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ABSTRACT. Purpose: Ultrasound (US) elastography is a technique for non-invasive quantifica-

tion of material properties, such as stiffness, from ultrasound images of deforming

tissue. The material properties are calculated by solving the inverse problem on the

measured displacement field from the ultrasound images. The limitations of tradi-

tional inverse problem techniques in US elastography are either slow and computa-

tionally intensive (iterative techniques) or sensitive to measurement noise and

dependent on full displacement field data (direct techniques). Thus, we develop and

validate a deep learning approach for solving the inverse problem in US elastogra-

phy. This involves recovering the spatial modulus distribution of the elastic modulus

from one component of the US-measured displacement field.

Approach: We present a U-Net-based deep learning neural network to address the

inverse problem in ultrasound elastography. This approach diverges from traditional

methods by focusing on a data-driven model. The neural network is trained using

data generated from a forward finite element model. This simulation incorporates

variations in the displacement fields that correspond to the elastic modulus distribu-

tion, allowing the network to learn without the need for extensive real-world meas-

urement data. The inverse problem of predicting the modulus spatial distribution

from ultrasound-measured displacement fields is addressed using a trained neural

network. The neural network is evaluated with mean squared error (MSE) and mean

absolute percentage error (MAPE) metrics. To extend our model to practical pur-

poses, we conduct phantom experiments and also apply our model to clinical data.

Results: Our simulated results indicate that our deep learning (DL) model effectively

reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation

metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft

inclusion. Similarly, in our phantom studies, the predicted modulus ratio aligns with

the expected range, affirming the model’s accuracy. These findings, alongside eval-

uations using the modulus ratio and contrast-to-noise ratio, confirm our DL model’s

robust generalization capabilities across diverse datasets.

Conclusions: The presented work demonstrated that provided the simulated data

are sufficiently diverse and representative of a wide variability, the algorithm trained

on simulated data would generalize well to both phantom, as well as real-world clini-

cal data.
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1 Introduction

Ultrasound (US) imaging is a widely used clinical modality, known for its ease of use, real-time

capability, portability, low cost, and low risk for patients. It uses acoustic impedance differences

to image the morphological characteristics of soft tissues.1 Ultrasound elastography (USE), or

elasticity imaging, has become a powerful adjunct technique used for non-invasive assessment of

tissue pathology by evaluating the mechanical properties of tissues.2 USE applications include

the detection of breast lesions,3 assessment of liver fibrosis,4,5 cardiovascular imaging,6 and

evaluation of thyroid nodules,7 to name a few. Currently, shear wave–based USE is more com-

monly utilized in clinical settings due to its ability to directly relate shear wave speeds to the

underlying shear modulus. However, due to the additional functionality required for shear wave

generation, improving the accuracy of strain-based compression USE, particularly in real-time

modulus imaging, could enhance its diagnostic applications in more portable, low-cost ultra-

sound systems. In compression USE, the body surface of the tissue of interest is subjected

to a compressing force, often via the US transducer itself, which induces deformation within

the tissue, an example of which is shown in Fig. 1. From ultrasound image sequences of this

deformation, the displacement fields of the imaged tissues are measured. From the displacement

fields, an axial strain field can be calculated and used to infer material properties.8 However, it

has been shown that strain alone is an inaccurate representation of material properties which

motivates the need to recover the actual property distributions using measured displacement

fields.9 This leads to the elastic inverse problem, where estimates of the mechanical properties

of tissue are the desired calculation from the input of the measured displacement field.10

Various strategies have been devised to tackle the complex inverse problem of estimating

tissue mechanical properties from imaging data. These approaches can be broadly categorized

into direct and iterative methods. A detailed review of these techniques can be found in Doyley.11

Briefly, direct methods solve the inverse problem by rearranging the equations of motion and the

constitutive equations, typically linear elastic models, to solve for the elastic modulus directly

from the known displacement fields.12,13 Although direct techniques can be computationally effi-

cient, they are more susceptible to measurement noise11 and may require full-field data (rather

than sparse).13 In contrast, iterative techniques use numerical solutions of the forward elasticity

problem and guesses of the modulus values to predict displacement fields. The modulus guesses

are then iteratively updated, typically guided by gradient or Hessian calculations of an optimi-

zation function until optimal convergence is achieved so that the model-predicted displacement

field closely matches the observed data.14 This iterative nature makes them adaptable to a wide

range of scenarios, even when analytical solutions are unavailable. However, this flexibility

comes at the cost of being computationally expensive, limiting their utility in real-time clinical

applications. The balance of precision and computational efficiency in these methods remains a

key challenge in the advancement of elastography techniques for practical clinical applications.15

In the past few years, significant progress development of deep learning algorithms has

opened up new possibilities for establishing a mapping function between input and output

images. With this advancement, deep learning has also begun to gain prominence in the field

Fig. 1 Schematics of compression elastography. Here, the tissue gets perturbed by an external

force applied by the US transducer.
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of elasticity imaging.16 In a quasi-static elastography paradigm, convolutional neural networks

(CNNs) were first used to replace or improve tissue motion estimation techniques.17–20 CNNs

have also been used successfully to directly measure strain fields from radio frequency (RF) US

images.21 Gao et al.22 trained an RF to strain CNN and incorporated tissue displacement as an

intermediary step within the network. Traditional strain elastography and US B-mode images of

breast and brain masses have also been used to train CNNs to directly classify and diagnose

cancers.23,24 Deep learning classification techniques have also been used with dynamic elastog-

raphy for applications in breast tumors, liver imaging, and thyroid nodules.16 Super-resolution

techniques using generative adversarial networks (GANs) have also been applied to ultrasound

elastography.25 Although these works imply the effectiveness of the deep learning approach for

ultrasound elastography, relying on displacement or strain images, rather than material property

images, is still insufficient. In addition, avoiding image reconstruction, in favor of direct clas-

sification, must be a unique model developed for each specific pathology and cannot be used as a

generalized imaging technique. Although direct classification may delineate healthy from

unhealthy tissue, obfuscating the model’s decision-making process can lead to further

challenges.

Some preliminary studies have begun to develop deep learning techniques for the recon-

struction of tissue material property distributions in USE; however, they have not yet been tested

or implemented experimentally. Deep learning methods incorporating elasticity theory have been

used to recover modulus distributions from observed displacement fields.26,27 Here, a cost func-

tion is created that contains a neural network predicted elasticity distribution and measured strain

fields to minimize the magnitude of the residual forces in the equilibrium equations. Then, train-

ing the neural net to minimize the cost function is synonymous with learning the elastic distri-

bution. This technique is similar to the classical optimization framework for solving the inverse

problem, without the need for calculating the gradients or Hessian’s of the cost function.

