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For compactifications of heterotic string theory, we elucidate simple cohomological conditions that lead
to the vanishing of superpotential n-point couplings for all n. These results generalize some vanishing
theorems for Yukawa couplings that have previously appeared in the literature to all higher orders. In some
cases, these results are enough to show that certain fields do not appear in the perturbative superpotential at
all. We illustrate our discussion with a number of concrete examples. In some cases, our results can be
confirmed by showing that symmetries indeed forbid the couplings that vanish. In many, however, no such
symmetries are known to exist and, as such, the infinite sets of vanishing couplings that are found are

surprising from a four-dimensional perspective.
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I. INTRODUCTION

Perturbative superpotential Yukawa couplings are a very
well-studied topic within the context of compactifications of
the heterotic string on smooth Calabi-Yau threefolds [1-24]
(see [25,26] for some recent progress on physically nor-
malized Yukawa couplings). One of the more interesting
structures that has been seen within this context is that such
couplings frequently vanish in a manner that is somewhat
surprising from a four-dimensional field theory perspec-
tive (see [12,13,15-18,21-23] for some examples). In
particular, in the constructions that appear in the literature,
it is frequently the case that perturbative superpotential
Yukawa couplings are zero despite the fact that no known
symmetry enforces this structure upon the theory. These
vanishings of trilinear couplings seem to arise from a
plethora of different geometric origins, from the fact that
the three-fold can be embedded into an ambient space, to
the existence of fibration structure in the geometry and
more besides [12,13,17,18,21-23].

In physics we are interest in couplings beyond cubic,
renormalizable, interactions. A natural question is then
whether the phenomenon of vanishing couplings extends
to these higher order interactions (see [27-29] for related
work in an orbifold context). We stress here that we are not
talking about terms which are higher order in & or the string
coupling. The superpotential is computed exactly in these
expansions due to nonrenormalization results [30]. Rather
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we are referring to superpotential contributions that are
higher order in the matter fields [11,3 1].l In some sense, one
example of vanishing of these higher order couplings is
already included in the Yukawa coupling analysis itself.
Vanishings of those interactions are frequently shown to
hold for all values of the complex structure and/or bundle
moduli. As such one can view these results as describing the
vanishing of an infinite number of higher order couplings
involving three matter fields and an arbitrary number of
moduli. Indeed, there is a variety of other pieces of evidence
that we can expect the phenomenon of vanishing couplings
to go beyond cubic order in heterotic compactifications. For
example, in many, although not all [31-33], commonly used
bundle constructions one obtains a good heterotic back-
ground for an entire moduli space of defining data of the
manifold and bundle. In such an instance, the combined
complex structure and bundle moduli space should be
unobstructed, implying, for example, that all perturbative
couplings between bundle moduli, of any order, should
vanish. Since the bundle moduli are singlets, there is
frequently no obvious symmetry in the four-dimensional
theory that would forbid couplings between these degrees of
freedom. Another example is the fact that one frequently
obtains heterotic models with massless vectorlike matter,
say 10’s of SO(10), at generic points in moduli space. There
is again often no known symmetry forbidding mass terms

"It should be noted that the matter fields appearing in a four-
dimensional heterotic theory, as conventionally parametrized,
are not canonically normalized. As such no suppression scale
appears in the superpotential for higher order terms such as those
being discussed here. Such a scale (the compactification scale)
would be reintroduced upon canonical normalization of the
fields, leading to the usual suppression of higher order terms at
low energies, without violating the standard nonrenormalization
results.
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for such fields, and yet all couplings between two 10’s and
arbitrary numbers of moduli must vanish to be consistent
with the massless spectrum computation. Note that super-
symmetry is of course not an explanation for this phenome-
non as any appropriate holomorphic couplings are allowed
within the superpotential.

In this paper we will present a simple analysis which
provides one reason why these couplings, and others
between chiral multiplets for example, can vanish to all
orders in the fields. The spirit of this work is similar to that
of the description of vanishing Yukawa couplings men-
tioned above. It centers around ancillary geometric struc-
tures in the constructions such as the existence of
descriptions of the compactifications involving an ambient
space. Our results describe how a (small) finite number of
simple cohomology constraints in the description of a
heterotic compactification can lead to these infinite num-
bers of vanishing couplings.

As mentioned above, some of these results can be
explained by known symmetries but many can not. Thus
this analysis throws into stark relief the key question that has
already been raised by the known Yukawa coupling results.
Are there extra, to date unknown, symmetries that we
should be considering in heterotic compactifications, or do
quasitopological constraints lead to the vanishings of
infinite numbers of couplings in four-dimensional effective
theories, without the need for a low energy symmetry?
Either possibility is exciting and holds the promise to
improve our understanding of the type of field theories
that result from heterotic compactifications.

