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Abstract

Each fall, millions of monarch butterflies across the north-
ern US and Canada migrate up to 4,000km to overwinter
in specific mountain peaks in central Mexico. To track
monarchs precisely and study their navigation, a monarch
tracker must obtain daily localization of the butterfly as
it progresses on its three-month journey. And, the tracker
must perform this task while having a weight in the tens
of milligrams (mg) and measuring a few millimeters (mm)
in size to avoid interfering with the monarch’s flight. This
paper proposes mSAIL, 8 x 8 x 2.6mm and 62mg embedded
system for monarch migration tracking, constructed using
8 prior custom-designed ICs providing solar energy harvest-
ing, an ultra-low power processor, light/temperature sen-
sors, power management, and a wireless transceiver, all
integrated and 3D stacked on a micro PCB with an 8 x
8mm printed antenna. The proposed system is designed
to record and compress light and temperature data dur-
ing the migration path while harvesting solar energy for
energy autonomy, and wirelessly transmit the data at
the overwintering site in Mexico, from which the daily
location of the butterfly can be estimated using a deep
learning-based localization algorithm. A two-day trial
experiment of mSAIL attached to a live butterfly in an
outdoor botanical garden demonstrates the feasibility of
individual butterfly localization and tracking.

1. INTRODUCTION

Animal migrators are critical ecosystem indicators because
their long-distance travels, often on continental scales, inte-
grate information over broad and diverse geographical locales
and seasonal time scales. Tracking technologies have allowed
us unprecedented access to these paths, offering insights
not only into how migration works but also into how envi-
ronments are changing and how species interactions are
impacted by changing movements and distributions.*
However, currently, only the larger animal migrators can
be tracked for significant portions of their migratory flight
(for example, Thorup et al."?). Long-term tracking devices
require large amounts of energy and power for information
processing and storage, and large transceivers and anten-
nas for data transmission, all of which increase the size

and weight of the system. This makes them unsuitable for
insect migrators, which make up a large percentage of the
total abundance of migrators (for example, 2.1 billion birds
between Europe and Africa versus 3.4 trillion insects over
the southern United Kingdom alone).® Insect migration
detection has been limited to en masse detection by ver-
tical-looking entomological radar (for example, Chapman
et al.?) or tracking for short periods of time or over short
distances (for example, Ware??). Thus, the ability to track
small individual migrators over their entire migratory path
will offer a tremendous advance in our understanding of
migration biology, the impacts of changing climate on
small migrators, and the effects of migrants on local and
global ecosystems.

One of the most enthralling animal tracking stories has
been that of the iconic eastern North American Monarch
butterfly (Danaus plexippus). Each fall, millions of monarchs
across the US and Canada migrate up to 4,000km to overwinter
in the same cluster of mountaintops in central Mexico. In
spring, these migrants mate and remigrate northwards to
repopulate their northern breeding territory over two to four
partially overlapping generations. Because each migrant
monarch completes only part of this round trip and does not
return to the overwintering site, this navigational task can-
not be learned from the prior generation.

The number of monarchs completing the journey has
steadily declined in the past decades, coincident with the
decreased availability of their milkweed host plant. The US,
Mexico, and Canada have invested tremendous resources
into monarch conservation efforts, including enacting specific
policy initiatives, public outreach programs, and habitat
protection and restoration projects. The U.S. invested over
$11 million between 2015 and 2017 alone." Developing a
tracking technology for monarchs can be key in these efforts,
for instance through a detailed understanding of habitat
use during migratory flight and dependence on weather
conditions. Furthermore, it can significantly benefit animal
research and agricultural and environmental science.

