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Abstract—There have been different reports of developing
Brain-Computer Interface (BCI) platforms to investigate the
noninvasive electroencephalography (EEG) signals associated
with plan-to-grasp tasks in humans. However, these reports
were unable to clearly show evidence of emerging neural ac-
tivity from the planning (observation) phase - dominated by
the vision cortices - to grasp execution - dominated by the
motor cortices. In this study, we developed a novel vision-
based-grasping BCI platform that distinguishes different grip
types (power and precision) through the phases of plan-to-grasp
tasks using EEG signals. Using our platform and extracting
features from Filter Bank Common Spatial Patterns (FBCSP), we
show that frequency-band specific EEG contains discriminative
spatial patterns present in both the observation and movement
phases. Support Vector Machine (SVM) classification (power vs
precision) yielded high accuracy percentages of 74% and 68%
for the observation and movement phases in the alpha band,
respectively.

Index Terms—brain-computer interface (BCI), reach-to-grasp
tasks, vision control, object isolation, filter bank common spatial
pattern, grip type classification, alpha Frequency band, support
vector machine.
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I. INTRODUCTION

The ability to independently navigate and interact with
the surrounding environment through reaching and grasping
is fundamental to an individual’s autonomy and quality of
life. Neural correlates associated with natural reach-and-grasp
actions can be decoded and identified through invasive brain
recording methods [1], offering insights into the emergence of
neural activity before and during movement onset.

While current invasive-based BCI systems have been ex-
plored for assisting individuals with grasp disabilities, existing
control methods often lack a natural and intuitive feeling
of control [2], [3]. Common laboratory experimental set-ups
attempt to employ a naturalistic reach-to-grasp set-up by pre-
senting multiple objects to the participant simultaneously [4],
[5]. In these setups, the lack of object isolation may introduce
bias to the data, creating difficulties in understanding the
relationship between the visual and motor cortices associated
with individual objects and their specific grip types.

To eliminate the possibility of data bias, we employed a
novel EEG vision-based-grasping platform that distinguishes
the neural activity between the observation (planning) phase
and movement (grasp execution) phase through vision control
and object isolation. Gaining control over the timing at which
the participants observe the object presented before them
enables us to analyze the emergence of neural activity across

Authorized licensed use limited to: University of Rhode Island. Downloaded on July 28,2025 at 18:33:27 UTC from IEEE Xplore. Restrictions apply.



different phases of plan-to-grasp tasks. Meanwhile, isolating
the object presented before them allows for the exploration
of distinct neural patterns associated with the object and its
specific grip type (power vs precision).

In this study, we aim to achieve two primary goals. Firstly,
to obtain results that are consistent with the frequency-band-
specific neural spatial patterns reported in invasive studies to
validate our platform, particularly within the alpha band due to
its strong association with motor planning [6]-[8]. Secondly, to
introduce the possibility of additional frequency-band-specific
features that may be involved with motor planning during the
observation phase without explicit motor imagery instructions
[9], [10]. By implementing FBCSP, we examine the frequency-
specific-spatial patterns during plan-to-grasp tasks and perform
feature extraction to classify between grasp types using SVM
during the observation and movement phases within specific
frequency ranges.

Investigating the emerging neural activity from the planning
(observation) phase - dominated by the vision cortices - to
grasp execution - dominated by the motor cortices within spe-
cific frequency bands may offer new insight for a naturalistic
control strategy for noninvasive BCI systems and improve the
quality of life for those with impaired hand dexterity.

II. MATERIALS AND METHODS
A. Data Collection Platform

In this study, two distinct objects were selected to execute
two specific reach-to-grasp actions most used in daily life: the
precision and power grasp types. The objects were (i) a pen
for precision grasp execution and (ii) a water bottle for power
grasp execution (Figure 2b). The object was presented to the
participant on a sectioned, motorized turntable while wearing
a pair of developed “smart glasses” capable of alternating
states of transparency (Figure 1a). To eliminate the possibility
of data bias, no object was presented between object A and
object B, the selection of the objects was randomized, and
the smart glasses transitioned from a transparent to an opaque
state during the rotation of the turntable.

Hardware

The presentation of object A, object B, and no object
required a novel, PC-controlled, motorized turntable divided
into 3 sections. Each object was individually placed in
one of the three sections (Figure 1b). Two Arduino Uno
microcontrollers were programmed to control the motor driver
(TB6600 4A 9-42V Stepper motor driver), the motor (Bipolar
1.7A Nema 17 Stepper Motor), the audio cue, and the smart
glasses. The smart glasses enabled/disabled object visibility
due to the transparent/opaque states of PDLC electronic smart
film.

Software

The developed software ensured synchrony between EEG
data acquisition and the hardware components for accurate
event logging. PySerial was utilized to send numerical com-
mands from Python to Arduino IDE to control audio cue

timings and state changes of the motorized turntable/smart
glasses. A simple, real-time graphical user interface (tkinter)
was developed to run in synchrony with the platform at the
time of data collection for the researcher (Figure 1c).