However, this technique may still suffer from similar computational limitations, as each meas-

urement requires a new neural network to be trained. Mohammadi et al. also used a classical

optimization framework with regularization, where the regularizer was trained using Wasserstein

GAN to distinguish noisy from clean modulus images.28 This technique worked effectively in

simulated data but was not tested in real data. This technique also suffers from the high computa-

tional costs of iterative techniques.28 Several groups have trained CNNs to quickly and efficiently

map displacement or strain images to modulus images.29–31 These neural networks were trained

using simulated datasets, avoiding the need for clinical training databases, and once trained, they

could be deployed on other data. Gokhale29 compared CNNs trained with simulated datasets

created of various complexities (1, 2, or 3 inclusions) and types (axial displacements versus axial

strains). He found that using the axial displacement fields and adding complexity to the training

set improved the accuracy of the predicted elasticity distributions. Ni and Gao30 and Zhang

et al.31 independently introduced a discriminator network, rather than a mean squared error

(MSE)-type cost function, to create conditional GANs (cGANs) to train their CNN. Although

the cGAN architecture may prove more accurate than using a cost function, their models were

trained on rather simplistic simulations with little complexity in the modulus images or boundary

conditions.30,31 In our implementation, we chose to start with an MSE cost function–based train-

ing and focus on the complexity of the trained dataset and its effect on the precision of the pre-

dicted modulus image.

Our previous work showed promising preliminary findings from phantom experiments,

demonstrating the feasibility of using a model trained on simulated data to accurately predict

the results of the phantom data.32 In the work presented here, we substantially enhance the capa-

bilities of our U-Net-based regression model. We first develop a novel and expansive dataset

inclusive of diverse scenarios of displacement fields achieved through finite element (FE) for-

ward modeling of corresponding modulus distribution. We then proceed to train a deep learning

(DL) model with this dataset, using an MSE loss function. We demonstrate improved perfor-

mance with this framework with respect to its ability to capture wider variability. In particular,

we examine the influence of various region of interest (ROI) windows, which correspond to the

various depths of the observations. We also conduct a noise study for the simulated data.

Furthermore, to illustrate the practical applicability of our model in a clinical setting, we apply

this DL model to phantom experiments featuring eight distinct inclusions that broaden our

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-3 Jan∕Feb 2025 • Vol. 12(1)



experimental scope and show that our model can generalize from simulations to realistic con-

ditions. We validate our phantom results using contrast and contrast-to-noise ratio (CNR) met-

rics. We also analyze the impact of variations in the ROI, demonstrating how our DL model

performs with displacements obtained from ROIs captured at different locations within US

images. Finally, we also incorporate the results from two clinical exams in our analysis, which

allows us to evaluate the potential application of our DL model in a real-world clinical context. In

summary, the contributions of this study are as follows: (1) development of a comprehensive

dataset, (2) DL model enhancement and ROI analysis, and (3) application and analysis of our

model on phantom experiments and clinical case studies.

2 Data

2.1 Simulated Data with Finite Element Modeling

To learn the relationship between displacement fields and their corresponding modulus distri-

butions using a data-driven deep learning approach, we created a comprehensive dataset that

covers all possible variations. To that end, we simulated data by solving two-dimensional

(2D) plane stress forward problems, that is, calculating the displacement field from the modulus

distribution, using the FE method (FEM) with an internal algorithm. The inputs for the FE model

were the spatial distribution of the 2D modulus, the geometry of the tissue sample discretized as

an FE mesh, and the boundary conditions. The FE mesh consists of evenly distributed nodes on a

homogeneous 128 × 128 Cartesian grid connected by quadrilateral elements. The modulus and

displacement fields are discretized at the nodal locations. With these inputs, the FE model outputs

the displacement field in the x and y directions. Detailed simulation methodology has been

described by Tuladhar et al.32

We generate the modulus distribution by adjusting the shape and size of each inclusion,

starting with a circle and varying its radius based on a sum of cosine functions with set ampli-

tudes and phases,33 using the equation

EQ-TARGET;temp:intralink-;e001;114;412rðθÞ ¼ A

�

1þ
X

5

n¼1

Bn cosð2πnθþψÞ

�

; (1)

where Bn is the amplitude that varies between 0.25 ≤ Bn ≤ 0.5, ψ is the phase with 0 ≤ ψ ≤ 2π,

and A is the scaling factor with 0.113L ≤ A ≤ 0.225L. We also randomly varied the locations of

these inclusions within the distribution space. A Gaussian filter with a standard deviation uni-

formly ranging from 0.5 to 4 was applied to the modulus distribution to smooth out sharp edges.

Variations in boundary conditions are described below. At y ¼ 0, ux ¼ uy ¼ 0.0 as the bottom is

fixed. Similarly, at y ¼ L, we have −0.005 ≤ ux ≤ 0.005 to account for the lateral shift of the

ultrasound probe due to human error in otherwise perfect vertical compression. Also, at y ¼ L,

we have uy ¼ −0.01Lþmxþ b, where b and x0 are chosen from a uniform random distribution

within the range −0.005 ≤ b ≤ 0.005 and 0.33L ≤ x0 ≤ 0.66L, respectively, from which we also

calculate m ¼ b∕x0. In addition, the edges were set to be traction-free. A plane stress formu-

lation, assuming a Poisson ratio of 0.49, was used to model the material as a linear elastic iso-

tropic material. In this work, we use only the axial displacement field (Y direction), uy, to train

our deep learning model.

In addition to the variations described in our previous work, we add another set of variations

to the domain of the Cartesian grid by increasing the domain of the FE mesh from 128 × 128 to

200 × 200 and 400 × 400 which mimics the possibility of inclusion being in a broader area of the

human body. The variability in the domain mimics the variability in the size of the body tissue

within which the inclusion is located. We get outputs in the 200 × 200 and 400 × 400 grids, from

which we extract a randomly selected window of 128 × 128 to train our model. The greater

domain size and selection of smaller windows from these domains also provide us with more

set of variability in the boundary condition. In this way, we created a dataset that captures wider

variations of displacement fields. Moreover, these new variations in boundary conditions also

incorporate edge cases, where the inclusion is not well centered in the imaged data.

In this forward modeling, as shown in Fig. 2, we keep several parameters constant. First, the

displacement boundary condition at y ¼ 0 signifies that along the bottom boundary of the
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structure, there are no horizontal and vertical movements allowed. The Poisson ratio was set to

0.49, which characterizes the material’s incompressible behavior under deformation. The back-

ground modulus (E0) is set at a fixed value of 1.0, which represents the nominal stiffness of the

background of the material. These constants serve as essential assumptions in the analysis and

help simplify the modeling of the structure under specific conditions. 2D plane stress was also

assumed.

The variable elements are shown graphically in Fig. 2. We used boundary conditions to

mimic tissue compression from the ultrasound probe. The displacement boundary condition

at y ¼ L has variations in compression (black), shear (yellow), and rotation (green). These re-

present the variations that might be realized by different technicians when applying compression.