The original version of this paper was published in
ACM Mobi-Com '21 (New Orleans, LA, USA, Jan. 31-Feb
4,2022).
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A monarch tracker must assure daily localization of the
butterfly as it progresses on its journey while not interfering
with its flight. As such, any deployed sensor must perform
this task while having a weight in the tens of milligrams
(mg) and measuring a few millimeters (mm) in size. The
conventional method for determining location is to use GPS.
However, the received signal from the satellites is very weak
(-155dBm) and hence requires a power-hungry, very low
noise amplifier (for example, 25mW by Mediatek MT3339).
To power such a system requires, at minimum, a coin
cell-sized battery which by itself already weighs ~200mg.
Furthermore, the GPS carrier frequency of 1.58GHz requires
arelatively large, centimeter (cm) scale antenna. As a result,
the smallest commercial GPS (PinPoint by Lotek Wireless)
has a total weight of 1.1g and a size of 5cm.” An alternative
to GPS is the Motus system'” which uses a radio beacon with
tens of km transmit distance attached to each specimen
combined with geographically distributed receive towers.
However, while receive towers are relatively dense in Ontario
and along the eastern seaboard, there are very few along
the primary monarch migration region in the Midwest.
Also, they require a long antenna (multiple cm) and have a weight
>230mg, which likely significantly impedes monarch flight.?
Finally, daylight trackers were proposed to compute loca-
tion based on sunrise/set times (for example, Intigeo by
Migrate Technology). However, their data readout requires
physical access to the sensor which is impractical in the case
of the monarch migration. Furthermore, their size/weight
(320mg and 12 x 5 x 4mm) remain well beyond that required
for the monarch and, with only daylight-based sensing, loca-
tion accuracy is limited, especially during the equinox.

We propose a new wireless sensing platform, mSAIL
(Figure 1), specifically designed for the monarch migration
study based on previously developed custom-designed ICs.
mSAIL is an energy-harvesting, 62mg device with an 8 x 8 x

Figure 1. Proposed embedded system, mSAIL.
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2.6mm form factor (including antenna), that (1) simul-
taneously measures the light intensity and temperature
using non-uniform temporal sampling; (2) compresses the
recorded data in 16kB memory; and (3) wirelessly commu-
nicates data up to 150m distance using a crystal-less radio at
the overwintering site in a realistic non-line of sight (NLOS)
scenario to custom-designed gateways. An integrated,
chip-size battery, continuously recharged using a custom-
designed light-harvesting IC with eight photovoltaic (PV)
cells, provides energy autonomy.

2. MONARCH MIGRATION

TRACKING APPLICATION SCENARIO

mSAIL records light intensity and temperature with accu-
rate, 32kHz crystal-based timestamps along the monarch
migration path. Standard light-based locationing deter-
mines the sunrise and sunset time using a light intensity
threshold and then determines the geolocation using a Sun-
Earth system model and Lambertian Law. The day length
and center time depend on the geolocation and date and
have been used in long-term larger animal tracking stud-
ies.'*® However, it has the fundamental limitation of large
latitude ambiguity around the equinox (September 22 and
March 20) when the day length is the same regardless of
latitude. A second challenge is the significant light intensity
variation due to weather and terrain that an ideal sunlight
intensity model is unable to capture.

mSAIL adopts a novel data-driven algorithm for mon-
arch migration tracking that leverages the principle of
correlating multiple sensors. It achieves superior accu-
racy by applying deep neural network (DNN) models and
multimodal fusion to effectively combine multiple sensor
readings, including light intensity and temperature. The
objective of the DNN approach is to identify the cross-cor-
relation between the multimodal readings and the sunlight
intensity pattern as well as temperature information on a
particular date. Different from Lam et al.® which utilize
handcrafted models for light intensity and temperature,
the DNN approach learns an implicit, yet more complicated
model from real sensor measurements, which makes it
more robust to local variations.

Although the details of the trajectory are not known,
the final destination of the monarch migration is known.
Overwintering monarchs will distribute over a limited num-
ber of sites within central Mexico with 21-78% of the total
population reliably congregating at a single site (El Rosario
sanctuary, at the Monarch Butterfly Biosphere Reserve) each
year.? mSAIL nodes will be programmed with a predefined
rendezvous time to start wireless data offloading to multiple
gateways deployed at that overwintering site. This scenario
allows retrieval from both fallen (dead) and live monarchs as
long as they are within the communication range. Since an
estimated ~90% of monarchs survive at the overwintering
site,>'® the data recovery rate is expected to be significantly
improved compared with current paper tagging methods*
that can only access fallen (dead) or fortuitously recovered
butterflies. After a gateway retrieves the data log from an
mSAIL, the entire butterfly trajectory can be constructed
using the DNN localization algorithm proposed by Yang



etal.* The DNN s trained and evaluated by the data collected
through a data measurement campaign with 306 volunteers
from 2018 to 2020 across the U.S., Canada, and Mexico. They
recorded light intensity and temperature using commercial
cm-scale sensors (Onset MX2202) as an emulation of mSAIL
during the monarch migration season. The localization
algorithm* shows a geocoordinate accuracy of <0.6° and
<1.7° in longitude and latitude respectively (1° is ~85.2km
in longitude and ~111.2km in latitude in the midwestern
U.S.), which is sufficient for monarch studies.

