, rather than 2D attributes
(i.e., contrast, color distribution, and position on 2D views).
The human binocular vision system naturally recognizes 3D
content in both the real and simulated environments, allowing
for distinction between objects with the same per-eye visual
angle that are at different distances and have different sizes.

A. Experiment Design

To investigate how spatial attributes influence user selective
attention, we designed an experiment that measures perception
during a cognitive task (i.e., recognizing arrow directions on a
sphere). Specifically, we wanted to identify the correlation be-
tween different spatial attributes in a 3D virtual environment.

During the study, subjects remained seated and viewed
stimuli through their HMD. Before each experiment, we per-
formed two eye-tracking calibration procedures: a hardware-
level calibration included with the device, and an application-
level one-point eye-tracking calibration to account for each
subject’s focused position variations, as discussed by Sipatchin
et al. [53].

B. Visual Stimuli and Task

The experiments consisted of several series of trials where
the subject must determine and remember the orientation (up,
down, left, or right) of an arrow presented in each sphere
(stimulus). For each trial, participants were asked to sit still
and stare at a fixed point in the scene, and when the stimuli
appeared, they were free to explore the scene to complete their
task. The arrow was obscured by a spinning black strip pattern
that hindered subjects from determining the orientation from
their peripheral vision. This pattern utilized a variable number
of strips depending on the sphere’s size, guaranteeing a similar
visual appearance between spheres in terms of stripe width
and stripe frequency, which can impact performance on visual
attention tasks [54]. Subjects were instructed to look at the
stimuli naturally and had the liberty to move their heads to do
so. After identifying the arrows, the subject input the observed
arrow orientations using the arrow keys on a keyboard, and
their answer was logged.

To guarantee maximum visibility, a neutral background was
used. All sphere-related textures were monochrome, and the
background was a solid dark grey, RGB(80,80,80), minimizing
contrast to reduce user discomfort [55] while also meeting
W3C contrast visibility guidelines for large-scale text [56].

The design of this arrow recognition task was motivated
by two major objectives. Our first objective was to observe
the natural selective attention of the subject based on the
controlled variables, as indicated by their gaze behavior. To
achieve this, we carefully controlled the sphere’s eccentricity,
depth, and visual angle size in the field of view, as well as
a necessary rotation angle around the center gaze line (theta)
for placement. When generating a trial, the spheres are first
placed at the desired depth, eccentricity, and theta, and then
scaled to the desired visual angle size to guarantee that the
latter property will not be affected by the former. We also
avoided introducing conscious gaze action, such as driving
gaze to a specific object. Additionally, we avoided varying
aspects of the sphere other than the controlled variables and
theta; for example, regardless of sphere characteristics, the
visual subtended angle of the arrow remained a constant 2°.

Our second objective was to ensure that the task could
not be directly achieved using the subject’s peripheral view
alone. The task must have a balanced mental workload in
which focused observation is needed, yet little effort should be
required to recognize the stimulus within the subject’s central
vision. To achieve this, we added the spinning black-and-white
strips overlaying the surface of each sphere.

C. Procedure

We had the participation of n = 16 subjects (13 men
and 3 women, ages 18 - 60+) with normal or corrected-
to-normal vision; six subjects wore glasses. All experiments
were conducted under the approval of the institutional review
board (IRB) of Stony Brook University’s Office of Research
Compliance. All subjects provided informed consent prior to
participating in the experiments.

Trials were split into five groups. A short break was offered
after each group, with subjects able to extend the break as
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needed. Participants could end the trial at their discretion.
The average duration was 45 minutes. All subjects com-
pleted the full experiment. No cybersickness was reported. To
avoid the inter-trial effect, the order of trials was randomized
among subjects. Additionally, eye-tracking calibration was re-
conducted every time the headset was put on.

There were 171 trials, which captured every condition
combination of the three attributes: eccentricity {5°,15°,25°},
depth {2.0m,5.0m,8.0m}, and size {4°,8°}. Additionally,
the angular rotation of each sphere position around the sub-
ject’s center gaze (theta) was randomly generated (0° — 359°)
to avoid a focus on specific orientation combinations. We
avoided controlling for theta to minimize the experiment
duration.