The shape and size of inclusion were also varied with the help of enclosed circular areas (red). A

Gaussian filter, with a standard distribution uniformly between 0.5 and 4, was then applied to this

modulus distribution to eliminate sharp edges. We also randomly vary the location of these inclu-

sions within the distribution space. We note here that, as it is not possible to measure the force

applied by ultrasound boundary, the elastic modulus can only be reconstructed relative to the

elastic modulus of the background.

Our training set consists of 30,000 examples, 10,000 each from the 128, 200, and 400

domains. A total of 250,000 examples of 128 × 128-sized image pairs were extracted featuring

both hard inclusions and soft inclusions. Similarly, we created a validation and test dataset con-

taining 25,000 examples each.

We also investigate the impact of noise on the simulated data by adding Gaussian noise to the

displacement fields prior to normalization. Gaussian noise was added with different values of

standard deviations to emulate different noise levels. The amount of noise was quantified by a

strain amplitude, signal-to-noise ratio (SNRe) using strains calculated from our simulated

displacement fields.34,35 The SNRe is given by the equation

EQ-TARGET;temp:intralink-;e002;117;240SNRe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Npixels

PNpixels

i¼1 ϵ2i

q

ffiffiffiffiffiffi

2σ2n
W2

q ; (2)

where ϵ is the strain, σn is the noise level, Npixels is the number of pixels, and W is the pixel

spacing. The denominator of Eq. (2) is an approximation to the standard deviation of the noise in

the strain estimates, given the standard deviation of the displacement noise, when a finite differ-

ence calculation is used to estimate the strain. We used a value ofW ¼ 0.3 mm, corresponding to

our pixel spacing, and σn values between 1 × 10−4 and 1 × 10−3 mm.

2.2 Phantom Data

To ensure the robustness and precision of our technique before applying it to patient data, we

performed phantom experiments. These experiments provide a controlled environment that

closely mimics real tissues, allowing us to test our method in a predictable medical setting.

Fig. 2 FEM simulation framework. (a) FEM input model illustrating the input parameters for the

finite element model, highlighting both the variable and fixed parameters. (b) Domain variation

schema with variable domain size (L) demonstrating the variation of the ROI across different

domains, showcasing the method for adjusting ROI in the simulation.

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-5 Jan∕Feb 2025 • Vol. 12(1)



Here, we used a tissue-mimicking elasticity phantom, Elasticity QA Ultrasound Phantom CIRS

049, to collect data that contain both hard and soft spheres.32 This phantom has a total of eight

inclusions, each with specific values of elastic modulus as shown in Fig. 3. The elastic modulus

of the background material is 25� 6 kPa. Dividing each modulus value by the background gives

us the expected contrast and the expected contrast range, as shown in Table 3. These inclusions

help simulate various tissue stiffness and size.

The experimental procedure we carried out for the phantom data is as follows. We collected

phantom RF data using a Sonix Touch ultrasound scanner equipped with an L14-5/38 linear

probe (Ultrasonix Medical Corporation, Richmond, British Columbia, Canada). We used stan-

dard beamforming with the focal point strategically placed in the inclusion area. With the US

probe, we manually applied a slight axial compression (5% to 10%) during the collection proc-

ess, and the images were acquired at a frame rate of ∼123 Hz. Each RF image frame had dimen-

sions of 2864 × 128 samples, equivalent to a physical area of 55 mm by 38 mm, with 128 RF

signal scan lines sampled at 40 MHz. The imaging pulse was centered at 10 MHz. The phantom

housed eight distinct inclusions, each subjected to five repeated measurements. For each meas-

urement, four specific ROIs were analyzed. The RF data were further processed with the image

registration algorithm to obtain the displacement field. From these displacement fields, ROIs

were selected from various regions as shown in Fig. 4.

2.3 Clinical Data

To illustrate the practicality of our method in clinical settings, we employ two patient datasets

from a study conducted by Rivaz et al.36 This dataset includes RF data collected from patients

Fig. 3 Phantom structure overview. (a) Image of the physical phantom setup. (b) Detailed sche-

matic representation of the phantom, indicating the precise locations, dimensions, and values of

each inclusion within it.

Fig. 4 Phantom ROI selection: B-mode images showing four extracted ROIs from various regions.
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undergoing open surgical RF thermal ablation for liver cancer treatment between February 6,

2008, and July 28, 2009. This study included patients from John Hopkins Medicine, Baltimore,

Maryland, United States. Patients enrolled in the study had diseases that could not be surgically

removed and were selected for RF ablation after review. Patients with cirrhosis or suboptimal

tumor location were not included in the study. US images were acquired after ablation for the two

patients. Using these RF data, we first measure the displacement fields using the image regis-

tration algorithm. Consequently, we apply our neural network model to obtain modulus distri-

bution results. This application of our method to clinical data underscores its relevance and

potential utility in real-world medical scenarios.

3 Methods

3.1 Image Registration for Displacement Estimation

The axial displacement fields for the phantom and clinical RF US images were measured using a

custom image registration algorithm written in MATLAB (MathWorks, Natick, Massachusetts,

United States). The input to the algorithm is two frames, one reference image, and one target

image from the US sequence, and the output is the measured 2D displacement field within the

measurement domain (Ω). The basic framework of the registration algorithm can be found in our

previous work.34,37 The previous algorithm was adapted here to utilize a novel mechanics–based

spatial regularization to strongly penalize measurements inconsistent with plane stress deforma-

tions. The CNN model was exclusively trained with materials that deform under plane stress

conditions. Thus, we chose to develop a mechanics-based regularizer to minimize inconsisten-

cies between our simulated training data and experimental data.

The optimization function used here was

EQ-TARGET;temp:intralink-;e003;117;448π½uðxÞ� ¼
1

2

Z

Ω

ðI1ðxÞ − I2ðxþ uðxÞÞÞ2dΩþ α

Z

Ω

j∇ · AðxÞjdΩ: (3)

The first term in this function is the squared difference among the undeformed, reference

image ðI1ðxÞÞ and a target image ðI2ðxÞÞ, which is artificially warped, non-linearly, by the 2D

displacement vector field ðuðxÞÞ. The second term is a momentum equation-based regularization

and is similar to that used in Babaniyi et al.38 to post-process cross-correlation–based displace-

ment estimates. In Eq. (3), AðxÞ is the constitutive relation for a linear elastic, homogeneous

ðμðxÞ ¼ 1Þ, incompressible material deforming under plane stress and can be written as38

EQ-TARGET;temp:intralink-;e004;117;340AðxÞ ¼ 2ð∇ · uðxÞÞIþ∇uþ∇uT : (4)

∇ · AðxÞ, from Eq. (3), is the static equilibrium equation for such a material (Babaniyi et al.

formulated AðxÞ with respect to the strains, ϵ ¼ 1
2
ð∇uT þ∇uÞ, and ϵðxÞ and uðxÞ were both

discretized using bilinear FE shape functions. An additional compatibility term, also imposed

as a penalty, was used to couple the strain and displacement estimates.)38 In this work, uðxÞ was
discretized using bilinear, quadrilateral FE shape functions which yields a piece-wise constant

approximation (within elements) to the constitutive relation defined in Eq. (4). We further

assumed that for a piece-wise constant AðxÞ, the regularization term can be approximated as