The structure of the rest of this paper is as follows. In
Sec. II we describe how higher order couplings in heterotic
models are associated to obstructions to higher order
holomorphic deformations of the gauge bundle. In particular
we detail the conditions that are required for deformations to
be unobstructed and thus for couplings to vanish. We
consider both rank preserving and rank changing deforma-
tions of the gauge bundle. In Sec. III we present one simple
cause of vanishing higher order couplings in heterotic
compactifications. Once more we investigate cases which
both preserve and break the gauge group and give a number
of explicit examples. In some of these examples the fact that
the higher order couplings vanish can be confirmed inde-
pendently. In others, the infinite number of zero couplings
form a prediction rather than a confirmation of known
results. In Sec. IV we conclude and discuss future directions
of research that will be pursued.

II. SETUP: COUPLINGS
AND THE KURANISHI MAP

We will begin our analysis with a discussion of higher
order obstructions to flat directions, corresponding to super-
potential terms, in heterotic compactifications [11,31,34].
We will begin with the simplest case of deformations
corresponding to bundle moduli, before moving on to more

involved, gauge group breaking deformations in later
subsections.

A. Rank preserving deformations

The contribution to the heterotic superpotential which is
relevant for matter and bundle moduli couplings is as
follows:

W_/a)ng A Q. (2.1)
X

Here oM is the Chern-Simons form associated to the

gauge fields. The superpotential (2.1) is extremized by
holomorphic gauge connections,

F,;=0. (2.2)
The superpotential (2.1) is perturbatively exact due to a
nonrenormalization theorem stemming from supersym-
metry and axion shift symmetries. Thus, if we wish to
look for flat directions of the superpotential, we need only
look for deformations of the gauge connection, such that
Eq. (2.2) can be satisfied. As stated above, in this subsection
we will consider rank preserving deformations that corre-
spond to bundle moduli. More general deformations will be
considered in later subsections.

In analyzing heterotic theories, we perform a formal
perturbative expansion on the gauge connection. This is
associated to the usual infinite series of cubic and higher
couplings of fields arising from (2.1),

Ay =AY 140 4 AP 4 (2.3)
Demanding that (2.2) is preserved under first order variation
simply returns the result that A(") is D closed. Together with
exact changes to A(!) being obtainable by gauge trans-
formations, this leads to the standard result that the massless
perturbations are counted by elements of cohomology.
Higher order conditions arising from satisfying (2.2) can
be easily computed and yield the following:

vz 4 (DY 4 (1 = (2

FrAL AN = —(DpAR Y,

SN SN

292 AL AR = (DAY ),

e gV 4B | iz g @54 @ _ _(fy 4@y
2F ALY ALY + AL ALY = —(DpA ),

(2.4)

In the above expressions the left-hand side is always
closed, if the lower orders are satisfied. This can be easily
proven by direct computation and use of the Jacobi identity
on the structure constants f***. The potential constraint on
a fluctuation comes from the possibility that the left-hand
sides of these expressions fail to be exact. Given this

086007-2



VANISHING CONDITIONS FOR HIGHER ORDER COUPLINGS ...

PHYS. REV. D 110, 086007 (2024)

structure, the higher order obstructions to (2.2) vanish if
and only if a fluctuation is in the kernel of the Kuranishi
map [11,31,34],

H'(Endy(V)) —— H2(Endy(V)). (2.5)
Here the map k is defined, order by order, by the
expressions in (2.4).

We can make contact between this notion of uncon-
strained deformations/higher order obstructions and
conventional notions of multiparticle couplings by para-
metrizing A(') appropriately. Specifically, we can expand
AW in a basis of appropriate bundle valued harmonic
forms v; with coefficients C' which become the four-
dimensional fields upon dimensional reduction,

A<]) = Zcil/i.

Looking at (2.4) we then see that the quantities A" are
associated to nth powers of the fields C'. The first line
in (2.4), for example, is then associated to cubic couplings.
Looking at the coefficients of two specific C' for the
two AU) factors, we see that this expression becomes
the statement that a map from two elements of
H'(X,Endy(V)) to H*(X,Endy(V)),

(2.6)

H'(X.Endy(V)) x H'(X,Endy(V)) — H*(X., Endy(V)).
(2.7)

has zero image. This is precisely the statement that all
Yukawa couplings between those two fields and one other
element of H'(X,Endy(V)) vanish [6]. The later lines in
(2.4) then correspond to the vanishing of couplings of
higher orders.

This structure can also be seen in terms of the super-
potential. The expansion (2.3) gives rise to the following
contributions to W order by order:

W=w03 4+ w® ... (2.8)
where
3 _ 2 (D3 A ADY A AD)
wt =3 Fay AV ANATY A AT A Q, (2.9)
e
w# = 3/fxyzA(2>x AADY A Az A Q.
X
: (2.10)

In deriving these expressions from (2.1) and (2.3) we have
used all lower order results in simplifying each given
order, as well as some integration by parts. So, for

example, (2.9) uses that F,; =0 and DA =0.
Equation (2.11) uses the same two conditions and the
first condition in (2.4), and so on. It is easy to see, given
the previous discussion, that the W) are contributions to
the superpotential containing nth powers of fields. For
example, the n =3 term in (2.9) is recognizable as the
expression for the Yukawa coupling [30]. By contrast, one
can see that W in (2.11) gives rise to quartic couplings
between the fields. More generally, W) corresponds to
nth order couplings between the fields of the low energy
superpotential. Thus, instead of following the analysis
using (2.4) that we will largely pursue in this paper, one
could analyze superpotential terms of this form and their
derivatives order by order, so as to establish the existence
of flat directions in four-dimensional field space.

