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AbstrAct
AI agents based on multimodal large lan-

guage models (LLMs) are expected to revolution-
ize human-computer interaction, and offer more 
personalized assistant services across various 
domains like healthcare, education, manufactur-
ing, and entertainment. Deploying LLM agents in 
6G networks enables users to access previously 
expensive AI assistant services via mobile devic-
es democratically, thereby reducing interaction 
latency and better preserving user privacy. Nev-
ertheless, the limited capacity of mobile devices 
constrains the effectiveness of deploying and exe-
cuting local LLMs, which necessitates offloading 
complex tasks to global LLMs running on edge 
servers during long-horizon interactions. In this arti-
cle, we propose a split learning system for LLM 
agents in 6G networks, leveraging the collabora-
tion between mobile devices and edge servers, 
where multiple LLMs with different roles are dis-
tributed across mobile devices and edge servers 
to perform user-agent interactive tasks collabora-
tively. In the proposed system, LLM agents are split 
into perception, grounding, and alignment mod-
ules, facilitating inter-module communications to 
meet extended user requirements on 6G network 
functions, including integrated sensing and com-
munication, digital twins, and task-oriented com-
munications. Furthermore, we introduce a novel 
model caching algorithm for LLMs within the 
proposed system to improve model utilization in 
context, thus reducing network costs of the collab-
orative mobile and edge LLM agents.

IntroductIon
AI agents, designed to integrate AI models into 
everyday services as personal assistants to humans, 
have become a pivotal element in advancing 
toward artificial general intelligence (AGI) [1, 2]. AI 
agents powered by large language models (LLMs), 
that is, LLM agents, possess the capability to fol-
low user instructions, observe environments, make 
decisions, and execute actions at a human-equiv-
alent level. Therefore, LLM agents can proactively 
provide users with recommendations for final deci-

sions by understanding and remembering cross-ap-
plication user intentions and behaviors. Particularly, 
AI agents observe surrounding environments by 
processing information in various modalities from 
sensors, leveraging the versatility of multimodal 
LLMs [3]. In addition, LLM agents can solve com-
plex tasks by grounding the plan of action to 
achieve their missions through reasoning, memory, 
and verification. After the alignment between LLM 
agents and humans, agents can attain human-like 
intelligence to provide recommendations to users 
with text, tools, and embodied actions that are con-
sistent with human values.

Although the deployment of LLM agents on 
mobile devices in 6G networks allows democratiz-
ing access to services currently considered prohibi-
tively expensive at cloud data centers, several issues 
remain in implementing the LLM agents for com-
plex, multi-round interaction agent services [4, 5]. 
For mobile devices with limited capacities, running 
AI models of agents, which is both computation- 
and memory-intensive, is challenging for supporting 
the long-term execution of LLMs. In addition, these 
limitations are further exacerbated by the restricted 
context windows of LLMs, hindering LLM agents 
from performing long-term and complex interac-
tions, such as perception, reasoning, and coding, 
which consume considerable available context 
resources [6]. To address these challenges, a split 
learning system based on collaborative end-edge-
cloud computing, which aims at partitioning LLM 
agents into mobile and edge agents, emerges as a 
viable solution. In this system, mobile LLM agents, 
operating local LLMs (0-10B parameters, e.g., LLA-
MA-7B) on mobile devices, can handle real-time, 
direct perception and alignment tasks. Meanwhile, 
edge LLM agents, hosting global LLMs, (> 10B 
parameters, e.g., GPT-3) on edge servers, can utilize 
global information and historical memory to help 
mobile LLM agents perform complex tasks.

There are several advantages to partitioning 
LLM agents into mobile and edge agents in 6G 
networks. First, flexible deployment of LLM agents 
can be supported by heterogeneous devices with 
different locations, capabilities, and contextual 
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adaptability. Specifically, mobile LLM agents with 
proper local LLMs can operate effectively with their 
computing capabilities regardless of their locations 
and user scenarios. Second, long-horizon collabo-
ration can be enabled across multiple mobile devic-
es by bridging the integration between low-level 
operational plans of local LLMs and high-level 
strategic plans of global LLMs. Third, mobile LLM 
agents exhibit enhanced adaptability in dynamic 
open-ended environments. For instance, mobile 
LLM agents can understand instructions using local 
LLMs and then adjust their actions based on imme-
diate environmental feedback for real-time respon-
siveness and relevance during their interactions 
with physical environments.

