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A B S T R A C T

Laser powder bed fusion (LPBF) in additive manufacturing holds the potential for efficiently producing high-
resolution components with intricate geometries. However, LPBF-printed parts often exhibit deformation, de-
fects, and suboptimal mechanical performance, limiting their applications in critical industries. The melt pool
characteristics, spatters, and in-process layer surface properties play a crucial role in determining the micro-
structure formation and defect generation during LPBF, consequently affecting the properties of printed com-
ponents. This work aims to develop a framework for revealing the relationships between complex LPBF process
dynamics, microstructure, and mechanical properties, utilizing the authors’ unique in-situ multi-sensor moni-
toring big data. The study investigates the relationships between process signatures—such as melt pool geom-
etry, temperature, spatter, and layer surface features—and outcomes like grain characteristics, hardness, and
fatigue life, using support vector machine regression models. It reveals the importance of acquiring and
combining physically meaningful quantities like absolute melt pool temperature, spatter count, and in-process
layer surface roughness for accurate part property prediction. These approaches outperform traditional
intensity-based monitoring methods. The demonstrated framework of multi-sensor in-situ monitoring and
multimodal feature fusion promises to significantly enhance the understanding and optimization of LPBF pro-
cesses for producing advanced materials and components with sophisticated designs.

1. Introduction

Metal-based additive manufacturing (AM) has gained significance
across various industries, including energy, aerospace, automobile, and
bioengineering. Its ability to create intricate parts with ease, flexibility,
and efficiency is well-recognized [1,2]. However, the practical appli-
cation and widespread adoption of AM products still face challenges,
primarily due to inconsistent part quality, which is closely tied to me-
chanical properties determined by the microstructure. Among the
different metal AM technologies, laser powder bed fusion (LPBF) stands
out as one of the most widely used methods, known for its good reso-
lution and dimensional accuracy. In LPBF, a laser selectively scans and
sinters or melts thin layers of fine metallic powder spread by a recoating
rake on a platform to build 3D components [3]. The mechanical prop-
erties of LPBF-printed parts play a crucial role in their functionality,

performance, and suitability for specific applications. However, due to
the complex interactions between the laser, powder, printed layers, and
processing gas, the mechanical properties of LPBF-printed parts exhibit
undesired variability, making them unsuitable for industrial applica-
tions and large-scale production. As a result, there is a growing focus on
studying how various factors, including powder characteristics, process
parameters, and post-build heat treatments, influence properties such as
strength, ductility, and fatigue life [4–6]. Understanding the relation-
ships between the manufacturing process, microstructure, and final
properties is key to optimizing LPBF processing parameters and post-
processing techniques for improved mechanical properties [7–9].
Nevertheless, significant challenges remain. Fully comprehending the
complex interactions between ultrafast laser-metal interactions, melt
flow, solidification kinetics, and defect formation inherent to AM is a
hurdle [10,11]. Another significant challenge lies in quantitatively
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analyzing the heterogeneous microstructures and mechanical properties
in as-fabricated parts, which are caused by the varying thermal condi-
tions throughout the LPBF process [12].

Researchers have made significant strides in developing computa-
tional modeling and simulation methods for AM. However, progress has
been hindered by the lack of precise values for high-dimensional model
parameters and limited access to high-performance computing resources
[13,14]. Experimental approaches that employ various characterization
techniques such as electron backscatter diffraction (EBSD), scanning
electron microscopy (SEM), X-ray diffraction (XRD), and tensile and
fatigue testing have also been developed. But these lengthy, expensive,
and destructive techniques are limited to characterizing printed parts at
very small scales. This is especially problematic when evaluating a wide
range of properties such as hardness, tensile strength, elongation to
fracture, impact toughness, and fatigue life at large scale [15,16].