As a final comment, note that it is clear that, if a given
AW is unobstructed at a given point in moduli space, and is
associated with a particular direction in four-dimensional
field space denoted by ¢, then all couplings involving any
number of ¢ factors must vanish if the other fields are fixed
to that point in field space. Thus contact between unob-
structed deformations and vanishing couplings is easy to
establish.

B. Rank changing deformations

We are often interested in rank changing deformations of
the gauge bundle. This could either be because we are
interested in Higgsing processes, or simply because we
want to understand couplings involving charged matter. Let
us look at two examples of how such deformations can be
dealt with in this setting. We will start with an example
involving chiral matter in this subsection, before moving on
to the case of vectorlike degrees of freedom in the next.

1. 27’s of Eg

Again consider an expansion of the form (2.3) but where
now the A(!) perturbation is associated to an element of
H'(X,V) for an initially SU(3) bundle. That is, we are
considering perturbations associated to 27 representations
of E¢ in the four-dimensional theory. This means we are
regarding A as a connection on an Eg bundle and are
allowing the group in which the expectation value of A
takes values to enlarge under deformation.

We can now consider an expansion such as (2.4) and
reinterpret it in this context. The first line in (2.4) again
corresponds to a Yukawa coupling vanishing, this time one
associated to a map,

H'(X.V)x H'(X,V) > H*(X,A*V)=H'(X,V). (2.11)

This Yukawa coupling is the standard 273 one of the Ej
four-dimensional grand unified theory.
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. .2
The next order is more complex. The constraint,

2400 A AR = —DAB), (2.12)

corresponds to a mapping,3

H'(X,V)x Q!(X, A2 V) - H*(X,0) @ H?(X.Endy(V)).
(2.13)

However, on a Calabi-Yau threefold H?(X,O) = 0 and so
the requirement of exactness imposes no constraint in this
component of the image. The other term in the image
corresponds to a bundle modulus coupling of the form
2731. Given that we are only giving an expectation value to
a 27 field, it may seem strange to have such a possible
obstruction. However, such a coupling would lead to a
constraint, even if the bundle modulus was not given a vev
away from its starting point, via the 0W = 0 constraint of a
supersymmetric Minkowski vacuum where the derivative is
taken with respect to the bundle modulus.

At next order we have

2A0 A AB) £ AR A AR = _DAW. (2.14)
The right-hand side of this condition represents the zero
element in H>(X,V) = H'(X,V"). As with the previous
order, this may at first seem strange as we were considering
a 27 deformation not a 27. However, this contribution
corresponds to 27427 couplings in the superpotential, and
the derivative of this with respect to the 27 fields results in a
constraint on the field space from the 0W = 0 condition
which depends solely on the 27 fields.

The pattern continues as the order increases, with all
cases giving a contribution to a map into H'(X,V),
H'(X,Endy(V)) or H'(X,V"Y). Thus, an unobstructed
deformation corresponds to one that is in the kernel of
all of the following maps, where the maps are defined order
by order by the above analysis,

H'(X,V) = H*(X, V),
H'(X,V) - H*(X,Endy(V)),

H'(X,V) > HX(X, V). (2.15)

2. 10’s of SO(10)

For an application later in this paper, we will want to
consider a perturbation to the gauge field corresponding to

2Here, and in what follows, we will often use a more compact
notation in the interests of readability, given that the gauge index
structure in particular is becoming more involved.

In fact, A® is essentially specified by A, so this can
really be regarded as a mapping H'(X,V) - H*(X,0) ®
H?(X,Endy(V)).

varying both bundle moduli and 10’s of SO(10) [for a
bundle with initial structure group of SU(4)]. At linear
order, this corresponds to including both terms that are
proportional to elements of H' (X, End,(V)) and terms that
are proportional to elements of H'(X, A? V). Thus, one is
again considering A as a connection on an Eg bundle and is
varying the connection so that the gauge field expectation
values fill out a larger group after deformation.

Taking the vevs of both associate matter fields to be
small so that a perturbative approach is appropriate, we can
track the orders to which we are working by a bigraded
expansion, as opposed to an expansion indexed by a single
integer n as in the proceeding subsections. A term with
superscript (i, j) denotes a contribution that is order 7 in the
bundle modulus vev and order j in that of the 10,

A=A00 1 A00) 1 A01) 1 A20) 1 AL 4 A02) 4 ...
(2.16)

One can then once more expand the gauge field strength
order by order and demand that it vanish. The (0, 0), (1, 0),
and (0, 1)th order results give what one would expect, the
requirement of having a good vacuum, and the closedness
of the linear perturbations of each type (so that they form
elements of cohomology given their definition up to gauge
transformations).