3. SMALL FORM FACTOR INTEGRATION

This section discusses how mSAIL achieves an mm- and
mg-scale form factor using 3D stacked custom ICs, bat-
teries, and PCB antenna. mSAIL measures 8 x 8 x 2.6mm
and 62mg to not interfere with monarch flight, while
still providing necessary features as a complete system.
It consists of three main parts: stacked IC layers, a PCB,
and discrete components.

3.1. Stacked custom IC layers

mSAIL consists of a family of bare-die (without packaging)
IC layers. Figure 2 shows the layers: a PV cell IC, a ULP pro-
cessor, and memory IC, ULP temperature and light sensor
ICs, a ULP RF transceiver IC, and a battery/power manage-
ment IC, which were all custom-designed, fabricated, and
thinned. Three custom-designed, thin-film batteries (CYM-
BET) are also stacked as additional layers. To minimize the
total system volume, the layers are stacked on top of each
other and connected by bonding wires. The layers commu-
nicate using a custom low-power protocol called mBus.*

3.2. PCB and antenna design

mSAIL places the IC stack on a PCB (Figure 3) with a
dimension of 8 x 8 x 0.1mm, fabricated in a Rogers 4350B
material. The weight of the PCB is reduced to 19.5mg
with a large opening in the center of the single loop trace
antenna, which takes 38% of the PCB area. In addition to
the IC layers, the PCB integrates two 4.7uF and one 1.3pF
ceramic capacitors for the RF transceiver and a small
32kHz crystal (1.3 x 1.1mm, 2mg), used by the processor
layer for system timekeeping.

3.3. System integration and encapsulation

mSAIL integrates 12 layers, two 4.7 uF capacitors for RF com-
munication energy buffers, one 1.3pF capacitor for RF
frequency selection, and a 32kHz crystal on the PCB. They
are electrically connected by PCB traces and bonding wires.
The ULP ICs are stacked without conventional chip packag-
ing (that is, bare-die) after thinning, saving weight and size
but rendering them extremely sensitive to light, and the
bonding wires are very fragile. Thus, they must be properly
encapsulated to provide physical protection and block light.
At the same time, the PV cell layer must be exposed to light
to perform energy harvesting and light level measurement.
To address these simultaneous integration constraints, the
PV cell layer is placed on top of the other layers for access to
light. The bottom layers are encapsulated with hard, black
epoxy to provide physical protection and block light from

Figure 2. mSAIL structure and layer information.
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Phaotovoltaic-cell IC 1.35x1.53x0.15 0.7 N/A 8 large and 3 small cells, GaAs
Spacer 1.05x1.33x0.10 0.3 N/A Light blocking
Temp. Sensor IC 1.05x1.63x0.10 0.4 0.03 ULP temp-to-digital conversion
Light Sensor IC 1.05x1.63x0.10 0.4 35.0 ULP light-to-digital conversion
Battery Management IC | 1.05x1.93x0.10 05 0.04 Battery protection, nF decaps
RF Transceiver IC 1.35x2.08x0.10 0.7 1.85 ULP RF transceiver
Memory IC 1.35x2.23x0.10 0.7 132 16kB ULL SRAM memory
Processor IC 1.35x3.10x0.10 1.0 3.48 ARM Cortex-MO, 16kB memory
Power Management IC | 1.35x2.55x0.10 0.8 145 Power conversion from battery
3 Batteries 1.35x2.83x0.20 18 N/A Lithium, Thin-film, BuAhr each
PCB 8.00x8.00x0.10 19.5 N/A Rogers 4350B
Crystal 1.27x1.05x0.50 2.0 N/A Seiko SC12S-7PF20PPM
3 Caps 0.60x0.30x0.55 0.6 N/A 4.7pF & 1.3pF

Figure 3. mSAIL PCB.
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reaching the sensitive electronics. The top PV cell layer is
covered by a clear epoxy to expose the PV cells to light. Below
the PV cell layer, the spacer layer coated with aluminum
blocks lights coming through the PV cell layer. A silicone
mold ensures the epoxy only surrounds the layers to not
increase the total weight. Thus, its weight contribution is
reduced to 27.9mg, which is a 5.9x reduction compared to if
the epoxy had covered the entire PCB area. Finally, the entire
mSAIL is coated by parylene, which is biocompatible, blocks
moisture, and electrically isolates conductive points on the
PCB from the environment.