In this article, we propose a split learning system 
of LLM agents consisting of mobile LLM agents and 
edge LLM agents in 6G networks, which is demo-
cratic, flexible, and long-horizon for running sustain-
able AI agents in open-ended environments. First, 
we introduce the basic concept of AI agents and 
introduce the processes of constructing LLM agents 
via collaborative end-edge-cloud computing. Sec-
ondly, we discuss three main issues in developing 
LLM agents in 6G networks, including multimodal 
perception, interactive grounding, and alignment 
with humans. Thirdly, we investigate a real-world 
application that leverages mobile and edge LLM 
agents to generate accident reports collaboratively. 
At an accident site, vehicles can employ mobile 
LLM agents to observe the surrounding scene of 
a car accident and generate their local environ-
mental descriptions. By sending these descriptions 
to edge servers, edge LLM agents can use global 
observations to deduce and offer more detailed 
and precise plans for vehicles. Finally, the mobile 
LLM agents can generate text responses, functional 
call requests, and embodied actions based on the 
global plan. In addition, we propose a metric called 
age of thought (AoT) to assess the significance of 
thoughts, that is, the intermediate steps generated 
by LLMs, during the reasoning and planning pro-
cesses of edge LLM agents. This metric emphasizes 
that older thoughts hold less importance and thus 
can ensure the high performance of cached mod-
els. Based on this metric, we introduce the Least 
Age-of-Thought (LAoT) model caching algorithm, 
which evicts global models that have the least 
impactful and relevant thoughts, and thus reduces 
the grounding cost in terms of latency, resource 
consumption, and performance loss for serving 
edge LLM agents in 6G networks. Overall, our main 
contribution can be summarized as follows.
• We propose a split learning system for LLM 

agents in 6G networks, which aims to provide 
democratic AI assistant services via the collab-
oration of mobile and edge LLM agents over 
end-edge-cloud computing.

• During the integration of 6G networks and LLM 
agents, we discuss several major issues, includ-
ing integrated sensing and communication for 
multimodal perception, digital twins for ground-
ing decisions, and task-oriented communica-
tions for the alignment of agents.

• We propose a new optimization framework in 
the system, that is, model caching for AI agents, 
which aims at maximizing the in-context learn-
ing capabilities of LLM agents while reducing 
the network costs of serving mobile and edge 
LLM agents.

collAborAtIve end-edge-cloud computIng 
for llm Agents In 6g networks

As a pivotal stride toward achieving AGI, AI 
agents are the key computational entities that can 
proactively perceive user instructions, observe 
the environment, ground decisions, and perform 
human-like actions [2]. In 6G networks, AI agents 
are developed to execute intricate tasks collab-
oratively, from managing networks to acting as 
personal assistants for humans. According to the 
difference in fundamental working mechanisms, 
there are two major categories of AI agents, that 
is, reinforcement learning (RL) agents and LLM 
agents, which will be discussed below.

cAtegorIes of AI Agents
RL Agents: Utilizing RL algorithms to observe 
states, make decisions, and take actions in an 
environment, RL agents learn through trial and 
error, by receiving feedback as rewards or pen-
alties as a result of their actions. They aim to 
maximize their cumulative reward over time by 
learning optimal policies. For example, in com-
munications and networking, RL agents can 
make decisions for dynamic network access, 
transmit power control, wireless caching, and 
data offloading locally to maximize network 
performance under uncertain network environ-
ments. Specifically, RL agents formulate the com-
munication and networking environment into 
a Markov decision process (MDP) consisting 
of states, actions, transition probabilities, and 
rewards. However, although RL agents learn to 
make decisions for network access and manage-
ment [2], they cannot interact with humans and 
other agents using texts in open-ended environ-
ments, which limits their potential to offer more 
diverse services that require understanding and 
responding to human instructions.