The degree (1, 1) contribution to F,; = 0 looks like the
following:

AL A AOD L AOD A A1) = DALY (2,17)

This is simply the statement that for the perturbation being
considered to be unobstructed the 11010 Yukawa coupling
must vanish. That is, the map

H'(X,Endy(V)) x H' (X, A2 V) = H>(X, A2 V) (2.18)
should have zero image.
At degree (2, 1) we have the following:
ARO) A AOD) 1 A0 A AR0) 1 A(LD
A ALY 1 A0 A ALD = _DARD), (2.19)

Given the equations such as (2.4) and (2.17) determining
A9 and A0V the left-hand side here is closed and is
specified by our choice of A" and A9, Thus this is
again a map of the form (2.18), taking into account second
order effects in the bundle moduli deformation. This pattern
then continues, with the degree (n,1) perturbation to
F;; =0 corresponding to the order n bundle modulus
contribution to the 10 mass term,
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A0 A A1) 4 A1) A A(nO) 4 A(=1.0) A A(11) 4 A(LD)
AAM=10) 4= _PAnd) (2.20)

As before, the only constraint imposed on the fluctuations
here is that the left-hand side of expressions such as (2.20)
is exact. Hence, to all n, the constraints can be phrased as a
Kuranishi style kernel associated to a mapping of the
form (2.18).

III. VANISHINGS OF COUPLINGS

A. Couplings of bundle moduli
Consider a bundle V over a Calabi-Yau threefold X
which is the pullback under the embedding map of a bundle
V over some ambient space .4 in which X is described as a
complete intersection. Take a closed form A()) which is
associated to a class in H'(X,Endy(V)) which lifts to a
form A" in H'(A, V). Such perturbations to the gauge
connection are referred to in the literature as type 1 [17,18].
It is then easy to show that if A" is in the kernel of the
Kuranishi map associated to V — A then A() is in the
kernel of the Kuranishi map associated to V — X. To show
this observe that if we take the Koszul sequence, where N
is the normal bundle to X in A, and tensor it up by V we
obtain
SNV LV Sy oo (3.1)
The map r is surjective and holomorphic. Now consider the
analog of (2.4), defining the Kuranishi map, for V. Here we
will only explicitly show one order but the argument is

identical for any n. Assuming that AW is unobstructed we
have

N

foyzAU))’ A A(Z)z — _(DA(3))X_

Applying the restriction map and using the holomorphy
of r, we then obtain

P2 A0 A AR) = —r(DAB)) (3.3)
= 2192 (AY) A r(A®%) = —r(DAD)
= 21 AY A AR = —(Dr(AD))*, (3.4)

We see that the solution to the constraint equation on A
implies the solution to the constraint equation on X where
we take AG) = r(A®),

The question now becomes, when will A be
unobstructed. There are many fashions in which this
can happen, but the most straightforward is simply if
H?(A,Endy(V)) = 0.* This leads us to the following
statement:

Lemma. Consider a case where a bundle V — X
descends from a bundle V — A where X is a complete
intersection in A. If a bundle modulus is type 1, that is if the
associated element of H'(X,Endy(V)) descends from an
element of H'(A,Endy(V)), and if H?(A,Endy(V)) =0
then that bundle modulus is unobstructed, and all pertur-
bative couplings, of any order, which could obstruct that
perturbation vanish.

Note that this lemma is particularly powerful for X’s
which are hypersurfaces inside the ambient .A. In this case,
from the long exact sequence associated to

0 - N ® Endy(V) = Endy (V) — End,(V) — 0,

(3.5)
(3.2) we have that
|
H'(X,Endy(V)) = Ker(H*(A, NV ® Endy(V)) — H*(A, Endy(V)))
®
Coker(H'(A, NV ® Endy(V)) - H'(A,Endy(V))). (3.6)

Using Serre duality on the ambient space we have that
(A, NV ® Endy(V)) = h*(A,Endy(V)), where we have
used the fact that Endg(V') is self dual. Thus, the statement

that H?(A, Endy(V)) = 0 implies that all bundle moduli
are automatically of type 1. We are therefore lead to the
following corollary:

Corollary. If a bundle V over a Calabi-Yau threefold X

lifts to a bundle V over an ambient space A in which X is a
hypersurface and if H?(A,Endy(V)) =0 then all

|
perturbative couplings of all orders between bundle moduli
vanish.

Let us now give a concrete example where we can see
that the above vanishing theorem reproduces expected
results.