Each trial began with a small white sphere displayed in the
center of the subject’s field of view; this sphere was used to
center the subject’s gaze. The sphere was 1m in diameter, but
was positioned 100m away from the user, thus appearing to
the user as a small dot with a visual angle size of 0.573°.
Once their gaze was centered, the sphere disappeared, and
two spheres with arrows were displayed. The arrows vanished
after three seconds, and question marks appeared, one at a
time, in a random order over the two spheres. When a question
mark appeared over a sphere, participants were asked to press
the arrow key on a keyboard corresponding to the arrow
orientation previously displayed on that sphere. An overview
of the procedure can be seen in Fig. 3.

III. PERCEPTUAL MODEL

Using the gaze data from the perceptual experiment, our
goal was to fit or learn a model that, given two foreground
objects, would predict for each the probability that a user’s
visual attention would be drawn to it first. To achieve this
goal, as an initial step, the first attention was extracted based
on gaze motion in the raw data. Subsequently, the correlation
between first attention and the spatial characteristics of the
foreground objects was computed, after which two quantitative
models were constructed for attention probability prediction.

A. Data Pre-Processing

User data was segmented by trial. It was comprised of
raw gaze data, the global position of stimuli, the user’s head
position and orientation, and the calculated origin and direction
of the user’s gaze. Each trial was tagged with a user ID (a
randomized series number) and a condition ID that marked
the eccentricity, depth, and size values tested in the trial.

The classification of the first-looked-at sphere in each trial
was completed using a custom program, the "Gaze Visualizer”
(Fig. 4). The program imports and reconstructs trial data,
recreating the subject’s gaze as either a 2D dot or a 3D cone.
Users can replay the data at various speeds, while moving the
camera freely or locking it to the subject’s head position and
orientation. Keyboard shortcuts allow for quickly switching
between subjects and trials. If calibration information has been
included, gaze calibration can be toggled on and off.

The classification itself was accomplished using the Gaze
Visualizer’s “auto-classify” mode, where the trials are au-
tomatically replayed, and the first looked-at sphere is auto-
matically recorded based on a pre-determined, customizable
metric. For our experiments, we used the following metric:
if the gaze vector was less than 3° from the vector between
the gaze origin and the sphere center, and the fixation was
measured during that time, the user was considered to have
looked at that sphere first. Assuming a foveal vision of around
1-2°, this indicated that the user’s gaze intersected the central
4° of the sphere. Fixations were measured using the Iden-
tification by Velocity Threshold (IVT) algorithm [32], where
the velocity threshold is 40°/s. If no intersection occurred, the
threshold angle was increased by 1° and the trial was re-run;
this process repeated until an intersection was made. If two
spheres were intersected simultaneously, the sphere that was
uniquely intersected first was chosen.
Because of known issues with the eye tracking in the
HTC Vive Pro Eye, especially when used on glasses-wearing
users [57], the trials were manually reviewed for accuracy;
when applicable, the answer determined by auto-classification
was adjusted. The eye-tracking accuracy issue, as well as the
manual classification process, is discussed in Sec. V-C.
Once classified, the data from the trials was filtered into
a more compact dataset for training our quantitative models.
The models predict a percentage indicating the likelihood that
an object with specific eccentricity, depth, and size will attract
first attention when compared to another object with its own
eccentricity, depth, and size. We refer to the object being
evaluated as the ”potential object of interest” and the object it
is compared to as the “competing object.” To simplify notation,
we label these objects as ”A” (the object of interest) and "B”
(the competing object).
Each data point includes the eccentricities, sizes, and
depths for each sphere (Aecce: Adepth» Asize: Becees Bdepth»
Bsize), as well as a value indicating the percentage of
users who preferred "A” over "B” in the condition -
GroundTruthPercentPreferringA. The full dataset con-
sists of 324 data points. Since most conditions involve two
spheres with unique combinations of eccentricity, depth, and
size, either sphere can serve as the object of interest. As a
result, most conditions produce two data points: one with the
first sphere as ”A” and the second sphere as ”B,” and one with
their roles reversed.
As an example, consider a hypothetical condition where one
sphere’s characteristics are an eccentricity of 5°, a size of 4°,
and a depth of 8m (abbreviated as (5, 4, 8)”), and the other
sphere has characteristics (15, 4, 2). In a test of 10 users, 7 may
have looked at the first sphere first. This condition provides
two data points:
e Out of 10 trials where ”A” is a sphere with characteristics
(5, 4, 8) and ”B” is a sphere with characteristics of (15,
4, 2), ”A” was preferred 7 times (70%).

o Out of 10 trials where ”A” is a sphere with characteristics
(15, 4, 2), and ”B” is a sphere with characteristics of (5,
4, 8), "A” was preferred 3 times (30%).