Lately, machine learning has been employed to accelerate and
enhance the prediction of part properties [17]. Models ranging from
traditional random forest algorithms to deep convolutional neural net-
works (CNNs) are applied to predict the porosity or surface defects of
LPBF-printed part [18–20]. In [21], a Gaussian process regression model
is used to predict the relationship between LPBF process parameters
(laser power and scan speed) and multiple properties including hard-
ness, tensile strength, and fracture toughness. But it shows a large
variation in resulting mechanical properties despite similar process pa-
rameters. Stebner’s research team discovered that, despite employing
build orientation and position along with machine learning algorithms,
they couldn’t fully account for the observed variations in mechanical
properties. As a result, they proposed the need to consider additional
variables to comprehensively understand the factors influencing the
ultimate mechanical characteristics of LPBF-printed components [22].
More similar approaches indicate that solely using nominal process
settings (e.g., laser power, speed, hatching space, layer thickness, build
position) is difficult to capture the variations in process and machines
for accurate predictions of printed part properties [23,24]. Therefore,
the current research direction involves integrating dynamic process
signatures observed through in-situ monitoring to enhance the modeling
of process-structure-property relationships. While many works are
focused on predicting defects such as porosity and geometrical proper-
ties, there is limited information available regarding the direct predic-
tion of mechanical properties using in-situ monitoring data [25–28].

Among the various mechanical properties of LPBF-printed parts, fa-
tigue performance holds particular importance because it directly im-
pacts the long-term durability and safety of AM components. Traditional
experimental tests used to assess the fatigue strength of printed parts are
both costly and time-consuming. While simulation-based methods have
been developed to estimate stress distribution and material behavior
during cyclic loading and predict fatigue life, their accuracies remain
limited. To address this challenge, researchers have explored the influ-
ence of process conditions, such as laser power, build orientation, and
post-processing, on the fatigue behavior of LPBF parts utilizing machine
learning techniques [29,30]. However, it is essential to note that the
current state of research in predicting fatigue strength in LPBF is still in
its early stages, requiring further exploration to gain a comprehensive
understanding of the intricate relationships. This understanding should
encompass not only the nominal process input parameters but, more
significantly, the real process dynamics and the microstructure of as-
printed parts, both of which impact fatigue behavior.

While it would be ideal, performing a full-scale simulation or con-
ducting a comprehensive characterization of an entire LPBF process is
exceedingly challenging for accurately predicting the properties of
printed parts. It is known that melt pool (MP) properties, along with
issues like spatters and surface roughness, play a crucial role in deter-
mining the microstructure formation and the generation of defects
during LPBF, which, in turn, affect the properties of the printed parts.
Currently, there is a notable lack of research on comprehensive LPBF
monitoring and the fusion analysis of data from multiple sensors to

predict mechanical properties. The primary aim of this research is to
utilize in-situ monitored data, which includes features like melt pool
temperature, area, intensity, spatter, and layer-wise surface roughness,
to predict mechanical properties that are characterized ex-situ, such as
fatigue life and Vickers hardness. The goal is to establish a robust cor-
relation between the entire process and the resulting properties, shed-
ding light on the potential of in-situ process signatures to uncover any
anomalies present in the printed parts. Ultimately, the proposed
framework of machine learning of multi-monitoring data can be used to
enhance the understanding of the LPBF process-multi-properties re-
lationships and facilitate the optimization and control of LPBF processes
for achieving improved mechanical properties.

The structure of the paper is divided into the following. The exper-
iment design with materials and processing parameters selection are
introduced in Section 2.1. In-situ monitoring systems setup including a
coaxial single-camera two-wavelength imaging pyrometry (Section
2.2.1), off-axis high-speed camera-based spatter monitoring (Section
2.2.2), and in-situ fringe projection profilometry method for layer-wise
surface topographymonitoring (Section 2.2.3) are elaborated. Details on
post-build heat treatment, high-cycle fatigue testing, microstructure
characterization through EBSD analysis, fractography imaging, and
hardness testing are presented in Section 2.3. All the experiment results
are presented and discussed in Section 3. In Section 3.1, in-situ moni-
tored MP signatures are presented and compared among samples
whereas the in-situ measured surface topography and resulting surface
roughness are discussed in Section 3.2. Characterized fatigue lives and
hardness value are presented in Section 3.3 with discussions on the
potential causes of the observed difference of mechanical properties
among samples. The EBSD analysis is also utilized in Section 3.4 to
reveal the process dynamics and variations. Finally, regression models
and analysis are performed in Sections 3.5 and 3.6 to study and compare
the importance of different features in correlating to the characterized
ex-situ mechanical properties.