LLM Agents: To achieve the human-level intel-
ligence, LLM agents build upon versatile and pow-
erful LLMs that have demonstrated remarkable 
capabilities in few-shot and zero-shot environment 
perception and instruction understanding [1, 2]. 
In addition to the decision-making capabilities of 
RL agents, LLM agents can interact with the envi-
ronment through texts, API tools, and embodied 
actions continuously while gradually improving 
their performance during the interaction. Mean-
while, pre-training on large-scale datasets elicits 
emerging abilities of LLMs, allowing them to tack-
le various downstream tasks related to data man-
agement, question answering, route planning, and 
scientific inquiries. Furthermore, equipped with 
memory, reasoning, planning, and tool capabili-
ties, LLM agents can not only make decisions for 
network environments but also leverage language 
understanding and employ tools such as the Inter-
net and databases for tackling complex control 
tasks. Compared with the generalization of RL 
agents, the role-playing capability of LLM agents 
allows them to serve specific roles while handling 
different tasks. For example, LLM agents can act 
as experiment assistants, automating the design, 
planning, and execution of scientific experiments 
based on human-crafted instructions. However, 
textual instructions are usually not sufficient for 
LLM agents to perceive the entire environment in 
a realistic setting.

In 6G networks, AI 

agents are developed 

to execute intricate 

tasks collaboratively, 

from managing net-

works to acting as 

personal assistants for 

humans. According 

to the di
erence in 

fundamental working 

mechanisms, there are 

two major categories 

of AI agents, that is, 

reinforcement learning 

agents and LLM agents, 

which will be discussed 

below.



IEEE Wireless Communications • December 2024 65

To enhance LLMs with multi-sensory capa-
bilities, such as visual and audio understanding, 
multimodal LLMs [3], like GPT-4V(ision), are intro-
duced for agents to perceive and process inputs 
from multiple modalities, including tactile feed-
back, gestures, Inertial Measurement Units (IMUs) 
motion sensor data, and 3D maps. For visual input, 
multimodal LLMs can be leveraged to generate 
a description for the current environment, where 
they can produce multimodal descriptions, such 
as text, audio, and images, which enable better 
accessibility for visually impaired individuals and 
improve positioning capabilities. Specifi cally, mul-
timodal LLM agents can use a pre-trained encoder 
to convert signals from diff erent modalities into a 
common textual representation, allowing for rea-
soning across modalities [7].

constructIon of mobIle edge-empowered Agents
As illustrated in Fig. 1, the construction of LLM 
agents in collaborative end-edge-cloud computing 
consists of three main processes, namely, mobile 
LLM agent execution, edge LLM agent execution, 
and inter-agent communication between mobile 
agents and edge agents to update information 
and assign tasks.

Mobile LLM Agent Execution: Initially, each 
user downloads tiny local LLMs (0–10B), for 
example, LLAMA-7B, to its mobile device from 
edge servers via radio access networks (RANs) 
for personalized initialization. During initialization, 
users can confi gure mobile LLM agents with per-
sonal profiles such as age, gender, and career, 
which agents use to tailor their interactions and 
responses with specifi c roles. In addition, mobile 
LLM agents can leverage contextual initialization 
based on the current situation by processing and 
analyzing historical interactions. There are two 
major methods for LLM agents to perceive envi-

ronments, that is, human instruction and sensing. 
On the one hand, human instructions are given 
through interactive dialogues between humans 
and LLM agents. On the other hand, LLM agents 
can perceive the physical environment, which pro-
vides multimodal sensory inputs from interacting 
objects, including visual, auditory, and spatial data.

To process the received instruction and multi-
modal sensing data, mobile LLM agents can utilize 
pre-trained components, such as modality encod-
ers, word embedding layers, and projection layers, 
to combine multi-sensory inputs. Each modality 
encoder is specifi c to one modality, such as CLIP 
for images, CLAP for audio signals, IMU2CLIP for 
IMU motion sensor, and Intervideo for videos [8]. 
In mobile devices, multiple encoders process and 
combine the multimodal input data and then proj-
ect the output into the text token embedding space 
of local LLMs. To process human instructions, the 
word embedding layer is a crucial component that 
maps words or tokens into a continuous vector 
space, capturing semantic relationships between 
them, and helping in understanding user-specif-
ic instructions. In mobile AI agents, due to limit-
ed capacities in mobile devices, tiny local LLMs 
with a limited amount of parameters can generate 
real-time responses based on local perception but 
cannot tackle complex tasks that require compre-
hensive consideration and generalization.