“Note that the analogous condition cannot arise on X. There,
Serre duality implies that H?(X,Endy(V)) = H'(X,End,(V))
and thus the H? vanishing would mean that we did not have any
bundle moduli in the first place.
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1. An example
Consider the following Calabi-Yau threefold X and

bundle V:
P! 1 1
P4 1 4|

00—V —=0x(1,0)*® 0x(0,1)> - 0x(2,1)> - 0.

X = (3.7)

(3.8)

Naively this system presents the type of puzzle that was
discussed in the Introduction. Computing the bundle
moduli of this system, one finds that they are purely
associated to monad maps. Writing By = Ox(1,0)> &
0x(0,1)* and Cy = Ox(1,1) ® Ox(2,2) we find
H'(X,Endy(V)) c H*(X,BY ® Cx). This tells us that,
at least infinitesimally, the choices of monad map cover
the bundle moduli space. Furthermore, all variations of
monad map that are sufficiently generic, whether infini-
tesimal or not, lead to well-defined holomorphic stable
bundles. Given this, one might naively expect that all of the
infinite possible sets of self-couplings between all of the
bundle moduli vanish.

This is somewhat confusing, however, at least at first
glance. From a field theory perspective, the bundle moduli
are singlets in the four-dimensional theory. Therefore, there
is no obvious reason why such couplings would vanish.
From a mathematical perspective, the situation is also not
clear, because /7*(X,Endy(V)) # 0, and thus there is no
obvious reason to expect the Kuranishi map (2.5) to have
trivial image.

The lemma of this section can be used to explain this
result. The bundle (3.8) does not lift to a bundle on the
ambient space P! x P, It can be shown by direct compu-
tation that it does, however, lift to a bundle on an ambient

space
P! 1
A= .

We can thus regard X as a (1,4) hypersurface in this ambient
space and define a bundle V which pulls back to V by a
sequence identical to (3.8), with the exception that the line
bundles are over A as in (3.9). In terms of this description,
one can compute the cohomologies associated to elements
of the Koszul sequence and show that the bundle moduli are
of type 1 and H?(A, Endy(V)) = 0. In more detail, here is
the Koszul sequence with the dimensions of the cohomol-
ogy groups h' written underneath the associated bundles,
starting with i = 0 and increasing down the columns,

(3.9)

0— NY®Endy(V) — Endy(V) - Endy(V) =0

0 0 0
0 48 48

(3.10)
0 0 48
48 0 0
0 0

Thus the corollary from earlier in this section applies and
all perturbative couplings between the bundle moduli of
this system vanish, explaining the observed structure in the
compactification.

2. Nongenericity and other resolutions

One may ask what other ambient space structures can
lead to trivial Kuranishi obstructions. To answer such a
question we are interested in the opposite line of reasoning
to that given above. Instead of assuming that the Kuranishi
obstruction is trivial on the ambient space and discussing
consequences on the Calabi-Yau threefold, we should
assume that the Kuranishi obstruction is trivial on X and
see what that implies on the ambient space A.

We restrict our attention to a case where the Koszul
sequence (3.5) holds, and where the bundle moduli of
interest are type 1. Considering (2.4) we have, at all orders,
equations of the form L.H.S + (DA™) =0, where we
have abbreviated the left-hand side of each of the equations,
whose exact form we will not need in the following. The lift
A®) of the A®)’s then obeys an equation of the form
r(L.H.S + (DA™)) = 0. The exactness of the Koszul
sequence then implies that L.H.S + (DA“')) = po™
where @) e H*(A, NV ® EndO(V)). The closedness of
@ follows from the use of any lower order results, and the

Jacobi identity, and the assumption that AW is closed, just
as in Sec. II. Given this, the question of what ambient space
structure causes the obstruction to vanish on X reduces to a
question about p@. If p® is exact, then one can redefine
A S AW T where p@™ = DI and we have the
previous case discussed where an unobstructed deforma-
tion on the ambient space is reducing to an unobstructed
deformation on the Calabi-Yau threefold. In particular, in
the case of the vanishings we have been discussing p® is
exact because it is an element of the group H?(A, Endy(V'))
which is taken to be trivial. If p® is not exact then we have
a situation where an obstructed deformation on the ambient
space restricts to an unobstructed one on the Calabi-Yau
threefold.

One could imagine nonobstructed deformations on X
lifting to nonobstructed deformations on A when
H?*(A,End,(V)) is not trivial. For example, if h2(A, NV ®
Endy(V)) = 0 then @ is automatically exact and there-
fore so is pc?)<”). In codimension one, this is no different
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from the case we have been considering because, by Serre
duality, 7#*(A, NV ® Endy(V)) = h*(A,Endy(V)). More
generally, however, in higher codimension, the two coho-
mologies are not equal in general, and so different cases are
possible.