2. Materials and methods

2.1. LPBF experiment: sample printing and process monitoring

As an initial study case, five fatigue testing bars designed based on
ASTM E466 standards are printed using Inconel 718 powders (VDM®
Alloy 718, Werdohl, Germany) and a commercial LPBF machine of EOS
M290 DMLS (Direct Metal Laser Sintering). The default EOS printing
parameters for Inconel 718 were employed (laser power: 285 W, laser
scan speed: 960 mm/s, layer thickness: 40 μm) along with a hatch
spacing of 110 μmwith 67◦ rotation and 10mm strip width. The position
of the five samples on EOS M290 built plate and their design geometry
are shown below in Fig. 1 with the printing order indicated by the blue
arrow. The IN718 powder used was sieved with the 80 μm vibrating
sieve that is embedded into the EOS printer. The standard contouring
scan (laser power: 80 W, and laser scan speed: 800 mm/s) is imple-
mented after laser hatching.

2.2. In-situ multi-sensor multimodality process monitoring

An overview of our relatively comprehensive multimodality in-situ
LPBF process monitoring system is shown in Fig. 2. It includes: 1) a
lab-designed single-camera two-wavelength imaging pyrometry
(STWIP) system for coaxial melt pool monitoring; 2) an off-axis camera-
based laser scan monitoring system for melt pool registration and spatter
tracking; and 3) an in-house fringe projection profilometry (FPP) system
for layer surface topography measurement.

2.2.1. Single-camera two-wavelength imaging pyrometry for high-speed co-
axial monitoring of melt pool temperature and morphology

This print is monitored using our developed in-situ STWIP system at
a frame rate of 30,000 fps with a resolution of 128 × 48 pixels for 43
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printed layers. Each print layer elapses 72 s with approximately 2.2
million images per layer, therefore over 1 billion images are monitored
and processed for the whole monitored print. The data metrics obtained
from this monitoring are MP intensity, MP area calculated by consid-
ering all the pixels with temperature above the liquidus temperature of
the printing material, MP shape (ellipticity, width, and length), and MP
temperature calculated through Wien’s approximation of Planck’s law
using intensities under two wavelengths [31]. The two wavelengths
used in this work are 520 nm and 620 nm wavelengths based on the
optical design of the pyrometer. Details about such large-scale, contin-
uous, high-speed monitoring using STWIP system and corresponding
methods are based on previous publication [32]. Specific results of the
analyzedmelt pool signatures for this experiment are reported in Section
3.1.

2.2.2. Melt pool registration and spatter monitoring via an off-axis camera
This work employs an off-axis high-speed camera to capture both the

spatial location of melt pool and the spatter phenomena, allowing for the
registration of the STWIP-measured melt pool signatures and the
tracking of spatter signatures. The camera (FASTEC IL5Q, Fastec Inc.
San Diego, CA) is placed outside the build chamber, facing the build
plate at an oblique angle to observe the print process. The camera is
equipped with a 6 Megapixel lens with a focal length of 25 mm
(1–24,422, Navitar, Rochester, NY). It is worth noting that both the in-
situ coaxial STWIP camera and the in-situ off-axis camera are synchro-
nized using a 5 V TTL trigger signal. The off-axis camera is used to
monitor the LPBF laser scans for 43 layers with a frame rate of 1000 fps
(frames per second) and a resolution of 640 × 512 pixels across the build
plate with a field of view of 200 mm× 180 mm. The coordinates of the
STWIP monitored melt pools are derived followed by a registration of all
the STWIP-measured melt pool signatures using methods reported in
[33]. The spatter monitoring, measurement, and registration methods
based on semantic segmentation deep learning model have been
developed and reported in previous publication [34] and used to

monitor and characterize the ejected spatters with a size of ~100 μm. A
convolutional neural network (CNN) is trained to segment the captured
images to quantify the spatter counts. In this work, 1000 manually pixel-
wise labelled melt pool images with spatters are used to train, validate,
and test the neural network. The dataset is split into 70 % for training,
10 % for validation, and 20 % for testing. With these methods, layer-
wise feature profiles of the STWIP-measured melt pool geometrical
and thermal properties as well as the off-axis observed spatters counts
associated with the monitored melt pools are obtained. These multi-
modality feature profiles are then utilized to investigate how these
factors influence the properties of as-printed parts. The results are pre-
sented in Section 3.