Global Agent Execution: In edge servers, edge 
LLM agents with huge global LLMs (> 10B), for 
example, GPT3, can leverage long-term memory, 
reasoning, and planning modules to enhance the 
quality of responses with global information and 
understanding of environments. Historical interac-
tions of mobile LLM agents can be stored as long-
term memory in vector databases through memory 
embedding layers. Based on the long-term memory 
from mobile LLM agents, edge LLM agents can use 

FIGURE 1. � e split learning system of mobile and edge LLM agents over collaborative end-edge-cloud computing highlighting key processes such as data percep-
tion, initial processing by mobile agents, data transmission over 6G networks, enhanced processing at edge servers, and the feedback loop to mobile devices.
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retrieval-augmented generation (RAG) to output 
responses with better performance and consisten-
cy [9]. In addition, edge LLM agents can utilize 
chain-of-thought (CoT) reasoning to improve the 
performance in complex tasks [10]. When tackling 
complex tasks, edge LLM agents using CoT start by 
employing various reasoning paths to deduce poten-
tial answers, considering that each complex problem 
has multiple ways of thinking. This way, edge LLM 
agents can adapt to unfamiliar scenarios through 
knowledge generalization and transfer abilities inher-
ent in global LLMs. Furthermore, edge LLM agents 
can leverage self-reflection to verify reasoning paths, 
gaining more accurate results of their actions and 
making better decisions for future behaviors.

Inter-Agent communIcAtIon between 
locAl And edge Agents

When mobile LLM agents are incapable of 
accomplishing complex tasks, they can offload the 
intermediate results, including local perceptions 
and user intentions, to edge LLM agents equipped 
with huge global LLMs and global information 
for remote execution. Mobile LLM agents can 
transmit intermediate results, such as text or other 
embeddings, through the inter-agent communi-
cation over RANs. Due to limited bandwidth and 
uncertain wireless channels, mobile LLM agents 
need to optimize the size of the transmitted con-
tent, that is, intermediate inference results of local 
LLMs, and configure communication parameters 
for successful offloading, for example, the trans-
mit power and the chosen channel. Moreover, 
mobile LLM agents can leverage adaptive infor-
mation techniques including data compression, 
feature extraction and selection, semantic data 
reduction, predictive coding, and quantization, to 
optimize the transmitted size of content. Based 
on the responses and decision results generated 
by edge LLM agents, mobile LLM agents adapt 
global general plans to the local specific plans to 
interact with users and the environments. After 
understanding the locally specific plans using local 
tiny LLMs, mobile LLM agents generate respons-
es, use API tools, and perform embodied actions 
locally using their actuation modules.

IsAc for wIreless perceptIon:  
ubIquItous And AdAptAbIlIty

To run LLM agents efficiently in 6G networks with 
ubiquitous low-end devices, mobile LLM agents 
can perceive user instructions and sense environ-
ments for modeling and understanding the current 
situation. In addition, to improve adaptability and 
generalization, mobile LLM agents need to off-
load computation-intensive and intractable tasks to 
edge LLM agents for remote execution. Therefore, 
mobile LLM agents need to collect and extract 
information from noisy observations and commu-
nicate with edge servers to transfer information, 
which requires the implementation of integrated 
sensing and communication (ISAC) by utilizing the 
wireless communication infrastructure.

envIronmentAl perceptIon
In multi-functional 6G networks, mobile LLM 
agents can autonomously perceive the surrounding 
environment using equipped sensors [7], which 
consume network resources for supporting the 

sensing functionality. By integrating basic percep-
tual abilities such as vision, text, and light sensitivity, 
LLM agents can develop various user-friendly per-
ception modules [11]. For example, LLM agents in 
mobile devices can perceive more complex user 
inputs, such as eye-tracking, body motion capture, 
and even brainwave signals in brain-computer 
interaction. Furthermore, LLM agents in vehicular 
networks can be equipped with Lidar, GPS, and 
IMUs, allowing them to perceive location-based 
data for vehicles and mobile users.

HumAn-lAnguAge InstructIon
During the interaction between users and agents, 
text instructions can be given to mobile LLM 
agents by providing them with explicit requests 
as well as implied values and intentions. Mobile 
LLM agents can understand implicit meanings 
within textual input based on contextual interac-
tion with users, thanks to their short-term memo-
ry. After processing through local LLMs, mobile 
LLM agents can respond with answers in human 
language. Additionally, users can also provide 
instructions via audio, which contains environmen-
tal information compared to text [7]. Handling 
audio input involves leveraging existing models, 
cascading paradigms, and integrating audio with 
other modalities to enhance agents’ perception 
and understanding of the environment.

