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Abstract—In this study, a novel open-source brain-computer
interface (BCI) platform was developed to decode scalp elec-
troencephalography (EEG) signals associated with sustained
attention. The EEG signal collection was conducted using a
wireless headset during a sustained visual attention task, where
participants were instructed to discriminate between composite
images superimposed with scenes and faces, responding only
to the relevant subcategory while ignoring the irrelevant ones.
Seven volunteers participated in this experiment. The data col-
lected were subjected to analyses through event-related potential
(ERP), Hilbert Transform, and Wavelet Transform to extract
temporal and spectral features. For each participant, utilizing its
extracted features, personalized Support Vector Machine (SVM)
and Random Forest (RF) models with tuned hyperparameters
were developed. The models aimed to decode the participant’s
attentional state towards the face and scene stimuli. The SVM
models achieved a higher average accuracy of 80% and an Area
Under the Curve (AUC) of 0.86, while the RF models showed an
average accuracy of 78% and AUC of 0.8. This work suggests
potential applications for the evaluation of visual attention and
the development of closed-loop brainwave regulation systems in
the future.

Index Terms—Sustained Visual Attention, Brain-Computer
Interface, Electroencephalography, Composite Image, Classifier.

I. INTRODUCTION

Attention is a fundamental aspect of human cognition and
perception [1]. Traditionally, attentional states have been stud-
ied using blood-oxygen-level dependent signals via functional
magnetic resonance imaging [2], which, despite its high spatial
resolution, has limitations for real-time neurofeedback due
to the slow vascular response of the brain [3].In contrast,
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electroencephalography (EEG), due to its higher temporal
resolution is more suitable for real-time brain-computer in-
terface (BCI) applications [4]. EEG has been widely used for
attention evaluation and training, particularly in children with
attention deficit hyperactivity disorders [5]. Since face-like
visual stimuli undergo specialized processing in the human
brain [6], face images were employed in numerous brain
studies, particularly studies on attention [7]. Among them, the
work of Sreenivasan et al. is notable [8]. They employed event-
related potential (ERP) analysis to show that attention to faces
in composite images with different transparency of face can
modulate the perceptual processing of faces. The other recent
study explored the spatiotemporal changes in EEG to classify
perceptual states (faces/Gabors) and analyzed the scope of at-
tention (locally/globally) [9]; nevertheless, it did not explored
the EEG classification results for when subjects focused on
both image categories within a sequence of overlapped images.
Based on our investigation, most previous works focused on
identifying participants’ attention levels without examining the
visual stimuli that trigger them. Recently, Abiri et al. focused
on decoding EEG-based attentional states towards faces and
scenes. They developed a BCI platform using MATLAB,
incorporating a linear SVM classifier. However, this classifier
did not include subject-specific parameter tuning, which is
particularly crucial for real-time neurofeedback platforms [4].
To the best of the authors’ knowledge, no studies have yet
reported on the development and hyperparameter tuning of
non-linear ML classifiers to assess a participant’s sustained
visual attention and to identify the triggering visual stimulus.
To address this, in this study, we introduced an innovative
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wireless, portable, and open-source EEG-based BCI software!,
to explore subjects’ sustained visual attention levels toward
two stimulus categories—faces and scenes. We employed
ERP, Morlet continuous Wavelet Transform (MCWT), and
Hilbert Transform (HT) analyses to discern distinctive neural
patterns and extract relevant features. Subsequently, to assess
the level of sustained visual attention in a participant, along
with identifying the specific visual stimulus responsible for
capturing that attention, two classifiers were developed, fine-
tuned, and personalized using the extracted features as input.

II. MATERIALS AND METHODS
A. EEG-Based BCI Platform: Recording Device and Interface

The BCI platform includes a wireless EEG headset, a
workstation equipped with dual monitors (experimenter and
participant screens for control and stimuli), and a novel devel-
oped Python-based software for simultaneous data acquisition,
analysis, and execution of a designed paradigm (Fig. 1). EEG
signals were acquired at 250 Hz using Unicorn Hybrid Black
(g.tec medical engineering GmbH), and transmitted to the PC
via Bluetooth.The headset has 8 electrodes at Fz, C3, Cz, C4,
Pz, Po7, Oz, Po8 (10-20 system), plus two snap electrodes for
reference and ground behind the left and right ear, respectively
[10].