EQ-TARGET;temp:intralink-;e005;117;230α

Z

Ω

j∇ · AðxÞjdΩ ≈ α
X

Ke

k¼1

βkjΔAk · nkj
2; where (5)

EQ-TARGET;temp:intralink-;e006;117;175βk ¼
Lk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jΔAk · nkj
2 þ δ

p : (6)

In these equations, Ke is the number of element edges within the interior of the FE domain,

nk is the unit vector normal to the k’th edge and Lk is the edge length. The tensor ΔAk is the

difference in A among the elements that share the k’th edge, evaluated at the midpoint of the

element edge. The δ parameter is a small constant (δ ¼ 1e − 8) to avoid a singularity in the

gradient of the absolute value function when ΔAk ¼ 0. To simplify the calculation of the gradient

of Eq. (3), βk is calculated with the current guess of the displacement field but held fixed at each

iteration. The regularization parameter value was subjectively chosen, via visual inspection of
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several example axial strain fields, to minimize the noise without over-smoothing the solution. A

value of α ¼ 1e − 4 was used for all the phantom, and α ¼ 1e − 3 was used for the clinical

measurements found in this work. Input frames were chosen for each measurement such as there

was ∼1% total axial strain between the reference and target images. The functional minimization

was performed using a Gauss–Newton method described previously and output a 2D displace-

ment vector field.34,39 The axial component of the measured displacement field (uyðxÞ) was then

interpolated onto a regular grid within the appropriate ROI as input to the deep learning model to

obtain the modulus predictions.

3.2 Deep Learning for Modulus Reconstruction

We employ a deep learning architecture inspired by U-Net40 to model the relationship between

displacement fields and the modulus distribution, as illustrated in Fig. 5. This approach draws

inspiration from the Pix-to-Pix framework41 commonly used for image-to-image translation.

However, unlike the conventional Pix-to-Pix setup that utilizes both generator and discriminator

components, our approach opts for the exclusive use of the generator component and a loss

function instead.

In this architecture, we used seven downsampling layers in the encoder block and seven

upsampling layers in the decoder block. The latent bottleneck block situated between the encoder

and decoder has a dimensionality of 512, thereby capturing and learning 512 distinctive features

from the input displacement field to derive modulus distribution. Furthermore, we employ the

MSE loss function for optimization.32 The MSE loss is computed as follows:

EQ-TARGET;temp:intralink-;e007;114;484MSELoss ¼
1

Npixels

X

Npixels

i¼1

ðEt
i − E

p
i Þ

2; (7)

where Npixels is the number of pixels to calculate the loss function between the predicted E
p
i and

the ground truth Et
i modulus.

For the evaluation of our deep learning model accuracy, we calculated the mean absolute

percentage error (MAPE) metric

EQ-TARGET;temp:intralink-;e008;114;390MAPE ¼
1

Npixels

X

Npixels

i¼1

�

�

�

�

Et
i − E

p
i

Et
i

�

�

�

�

; (8)

which returns a normalized metric of modulus accuracy. Furthermore, we generate mask images

to separate inclusion from the background using Otsu’s thresholding algorithm.42 With the binar-

ized mask images of the predicted B
p
i and the ground truth Bt

i modulus, we calculate the Dice

score using

EQ-TARGET;temp:intralink-;e009;114;299Dice score ¼
X

Npixels

i¼1

2Bt
iB

p
i

Bt
i þB

p
i

: (9)

Using this mask, we also compute the relative modulus error (RME), the normalized error

between the mean ground truth and prediction inclusion values, given by the equation

Fig. 5 Deep learning U-Net model featuring an MSE loss function for optimization.32

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-8 Jan∕Feb 2025 • Vol. 12(1)



EQ-TARGET;temp:intralink-;e010;117;736RME ¼
jEt

in − E
p
inj

Et
in

; (10)

where Et
in and E

p
in are the mean values of ground truth modulus and predicted modulus respec-

tively within the inclusion area.

To simulate the various situations that a technician might encounter when collecting data

from ultrasound imaging, we organized the data by extracting samples from images of various

domains. Our dataset includes a total of 250,000 training images and 25,000 test images.

Specifically, we started with 10,000 samples directly taken from the 128 × 128 image domain.

To augment this, we extracted 80,000 additional samples, each of size 128 × 128 pixels, from a

collection of 10,000 images from the 200 × 200 image domain, effectively generating eight dis-

tinct samples from each image. Furthermore, from another set of 10,000 images of the 400 × 400

image domain, we derived 160,000 samples, also of size 128 × 128 pixels, by creating 16 unique

samples from each original image. For data pre-processing, we normalized the displacement

fields to values between 0 and 1. We trained our model using TensorFlow in our computing

cluster.43 We used a batch size of 128, with 200 epochs, and an Adam optimizer with a learning

rate of 2 × 10−4.

During the training process, we used the validation set to monitor the model’s performance,

assessing it at regular intervals. The model with the lowest MSE score on the validation set at the

159th epoch (Fig. S1 in the Supplementary Material) was saved and used for further evaluation.

Following the completion of our DL model’s training, we proceeded to apply this trained model

for predicting new displacements obtained from the simulated test data, phantom data, and clini-

cal data to evaluate our model’s performance.

4 Results

To validate the performance of our model, we use data from our simulated test set, phantom

experiments, and clinical trials. The results were obtained from the trained DL model as

described in Sec. 3.2. Moreover, for phantom and clinical data, we used an image registration

algorithm to measure the displacement fields of the ultrasound images.

4.1 Simulated Test Data

The test dataset was used to evaluate our DL model in simulations. To estimate the elastic modu-

lus reconstruction error, we calculated the MSE and MAPE between ground truth and the pre-

dicted image. The average MSE obtained was 2.3 × 10−4 arbitrary units (a.u.), and the average

MAPE was 0.33% for all test data. The processing time was on average 0.15 s per example in the

test set. The average error observed for the hard inclusions, the soft inclusions, and the homo-

geneous modulus distributions is summarized in Table 1.

The validation of our DL model on the test dataset helped us assess its effectiveness in

modulus reconstruction. The results, particularly the low MSE, signify that the predicted values

are, on average, very close to the actual values in the dataset. Similarly, the low MAPE further

confirms the model’s accuracy in relative terms, indicating that the predictions are not only close

in absolute terms but also in their deviation from the ground truth as a percentage. Furthermore,

the results for both hard and soft inclusions within the dataset help us to understand the model’s

performance across different material types. Concurrently, the high Dice scores reflect a

Table 1 Summary of the mean and standard deviation values for ground truth and reconstructed

elastic modulus for hard and soft inclusions. Comparison metrics include the mean MAPE, mean

RME, and mean Dice score.