After encapsulation, mSAIL is programmed via optical com-
munication using a portable LED shining on the exposed
PV cells. The processor layer decodes on-off-key modulated
(0.8kBps) commands and programs the system accordingly.

4. ENERGY AUTONOMOUS OPERATION

mSAIL uses its PV cells to sustain the charge of its integrated
batteries during the 3-month migration which has suffi-
cient energy to power the wireless data transmission at the
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overwintering site. The system must minimize energy con-
sumption since the mme-scale batteries only store 18uAhr of
charge and the mm-scale PV cells only recharge the battery
with 100nW-20uW from 400lux to 30klux. The battery can
only sustain 49 minutes if mSAIL continuously operates in
active mode without careful energy management.

4.1. Dynamic operation modes

mSAIL optimizes energy consumption by employing three
different operation modes: active, sleep, and radio. In
active mode, it measures temperature, triggers light mea-
surement, processes, stores, and time stamps measured
data, and reconfigures the power management unit for
optimal efficiency. The active mode consumes 22uA on
average running for a duration of 1.2 seconds. For power
reduction, the sleep mode turns off all circuits except for
essential blocks: the 32kHz crystal oscillator, the volatile
SRAM memory, the light sensor, and power management.
Also, it reduces the DC-DC converter clock frequency from
588kHz to only 370Hz to maintain a high power conver-
sion efficiency of 66% at 56nA sleep mode current (29x effi-
ciency reduction compared to if kept constant). mSAIL is
in sleep mode from 98.0% around sunrise/set to 99.8% at
the center of day and night. Due to the large period ratio
of 150:1 between the sleep and active modes, the overall
system energy consumption is substantially determined by
the sleep mode.

After the monarch arrives at the overwintering site, mSAIL
will wirelessly transmit all the stored data to a gateway at the
predefined rendezvous time, consuming 130 xW on aver-
age. This consumes 211m] over 27 minutes, which must be
supported by the integrated battery with an energy capacity
of 259m]J. During the transmission, the processor moni-
tors the batteries and if they cannot support the entire data
transmission, mSAIL waits for the batteries to be charged to
3.9V (detected by an integrated ADC) and then transmits the
remaining data at the next rendezvous time.

4.2. Ambient light energy harvesting

mSAIL generates high voltage by electrically connecting
eight custom-designed PV cells in series and directly charg-
ing the batteries without any circuit operation or switch-
ing loss. The number of PV cells is set eight to place their
effective maximum power point at a relatively low light
level (500lux-2klux) so that energy harvesting is supported
at these low light levels.’® At stronger light levels, the har-
vesting efficiency decreases, but the absolute harvestable
energy is much greater. While mSAIL could benefit from a
large charging current at strong light, its energy harvesting
efficiency is optimized at a low light level to maximize the
acceptable light range for energy harvesting. The battery
voltage does notincrease beyond 4.2V because an overcharg-
ing protection circuit stops the energy harvesting, protect-
ing the ICs as well as the battery.’® At very low light levels
(<100lux), the energy harvester cannot provide enough volt-
age to charge the batteries and imposes a risk of discharg-
ing the battery instead. To prevent this problem, a diode is
inserted between the batteries and the output node of the
PV cell layer.'® This results in a harvesting efficiency loss of
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7% from the voltage drop across the diode during energy
harvesting, which is easily compensated by the improved
efficiency from not having an active up-converter.

5. DATA MANAGEMENT

Due to the silicon area constraint, mSAIL has a limited
data storage capacity of 16kB in custom ULL SRAM for the
3-month journey. For the DNN sensor fusion localization
algorithm,* measurementintervals of 1 and 32 minutes are
desiredforlightandtemperature,respectively. Temperature
changes are gradual so the required measurement interval
is much longer than the light recording interval since light
levels can vary rapidly with weather or shading, and change
exponentially around sunrise/set time. Since the tempera-
ture and light sensor outputs are encoded with 24 and
48 bits per measurement, respectively, storing raw data
would require 772kB of SRAM to store all the measurement
data during the migration period, which is well beyond the
16kB storage capacity. Thus, mSAIL reduces the data
storage requirement by compressing the data using
Huffman-coded, log-scale encoding with a nonuniform
sub-sampling scheme guided by dynamic sunrise/sun-
set time tracking. The proposed data compression also
reduces energy consumption for wireless data transmis-
sion at the overwintering site.