Inter-Agent InterActIons
In the proposed system, ubiquitous interaction 
between mobile and edge LLM agents is crucial for 
offloading intermediate results, receiving feedback, 
interactive reasoning, and self-reflection over RANs 
[6]. During collaboration between mobile and 
edge agents, they need to continuously communi-
cate with each other with messages in text or other 
embedded formats in a noisy environment. There-
fore, this communication process usually consumes 
a large amount of bandwidth and network resourc-
es for long-term and multimodal interactions.

For the wireless perception of LLM agents in 
multi-functional 6G networks, ISAC is promising to 
improve spectral and energy efficiencies for mobile 
LLM agents to collect information from environ-
ments and transmit intermediate results to edge 
LLM agents simultaneously. For example, mobile 
LLM agents in vehicles need to perform radar sens-
ing and transmit the perception results to edge 
LLM agents simultaneously. By utilizing network 
resources more efficiently for sensing and commu-
nication, ubiquitous LLM agents can be deployed 
in wireless environments and become more adapt-
able to a dynamic and open-ended world.

dIgItAl twIns for wIreless groundIng: 
relIAbIlIty And consIstency

For grounding the responses and actions, mobile 
LLM agents maintain digital twins (DTs) at the edge 
servers to interactively perform retrieval-augment-
ed generation (RAG), reasoning and planning, and 
reflection with edge LLM agents in 6G networks 
with hyper reliable and low-latency communica-
tion. DTs of mobile LLM agents are created as 
digital replicas of physical entities with perceived 
data and can help to perform global grounding 
with internal memory and external knowledge. 
Through continuously updating external observa-
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tion and internal reasoning results, DTs of mobile 
LLM agents can be created for real-time monitor-
ing, analysis, and optimization of the decisions of 
mobile agents while performing complex tasks.

memory And retrIevAl-Augmented generAtIon
In the proposed system, mobile LLM agents main-
tain a short-term memory while global agents main-
tain a long-term memory for grounding agents’ 
responses and actions. In mobile LLM agents, the 
short-term memory is collected through various 
mechanisms, such as in-context learning, maintaining 
internal states, utilizing scene descriptions or envi-
ronment feedback, and generating task plans. Addi-
tionally, short-term memory in mobile LLM agents 
can be converted to long-term memory by leverag-
ing external storage resources in edge servers, such 
as vector databases, that allow rapid querying and 
retrieval of information as needed. Based on the 
long-term memory, edge LLM agents can perform 
RAG [9] to improve consistency in generation by 
using a retrieval model to retrieve relevant informa-
tion from a knowledge base or a set of reference 
documents and then incorporating this retrieved 
information into the generation process. In this way, 
by processing retrieved content using global LLMs, 
RAG can be leveraged in complex and long-horizon 
tasks using specialized knowledge, up-to-date infor-
mation, and customizable definitions for better per-
formance and consistency. Specifically, edge LLM 
agents can access past responses of mobile LLM 
agents to ensure consistent collaboration.

reAsonIng And plAnnIng
Edge LLM agents can tackle complex tasks by 
decomposing them into sequential steps and sub-
tasks to output accurate responses. To perform 
intricate reasoning, CoT [10] involving a step-by-
step reasoning process along a single path can 
improve the reliability and interpretability of LLMs 
decisions. Specifically, edge LLM agents have 
the ability to use CoT to break down complex 
tasks and offer step-by-step instructions for mobile 
LLM agents to complete individual tasks. In addi-
tion, self-consistent CoT (CoT-SC) is proposed 
to improve performance of reasoning tasks by 
aggregating multiple language model outputs and 
selecting the most consistent answer through a 
majority vote. To extend CoT, tree-of-thoughts 
(ToT), a proposed extension of CoT that formu-
lates thought units into a tree structure, allows 
LLMs to explore coherent thought units as inter-
mediate steps, enabling better problem-solving 
and planning capabilities. Moreover, graph-of-
thoughts (GoT) is a static structure that specifies 
the graph decomposition of a given task in the 
CoT paradigm. It prescribes the transformations 
to be applied to language model thoughts, along 
with their order and dependencies. Although 
these step-by-step reasoning and planning mech-
anisms allow for multiple choices at each step 
and mimic human thinking, they might request 
more computing resources from edge servers to 
generate the intermediate results compared with 
outputting the results directly.