Inclusion No. of images Mean MAPE (%) Mean RME (%) Mean DICE

Hard 11,119 0.32� 0.12 1.38� 2.81 0.97� 0.12

Soft 10,751 0.39� 0.28 2.66� 9.15 0.99� 0.09

Homogeneous 3130 0.15� 0.01 —
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substantial overlap between the predicted and actual locations of the modulus, demonstrating the

model’s ability to identify the correct spatial positioning of the inclusions in the simulated data.

4.1.1 ROI variations

Examples of the predicted modulus can be seen in Fig. 6. An example of a hard inclusion is

shown in Fig. 6(a). For this prediction, the MSE was 13.2 × 10−5, and the MAPE was

0.307%. The average value of the ground truth modulus is 3.65, and the predicted value was

found to be 3.67 with a relative error of 0.401% and a Dice score of 0.998. An example of

a soft inclusion is shown in Fig. 6(b). For this prediction, the MSE was 1.58 × 10−5, and the

MAPE was 0.391%. The ground truth average modulus value was found to be 0.377, and the

predicted value was 0.383 with a relative error of 1.664% and a dice score of 0.998. An example

of a hard inclusion with an edge case is shown in Fig. 6(c). For this prediction, MSE was

6.69 × 10−5, and MAPE was 0.249%. The ground truth average modulus value was found to

be 2.025, and the predicted was 2.005 with a relative error of 0.981% and a Dice score of

0.994. An example of a soft inclusion with an edge case is shown in Fig. 6(d). For this prediction,

the MSE was 7.13 × 10−5, and the MAPE was 0.444%. The ground truth average modulus value

was found to be 0.476, and the predicted value was 0.487 with a relative error of 2.381% and a

Dice score of 0.999.

Our DL model has shown promising performance in handling a broader range of boundary

conditions. These results demonstrate its effectiveness both when the entire object of interest is

completely within the ROI and when only a portion of the object falls within the ROI.

This versatility in handling different scenarios showcases the robustness and flexibility of our

DL model in various real-world applications.

4.1.2 Comparison to prior model

To demonstrate the advantage over our previous model, Fig. 7 shows the predictions of our cur-

rent DL modulus reconstruction with reconstruction results from Tuladhar et al.32 The observed

disparity in the performance between the current and previous DL models is notably attributed to

the latter’s limited capacity to handle variations, particularly evident in challenging edge cases.

This deficiency is demonstrated in Fig. 7, where the current model exhibits more adaptability.

The evidence presented here underscores robustness in model architecture and training, affirming

the efficacy of our deep learning framework in handling complex edge cases.

4.1.3 Noise study

We evaluated the performance of our model by systematically increasing the noise and calcu-

lating the MSE and MAPE metrics of the output modulus images. The results of this study are

Fig. 6 Modulus distribution analysis in simulated data for different inclusions: Depicts the ground

truth and predicted modulus for (a) hard inclusion situated within the ROI and (b) soft inclusion

within the ROI. Modulus distribution for a (c) hard inclusion at the ROI’s boundary and (d) soft

inclusion at the ROI’s boundary. The pixel size for all the images here is 128 by 128.
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summarized in Table 2. An example of a hard inclusion is shown in Fig. 8 using a sample from

the simulated dataset. The MAPEs obtained are 0.43%, 1.48%, 3.93%, 10.92%, and 13.73% for

SNRe values of 5.83, 1.94, 1.17, 0.73, and 0.58, respectively.

Our analysis showed that as the noise level increased, the performance of the model to pre-

dict the modulus distribution degraded, as shown by the increased MAPE metric as the noise

standard deviation increased.

Table 2 Summary of the mean and standard deviation SNRe values for different noise levels on

the test set, along with the mean and standard deviation MAPE values, illustrating the impact of

noise on our model’s performance.

Input: SNRe 2.73� 1.05 0.91� 0.35 0.55� 0.21 0.34� 0.13 0.27� 0.10

Output: MAPE (%) 2.04� 1.20 11.67� 5.85 23.53� 10.49 42.81� 17.45 56.26� 22.16

Fig. 7 Comparison between our previous and currently updated DLmodels for simulated test data.

(a) Qualitatively better prediction when inclusion is completely inside. (b) Prediction getting worse

as inclusion approach edge. (c) Prediction is completely missed at the edges.

Fig. 8 Example modulus image predictions, from a hard inclusion, reconstructed from simulated

displacement images with various noise levels added.

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-11 Jan∕Feb 2025 • Vol. 12(1)



4.2 Phantom Data

After measuring the displacement fields from the phantom, we input them into our DL model to

obtain the modulus distribution. To evaluate our phantom results, we focus on assessing the

contrast in our DL output images as a measure of ground truth with the help of modular ratio.

Modular ratio, in this context, refers to the degree of difference that makes an object distinguish-

able from the background.44 To calculate this ratio we binarize the DL output using Otsu’s thresh-

olding algorithm42 to separate the foreground and the background. Taking the ratio of inclusion’s

modulus to the background, we get the modular ratio by the equation

EQ-TARGET;temp:intralink-;e011;114;438Modular RatioðηÞ ¼
Modulus of inclusion

Modulus of background
: (11)

We also calculate CNR along with contrast to analyze the delineation quality of inclusions in

the reconstructions, given by

EQ-TARGET;temp:intralink-;e012;114;377CNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðŝt − ŝpÞ
2

σ̂2t þ σ̂2p

s

; (12)

where ŝt; ŝp are the mean, and σ̂t; σ̂p are the standard deviation of the inclusion and background,

respectively.

We compute the modular ratio and the CNR for each scenario. The CNR values are pre-

sented in a scatter plot in Fig. 9. Analysis of these CNR values indicates that ROI 2 yields better

overall results. Consequently, the predicted contrast values for ROI 2 are tabulated in Table 3.

Fig. 9 Scatter plot depicting CNR values across different ROIs for various inclusion types. The

dashed lines represent the mean values.

Table 3 Summary of the mean and standard deviation values for reconstructed modulus for vari-

ous types of phantom inclusions for ROI 2.

Inclusion Size Expected η range Expected η Predicted η CNR

Very hard (type IV) Large 2.19 to 4.84 3.2 3.86� 0.04 10.01� 4.50

Small 2.19 to 4.84 3.2 3.05� 0.15 4.30� 3.60

Hard (type III) Large 1.19 to 2.79 1.8 1.61� 0.02 3.65� 31.89

Small 1.19 to 2.79 1.8 1.45� 0.12 2.62� 1.32

Soft (type II) Large 0.32 to 0.95 0.56 0.65� 0.06 2.94� 1.78

Small 0.32 to 0.95 0.56 0.54� 0.01 5.57� 3.21

Very soft (type I) Large 0.16 to 0.58 0.32 0.46� 0.03 3.94� 2.22

Small 0.16 to 0.58 0.32 0.41� 0.01 8.24� 2.78
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From this table, we can see that the average predicted contrast is well within the range of

expected contrast. By conducting these phantom experiments, we establish a foundation upon

which we can confidently proceed to apply and test our method on actual patient data.