5.1. Dynamic sampling rate

The localization algorithm requires a light profile for the
entire day.* However, temporal resolution around sunrise
and sunset, where intensity level changes exponentially, is
more critical. To reduce the power consumption and required
memory space, mSAIL reduces the number of measurements
by dynamically controlling the sampling rate. It measures the
light every minute for three hours around sunrise and sunset
and every 32 minutes otherwise, which reduces the storage
size by roughly 4x. Data during the night is assumed to be 0lux
and is not stored. In addition, after the three-hour window
of 1-minute interval measurements is obtained, mSAIL fur-
ther subsamples light measurements by applying gradually
increasing sampling intervals. From the time when the light
level crosses a threshold (for example, 2lux) and moves toward
the center of the day, it stores four samples at one-minute
intervals, eight samples at two-minute intervals, four samples
at eight-minute intervals, and the rest of the three-hour win-
dow are stored at 32-minute intervals (Figure 4). This further

Figure 4. Sampled light with varying sampling rates.
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reduces the storage requirement by 10x, without noticeable
localization accuracy degradation (Section 7).

5.2. Sunrise and sunset tracking
To perform the proposed dynamic subsampling, mSAIL
must track sunrise and sunset times which will change as
the butterfly travels. Without dynamically tracking sunrise/
set, 14 hours per day of 1-minute measurements would be
necessary to cover all the possible sunrise/set times across
different locations during the migration. Such a large win-
dow of high-frequency measurement results in longer active
times for processing data and higher energy consumption.
mSAIL predicts the sunrise and sunset times each day
based on the previous day. We limit our discussion in this
section to sunrise times for brevity, but the method applies
similarly to sunset. The model can be described by the
equation T, =T, + AT, ,+ AT,  whereT is the time the
light level crosses the threshold on day n. AT,  describes
the local changes in sunrise time and light levels had the
butterfly not traveled; this contains the changes from sea-
sonal, weather, and shading variations. AT, describes the
changes in sunrise time due to the global displacement of the
butterfly. AT,  canbe measured by the difference in the sun-
rise times between consecutive days at the same location in
the reference volunteer dataset® shown in Figure 5. We can
pick 30 minutes as a reasonable upper bound of AT, based
on Figure 5, whereas AT,  can be determined analytically.
The maximum reported speed of a monarch butterfly is
265 miles per day.”® This is a conservative estimate—a
more typical value would be 50-100 miles per day. At 45 °N,
265 miles corresponds to about 5.5 degrees in latitude
which shifts the sunrise and sunset times by +22 minutes
in the worst case assuming that the butterfly travels only
in the east-west direction. Therefore, AT, | <30, AT, |
=<22,and T =T  +52holds. And if the 1-minute light mea-
surement window is set to +52 minutes before and after
the previous sunrise time, it is guaranteed to capture the
next sunrise. The recorded samples require an additional
54 minutes after sunrise and, hence, the total window is set
to 1 hour before and 2 hours after the previous sunrise time.

5.3. Data compression

The dynamic sampling rate reduces the number of data
points down to ~100 light and 48 temperature samples per
day. Each raw light and temperature measurement is 48
and 24b long, respectively. To compress both light and tem-
perature data with the limited instruction code space and
computational complexity, a compact lossy compression

Figure 5. Histogram of the relative time difference between
consecutive sunrises and sunsets.
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algorithm is applied to convert the integer data into an
approximated log2 representation with fixed-point preci-
sion without using a large lookup table. Log2 representa-
tion is suitable for the light data as it changes exponentially
around sunset/rise time. After compression, all the data for
90 days occupies 15.7kB of mSAIL memory.

Finally, data is further compressed by storing only the dif-
ference from the previous data. During sunrise and sunset,
log-scale light intensity samples change by a relatively small
amount (typically 1 or 2 bits). A Huffman coding’ is applied
to this difference to produce the minimum codeword length.
The combined encoding scheme further reduces a light
measurement to 5.1b and a temperature to 3.0b on average.
A simulation on the volunteer-collected data shows that only
7.2kB SRAM is required to store 3-month data including
overhead, which is acceptable for the mSAIL.