(a) (b)

Fig. 1. Experimental setup and EEG electrode placement. (a) Participant
wearing an EEG headset and “smart glasses” seated facing the motorized
turntable with an object to perform a reach-to-grasp task. (b) 3D-designed
motorized turntable with object A, object B, and no object sections. (c)
Synchronized graphical user interface during data collection. (d) Standard
EEG 10-20 system electrode placement with highlighted electrodes (red) used
for analysis.

B. Data Collection

Farticipants

Data was collected from five human subjects (3 female, 2
male) aged between 20 and 35. Each participant was right-
hand dominant with no known motor deficits or neurological
impairments. Each participant attended a single data collection
session (approximately 75 minutes).

Data Acquisition

EEG signals were acquired using the 8-channel Unicorn
Hybrid Black headset with wet electrode setup (manufactured
by g.tec) at a sampling rate of 250 Hz. Electrodes were
placed in the following positions according to the international
10/20 system: Fz, C3, Cz, C4, Pz, PO7, Oz, PO8 (Figure
1d). Reference and ground electrodes were placed on the left
and right mastoid respectively. Quality testing of EEG signals
was performed before each data recording session within the
Unicorn Suite Hybrid Black software environment (g.tec).

Protocol Design

In our study, the participant was instructed to perform
a reach-to-grasp task with enabled vision capabilities and
motor movement execution. The participant was positioned
30 cm from the center of the object with their palms facing
downwards. The structure of the data collection protocol is
centered on an audio-cue-based paradigm, where each data
recording session included 5 blocks, each containing 10 trials,
resulting in a total of 50 trials for each object presented (Figure
2).

Before the audio cue, the participant was instructed to
observe the object for two seconds. Following the audio cue,
the participant performed a naturalistic reach-to-grasp task
toward the object presented by the motorized turntable for
four seconds. If no object was presented, the participant was
instructed to execute no movement.
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Fig. 2. Structure of data collection session and singular EEG trials. (a) One
collection session for each subject involves multiple blocks, rest periods, and
the sequence of events within a single trial including the periods of turntable
rotation, object observation, reach-to-grasp execution, and auditory cues. (b)
Presented objects on the motorized turntable during the experiment: object A
(a water bottle), object B (a pen), and the 'no object’ condition.

C. Data Processing and Feature Extraction

The acquired EEG data was initially filtered with a 60 Hz
notch filter to suppress power line noise. To eliminate low-
frequency drift, a zero-phase, 4th-order Butterworth bandpass
filter with cutoff frequencies of 0.5 and 40 Hz was applied.
To implement the Filter Bank Common Spatial Pattern al-
gorithm, subject-specific and object-specific single trial EEG
were decomposed into the following filter banks: (delta: O-
4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, gamma:
30-40Hz), using zero-phase 4th-order Butterworth bandpass
filters.

Two windows of interest were extracted for binary classifi-
cation: two seconds before the audio cue (observation phase)
and two seconds after the audio cue (movement phase). The
CSP projection matrices were calculated for each object across
different filter banks using the epochs of the filtered data,
which were then applied to spatially filter the raw, single-trial
EEG data. The feature set included the normalized log vari-
ances of the most and least discriminative spatial components
that capture the maximum and minimum variances across trials
for each class. In each filtered trial, four CSP features were
derived and utilized for binary classification.

D. Classification

The FBCSP features were utilized for binary classification
to distinguish between the power grasp and precision grasp
during the observation and movement phase within differ-
ent frequency bands. The Support Vector Machine (SVM)
algorithm was used to perform binary classification. Table
I displays subject-based binary classification results (percent
accuracy) within each frequency band during both the obser-
vation and movement phases of the experiment.

III. RESULTS
A. Common Spatial Pattern

The extracted alpha band CSPs during both the observation
and movement phases are shown in Figure 3. During the
observation phase, CSP #1 displays an increase of brain
activation within the temporal and occipital regions of the
brain (indicated by red) while being surrounded by lower alpha
activity (indicated by blue) in the frontal regions of the brain.
CSP #2 features lateralized activity as lower and higher alpha
band activity is localized over the left and right hemisphere
regions respectively. Both CSP #3 and CSP #4 display reduced
alpha activity in the occipital region, while CSP #1 and CSP
#2 display increased alpha activity in the same location.

The first common spatial pattern during the movement phase
(CSP #1) exhibits localized alpha activity in the central region
of the brain. CSP #3 and CSP #4 display an increase of
alpha activity in the occipital region, however, opposite alpha
activities occur across the motor cortex region between the
two patterns.