4.2.1 ROI variations

Figure 10 illustrates the measured axial displacement field, the corresponding strain, and the

predicted modulus for the type IV hard sphere. It presents the DL predictions for ROIs 1, 2,

and 3, demonstrating the depth-wise variation. The predicted contrast values are 3.91, 3.87, and

3.88, respectively, and the CNR values are 6.66, 11.38, and 11.05. Similarly, Fig. 11 shows

predictions for type I soft spheres. It presents the DL predictions for ROIs 1, 2, and 3, with

the predicted contrast values 0.25, 0.40, and 0.39, respectively, and the CNR values are

4.78, 8.60, and 8.32.

The figures indicate that with ROIs that include the ultrasound transducer point of contact

within the displacement fields, more noise or artifacts are affecting the predictions. With other

ROIs such noise is comparatively reduced, leading to clearer predictions. The time taken for the

DL model to reconstruct one displacement field was 0.15 s on average.

Fig. 10 Very hard inclusion from phantom with variability and ROIs showing reconstruction when

inclusion lies (a) at the edge of the ROI, (b) near the edge of the ROI, and (c) completely inside the

ROI. Every subfigure includes input displacement fields fed into the DL model, followed by the

strain (1% average strain) and the modulus reconstruction.
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In this study, we conducted five trials to evaluate the predictive performance and reliability

of our deep learning model, as reflected in Fig. 12. The figure illustrates the model’s response to a

type II soft inclusion, with an anticipated contrast of 0.56, and an observed contrast range from

0.32 to 0.95. The obtained contrasts for trials 1 through 5 were 0.63, 0.62, 0.57, 0.61, and 0.65,

demonstrating the model’s consistent predictive capability. Correspondingly, the CNR recorded

were 1.52, 1.56, 1.89, 1.67, and 1.77, further evidencing the model’s robustness and reliability in

varied measurement scenarios. This approach underscores our model’s ability to maintain pre-

diction accuracy and stability across multiple evaluations.

Fig. 11 Very soft inclusion from phantom with variability and ROIs showing reconstruction when

inclusion lies (a) completely inside the ROI, (b) near the edge of the ROI, and (c) at the edge of the

ROI. Every subfigure includes input displacement fields fed into the DL model, followed by the

strain (1% average strain) and the modulus reconstruction.

Fig. 12 Predictions of repeated measurements for type II soft inclusion phantom data from five

trials.
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4.3 Clinical Data

The clinical RF data were sourced from a publicly available dataset.36 We applied our model to

two patients from this dataset. The displacement fields were obtained using the image registration

algorithm as described above. Upon applying our deep learning model to this, we observed

notable results that merit discussion.

We showcase two patient’s results with our model. Figures 13 and 14 demonstrate the pre-

diction for the two patients respectively. The shadow observed in B-modes of Fig. 15 is caused by

the thermal lesion. Here, it is important to note that the size and position of the lesions cannot be

accurately determined from B-mode images alone,36 but our algorithm is capable of identifying

them based on their stiffness relative to that of the background tissue.

For patient 1, the modulus ratios were 3.60, 3.25, and 3.51 for the modulus images in

Figs. 13(a)–13(c), with corresponding CNR values of 4.85, 4.57, and 5.05. For patient 2, the

modulus ratios were 4.49, 3.33, and 3.15 for Figs. 14(a)–14(c), with CNR values of 7.14,

4.34, and 2.25, respectively. The output from our model also exhibited shapes that closely

resembled those seen in their CT scans36 which shows that our model can effectively capture

the complex anatomical structures present in clinical scenarios.

5 Discussion

In this study, we generated a comprehensive simulated dataset designed to train a DL model and

improve its ability to accommodate the experimental variability of the input data. This was

achieved by simulating multiple domain sizes with inclusions at varying locations, from which

Fig. 13 Predictions for patient 1 for (a) first, (b) second, and (c) third ROIs.
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Fig. 15 B-mode of patients 1 and 2.

Fig. 14 Predictions for patient 2 for (a) first, (b) second, and (c) third ROIs.
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ROIs were extracted for model training, and introducing diverse boundary conditions, within

those expected experimentally. The choice to split the ROIs was motivated by the need to manage

computational resources and optimize the performance of our deep learning model. As the deep

learning model requires, before even training, a specific choice of image dimension and with

USE, the size, and aspect ratio of the pixel have a direct effect on the input and output data

due to the direct connection to the mechanics, it made sense to begin with a ROI of fixed size

(in mm) that can be moved within an image from the US to reconstruct our modulus images.

Enlargement of the domain space allowed the incorporation of variability in boundary conditions

and ROI. A notable benefit of this approach is evident when the inclusions are located at domain

edges; the current model shows superior performance in these scenarios compared with the pre-

vious DL model, as detailed in Section 4.1.2. This is particularly significant for accurate modulus

reconstruction at the edges within the simulated data. We also conducted a noise study by adding

increasing amounts of Gaussian noise to our simulated test data. However, in real-world scenar-

ios, noise can be more complex and varied than Gaussian noise. Ultrasound imaging systems also

introduce system-dependent artifacts that may not be fully captured by a Gaussian noise model.

To address this, we conducted experiments using data acquired using a real ultrasound system

from a tissue-mimicking phantom. These experiments allowed us to evaluate the model under

realistic noise conditions, providing insight into its performance when subjected to system-

specific noise and artifacts. Despite the increased complexity of noise, such as those emulated

by the phantom experiments, the algorithm maintains reasonable performance and reliability.

Our phantom study corroborates the accuracy of the deep-learning model, initially trained on

simulated data, in handling experimental data. As shown in Table 3, the model’s learned features

from simulations prove transferable, enabling effective adaptation to phantom data. However,

some residual noise was observed in modulus distribution predictions, possibly stemming from

noisy input images or displacement estimations output by the registration algorithm. From ROI

analysis as shown in Figs. 10 and 11, we can see that our DL model can handle edge cases.

Further ROI analysis reveals that ROI 2 delivers optimal performance, indicating the model’s

robustness, particularly in reconstructing inclusions further away from the edges. Interestingly,

ROI 1 consistently yields noisier predictions, which we hypothesize due to the proximity of the

ultrasound transducer contact point to the ROI. This may be due to the overall low strain that

exists at the surface of the transducer due to the low slip contact surface between the skin and the

rigid transducer. Furthermore, we ranked the CNR across 40 samples for four different ROIs. The

ranks are assigned in descending order of CNR quality, where rank 4 corresponds to the highest

CNR value, indicating the best performance, whereas rank 1 represents the lowest CNR value,

denoting the poorest performance. Based on the bar graph showing the average CNR ranks as

shown in Fig. 16, we see that ROI 2 has the highest average rank, as it ranks fourth most of

the time.