B. Experimental Protocol and Subjects

Seven healthy participants (4 males and 3 females) with a
mean age of 28.14 years and a standard deviation of 10.84 took
part in this study. All participants had normal or corrected-
to-normal vision. After the Institutional Review Board (IRB)
approval process, all participants gave written informed con-
sent to the experiment. The participants were asked to sit
comfortably in a fixed chair with one hand resting on their
lap and another hand ready to press a key to give behavioral
responses. The participants were instructed to pay attention to
the images displayed on the monitor during the experiment and
limit their body movement. In the present work, we aimed to
identify participants’ attentional states toward two categories
of images: face versus scene; regardless of their subcategories.
We assumed that neural response contains common features
for the subcategories within a single category [11].

In our study, we employed the Sustained Attention to
Response Task (SART) paradigm [12]. Our paradigm consists
of eight blocks of trials with a 10-second respite between
blocks. The experiment starts with a 3-minute EEG recording
for signal stabilization, followed by the blocks of trials in a
random order.(Fig. 1). Each block begins with a five-second
texture cue, then a 7-second grey image (baseline), followed by
forty 1-second image stimuli trials (activity trials). Considering
all eight blocks, this paradigm results in a total of 320
activity trials throughout the experiment. In our experiment,
four subcategories of indoor and outdoor scenes and male and
female face images were chosen as stimuli. The images were
all black and white with equal sizes, 800 x 1000 pixels. Face

Thttps://github.com/AbiriLab/Neurofeedback-Based-BCI

images were chosen to be neutral and were centered inside
the composite image. The indoor images were chosen from
interior scenes. Outdoor images were natural landscapes and
cityscapes. Brightness and contrast for all face and scene im-
ages were adjusted so that the images have equalized contrast.
Each trial includes a composite image with equal proportions
(50%) of the scene and face. (In our future neurofeedback
task, the proportions of images in the composite images will
be regulated). There was no repetition of face or scene images
through each block of the experiment, which helps to prevent
any learning mechanism for the participant [13]. Participants
were asked to identify whether the shown image contained a
task-relevant/irrelevant image (e.g., an indoor/outdoor image).
They were asked to press the key on the keyboard for
each recognized relevant image and withhold their responses
for irrelevant images. Following the SART paradigm, which
involves the withholding of key presses to rare targets, 90%
of the composite images contained images from the task-
relevant subcategory. Each participant underwent a total of
approximately 20 minutes of experimentation, including EEG
cap fitting and electrode impedance checks.

C. Signal Pre-processing

To do pre-processing, each EEG channel underwent a
series of preprocessing steps. Firstly, A 5th-order Butterworth
bandpass filter isolated 0.4—40 Hz frequencies. Subsequently,
spikes were detected using the Median Absolute Deviation
technique and interpolated via a cubic spline, maintaining
EEG data integrity. Then, to minimize random noise a K-
neighbors regression was used. Next, baseline correction was
implemented by subtracting the average of baseline signals
in each block from the activity signals of that block to
enhance task-specific brain response clarity. Finally, data was
normalized across experiment blocks using Z-scoring.

D. Signal Processing, Feature Extraction, and Classification

Following our initial analysis, we identified several ERPs
linked to sustained visual attention. Additionally, the Hilbert
Envelope (HE) revealed distinct patterns for face and scene
during sustained visual attention tasks. The HE highlights
temporal changes in EEG signal amplitude but not detailed
frequency-based oscillations. In contrast, the MCWT excels at
extracting transient features from non-stationary data, making
it valuable for EEG data analysis [14]. Combining MCWT
with the HE offers a thorough approach essential for robust
attentional state modeling. So, in this study, ERP, Hilbert
envelop, and the MCWT were employed for the analysis of
EEG data. For our study’s binary classification, SVM was
selected due to its proven effectiveness in face recognition
tasks [15]. Additionally, acknowledging Random Forest’s (RF)
capabilities in processing non-linear data, resisting overfitting,
accommodating missing values, and its scalability, efficiency,
and proficiency with imbalanced datasets, we developed an
RF model to assess and compare its classification performance
with SVM [16]. The parameters of both classifiers also have
been tuned.
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Fig. 1: Developed BCI Platform (Clinical Trial: NCT05908253). Left: A sample sequence of composite images during one
block and the corresponding expected responses. Right: Flowchart of the experiment and data analysis