This symmetric representation of the data is crucial for
training our models, as either foreground object in a pair can
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(@)

Fig. 4. Screenshots from the Gaze Visualizer. Users can control the camera, replay trials, and log which of the two spheres the subject looked at first. (a) The
full screen view, displaying a reconstructed trial and the accompanying metadata. (b) A close-up of the same view, with the gaze represented as an orange
dot. (¢) An alternate visualization of the same timestamp of the same trial, with the gaze represented as a 3D cone; the camera has been moved to a different

perspective than the user’s original view.

serve as the potential object of interest or the competing object,
and the model must be able to handle both cases.

In some conditions, the eccentricities, sizes, and depths
of the two spheres were the same; these provided a single
data point for training where the percentage is always 50%.
Consider the hypothetical condition where both spheres’ char-
acteristics are (5, 4, 8), and out of 10 users, 7 looked at
one sphere first, and 3 looked at the other first. Because the
characteristics are equivalent, this provides the following data
point:

o Out of 20 trials where ”A” is a sphere with characteristics

(5, 4, 8), and "B” is a sphere with characteristics of (5,
4, 8), ”A” was preferred 10 times (50%).

These conditions were less useful for training our partic-
ular model, but benefit the dataset as a whole by providing
additional data that may be beneficial for future work (e.g.,
determining the sequential effect of various conditions on
attention).

B. Data Analysis

Although the variables of eccentricity, depth, and size are
continuous, each trial used discrete values for each variable,
enabling us to treat them as categorical variables and perform
an exploratory data analysis using an analysis of variance
(ANOVA). We performed a three-way ANOVA and con-
structed a interaction plot to determine the effect of these three
independent variables on participants’ gaze attention. The
results (Appendix B) indicate that eccentricity and visual angle
size have a statistically significant effect on user attention,
while depth does not. Additionally, there appears to be no
statistically significant relationship between the variables.

To further explore the results from these initial findings, we
designed and analyzed a generalized linear model (GLM) [58]
to gain further insight into the effects of eccentricity, depth,
and size on a user’s sphere preference. Given that our response
variable represents a percentage that must be represented on
the closed unit interval [0, 1], a GLM is a suitable choice for
a prediction model; we can employ the logit function as a

link function that transforms probabilities into the range of all
real numbers — ideal for linear combinations of predictors —
and vice-versa. Using the generated coefficients, we can also
identify and interpret the effects of predictor changes, which is
not possible with many other machine learning techniques. As
we are working with proportional data, we construct a GLM
utilizing the quasibinomial family.

Our initial model was formulated as GroundTruthPercent-
PreferringA ~ Aecce + Adepth + Asize + Becee + Bdepth +
Bsize. The results from constructing the GLM with this
model confirmed our findings from the ANOVA that depth
was statistically insignificant, so the model was adjusted to
GroundTruthPercentPreferringA ~ Accce + Asize +
Becce+Bsize. We experimented with variations on this looking
for versions which generated optimal t-values and p-values.
The final model predicts a logit of a probability p, utilizing
Equation 1:

logit(p) = —0.1572 Aceee + 0.1313 Agize
+ 0.1572 Beeee — 0.1313 Bgine (1)

from which p can be recovered using

elogii&(p)

D (2)

= 1 + elogit(p)

p can be considered as either the likelihood that A draws a
user’s first attention, or the estimated percentage of users that
will have their first attention drawn to A.

Table 1 provides statistical details regarding the model’s
computed coefficients. The coefficient pairs of A.cce/Becce
and Ag;,./Bgize have equal magnitude, as either object in a
foreground object pair could be input to the model as ”A” or
”B”, and the output should be logically consistent regardless.
However, the sign differs as we wish to compute the log odds
of first attention of whatever was input as ”A”; thus, it is
negative for A.... and By;.., since increasing these properties
decreases the likelihood that ”A” will be draw first attention.