Fig. 16 Phantom ROI ranking. (a) ROI ranking frequency that provides a detailed enumeration of

the rank for every ROI. Here, the ranks are assigned in descending order of CNR quality. Rank 4

corresponds to the highest CNR value, indicating the best performance, whereas rank 1 repre-

sents the lowest CNR value, denoting the poorest performance. (b) Average ranks of each

ROI across all the samples.
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We also present the application of our deep learning model to clinical data, a critical step

toward translating our research into practical clinical utility. We can see more noise in the clinical

data than in the simulated and phantom data. In general, the application of our deep learning

model to clinical data has yielded promising results, demonstrating its potential for use in medi-

cal diagnostics. The similarities in shape with CT scans and the comparable contrast values

underline the ability of the model to replicate and potentially augment traditional imaging tech-

niques. These findings pave the way for further research and development in this field, with the

ultimate goal of enhancing diagnostic precision and patient care in clinical settings. In practice,

B-mode imaging does not always clearly show the lesions. There may be cases where the lesions

appear faint, partially visible, or difficult to delineate entirely using the B-mode alone. For exam-

ple, as shown in our clinical results, lesions are difficult to identify solely from images in

B-mode. Using our method, we can detect regions of higher stiffness, supporting the utility

of our approach in real-world clinical scenarios, especially even when the lesions are only par-

tially visible or difficult to delineate using traditional B-mode images.

We recognize that the choice to use a regularized image registration technique, as opposed to

a more computationally efficient displacement estimation technique, may seem counter to our

long-term goal of real-time deployment. However, we hypothesize that using a more efficient

algorithm would come with a higher degree of noise in the measurements and that this noise

would likely need to be modeled in our training dataset. Thus, the CNN model would likely

need to be trained in modeling specific US systems or system settings and thus to be less robust

to deployment on different machines. We believe that this work is the first step toward under-

standing that trade-off.

For future work, our aim is to apply our model to training with both components of the

displacement field. We also plan to test model accuracy with different displacement estimation

techniques and compare the deep learning approach with traditional reconstruction techniques. In

addition, we aim to improve our simulation to yield more realistic data for training that mimics

the experimental US data better and perform noise studies for sensitivity.

One of the limitations of this work is that the training, validation, and test data are modeled

as 2D plane strain. In addition, the displacement data are generated directly, rather than mea-

sured, and are generally noise-free, apparent from discretization error. In future models, we

intend to investigate the feasibility of using 2D slices of geometrically three-dimensional models

as our data and use the displacement data to simulate captured ultrasound images data, with

added noise. Thus, the displacement fields used to train our NN can be measured with the same

methods as our phantom and clinical data presented here. However, the computational complex-

ity and cost of generating such data are much greater and thus left to future work. Another limi-

tation is that the ROI is constrained to a square dimension here. In future work, we also aim to

explore methods for processing larger ROIs while maintaining computational efficiency, such as

utilizing patch-based approaches or scaling the model to handle larger images without compro-

mising performance. We also plan on performing a broader hyperparameter tuning for our DL

model. Finally, we hope to obtain a larger clinical dataset and perform a more rigorous feasibility

study in vivo.

6 Conclusion and Future Work

We conducted a detailed study of how we can implement a deep learning framework to recon-

struct the elastic modulus distribution from ultrasound-measured displacement fields. Our work

includes a data simulation to train the DL model, along with controlled phantom studies and

preliminary clinical results. With this, we demonstrate the model’s capacity to generalize across

variations and learn the relationship between displacement fields and modulus distribution. The

model is also able to capture the variations in ROIs across the phantom data under different

experimental conditions. This highlights that provided the simulated data is sufficiently diverse

and representative of a wide variability, an algorithm trained on only simulated data would gen-

eralize well to real-world experimentally collected data. Finally, the clinical results offer initial

insights into the applicability of our approach on data collected in a clinical setting. However, a

larger patient dataset is necessary to draw definitive conclusions about the clinical efficacy of our

approach, which will be the subject of our future work.

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-18 Jan∕Feb 2025 • Vol. 12(1)



Disclosures

No conflicts of interest, financial, or otherwise.

Code and Data Availability
The data and the code used can be found on the GitHub repository here.

Acknowledgments

C. A. Linte and R. A. Simon have been supported by the National Institute of General Medical 
Sciences of the National Institutes of Health (Award No. R35GM128877), the Office of Advanced 
Cyber-infrastructure of the National Science Foundation (Award No. 1808530), and the Chemical, 
Bioengineering, Environmental and Transport Systems (CBET) of the National Science 
Foundation (Award No. 2245152).

References

1. J.-L. Gennisson et al., “Ultrasound elastography: principles and techniques,” Diagn. Interv. Imaging 94(5),

487–495 (2013).

2. R. M. Sigrist et al., “Ultrasound elastography: review of techniques and clinical applications,” Theranostics

7(5), 1303 (2017).

3. A. Goddi, M. Bonardi, and S. Alessi, “Breast elastography: a literature review,” J. Ultrasound 15(3),

192–198 (2012).

4. N. Frulio and H. Trillaud, “Ultrasound elastography in liver,” Diagn. Interv. Imaging 94(5), 515–534 (2013).

5. R. G. Barr et al., “Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus

conference statement,” Radiology 276(3), 845–861 (2015).

6. E. Konofagou, “Cardiovascular elastography,” in Tissue Elasticity Imaging, pp. 67–107, Elsevier (2020).

7. Y. Hong et al., “Real-time ultrasound elastography in the differential diagnosis of benign and malignant

thyroid nodules,” J. Ultrasound Med. 28(7), 861–867 (2009).

8. J. Ophir et al., “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med.

Ultrason. 29, 155–171 (2002).

9. J. Luo, K. Ying, and J. Bai, “Elasticity reconstruction for ultrasound elastography using a radial compression:

an inverse approach,” Ultrasonics 44, e195–e198 (2006).

10. M. Bonnet and A. Constantinescu, “Inverse problems in elasticity,” Inverse Probl. 21(2), R1 (2005).

11. M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys.

Med. Biol. 57(3), R35 (2012).

12. K. Raghavan and A. Yagle, “Forward and inverse problems in elasticity imaging of soft tissues,” IEEE Trans.

Nucl. Sci. 41(4), 1639–1648 (1994).

13. P. Barbone et al., “Adjoint-weighted variational formulation for the direct solution of inverse problems of

general linear elasticity with full interior data,” Int. J. Numer. Methods Eng. 81, 1713–1736 (2010).

14. N. Mohammadi, M. M. Doyley, and M. Cetin, “A statistical framework for model-based inverse problems in

ultrasound elastography,” in 54th Asilomar Conf. Signals, Systems, and Computers, pp. 1395–1399 (2020).

15. M. Honarvar, R. Rohling, and S. E. Salcudean, “A comparison of direct and iterative finite element inversion

techniques in dynamic elastography,” Phys. Med. Biol. 61(8), 3026 (2016).