5.4. Data packets for RF communication

During wireless data retrieval, each packet is separately
transmitted and contains 96b including 16b of CRC and a
12b packet header. The remaining 68b store the data. To
reduce overhead, four packets are grouped together (272b
data) as an independent decodable unit. Each unit storing
light measurements includes a 17b timestamp (with resolu-
tion down to 1 min) and an 11b initial measurement value
(necessary for differential decoding). Units storing tempera-
ture measurements include a 13b timestamp (with resolu-
tion down to 30 min) and a 7b initial measurement. The
remaining light and temperature measurements are stored
as an encoded difference from the previous measurement
as described in Section 5.3. The remaining timestamps are
omitted as they are calculated at the gateway since the light
and temperature intervals are deterministic, though non-
uniform. Once mSAIL reaches the overwintering destina-
tion (inferred by the rendezvous time), mSAIL adds on the
packet number and CRC to each unit to create four 96b pack-
ets for transmission. The CRC enables multi-bit detection
of erroneous packets in the receiving gateway. Although a
missing packet cannot be recovered, the earlier packets can
still be decoded using the timestamp and initial data stored
in the first packet even if later packets are lost. Also, since
mSAIL will periodically retransmit its data, lost packets can
be recovered on subsequent data transmissions.

6. WIRELESS RF COMMUNICATION

Using a ULP RF transceiver without an RF-reference crystal
(10MHz range) and PLL* is necessary to enable mm-scale sys-
tem integration and also ultra-low power consumption, but it
unavoidably sacrifices the frequency stability of the RF sig-
nal. To address this, the system employs a gateway-assisted
synchronization protocol that is initiated by mSAIL node
transmission. In the proposed protocol, an mSAIL node asyn-
chronously initiates a communication session by transmit-
ting a packet first. Around the rendezvous time, the gateway
continuously listens to the channel to estimate and track the
carrier frequency and sampling frequency offsets (CFO and
SFO) of the mSAIL node via a computationally efficient 2D-FFT-
based correlation. Upon detecting a valid packet from an
mSAIL node, the gateway can send a customized packet that
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pre-compensates the CFO/SFO of the detected mSAIL node.
This enables a PLL-less mSAIL node implementation which
eliminates the need for power-demanding synchronization
& correlation processes at the mSAIL node. The gateway pro-
tocol and real-time baseband signal processing are imple-
mented on the FPGA (ADRV9361-Z27035) of a custom gateway
(USRP X310 compatible, Figure 9). This asymmetric link
between the gateway and mSAIL takes advantage of excellent
receiver sensitivity and abundant FPGA resources for digital
signal processing in the gateway, allowing the mSAIL trans-
ceiver to be simple, low power, and mostly asleep.

A major issue of using an mm-scale battery for mSAIL is its
high internal resistance, which prevents drawing a large peak
current (mA range) to transmit RF signals. Note that prior
crystal-less transceiver designs such as Maksimovic et al.'* do
not have the same issue as they operate with a conventional
battery without extreme size and weight constraints. We tackle
this current limitation issue of the mme-scale thin-film battery
by powering the transceiver with a trickle-charged energy buffer
capacitor, as shown in Figure 6. The proposed system exploits
this sparsity to realize an energy-efficient sparse pulse posi-
tion modulation (PPM) scheme. Unlike conventional PPM, the
symbol duration is dominated by the recharging time. mSAIL
uses a binary sparse-PPM with 2.25mW active transmit power
(at ® 15% circuit efficiency), 50 us pulse duration, and 4.8 ms
recharging time for 0.2kBps data rate at an average power con-
sumption of 156 W during the packet transmission.

The main challenge in the gateway design is to identify the
CFO and SFO with the mSAIL node in real-time. On the mSAIL
RF transceiver, the baseband sampling clock is generated by
an RC relaxation oscillator* and its carrier frequency is deter-
mined by the inductance value of the 2D magnetic dipole loop
antenna and the matching on-/off-chip capacitors without a
PLL. Thus, it is inevitable that an mSAIL node has significant
SFO (up to 0.5%) and CFO (up to 2%) variation due in part to
variations in process, voltage, and temperature. Calculating
accurate SFO/CFO and compensating these offsets in real-
time is performed with the signal processing data path shown
in Figure 7 implemented on the gateway’s FPGA.

The preamble from mSAIL always starts with an RF pulse
train with a constant pulse interval. Thus, we propose a novel
2D-FFT-based process that identifies the SFO and CFO at the
same time. The incoming signal is first divided into multiple
time domain signal frames, whose length is equivalent to