The dispersion parameter was 0.0591, indicating no signif-
icant under- or over-dispersion. Null deviance is 163.83 on
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TABLE I
COEFFICIENTS OF THE QUASIBINOMIAL REGRESSION MODEL.
Estimate SE t y/)
Intercept  -1.0le-15  0.1680 0.00 1.000
Accce -0.1572 5.02e-3  -31.32 < 0.001
size 0.1313 0.01736 7561 < 0.001
Becce 0.1572 5.02¢-3 3132 < 0.001
size -0.1313 0.01736  -7.561 < 0.001

Fig. 5. The stimuli for our non-realistic (Figs. 5a, 5¢) and realistic (Fig. 5b)
testing scenes.

323 degrees of freedom, while residual deviance is 18.54 on
319 degrees of freedom, indicating that the model explains a
significant portion of the variability in the response variable.

In addition to the GLM, we constructed a stacking-based
ensemble model [59]. As the design of our experiment utilizes
two to three discrete levels for each variable, it is difficult to
infer trends from the raw data, including potential non-linear
behavior that a GLM would be unable to capture. As with the
GLM, the inputs were Accce, Asizes Becce, and Byg;.e, and the
output was GroundT'ruthPercentPreferringA.

IV. EVALUATION

We conducted an additional perceptual experiment to eval-
uate and compare the performance of our GLM and stacking
ensemble models through their capability of predicting atten-
tion allocation in various practical VR environments.

A. Experiment Design

We used Unity to prepare three virtual environments for a
second perceptual experiment. As perception is affected by
familiarity with stimuli [60], we constructed two types of
environments: novel, unfamiliar ’non-realistic environments”,
and a more familiar “realistic environment” (Fig. 5). For
the former, we prepared two scenes: a cartoonish Halloween
amusement park, and outer space ; for the latter, we prepared
an office environment.

Each scene has two semantically-appropriate objects for the
subject to focus on and distinguish between for their task; the

objects are identical, with the exception of a minimal task-
related difference, to avoid influencing the user’s choice of
object . The Halloween amusement park scene has two ghosts
with a variable number of horns that subjects must count to
determine whether the total number is even or odd. The space
scene has two space shuttles with a four digit number on the
side; the subject must read each number digit-by-digit. The
office scene has two computer monitors, each of which has a
word onscreen; the words differ by one letter, and the subject
must indicate the position of the letter that differs. Each of
these objects of interest use modified materials and shaders to
avoid being affected by lighting and shadows. With regards
to the shape of the objects, the monitors have horizontal
symmetry and near vertical symmetry; the ghosts have near
vertical symmetry, and the shuttles have neither horizontal nor
vertical symmetry, allowing us to test a variety of shape types.
The shuttles also have elongated shapes, as opposed to the
other two stimuli which are more spherical in nature.

Each scene presents the subject with three different tests;
in each test, the tasks are the same but the level of detail
differs. One contains no background objects, providing a
simple environment to test the model with no confounding
factors; another includes a full background, which provides
static objects that could serve as potential distractions; a
third includes a moving object, which could potentially draw
their attention away. In total, across the three scenes, each
subject performs nine tests, which are presented to them in a
randomized order.

Each test has 18 conditions, in which eccentricity, depth,
size, and theta values in the continuous real number range
are randomly generated for each of the two stimuli. For the
shuttles, which have an elongated shape, the visual angle
is determined by the longest dimension of the shuttle. We
constrain generated values to be between the minimum and
maximum values listed in Sec. II-C. Each of the nine tests
contains a unique set of conditions; the conditions are shared
between subjects, but the order is randomized when presented.
Trial data is logged, and the ground truth of which object
the subjects preferred to look at first is determined using the
Gaze Visualizer program (Fig. 4). To evaluate performance of
our models, the test conditions are provided as input and a
probability is generated, which is compared against the actual
ground truth probability.