1) Feature Extraction: ERP features were extracted through
a series of steps: bandpass filtering (1-4 Hz), segmentation into
epochs (each block was segmented into 250-sample epochs,
each corresponding to 1000 milliseconds), and downsampling
to 50 Hz (50 samples per epoch to improve the signal-to-
noise ratio). The epochs were then averaged to derive distinct
mean signals for baseline and stimulus-evoked activities per
block. Next, the averages for each category were calculated
to identify the distinct ERP waveforms for face and scene
stimuli (Fig. 2(a)). For extracting ERP-related features, key
statistical parameters such as mean amplitude, variance, stan-
dard deviation, peak-to-peak amplitude, zero crossings, and
number of peaks were computed within the identified time
windows: early response (0-50 ms), mid-range processing (80-
210 ms, 240-350 ms, 400-500 ms, 520-630 ms), and extended
analysis periods (650-900 ms), with an overall assessment
across the full epoch (0-1000 ms) leading to 42 (6x7) ERP
features for each channel. Also, utilizing Linear Discriminant
Analysis, the intra-class and inter-class variance have been
minimized and maximized, respectively, yielding a single,
feature per EEG channel. Overall, the analysis led to the
extraction of a total of 344 (8x43) ERP-related features for
each trial. To extract time-frequency features, MCWT were
generated for 0-40 Hz frequencies in 1 Hz increments, with
cycles linearly varying between 0.1 and 10, and convolved
with EEG data. Next, epoching and baseline normalization
were performed, Zuantiﬁed using the logarithmic equation

dB = 10 - log, ;::’e‘ﬁ;ye), where dB represents the power
in decibels. Finally, for each epoch of activity, signal mean,
variance, peak frequency, peak magnitude, skewness, energy,
and kurtosis, were extracted which led to 56 (8x7) time-
frequency features for each trial. In addition, the Hilbert
transform was applied to extract the envelope of EEG data
in various frequency bands (Delta: [1, 4] Hz, theta: [4, 8] Hz,
alpha: [8, 14] Hz, beta: [14, 30] Hz, and gamma: [30, 40] Hz).
Then the mean, median, standard deviation, skewness, energy,
and kurtosis of each envelope computed led to the extraction
of 240 (8x30) features per trial.

2) Classifier Development: To develop classifiers, initially,
all features were combined to form a comprehensive feature
matrix containing 640 features per trial across a total of 320
trials. Then classifiers were developed and their hyperparam-
eters systemically optimized for each subject using the well-
established Optuna library [17], ensuring that the selections
were not random but systemically determined. Optuna em-
ploys Bayesian optimization with a Tree-structured Parzen
Estimator (TPE) to efficiently explore the hyperparameter
space. For each subject in our study, a separate Optuna
experiment was created, and the hyperparameters were op-
timized individually. This approach ensures that the model is
finely tuned to each subject’s unique EEG data characteris-
tics, maximizing the predictive accuracy and generalization
capability of the model. The criteria for selecting the range of
hyperparameters were based on preliminary empirical tests and
literature review, ensuring they are suitable for the complexity
and nature of EEG data being analyzed. We aimed to define
a comprehensive yet computationally feasible hyperparameter
range with the TPE algorithm, maximizing cross-validation
accuracy and minimizing overfitting to ensure robust model
performance on unseen data. When tuning the RF classifier,
the hyperparameters that were used are as follows: (i) the
number of estimators was set between 2 and 10, (ii) the depth
of the tree was between 5 and 20, (iii) the minimum number
of samples required to split an internal node was between
2 and 20, (iv) minimum number of samples to qualify as a
leaf node was between 2 and 5. Moreover, when looking for
the best split, the number of features considered from [‘auto’,
‘sqrt’, ‘log 2’] and [‘gini’, ‘entropy’] was used to measure the
quality of the split (criterion). Hyperparameters for SVM tun-
ing—misclassification cost (C') and Gaussian kernel parameter
(I')—were bounded by a predefined logarithmic scale ranging
from 0.001 to 1000, to balance the decision boundary and the
complexity of the kernel. Validation of the final model was
done based on the Receiver Operating Characteristic (ROC)
curves, AUC scores, and mean accuracy metrics (Table I and
Fig. 3).
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Fig. 2: a(1) and a(2): Time-frequency power spectra and b(1) and b(2) ERP analyses results by channel for one subject, ”*”