half of the pulse width. A 1D-FFT is performed on each signal
frame and the signal power is computed for each frequency
offset bin, which corresponds to a specific CFO hypothesis.
A second FFT is then performed on the power of frequency
domain samples (output of the first FFT) that belong to that
same bin (one specific CFO). This process is repeated for all
frequency bins. Each bin of the second FFT output now cor-
responds to a specific SFO fundamental frequency. To accu-
rately estimate the actual pulse repetition frequency of the
preamble, we add the power of all harmonic frequency bins
corresponding to a specific fundamental frequency. Figure 8
shows an example of the 2D-FFT harmonic integration
output from the preamble processing, where the y-axis cor-
responds to the CFO bin and the x-axis is the SFO fundamen-
tal frequency hypothesis. By finding the maximum power
from the 2D-FFT result, the gateway identifies the SFO as
well as the CFO at the same time. The CFO FFT resolution is
matched to the signal bandwidth and inversely proportional
to the preamble pulse width, which is 4-1000 xs in our sys-
tem. Figure 8 is the result for 6.5MHz CFO and 5kHz SFO
from the 915MHz and 250kHz ideal carrier and sampling
frequencies (plotted with a coarser resolution to make the
high power peak region visible). After the 2D-FFT process for
the preamble, the gateway keeps tracking SFO during pay-
load to eliminate residual SFO and to mitigate time-drifting
offset. The SFO tracking resolution is 1/4 of the pulse width.

7. EVALUATION

Various performance evaluations have been run on mSAIL
systems as described in this section, including: (a) wireless
communication distance evaluation at the overwintering site

Figure 7. DSP datapath implemented on the gateway.
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showing over 150m NLOS distance and (b) 2-day outdoor live
monarch demonstration including wireless data transmis-
sion, post-processing, and localization.

We performed flow-through CO, respirometry on monarchs
carrying a prototype mSAIL (compared to controls without
the logger) to estimate the effect of the system load on flight
metabolism. The test results showed neither a significantly
different mass relationship from the control nor a significant
change in flight metabolic rate. Because the data in this prelim-
inary study was limited, further studies on the impact of long-
distance flight and aerodynamics, as well as the robustness of
the mSAIL over a 3-month period, are warranted and planned.

7.1. Wireless communication evaluation

The mSAIL radio transmission distance was tested at
two locations. First, in an unobstructed outdoor envi-
ronment, mSAIL was placed on a pole such that it was an
average of 20m higher than the gateway to emulate condi-
tions at the overwintering site when a monarch will be in
a tall conifer. The results of the test are shown in Figure
9(a). A 75cm Yagi antenna with 11dBi gain was attached
to the gateway. The transmission was line-of-sight up to
494m. A similar test was performed in a heavily wooded
area at the overwintering site in Mexico, shown in Figure
9(b) using a 135cm Yagi with 15dBi gain which showed
excellent results at 150m with a low (<5%) packet loss. In
both cases, the mSAIL was powered by attaching larger
batteries using 10mm leads to allow for longer operation
duration under continuous radio transmission for ease of
testing. However, in separate testing, this was shown not
to impact radio distance noticeably.

Our approach leverages the fact that monarchs cluster
at impressive densities at the Mexican overwintering sites.
The median density estimate is 20 million butterflies (range
6-60 million) per hectare (10,000m?).'® Therefore, even with
hundreds of meters of communication range, we expect to
cover millions of butterflies.

7.2. Live Monarch localization

Full system operation of mSAIL was demonstrated attached
to a live monarch butterfly in a botanical garden, as shown
in Figure 10. The butterfly is kept in an outdoor, 42 x 42 x

Figure 9: RF communication distance test. (a) Result from the open-area
test; (b) test in a wooded area.
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76cm cage, positioned on a 2.5m tall pergola such that the
cage is not shaded by nearby buildings, on November 6" and
7, 2020, which is during the monarch migration season.
The monarch was able to feed ad libitum on butterfly nectar.
For reference measurements, cm-scale sensors were placed
in the cage and outside on the pergola. A receiving gateway
with a 7” omnidirectional whip antenna was mounted 8m
away in a nearby enclosed structure to receive the transmit-
ted data regardless of weather conditions.

Light and temperature measurement results. Figure
11 shows temperature data transmitted from mSAIL
mounted on the monarch. Data is also shown for the
cm-scale sensor mounted on the pergola, along with
the difference between the two sensors’ measures.
Temperature data agrees very well between 6 PM and 6
AM with differences of no more than 2°C. During primary
daylight hours, both sensors can be exposed directly to
sunlight which can cause large local heating compared to
ambient shade temperatures. While the cm-scale sensor
was mounted on the pergola, facing up, the mSAIL was
attached to the monarch which, though caged, could
change orientation with respect to the sun and also close
its wings at times, thereby covering the sensor. Therefore,
differences in daytime temperatures are expected. For
these reasons, and because butterflies will travel during

Figure 10. Testing setup for the outdoor botanical garden test. (a)
Overview; (b) mSAIL on monarch; (c) gateway; (d) centimeter-scale
commercial sensor.
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the day, only nighttime temperature readings (16 hours)
are used in the DNN localization algorithm.