verIfIcAtIon And reflectIon
To ensure the correctness of the reasoning pro-
cess before final response generation, LLM agents 
can leverage verification reflection to validate 

the correctness of each step in the CoT process. 
For example, SelfCheck [2] is a zero-shot check-
ing scheme for LLMs that aims to improve ques-
tion-answering accuracy by identifying errors in 
the LLM’s reasoning process. It works as a step-
by-step checker, individually checking each step 
in the LLM’s reasoning process based on the avail-
able context. Using confidence scores as weights, 
SelfCheck allows for improved question-answer-
ing accuracy by focusing on the most accurate 
answer. Therefore, LLM agents can independently 
summarize and infer more abstract, complex, and 
high-level information.

Therefore, there should be a trade-off between 
the performance of grounding modules and the 
computing resources consumed during the ground-
ing processes. For inter-agent grounding, mobile 
and edge LLM agents can leverage their own 
self-correction capabilities to improve the accuracy 
of final decisions leveraging computing resources in 
mobile devices and edge servers. Moreover, inter-
agent grounding requires additional networking 
resources to transmit correction results between 
mobile and edge LLM agents for cross-verification 
for grounding the actions of LLM agents.

tAsk-orIented communIcAtIons for wIreless 
AlIgnment: trustwortHy And generAlIzAbIlIty

In 6G networks with limited bandwidth resourc-
es, task-oriented communications [12] refer to a 
communication approach where the performance 
is measured based on the success level of achiev-
ing a sequence of application-related tasks, rather 
than traditional metrics such as data rate or wire-
less link reliability. The alignment of LLM agents 
in 6G networks offering ubiquitous connectivity 
can be regarded as a type of task-oriented com-
munication where LLM agents can leverage the 
massive resources of mobile devices and edge 
servers to achieve their alignment goals. For 
instance, mobile LLM agents are the data desti-
nations of global general plans from edge LLM 
agents to generate texts, call API functions, and 
perform embodied actions. In addition, feedback 
from humans and mobile LLM agents can be col-
lected as datasets for supervised fine-tuning, rein-
forcement learning from human feedback (RLHF), 
and direct preference optimization (DPO) to 
regularize global LLMs. Beyond data-oriented 
communications, the accomplishment of align-
ment between mobile and edge LLM agents and 
humans in view of semantics is directly linked to 

TABLE 1. Evaluation of mobile LLM agents with di
erent 
perception modules for di
erent modalities.

Model

ImageBind LanguageBind

ViT-Huge 
(632 M)

ViT-Large/14 
(307M)

Image – IN1K 77.7 —

Video – K400 50.0 64.0

Infrared – LLVIP 63.4 87.2

Depth – NYU-D 54.0 65.1

Audio – ESC-50 66.9 89.8

IMU – Ego4D 25.0 —
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task-oriented communication performance and 
strategies that wireless users and mobile and edge 
LLM agents can provide real-time evaluation and 
feedback (Table 1).

text responses
Since LLMs are pre-trained on large-scale datasets 
with biased data, a mismatch or distribution shift 
between the training and test data can cause LLMs 
to generate incorrect information, known as hallu-
cination [13]. However, to ensure that mobile and 
edge LLM agents align with human intentions and 
preferences, the system needs to reduce the likeli-
hood of generating harmful outputs and improve 
usability by better following human instructions. 
For instance, OpenAI (https://openai.com/
blog/introducing-superalignment), the creator of 
ChatGPT, has announced that they are going to 
leverage 20 percent of computing resources to 
fine-tune strong pretrained LLMs for regularizing 
LLMs to faithfully follow instructions or gener-
ate safe outputs. Fortunately, wireless alignment 
enables massive users to contribute their efforts 
and computing resources in alignment activities 
and contribute their efforts toward unlocking 
the full potential of LLMs while following human 
value and intentions, positively impacting various 
domains and enriching human experiences.