B. Procedure and Data Processing

We had the participation of a different set of n = 16 subjects
(9 men and 7 women, ages 18-60+) with normal or corrected-
to-normal vision; ten subjects wore glasses. Each trial began
with subjects re-centering their gaze on and re-orienting their
head toward a target object in the scene. We manually triggered
the condition, displaying the two foreground objects, and then
verbally asked a scene-related question related to their task;
the subject responded verbally. During each trial, the object
transforms, head position, head rotation, gaze origin, and gaze
direction were logged at a rate of 120Hz.

The logged data was auto-classified using the Gaze Vi-
sualizer program, as described in Sec. III-A. Due to the
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TABLE II TABLE IV
GLM MODEL PERFORMANCE BY CATEGORY OVERALL MODEL PERFORMANCE COMPARISON
Metri Scene Type Experiment Type Metrics GIM Ensemble
etrics 2 2
- - - Mean Squared Error 4.94% 5.16%
Park Office Space Simple Static Motion Root Mean Squared Error  22.22% 22.72%
MSE  420%2 4.67%% 5.94%2 554%2 4.99%% 4.30%2
RMSE  20.50% 21.61% 24.38% 23.54% 22.33%  20.72% Accuracy 83.33%  81.48%
Precision 83.34% 81.77%
Accuracy 87.04% 81.48% 81.48% 83.33% 87.04% 79.63% Recall 83.33% 81.48%
Precision 87.12% 81.76% 81.48% 83.45% 87.11% 79.67% F1-Score 83.33% 81.52%
Recall  87.03% 81.48% 81.48% 8333% 87.04% 79.63% p-value < 0.001 < 0.001
F1 87.08% 81.62% 81.48% 83.39% 87.07%  79.65%
p-val < 0.001 < 0.001 < 0.001 < 0.001 <0.001 < 0.001
static background elements having little effect, but with motion
TABLE III elements affecting performance.
ENSEMBLE MODEL PERFORMANCE BY CATEGORY On average, percentage predictions by the models deviate
S T F— T from actual values by about 22-23%. However, with regards
Metrics cene lype xperiment Type i X K K
Park off S - St Mot to accuracy, the models are able to predict which object is
ar ce ace 1mmple atic otion . .
P P - more likely to be looked at by the subject 81-83% of the
2 2 2 2 2 2 . . . .
MSE 446%~  4.92%"  6.14%"  5.79%"  5.30%"  4.36% time across all scenes, and 79-80% of the time in scenes with
RMSE 21.13% 22.19% 24.78% 24.34% 23.01% 20.88% . . o .
motion. Overall, the foundational models exhibit a relatively
Accuracy  83.33% 81.48% 81.48% 83.33% 83.33% 79.63%  strong performance in its task of predicting visual attention.
Precision 83.88% 82.48% 81.48% 83.45% 83.40% 81.07%
Recall 83.33% 81.48% 81.48% 83.33% 83.33% 79.63%
F1 83.35% 79,69% 81.52% 83.36% 83.34%  79.66% V. DISCUSSION
p-val < 0.001 < 0.001 <0.001 <0.001 <0.001 < 0.001

task in the Halloween amusement park scene, where subjects
counted spikes at the very bottom of the ghost, the auto-
classification was modified to measure fixations anywhere on
a sphere encompassing the stimulus. As users’ gazes and
head orientations could not be perfectly centered on the target
object, the data used for training is taken from an average
of the user data, excluding any outliers defined as trials with
eccentricities beyond 1.5 times the interquartile range (IQR).

C. Model Performance

The overall performance of the two models can be seen
in Tabs. II - IV. We measure the performance of our models
using Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE), indicating how much the models’ predictions
deviated from the true percentages. For the remaining statis-
tics, as a key task of the models is to indicate which object
between the two will be preferred by subjects, we apply a
binary classification approach, setting a threshold of 50% per
condition. If the model correctly predicts which object the
majority of the users prefer for a condition, it is classified as
a success, and as a failure otherwise; the accuracy, precision,
recall, F1-score, and p-value are computed using these results
at the condition level — within scenes, within experiment
types, and among the experiment as a whole.

Performance is comparable for both the GLM and the
ensemble model, with the GLM predictions hewing closer to
the actual percentages and the ensemble performing slightly
better in terms of accuracy. This provides additional evidence
that the formulation of the model in the GLM is appropriate.