The above analysis implies that it is not always the case
that vanishing couplings on X will be associated with
unobstructed deformations on A. As such we should
consider more general structures than the Koszul resolution
in trying to explain these phenomena. It is important to note
that, while the lemma given in this section has been stated in
terms of a Koszul resolution for a complete intersection
Calabi-Yau threefold, very little of this specific structure is
needed in our arguments. For example, instead of a
complete intersection in A, X could be any subvariety such
that there exists a surjective holomorphic restriction map
from V to V. Even more generally, all we require is any
surjective holomorphic map r of any type between a bundle
V on some space A (which could be X for example) and a
bundle V on X. Examples of the use of different resolutions
from the Koszul sequence are something we will return to in
future work.

B. Couplings of chiral matter

The arguments of Sec. Il A can be essentially repeated
for the case where we consider chiral matter of Eq as in
Sec. II B 1. In the case where we are considering couplings
that could obstruct a 27 field flat direction, the relevant
maps whose image must be trivial if those couplings are to
vanish are as follows:

H'(X,V) = H*(X, V),
H'(X,V) - H*(X,Endy(V)),

H'(X,V) > HX(X, V). (3.12)

If we assume that A() is of type 1, then, by the same rea-
soning as given in Sec. IIl A, the deformations are unob-
structed if H*(A,VY)=H?(A,V)=H?(A,Endy(V))=0.
The first line in (3.12) corresponds to 273" couplings, the
second line to 27°"1 couplings (where the singlet is a bundle
modulus), and the last line to 273127 couplings where
m € Z. Gathering this information together we have the
following:

Lemma. Consider a case where an SU(3) bundle V — X
descends from a bundle V — A where X is a complete
intersection in A. If a 27 matter field is type 1, that is if
the associated element of H'(X,V) descends from an
element of H'(A,V), and if H*>(A, V) =H*(A V) =
H?*(A,Endy(V)) = 0 then that 27 field is unobstructed, and
all perturbative couplings, of any order, which could
obstruct that perturbation vanish.

1. Two examples

Let us start with an example of vanishings of infinite sets
of couplings between chiral matter fields where we can
verify the result. Consider the Calabi-Yau threefold,

P! 2
X = p3 ‘ 41 , (3.13)
with the following sum of line bundles over it:
V=0x(-2.1)® @ 0x(4.-2).  (3.14)

This SU(3) bundle [strictly S(U(1)?) as we will return to
shortly] lifts to a bundle on the ambient space, and we have
the following Koszul sequences’ for V, V¥, and V @ VV:

0> NV - V - VvV 50
0 0 0
0 8 8
(3.15)
0 0 30
30 0 0
0 0
0> NVVY - VW - Vv 50
0 0 0
0 30 30
(3.16)
0 0
8 0 0
0 0

0> NVQVVY - VV¥ - VvVY -0

0 5 5
0 100 100
(3.17)
0 0 100
100 0 5
5 0

We see that all fields are of type 1 and that H>(A, V) =
H*(A,VY) = H*(A,Endy(V)) = 0. Thus, our analysis
should hold and, for example, all of the 27 matter fields
should be unobstructed.

As mentioned above, the structure group of (3.14) is
actually S(U(1)?) rather than SU(3). This means that there
are two extra Green-Schwarz anomalous U(1) symmetries

*Note that is perfectly consistent for a poly-stable sum of line
bundles to have nonvanishing global sections and top cohomol-
ogy of V® VV.
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in the low energy effective theory. We can now check that,
in this case, all of the couplings that must vanish in order
for the 27 directions in field space to be unobstructed are
forbidden by these additional symmetries.

In the notation of [35,36], charges under the U(1)? factor
of the gauge group can be represented as a vector of three
entries where two vectors are identified as S(U(1)%)
representations if ¢ — q€ Z(1, 1, 1). Following the analy-
sis of [35,36], we have four 27, four 27,;, and 30
ﬁo,o,l fields in this example. So all couplings purely

between 27 or purely between 27 are forbidden by the
symmetry. It is permitted by the symmetry to have mixed
27, 27 couplings. However, only those of the form
273 273" 127, where n€Z are consistent with the

full Eq x S(U(1)?) gauge group. The vanishing of these
couplings are not required for the above “no-obstruction”
result to hold. One can include the bundle moduli in the
couplings as well. These have charges (1,0,-1) or
(0,1,—1). However, even with their presence, the only
allowed couplings are those that have more than one field
that is not a 27 representation. Thus we find that in this case
our analysis does indeed give a correct result and this can
be confirmed by symmetry considerations.