tool usAge And generAtIon
By instruction fine-tuning on API datasets, mobile 
LLM agents should become proficient in leveraging 
tools and APIs to accomplish intricate tasks and 
interact with different virtual applications effective-
ly based on general plans from edge LLM agents 
[14]. Therefore, depending on specific environ-
ments and agent types, mobile LLM agents can be 
customized using local instruction fine-tuning data-
sets, which encompass real-world APIs and prac-
tical scenarios, to accomplish both single-tool and 
multi-tool tasks. Furthermore, mobile LLM agents 
can showcase exceptional adaptability when faced 
with unfamiliar APIs and tool-use datasets that are 
outside their usual field, particularly when users are 
inexperienced in the given environments.

embodIed ActIons
To effectively interact with humans and physi-
cal environments, mobile LLM agents can per-
form embodied actions, including movements, 
gestures, or other physical behaviors [2] to inter-
act with the physical world directly under the 
high-level plans from edge LLM agents. Embod-
ied actions of mobile LLM agents are physically 
performed according to their design, mechanical 
features, and technology. For instance, vehicles 
can perform basic mechanical movements, such 
as driving forward and backward, tuning, braking, 
and accelerating. By performing these embod-
ied actions, vehicles can easily adapt to road 
conditions, for example, bumpy roads, slippery 
surfaces, and bad weather by adjusting internal 
temperature and air quality. To navigate through 
unfamiliar environments, robots with mobile LLM 
agents need to gather information, carry out tasks, 
and interact with other agents like humans. By 
performing embodied actions, mobile and edge 
LLM agents can extend their capabilities beyond 
digital boundaries, and interact and manipulate 
their physical surroundings directly.

cAse study of model cAcHIng for 
collAborAtIve mobIle And edge llm Agents

In the split learning system of LLM agents over col-
laborative end-edge-cloud computing, each mobile 
AI agent is composed of a perception module, a 
local reasoning module, and an alignment mod-
ule while each edge LLM agent consists of a glob-
al reasoning and planning module. In addition to 
allocating traditional computing, communication, 
and storage resources for executing LLM agents, 
the LLMs running in these agents are new resourc-
es to be allocated for performing contextual tasks 
of AI agents. Specifically, mobile LLM agents can 
leverage local LLMs for zero-shot environmental 
perception and auction, which is more compre-
hensive. Meanwhile, edge LLM agents with global 
LLMs can perform more intricate step-by-step rea-
soning and planning with global information for 
reliable and interpretative decision-making.

To construct the perception module of mobile 
LLM agents that can collect multimodal informa-
tion from the environment, we leverage the Image-
Bind [8] and the LanguageBind [15] for sensing 
the environment. The ImageBind, based on ViT-
Huge, and the LanguageBind, based on ViT-Large, 
use image embeddings as a central anchor to align 
embeddings from other modalities like text, audio, 
depth, thermal, and IMU data. The LanguageBind 
employs contrastive learning to align and bind dif-
ferent modalities including video, infrared, depth, 
and audio from the environment with the language 
modality. In this study, we evaluate the perception 
module using the IN1K dataset for image data, the 
K400 dataset for video data, the LLVIP dataset for 
infrared data, the NYU-D dataset for depth data, 
the ESC-50 dataset for audio data, and the Ego4D 
dataset for IMU data.

In this use case, we leverage mobile and edge 
LLM agents to generate accident reports (Fig. 2) 
collaboratively for car crashes, where multiple 
mobile agents perceive the environment and report 
their local observations to edge LLM agents. Mean-
while, edge LLM agents generate a general report 
by leveraging global information and high-level 
plans for mobile agents. We validate the perfor-
mance of LLM agents based on the Car Crash 
dataset (https://github.com/Cogito2012/Car-
CrashDataset). The mobile LLM agents on vehicles 
are implemented based on LLaMA. The percep-
tion module is developed based on Video-LLaMA, 
the local grounding module is developed based 
on LLaMA-7B-Chat, and the alignment module 
is developed based on ToolLLM. The edge LLM 
agent on the edge server is developed based on 
GPT4 and we implement a GPT named “Accident 
Report Assistant” as the global AI agent (https://
chat.openai.com/g/g-7sWJT5dSD-accident-report-
assistant). The actuation module is implemented 
with ToolLLaMA, which is a fine-tuned LLaMA-7B 
model using the instruction-solution pairs.