Performance varies by scene, with the park and space scenes
slightly outperforming the office, though the space scene has
the highest RMSE. Considering performance by experiment
type, RMSE falls slightly as scene complexity increase, with

We discuss the performance of the models (Sec. V-A),
general observations from reviewing the dataset (Sec. V-B),
issues encountered and the limitations of our work (Sec. V-C),
and potential areas for future research (Sec. V-D).

A. Model Analysis

A review of the coefficients in Tab. I suggests that ec-
centricity has the most significant negative correlation with
object preference - as the eccentricity of object "A” increases
(or object "B decreases), the likelihood that it first draws
the user’s gaze decreases significantly. A 1° move away from
center view, with all other variables held constant, decreases
the log odds that the user will prefer that sphere by -0.1572.
Size also has a similarly strong positive correlation; a 1°
increase in visual angle increases the log odds of the user
looking at it first by 0.1313.

In contrast, depth appears to not be significant in command-
ing users’ visual attention, at least within the tested range.
We hypothesized that depth might play a role in stereoscopic
views, as users might distinguish between two objects with
the same visual angle but different points of convergence.
However, the effect is negligible.

With regards to model performance: given that the two
models were comparable, utilizing the GLM seems to be the
preferable approach, given the explainability and relative ease
of implementation. However, this presumes objects remain
within the property ranges tested in the initial perceptual
experiment. If the models are trained with data outside those
ranges, the ensemble model may prevail if there are non-linear
complexities to the relationship between gaze and attention.

Accuracy in the space scene, which utilized non-
symmetrical elongated stimuli, matched or exceeded that of
the other scenes, suggesting that the model can handle non-
symmetrical shapes. Performance remained stable with the ad-
dition of a detailed static background, but accuracy decreased
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with the addition of background motion. This suggests that
while the model can handle realistic environments, certain
elements that might draw user’s gaze and attention could
affect accuracy. However, the non-motion detailed settings
are similar to many practical environments where foreground
object attention is critical and distractions are minimized —
e.g. AR/VR applications in work- or study-focused settings. In
these contexts, our findings are directly applicable and provide
actionable insights into how foreground objects are perceived
and interacted with.

Regarding the precision of the percentage predictions in
Tab. IV, the RMSE of 22-23% is relatively high, suggesting
that the model could introduce errors when determining first
attention if the true likelihood of an object attracting user
attention is near 50%. This high RMSE also reduces the prac-
tical influence of size in the current model. According to the
GLM findings, the impact of each spatial property is positively
correlated with the magnitude of the discrepancy between that
property for the two objects. The tested range of size (4-8°)
is smaller than that of eccentricity (5-25°); combined with
eccentricity’s higher coefficient, the contribution of size to the
final log odds is diminished. However, larger discrepancies in
size outside of these ranges could cause this property to exert
more influence - as could further improvements to the model
described in Sec. V-D.

Despite this, the model was successful predicting 81-83%
of conditions, suggesting that it captures fundamental patterns
driving user preferences in these scenarios. Given that the
model achieved this with only basic information about eccen-
tricity and visual angle size, expanding this approach to incor-
porate additional information (as discussed in Section V-D)
could improve the precision and accuracy of the predictions
while maintaining a simple, clear, optimized implementation.

B. Dataset Patterns

During the review of subject trials, we identified some
intriguing behavioral patterns that could warrant further ex-
ploration. One such pattern was that subjects’ gazes would
sometimes travel not to one sphere or the other, but to a
point directly in between and fixate, before traveling to a
sphere. The pattern appears more common when the spheres
are equidistant from the subject’s current gaze, suggesting
indecision on which sphere to view. This behavior is consistent
with findings by Hiittermann et al. [61], who determined that
individuals may fixate between two targets that are equally
demanding of their attention and process them peripherally.
Interestingly, in our data, this can also occur when the spheres
are not equidistant from the subject’s gaze - the subject will
actually travel over one sphere to fixate on the midpoint before
selecting a target.

Another observed pattern emerged in the Halloween amuse-
ment park scene, where it is easy to see when subjects are
actually performing the counting task — their gaze travels
from spike to spike. In some cases, the object that attracts
their attention first is not actually the object that they use to
start working on the task; their gaze makes a brief visit to one
ghost, before traveling to another to begin counting, and back
to the first to count the remaining spikes.