We would like to emphasize that, while we have chosen
the above example because the infinite set of couplings that
we predict to vanish can be confirmed to do so by a known
symmetry, it is certainly not known to be the case that every
set of vanishings our analysis predicts can be explained in
this manner. For example, on the tetra-quadric,

p' | 2
pl | 2

X=1o | S5l (3.18)
pl | 2

consider the monad bundle,

0—V — 0x(1,0,0,0)%2 @ 04(0,1,0,0) & 0x(0,0,1,0)

- 0%(2,1,1,0) - 0. (3.19)
This bundle descends from a bundle V defined by an
identical monad sequence on the ambient space. The

Koszul sequences for this bundle, its dual, and its traceless
endomorphisms look as

0> NV - -0

(3.20)

o o o o o
o oo b O
o o~ O <

0> NVVY - VW S Vv 50
0 0 0
0 0 0
(3.21)
0 0 4
4 0 0
0 0

0— NY®Endy(V) — Endy(V) — Endy(V) =0

0 0 0
0 21 21

(3.22)
0 0 21
21 0 0
0 0

In particular we see that all matter fields are of type 1 and
H?(A, V)= H?*(A,VV) = H*(A,Endy(V)) = 0 and thus
our vanishing coupling analysis holds. In fact, given that
this result holds at a generic point in bundle moduli space,
in this case we would not expect the 27 matter fields to
appear in the perturbative superpotential at all.

In this case there is no obvious symmetry in the four-
dimensional effective theory that would forbid such cou-
plings. Just as has been seen in the Yukawa coupling
literature, the structure of the embedding of the geometry of
the compactification in an ambient space is leading to a
vanishing of couplings that is mysterious from the point of
view of our current understanding of the four-dimensional
physics. One can perform a consistency check and compute
the Yukawa couplings using standard techniques [5,6,14],
finding that these are indeed vanishing. However, the
results we have garnered here go way beyond merely cubic
couplings.

C. Couplings of bundle moduli and vectorlike matter

The arguments of Sec. IIl A again repeat, essentially
unmodified, for the situation considered in Sec. II B 2. In
this case of couplings between bundle moduli and 10’s of
SO(10) which can give rise to mass terms for the vectorlike
matter, our map is of the form
H'(X,Endy(V)) x H' (X, A2 V) - H*(X,A* V). (3.23)
If we assume that both A0 € H'(X,Endy(V)) and
AL e H' (X, A2 V) are of type 1, then, by exactly the
same line of reasoning as in Sec. III A, the deformations are
unobstructed if H>(A, A V) = 0. In such a situation, all of
the couplings that could obstruct such a deformation
vanish, and in particular the contribution of all powers
of the associated bundle moduli to the mass terms for the
10’s vanish. Thus, the vectorlike matter would be expected
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to remain massless when we give vevs to those bundle
moduli.

Lemma. Consider a case where a bundle V — X
descends from a bundle V — A where X is a complete
intersection in 4. Take a bundle modulus that is type 1, that
is the associated element of H' (X, End,(V)) descends from
an element of H'(A, Endy(V)), and a 10 of SO(10) which
is also type 1, with the associated element of H'(X, A2 V)
descending from an element of H'(A, A2 V). Then, if
H?*(A,A? V) =0, all couplings between any number of
those bundle moduli and two of those 10’s vanish. Thus the
vectorlike matter is perturbatively massless for all values of
those bundle moduli.

1. An example

Returning to the example of Sec. I A1 we find the
following Koszul sequence associated to AV, again
taking (3.10) as the ambient space,

0> NVRAZV = A2V =S A2V S0

0 0 0
0 6 6

(3.24)
0 0 6
6 0 0
0 0

We see from this data that all of the perturbations A are
of type 1 since all six such degrees of freedom descend
from H'(A, A2 V). We have already seen in Sec. III A 1
that all of the bundle moduli are of type 1. Finally, we also
see from (3.24) that H2(A, A2 V) = 0. Thus, from the
above analysis we expect all of the bundle moduli cou-
plings to two 10 fields to vanish. This expectation is
corroborated by the cohomology computation which shows
that all six families of vectorlike matter remain massless
everywhere in bundle moduli space.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have seen that just a few vanishing
ambient space cohomologies in the description of a
heterotic compactification can lead to exactly zero n-point
couplings between certain four-dimensional fields for all n.
Indeed, more generally, one would expect that vanishing
cohomologies in a variety of different structures associated
to the compactification can lead to such sparse interaction
structure.

Vanishing higher order couplings of this type do not seem
to be rare: the examples given in this paper were not difficult
to construct. It would be interesting to see exactly how
ubiquitous the applicability of these results is in standard
approaches to heterotic model building. This would be a

generalization of the type of investigation that was per-
formed for the case of vanishing Yukawa couplings in [21].

It should be emphasized that it does not need to be the
case that the Calabi-Yau and bundle of interest in a heterotic
compactification are being described in a manner that
enjoys the structure required in order for our results to
hold. Rather, it is only necessary that such a structure exists.
Given the fact that a given Calabi-Yau and bundle can be
described in a myriad of different ways the constraints on
interactions we have been discussing can be more restric-
tive than one would initially think [23].