delta band, ”**” theta and early alpha band

TABLE I: Models’ tuned hyperparameter and performance
across subjects. Abbreviations: NS: Number of Estimators,
MD: Max Depth, MSS: Min Samples Split, MF: Max Features.

Model Param. Subjects

1 2 3 4 5 6 7
NS 9 9 10 8 10 8 8
MD 13 5 7 11 5 10 5
RF MSS 13 6 8 16 19 7 9
MF auto sqrt  sqrt sqrt  sqrt  auto  auto
ACC 75% 79% T12% 80% 81% 80% 78%
AUC 072 083 070 0.82 0.84 0.87 0.84
C 93 354 672 188 894 20 1.5e-2
SVM Fre-3 18 1 2 1 1.1 1 1
ACC 79% 82% 73% 80% 85% 84% T5%
AUC 084 089 0.76 0.85 0.90 0.92 0.88

ITII. RESULTS AND DISCUSSION
A. Time and Frequency Domain Analysis

The ERP waveforms (Fig. 2 (b1l) and (b2)), reveal distinct
temporal patterns between scene and face stimuli across EEG
channels (early, mid-range, and extended response). As it is
shown in the wavelet power spectra (Fig. 2 (al) and (a2)), there
is a prominent power concentration in the lower frequency
bands (Delta and Theta and early Alpha) during the early to
mid-time windows (0-800 ms), particularly for face stimuli.
In contrast to this, scene processing appears more distributed
across frequencies and time. The HE also indicates distinct
patterns in brain activity corresponding to the face and scene
conditions, particularly in the Alpha and Beta bands.

B. Personalized classifier tuning

Table I summarizes the results of the hyperparameters
tuning for RF and SVM models. Using the tuned parameters,

True Positive Rate

== RF: AUC = 0.83 = 0.06, Accuracy= 0.79

m— SVM: AUC = 0.90 = 0.03, Accuracy= 0.83

0.0+ T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 3: ROC curves of the tuned Scene and Face Classifiers

the performance of the models was verified through 5-fold
cross-validation. The RF model resulted in accuracy ranging
from 71.9% to 80.6%. For the SVM model, adjustments
in the C' and T resulted in accuracy between 72.8% and
84.7% (Table I). The ROC plot (Fig. 3) exhibits above-chance
classification ability for both models, with SVM showing
superior performance. In our study, we employed the Optuna
framework for hyperparameter optimization, utilizing TPE for
adaptive Bayesian optimization. This method refines the search
space dynamically based on feedback from ongoing trials,
enhancing the precision in selecting optimal hyperparameters
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and reducing computational overhead. It allows for a nuanced
exploration of hyperparameter effects, significantly improving
model performance and generalization in complex EEG data
analysis. This approach significantly differs from traditional
methods like grid search, manual tuning, or nested cross-
validation. The latter, used by Cooney et al. for EEG signal
classification with CNN:ss, relies on extensive evaluations to op-
timize hyperparameters [18]. Our approach introduces a novel
aspect of EEG signal classification by leveraging an advanced,
automated hyperparameter tuning process. This method en-
hances the precision in selecting optimal hyperparameters,
reducing computational overhead, and leading to improved
model generalization. This systematic and individualized tun-
ing approach underscores the robustness and reliability of our
findings, as each subject’s model configuration is specifically
tuned to derive the best possible outcomes from their data.

IV. CONCLUSION

In conclusion, our study developed a novel BCI platform for
interpreting EEG signals in visual sustained attention tasks. We
successfully extracted key temporal and spectral features. Our
tuned SVM and RF models decoded participants’ attentional
state with notable accuracy of 80% and 78%, respectively. This
research study is a foundation for creating a real-time closed-
loop neurofeedback platform that is responsive to immediate
neural pattern changes by employing high-speed open-source
language programming and pipelines.
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