C. Issues and Limitations

Our early testing of the HTC Vive Pro Eye found issues with
gaze accuracy and noise during the processing of gaze-related
data with the Gaze Visualizer, especially for glasses-wearing
subjects, similar to those found by Schuetz and Fiehler [57].
We incorporated their solution of wiping down glasses prior
to testing, and included a cleaning of the illuminators and
cameras within the headset for all subjects; this improved the
quality of the data. Still, we encountered some issues with
noisy and imprecise gaze data in the final dataset affecting
auto-classification results. Since our experiments required sub-
jects to focus only on two objects within the scene, it was
possible in most cases for a manual review to identify what
was the most likely candidate for first fixation.

Manual overriding of the auto-classified result was per-
formed in the following scenarios where classifications should
have occurred, but did not:

o The subject’s gaze exhibited clear travel towards and
focus on or very near one sphere, in a situation where
the focus could not be directed towards the other, but
did not trigger an auto-classification due to excessive
noise, fixation behavior outside the angle threshold, or
a combination of these two reasons.

o The subject’s gaze started on the sphere slightly outside
the angle threshold, but exhibited extended fixation be-
havior.

o The gaze appears to be “offset” by a fixed amount, and
removing this offset would change the result — e.g., the
relative motion between two spheres would indicate that
the user is looking between them, but the actual recorded
gaze pattern is several degrees to the right.

Additionally, overriding occurs in the following scenarios
where classifications should not have occurred, but did:

o Movement of a single frame which does not following
the gaze trajectory — attributable to noise — triggers a
classification erroneously.

o Excessive noise in gaze position during beginning of trial
triggering a classification.

Most trials required no manual adjustment. In Section II,
only 2.81% of trials were manually classified — 3.70% for
glasses-wearers and 2.28% for non-wearers. In Section IV,
1.81% were manually classified, with 2.16% for glasses-
wearers and 1.23% for non-wearers. Our dataset includes a list
of which subjects wore glasses during their testing, allowing
them to be filtered out or focused on if desired.

Another limitation encountered was dataset size. Due to
our dependence on a metric based on user percentage per
condition, the overall sample size used for training the model
is relatively small, and training data is dependent upon the total
number of conditions. The sample size could be improved with
additional trials capturing additional conditions in the future.

Additionally, our model relies on certain assumptions. We
consider sphere placements that are within a “reasonable”
distance from the viewer (e.g., not too far/small to see, and not
so close/big that they obscure the field of view). Predictions by
our model on edge cases such as these may fail to accurately
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predict sphere preference. Similarly, partial obscuring of one
or both of the objects may affect predictions as well.

We also assume that human perceptual ability is maintained
when perceiving visual stimuli at differing eccentricities and
depths, and that the perceptual abilities and patterns among
the participants in our experiments are following a statistically
consistent route.

Finally, while our model takes into account spatial prop-
erties of objects, there are other object properties which can
affect user attention, including but not limited to: sound, inter-
activity, opacity, contrast, frequency, and color. Such properties
in real-world use cases could affect the predictive capabilities
of our core model - e.g., a small, bright-red object at the
periphery could draw attention away from a dull-grey object
towards center view. Despite this, we believe our existing
core model can already be applied to a variety of real-world
scenarios — see Sec. VL.

D. Future Work

Our model distinguishes attentional preference between two
objects; a useful area for further research would be to deter-
mine how the model might change when users are provided
with three or more objects of interest.

The performance decrease with the addition of motion
suggests that future model iterations should incorporate this
information in some way — perhaps by treating the moving
object as another object in the model, or by establishing some
metric for background motion in the field of view. The effect
of other potential distractions, such as changes in light, color,
and sound, should also be studied.

As mentioned in Sec. V-C, edge case conditions (i.e.,
extremely close/far objects, objects in the center/far periphery,
and extremely small/large objects) are not likely to perform as
well under the current models. Additional research into these
conditions could help develop a more comprehensive model
of selective attention; for example, adding conditions where
the object is extremely close to the user — where the effects
of binocular vision may play a greater role — could reveal
that depth affects visual attention within certain ranges .