There is a key question that, while already raised
by vanishing results in the Yukawa coupling literature
[17,18,22], is thrown into stark relief by the types of
structure seen in this paper. What is the underlying physics
that is causing these couplings to be precisely zero? There
are essentially two possibilities. Either there is an important
symmetry present in the four-dimensional effective theory
of heterotic compactifications that has so far not been
elucidated. Or these coupling vanish purely due to quasi-
topological constraints that can not be explained by four-
dimensional symmetries. The former case would clearly be
important in our understanding of these compactifications.
The latter would mean that we were observing structure in
the four-dimensional field theory that is surprising from a
purely field-theoretic point of view and which therefore
provides something of a signature of higher-dimensional
physics. Clearly, either of these possibilities is exciting, and
we will be actively working to try and isolate which
possibility is realized.

Technically there are a number of further results which
one could try to establish. It would be nice to prove
vanishing results associated to fields of higher type, as has
been achieved in the Yukawa coupling case [17,18,22]. It is
also very likely that progress can be made in considering
other resolutions and structures of the compactification
beyond those considered here. For example, one might
expect that similar results could be achieved by making use
of various fibration structures [12]. One of the biggest
restrictions of the analysis in this paper is that V must be a
bundle in order for our methods to hold. Clearly, it would
be very desirable to relax this constraint, and include the
possibility of sheaves that restrict to V, as was done in [22]
for the Yukawa coupling case. Finally, it would be
interesting to fold the complex structure moduli into our
analysis in an intrinsic way, utilizing a higher order version
of the Atiyah style analysis found in [31,33,37]. This last
direction is one which we are actively pursuing (see [38,39]
for related work).
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APPENDIX: SUPERPOTENTIAL BASED PROOF

In this appendix we give a simple proof of the vanishing
of one higher order interaction in a manner that echos
the derivations that have been carried out in parts of the
literature for vanishing Yukawa couplings [17,18]. This type
of proof does not seem to be the most efficient way to
proceed in this context, and thus we simply give an example
of a four-point coupling vanishing in a codimension one
Calabi-Yau for illustrative purposes. This derivation can
easily be generalized to include higher codimensions and
higher couplings.

Let us examine a four field superpotential coupling
between bundle moduli,

W =2 [ fa00

Consider the case where the Calabi-Yau manifold X is
described as a hypersurface inside some ambient space A,
and the bundle on the Calabi-Yau V is the restriction of a
bundle on the ambient space V. We can then lift (A1) to an
integral over .4 simply by making use of an appropriate
delta function,

—2/fWA”

In this expression, hatted quantities are ambient space
forms which restrict to the associated unhatted quantity on
X and p is the defining relation of the Calabi-Yau threefold.
Now, following [17,18], define QA dp =p and use
identity

Dy AAPZAQ (Al

DY A AP A QA8 (p)dp A dp.

(A2)

1-1
8*(p)dp = —0— A3
(p)dp =~ p (A3)
to rewrite the integrand,
(1 )z 5.
fxyZ W AADTA pyAO—.  (A4)
p

Next we integrate by parts and consider a case where
DAY = 0. In the language of the main text, we are
considering a case where the cohomology element asso-
ciated to A(* is of type 1. We then obtain the following
(working in “math gauge” where the antiholomorphic part
of the zeroth order gauge field vanishes):

2 a - A 1
@:__/fmmwAmwADmquW< (AS)
T JA P

Let us denote the restriction map from A to X (the pullback
under the embedding) by r. Since r is a holomorphic map
we have that r(2(DA?)* 4 o2 AYAD) = 2(DA@))r 4
ForAyA)z = 0, where we have assumed that the
Yukawa couplings vanish so that A is defined. Given
the exactness of the Koszul sequence,

0 - NV ® Endy(V) =5 Endo(V) — Endy (V) — 0,
(A6)

we therefore know that 2(DA®))* + f"yZA WAMz =
pa®* for some w®* € H?(A, NV ® Endy(V)). Note that
@@~ is indeed closed because of the type 1 assumption on
AW implying that AW s closed. We will further consider a
case where H2(A, Endy(V)) = 0. By Serre duality this then
implies that H?(A, NV ® Endy(V)) =0 and so o®* is
exact. Setting w®* = DI'®* we are then free to redefine
A® - A® — pr@. This new choice of A? still satisfies
r(A®) = A® and so is also a valid choice of lift of that
quantity to the ambient space In addition, however,
we now also have that 2(DA®))* 4 pozA0AMz — g,
Essentially, the Kuranishi conditions for V over X are

lifting to the Kuranishi conditions for V over A.
Using the analysis of the previous paragraph, our
coupling can now be written as

2 Al
_;/AfxyzA( )

Ap—.

The same computation that showed that the left-hand sides
of (2.4) are closed immediately shows that this quantity
vanishes, as can be seen by direct calculation and use of the
Jacobi identity. We are therefore lead to the following
conclusion:

Consider a bundle V on a Calabi-Yau X which lifts to a
bundle V on an ambient space A in which X is a hyper-
surface. Then a perturbation in field space which is of type
1 is unconstrained by fourth order couplings in the super-
potential if H>(A, Endy(V)) = 0.

Obviously, this is merely a subresult of the vanishing
conditions given in the main text.
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