16. H. Li et al., “Deep learning in ultrasound elastography imaging: a review,”Med. Phys. 49, 5993–6018 (2022).

17. M. G. Kibria and H. Rivaz, “Gluenet: ultrasound elastography using convolutional neural network,” Lect.

Notes Comput. Sci. 11042, 21–28 (2018).

18. B. Peng, Y. Xian, and J. Jiang, “A convolution neural network-based speckle tracking method for ultrasound

elastography,” in IEEE Int. Ultrason. Symp. (IUS), IEEE, pp. 206–212 (2018).

19. A. K. Tehrani and H. Rivaz, “Displacement estimation in ultrasound elastography using pyramidal convolu-

tional neural network,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2629–2639 (2020).

20. A. K. Tehrani and H. Rivaz, “MPWC-Net++: evolution of optical flow pyramidal convolutional neural

network for ultrasound elastography,” Proc. SPIE 11602, 14–23 (2021).

21. S. Wu et al., “Direct reconstruction of ultrasound elastography using an end-to-end deep neural network,”

Lect. Notes Comput. Sci. 11070, 374–382 (2018).

22. Z. Gao et al., “Learning the implicit strain reconstruction in ultrasound elastography using privileged

information,” Med. Image Anal. 58, 101534 (2019).

23. D. Patel et al., “Circumventing the solution of inverse problems in mechanics through deep learning:

application to elasticity imaging,” Comput. Methods Appl. Mech. Eng. 353, 448–466 (2019).

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-19 Jan∕Feb 2025 • Vol. 12(1)



24. S. Cepeda et al., “Comparison of intraoperative ultrasound b-mode and strain elastography for the differ-

entiation of glioblastomas from solitary brain metastases: an automated deep learning approach for image

analysis,” Front. Oncol. 10, 590756 (2021).

25. L. He et al., “An application of super-resolution generative adversary networks for quasi-static ultrasound

strain elastography: a feasibility study,” IEEE Access 8, 65769–65779 (2020).

26. C.-T. Chen and G. X. Gu, “Learning hidden elasticity with deep neural networks,” Proc. Natl. Acad. Sci. U.

S. A. 118(31), e2102721118 (2021).

27. J. E. Warner et al., “Inverse estimation of elastic modulus using physics-informed generative adversarial

networks,” arXiv:2006.05791 (2020).

28. N. Mohammadi, M. M. Doyley, and M. Cetin, “Regularization by adversarial learning for ultrasound

elasticity imaging,” in 29th Eur. Signal Process. Conf. (EUSIPCO), IEEE, pp. 611–615 (2021).

29. N. H. Gokhale, “Solving an elastic inverse problem using convolutional neural networks,” arXiv:2109.07859

(2021).

30. B. Ni and H. Gao, “A deep learning approach to the inverse problem of modulus identification in elasticity,”

MRS Bull. 46, 19–25 (2020).

31. X. Zhang et al., “Displacement-based reconstruction of elasticity distribution with deep neural network,” in

IEEE Int. Ultrason. Symp. (IUS), IEEE, pp. 1–5 (2022).

32. U. R. Tuladhar et al., “A deep learning framework to estimate elastic modulus from ultrasound measured

displacement fields,” Proc. SPIE 12470, 124–130 (2023).

33. “C++ create random shaped ‘blob’ objects,” StackOverflow, 2019, https://gamedev.stackexchange.com/

questions/62613/need-ideas-for-an-algorithm-to-draw-irregular-blotchy-shapes (accessed 15 September

2015).

34. M. S. Richards and M. M. Doyley, “Non-rigid image registration-based strain estimator for intravascular

ultrasound elastography,” Ultrasound Med. Biol. 39(3), 515–533 (2013).

35. M. S. Richards, Quantitative Three-Dimensional Elasticity Imaging, PhD thesis, Boston University (2007).

36. H. Rivaz et al., “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945

(2010).

37. R. L. Chimenti et al., “Ultrasound strain mapping of Achilles tendon compressive strain patterns during

dorsiflexion,” J. Biomech. 49(1), 39–44 (2016).

38. O. A. Babaniyi, A. A. Oberai, and P. E. Barbone, “Recovering vector displacement estimates in quasistatic

elastography using sparse relaxation of the momentum equation,” Inverse Probl. Sci. Eng. 25(3), 326–362

(2017).

39. M. S. Richards, P. E. Barbone, and A. A. Oberai, “Quantitative three-dimensional elasticity imaging from

quasi-static deformation: a phantom study,” Phys. Med. Biol. 54(3), 757 (2009).

40. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image

segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

41. P. Isola et al., “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), pp. 1125–1134 (2017).

42. S. L. Bangare et al., “Reviewing Otsu’s method for image thresholding,” Int. J. Appl. Eng. Res. 10(9), 21777–

21783 (2015).

43. R. I. of Technology, “Research computing services,” (2019).

44. N. Anwar and F. Ahmed, “Structural cross-sections,” (2017).

Utsav Ratna Tuladhar is an electrical and computer engineering PhD student at Rochester

Institute of Technology, New York, United States. He completed his bachelor’s degree in com-

puter engineering from Tribhuvan University, Kathmandu, Nepal. His research interests include

deep learning for medical applications, ultrasound elasticity imaging, and solving inverse

problems.

Richard A. Simon, PhD, is a research scientist in the Department of Biomedical Engineering at

Rochester Institute of Technology (Rochester, New York, United States). He holds a BSChem

degree, with minors in mathematics and physics, and a doctorate in inorganic chemistry from

Massachusetts Institute of Technology (Boston, Massachusetts, United States). Formerly, he was

a senior research scientist at Carestream Health (Rochester, New York, United States) and

Eastman Kodak (Rochester, New York, United States) and focused on various imaging-related

projects.

Cristian A. Linte, PhD, is a professor in the Department of Biomedical Engineering and Chester

F. Carlson Center for Imaging Science at Rochester Institute of Technology (Rochester, New

York, United States). He holds a BAS degree in mechanical engineering, an MSE in biomedical

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-20 Jan∕Feb 2025 • Vol. 12(1)



engineering, and a doctorate in biomedical engineering. His research focuses on the development

of biomedical image computing, modeling, and visualization techniques for computer-integrated

diagnosis and therapy.

Michael S. Richards, PhD, is an assistant professor of biomedical engineering at the Rochester

Institute of Technology and an adjunct assistant professor in the Department of Surgery at the

University of Rochester Medical Center. He holds a BS degree and a doctorate in biomedical

engineering. His research focuses on studying disease-related changes to the biomechanics of

soft tissues using ultrasound and other clinical imaging modalities.

Tuladhar et al.: Ultrasound elastic modulus reconstruction using a deep learning model. . .

Journal of Medical Imaging 017001-21 Jan∕Feb 2025 • Vol. 12(1)