Expanding the dataset with conditions that consider other
object properties — for example, visual properties such as
contrast, frequency, opacity, and color — could enable the
generation of a more comprehensive model with a higher
level of accuracy; so, too, could breaking up and refining
existing parameters — for example, a more complex eccen-
tricity parametrization that considers horizontal and vertical
components separately. Visual angle size could potentially be
measured using even more precise methods - e.g., measuring
the percentage of pixels that the object takes up within the
view. If the GLM continues to perform well with these exten-
sions, the coefficients could provide insight into the collective
relationship between these variables and visual attention.

We include subjects with and without glasses in our trial
to capture a more diverse dataset. We hypothesize that, in the
same way that the presence of glasses can affect eye tracking
devices, it may also affect the attentional preferences of users,
potentially by obscuring or distorting the field of view.

The spheres in our study are placed on-screen simulta-
neously; further research is warranted into how attentional
preference might change given one object appearing after
another, as the latter object may have already been observed
and processed by the user.

We studied the relationship between 3D spatial attributes
and selective attention at the beginning of the user’s obser-
vation. However, it is also critical to identify how attention
travels in 3D space over time, given multiple spatial layouts
of foreground objects. Our gaze dataset contains not only
data about first attention but also raw gaze data captured
continuously over the entire session. Utilizing such data to
study the prediction of attentional preference over time could
prove fruitful as well.

VI. APPLICATION SCENARIOS

The ability to predict which of two foreground objects draws
first visual attention based on spatial attributes is valuable
across a wide range of VR and AR applications. As our model
is capable of predicting attention during the content design
phase, it is significantly more useful than a model that can
only operate at runtime. VR content designers can quickly
and easily compare objects within the scene to understand
how each one will draw a user’s attention. Furthermore, by
adjusting the position of an object’s position, designers can
observe not just how the adjustment affects the saliency of
the object itself, but also that of a competing object.

This capability enables designers to effectively guide user
attention, significantly enhancing their ability to achieve
higher-level goals — for example, strategically directing users
to key areas in guided experiences and ensuring engagement
with important content at crucial moments. This is especially
vital in immersive narratives, where highlighting key plot
points or characters shapes the overall experience.

In navigation, this functionality can help users more easily
identify critical waypoints, while in retail, it can optimize
product placement to ensure key items capture attention effec-
tively. Similarly, in education and training, directing focus to
essential tools or information can improve learning outcomes.

All of this is accomplished without the reliance on actual
users. User studies can be challenging to design and expensive
to conduct, and a project may require multiple rounds of
testing at various stages of development. While our existing
model does not eliminate the need for user studies, it reduces
it by facilitating an iterative testing approach.

In addition to predicting attention given a two-object layout
in 3D space, our model can suggest optimal locations for plac-
ing objects to maximize or minimize the chance of attracting
a user’s attention, given the fixed placement of another object.
We present two prototype examples of such a tool; one in
Fig. 1, and another in Appendix A; improvements discussed
in Sec. V-D could further improve its accuracy and precision
by utilizing additional data.

Another potential application for our model is as a supple-
mentary source of user attention estimates, which can aug-
ment existing algorithms and programs — including foveated
rendering algorithms and existing gaze prediction techniques
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based on deep learning. The GLM in particular can easily be
incorporated into a wide range of applications, including low-
level embedded software that may be ill-suited for more com-
plex prediction models; it performs at a comparable level to
the ensemble model with much less complexity and overhead.

VII. CONCLUSION

In this work, we designed and conducted perceptual exper-
iments for investigating the relationship between 3D spatial
attributes of visual targets and the gaze behavior and atten-
tional patterns of human observers. We built up a dataset using
the collected gaze data from the experiment, usable for fu-
ture experiments involved in understanding the psychological,
physiological, and cognitive processes of visual attention.

Based on the dataset, we evaluated the effect of three spatial
attributes on attention, and determined that two (eccentricity
and visual angle size) were significant within the ranges tested,
and one (depth) was not. With this information, we success-
fully trained, tested and compared two prediction models,
which demonstrated accuracy in predicting user attention be-
tween two objects. Finally, we explored potential applications
of these models.

While the initial results are promising, there is room for
improvement. Additional expansions to our dataset and model
— capturing additional conditions, considering additional vari-
ables, and testing more complex scenarios — could generate a
more robust and useful attention prediction model that is better
able to capture the relationship between gaze and attention.
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