Common Spatial Patterns in Alpha Band (Observation Phase)

csp#l CsP#2 CsP#3 CSP#4

AN AN
~> ‘ 0.25
t0.00
' ‘ —0.25
a 0.50

Common Spatial Patterns in Alpha Band (Movement Phase)

CsP#2 CSP#3 CSP#4
0.50

@ | "jf:s

Fig. 3. Topographical plots of extracted common spatial patterns (CSPs) in
the alpha band during different task phases for subject 3. The upper panel
illustrates CSPs #1 to #4 during the observation phase. The lower panel
displays the corresponding CSPs during the movement phase. Each map is
scaled from -0.50 to +0.50, reflecting changes in amplitude within the alpha
band

B. Classification

The classification results in Table I display that analysis
of the mean percent accuracy scores for binary classification
between power grasp and precision grasp during both the
observation and movement phases yields insightful trends,
particularly in the alpha, delta, and gamma frequency bands.
Across all subjects, the features within the alpha band con-
tributed to the highest mean accuracy 74% in the observation
phase and 67% in the movement phase. Furthermore, mean
percent accuracy scores in the delta and gamma bands increase
during the observation phase compared to the movement
phase, with delta band accuracy rising from 55% to 68% and
gamma from 63% to 65%.

The box-and-whisker plots in Figure 4 depict the distribu-
tion of SVM classification accuracy across different EEG filter
bank frequency bands during the observation and movement
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TABLE I
SUBJECT-BASED GRIP TYPE CLASSIFICATION DURING OBSERVATION AND MOVEMENT PHASE

Observation Phase (%)

Movement Phase (%)

Subjects  Delta  Theta  Alpha Beta ~Gamma Delta Theta Alpha Beta Gamma
sl 45 55 80 50 60 45 50 65 45 70
s2 75 60 70 60 50 65 40 60 50 45
s3 80 65 70 75 65 60 65 80 80 75
s4 80 60 85 60 70 65 75 75 65 60
s5 60 65 65 75 55 40 65 55 55 65
Mean 68 61 74 64 65 55 59 67 59 63

phases. Upon observation, there is an increase in overall
percent accuracy across all subjects during the observation
phase (excluding the gamma band), contributing to the dis-
tinction in brain activity between the two phases. The alpha
band exhibits the highest median accuracy during both phases
compared to all other frequency bands, suggesting that features
derived from the alpha band are the most discriminative for
classifying grip types. The median accuracy in the alpha band
surpass those in the delta, theta, beta, and gamma bands, which
indicates it as a consistent feature with less variability in the
classification performance in distinguishing between the power
and precision grasps across different trials or subjects.
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Fig. 4. Box-and-whisker plots illustrating the distribution of SVM classi-
fication accuracies across five frequency bands during the observation and
movement phases. Blue boxes represent accuracies during the observation
phase, while red boxes correspond to the movement phase.

IV. DISCUSSION

Our novel platform enables the separation of phases during
plan-to-grasp tasks and object isolation, allowing us to ob-
serve distinct trends in neural activity during the observation
and movement phases of reach-to-grasp tasks respective to
the specific object presented. The derived CSP topographies,
specifically in the alpha band during the observation phase,
could have significant implications for understanding motor
planning. Alpha activity is known to be associated with

motor planning [7], and the trends observed in our study
are consistent with this connection since the the decreased
activation patterns during the observation phase are evident
in our results. The decrease in activation patterns in the
occipital regions (responsible for processing visual stimuli) of
the brain is specifically observed in the alpha activity levels
within the third and fourth CSPs topographical plots. This
desynchronization pattern in neural activation may indicate
that prior to movement onset, the occipital region is engaged
in interpreting and responding to the object presented in front
of them, which is crucial for precise motor planning and
execution in reach-to-grasp tasks.

The SVM classification accuracies derived from the FBCSP
features, specifically within the alpha band, demonstrated the
highest percent accuracy across all subjects during the observa-
tion phase. These results are consistent with previous literature
findings in that this particular frequency band plays a pivotal
role in discriminating between the two grasps types. These
results validate our novel platform, while also introducing the
possibility of exploring delta and gamma frequency bands that
may be involved in motor planning without explicit motor
imagery instructions due to their high percent accuracy scores.
Although these percent accuracy scores are less significant
than those observed in the alpha band, they could be indica-
tive of the delta band’s association with integrative sensory
processing and the gamma band’s link to higher-level cognitive
functions. The increased accuracy in these bands during the
movement phase may reflect the increased demand for senso-
rimotor integration and the heightened cognitive engagement
required for executing the motor task.

V. CONCLUSION

The ability to control vision and separate the observation
phase from the movement phase during reach-to-grasp tasks
with our novel platform enabled us to uncover neural mech-
anisms and activity associated with object-specific visually
guided tasks using noninvasive EEG. Isolating the object
presented introduced the possibility of novel findings regarding
how delta and gamma frequency activity might play a role
in motor planning for grasp classification. Without explicit
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motor imagery instructions, we were able to detect significant
neural activation patterns during the observation phase within
the occipital and motor regions of the brain.

The outcomes gained from performing FBCSP/SVM on the
EEG data collected from our novel platform for grip type
classification open the possibility of exploration of frequency
band-specific neural activity that is solely associated with the
singular object presented to the participant. This platform facil-
itates the investigation for understanding the interplay between
different brain regions at various frequency bands during motor
planning and execution, particularly in the context of complex
tasks like power and precision grasps. This novel vision-based-
grasping platform presents a new direction for non-invasive
BCI systems by exploring the emergence of neural activity
during motor planning and visually guided tasks.
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