After the perception of environments, each 
mobile LLM agent for perception describes the 
local situation and reports the current situation 
to the edge LLM agent. Based on the collected 
local perception, the edge LLM agent aggregates 
them into a comprehensive picture for the follow-
ing multi-step reasoning and planning processing, 
for example, CoT. Finally, the edge LLM agent 
provides general plans to mobile LLM agents for 
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actuation and lets them interact with users and 
environments with local plans translated by their 
local LLMs, including text responses, APIs, and 
embodied actions. Due to the limited context win-
dow of mobile and edge LLM agents, we consid-
er the inference of perception and actuation to 
be zero-shot and their performance is determined 
by perception fidelity of multimodal information 
and successful ratio during interaction with users 
and environments. Furthermore, edge LLM agents 
can provide suggestions for multiple local agents 
and their performance is affected by their histor-
ical thoughts. As the CoT is a step-by-step infer-
ence process that generates multiple intermediate 
thoughts during the grounding of final decisions, 
the thought that is closer to the final decisions 
should contribute more value to making the fi nal 
decisions. In this regard, we propose a metric 
of age-of-thought (AoT) to evaluate the value of 
thoughts based on their freshness.

With the limited memory of edge servers and 
the massive amount of parameters of LLMs, edge 
servers cannot load all the models into the main 
memory at the same time. To provide AI services 
to satisfy user requirements, edge servers need to 
schedule the global AI models for reasoning and 
planning for the requested services. To minimize 
the cost in terms of edge accuracy loss, model 
switching cost, edge inference cost, edge inference 
latency, and cloud inference cost, eff ective model 
caching algorithms should be designed to manage 
loaded models for edge LLM agents. Especially, the 
cached models not only can be evicted proactive-
ly according to the caching policies, but also can 
be evicted due to the used context exceeding the 
context window. Therefore, we propose an LAoT 
model caching algorithm based on the concept 
of AoT where the model with the least valuable 
thoughts is evicted.

The maximum token consumption for each CoT 
step is set to 200 in the experiment. The context 
window of LLaMA is 4K tokens, the context win-
dow of GPT-3.5-turbo is 16K tokens, and the con-
text window of GPT-4 is 32K tokens. We consider 
an edge server with 64 GPUs with 80 GB memory, 
312 TFLOPS, and 300W max thermal design power. 
We consider 30 types of services and 10 edge LLM 
agents. The experimental results are illustrated in 
Fig. 3. As the number of time slots increases, the 
cost of edge inference of LLM agents decreases 
due to less switching cost and higher model perfor-
mance. The reason is that the popular models are 
loaded into the memory of edge servers. In addi-
tion, during the inference of edge LLM agents, the 
thoughts are accumulated to improve the reasoning 
and planning results and thus the edge accuracy 
loss is lower. Overall, we can observe that the LC 
algorithm can improve the accuracy of edge LLM 
agents while reducing total execution costs com-
pared to the existing baselines, including cloud-only 
inference, the fi rst-in-fi rst-out (FIFO) policy, and the 
least frequently used (LFU) policy.

conclusIons And future dIrectIons
In this article, we have proposed a split learning 
system for LLM agents over collaborative end-
edge-cloud computing in 6G networks for mul-
timodal perception, interactive grounding, and 
alignment. We have introduced the evolution of 
LLM agents and the construction of LLM agents 
over end-edge-cloud computing with collabora-
tive mobile and edge LLM agents. Furthermore, 
we have investigated the communication and net-
working issues in developing mobile edge-em-
powered agents including perception, grounding, 
and alignment. Finally, we have developed a use 
case for the application of mobile and edge LLM 
agents in vehicular networks and propose a model 

FIGURE 2. An example of mobile and edge LLM agents used in the generation of accident reports for car crashes, which demonstrate the step-by-step pro-
cess used by LLM agents to generate a comprehensive car accident report, from the initial data capture at the accident scene to the fi nal report generation.
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caching algorithm to optimize the performance of 
AI agent services while reducing execution costs.

In future research, it is important to explore fur-
ther integration of 6G networks and AI agents. This 
could involve incorporating next-generation multi-
ple access, metasurface, and over-the-air compu-
tation to support LLM agents in dynamic wireless 
environments. Additionally, it is crucial to address 
the model privacy concerns that may arise during 
collaboration between mobile and edge LLM 
agents. This will help prevent any potential infor-
mation breach, especially in cases where malicious 
edge servers may attempt to access users’ private 
information from running models.
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