Figure 12 shows the two-day light data from the same
mSAIL system and the same cm-scale sensor. Note that mSAIL
is programmed to gather light data only during daytime and
sunrise/sunset intervals. Also, the cm-scale sensor’s mini-
mum light reading is zero which cannot be plotted on the log
scale. The data shows good agreement during sunrise and
sunset times. Some of the differences during the daytime are
the results of the difference in orientation between the fixed
cm sensor and the mSAIL. The cm sensor always pointed
upward while mSAIL orientation depended on the posi-
tion of the monarch. However, the neural network localiza-
tion algorithm mostly relies on measurements surrounding
sunrise and sunset. In addition, in practice, measurements
during the day are less relevant since the monarch could be
traveling and, hence, not at a fixed location. In addition, to
confirm the accuracy of the light readings, mSAIL was cali-
brated and tested with controlled light before the live mon-
arch experiment. The resulting fit had an R?value of 0.9982.

Localization from mSAIL collected data. The quality
of our measurements was evaluated using the localization
algorithm introduced by Yang et al.>* Although it is possible to
apply different localization algorithms using mSAIL-collected
data, we chose the same algorithm proposed by Yang et al.*
to evaluate its data quality compared to the output obtained
from the reference commercial sensor (Figure 13).

For the live monarch mSAIL evaluation conducted on
Nov. 6 and 7 in 2020, the light and temperature data were
wirelessly retrieved from the mSAIL unit and the butterfly

Figure 12, 2-day light data: mSAIL vs. ref. sensor.
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was localized using the above method. Note that mSAIL col-
lected data was first decompressed and resampled to reverse
the adaptive sampling and data compression described in
Section 5. We then applied linear interpolation to resample
decompressed mSAIL measurements so that they have the
same sampling rate as the reference cm-scale sensors used
in DNN training. We evaluate our 2-day measurements in a
grid surrounding the ground-truth location with a range of
[-15,15] degrees in latitude and longitude and a resolution of
0.25 degrees. The likelihood (that is, DNN outputs) for the
grid points are visualized as heatmaps shown in Figure 14
where the center of the graph is the ground-truth location. It
is observed that light intensity alone can provide accurate lon-
gitude estimation and that temperature significantly refines
thelatitude estimation. The maximum likelihood estimations
marked in Figure 14 provide an absolute error of 0.07°/0.26°
in longitude and 0.03°/0.40° in latitude for the first/second
day, which translates to a maximum error of 21.4km and 44.5km
in longitude and latitude and aligns with the accuracy
reported by Yang et al.** evaluated with the cm-scale sensors.
To validate that the proposed data compression and

Figure 14. Localization likelihood output for two different days
(a) and (b). Center of each heatmap is the ground truth. Maximum error
after sensor fusion is 21.4km and 44.5km in longitude and latitude.
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data in Yang et al.%
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adaptive resampling technique does not degrade the local-
ization accuracy, we applied the same compression and
sampling technique to the volunteer cm-scale sensor data
and compared the localization accuracy with the original
uncompressed data. Figure 15 confirms that the proposed
compression and dynamic sampling algorithm successfully
captures the most relevant features, thus it exhibits negli-
gible localization accuracy difference.

It is worth noting that the butterfly was stationary for the
two-day outdoor test and there can be differences between
data collected from stationary vs. migrating butterflies.
Analyzing the differences needs further investigation and it
is left as future work.

8. CONCLUSION

This paper proposes mSAIL, 8 x 8 x 2.6mm and 62mg
embedded system for monarch butterfly migration tracking
with previously developed, custom-fabricated solar energy
harvester, an ultra-low power processor, light/temperature
sensors, and wireless transceiver ICs, all integrated within
a 3D stacked form-factor. The proposed system is designed
to record and compress light and temperature data during
the entire 3-month migration path while harvesting solar
energy, and wirelessly transmitting the data at the overwin-
tering site in Mexico to reconstruct the complete migra-
tion trajectory using a deep learning-based sensor fusion
localization algorithm. An initial 2-day trial experiment of
mSAIL attached to a live butterfly demonstrates the feasibil-
ity of individual monarch butterfly localization and tracking
using an electronic device for the first time.
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