2.2.3. In-situ fringe projection profilometry
In this work, a LPBF-specific FPP system and method developed by

the authors’ group are implemented to measure the in-situ printed
layer’s surface topography with reference to the powder surface [35].
Specifically, an in-house FPP system comprises a digital, optical pro-
jector (LightCrafter 4710 EVM G2, Texas Instruments, Dallas, TX) with a
resolution of 1920 × 1080 pixels and a 12 Megapixel CMOS camera
(FL3-U3-120S3C-C, Flea3, Tele-dyne FLIR, Wilsonville, OR), which are
synchronized by a computer-based control unit. The high dynamic range
(HDR) FPP method is employed to address the issues of shadowing and
intensity saturation caused by the varying material properties in LPBF.
This method involves projecting two sets of sinusoidal fringes with
different maximum intensities, specifically 160 and 250 grayscale
values, onto the build plate. For enhanced measurement accuracy, the
acquired images are fused by averaging and processed using a modified
FPP sensor model that features localized camera imaging intensity
correction, masked Fourier filter-aided unwrapping, and pixel-wise
phase-height calibration [35]. Standard three-step phase shifting algo-
rithm and a linear phase-height calibration model are used. Details of
the implementations are shown in Appendix A.1. In-situ FPP measure-
ment results for this experiment are presented in Section 3.2.

To prepare or encode the measured surface topography for correla-
tion analysis, data pre-processing techniques are incorporated to extract
representative features. The directly obtained signature from the FPP
monitoring is areal surface roughness (Sa), which is the arithmetic mean
of the surface deviation from main profile. Sa is the overall indicator to
the quality of the printed layer. However, the metric does not provide
insights in the distribution and quantity of measured points/pixels with
abnormal height. K-means, an unsupervised clustering algorithm, sup-
ports efficient feature extraction from given parameters by optimizing
the placement of centroids of clusters to separate the data points in the
training parameter space. Therefore, another representative surface
metric - “Count of Abnormal Surface Features” is derived through the K-
means classification of the FPP-measured surface topography and uti-
lized for evaluating printed part properties. Specifically, before applying
the K-means, the surface topography is first filtered through the average
convolution layer since the rough and anomalous pixels are primarily
identified based on the pixels surrounding them with kernels of sizes 5,
10, 15, and 50. The zero-padding filter acts as a moving average for each
individual pixel to incorporate the surrounding pixel values to the K-
means training. After the averaging operation, a binary K-means cluster
algorithm is applied to individual layers to identify the rough pixels
[36].

2.3. Sample preparation, testing, and characterization

2.3.1. Sample heat treatment procedure
After being removed from the build plate without any stress relief

heat treatment, all samples undergo a direct age heat treatment protocol
prior to any characterization or mechanical testing. This procedure is
chosen specifically to preserve the microstructure resulting from the AM
build conditions. It is similar to AMS 5662 and consisted of two stages in
a tube furnace in an Argon atmosphere: first, 720◦C for 8 h then, furnace
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Fig. 1. Experiment design. (a) The printing position of five sample fatigue
testing bars on EOS M290 build plate. (b) Fatigue sample geometry made in
accordance with ASTM E466, with dimensional labels in inches for concision.
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cooled to 620◦C and held for 8 h prior to being removed and air cooling
to room temperature in lab air.

2.3.2. High cycle fatigue testing and fatigue fracture characterization
All testing in this work is conducted in force control on an MTS

model 370 servohydraulic test system (Eden Prairie, MN, USA). Samples
are gripped using hydraulic wedge grips with serrated steel inserts using
1/16″ thick garolite shims to prevent fatigue samples from fracture in
the grip sections. Guides are used to insure alignment of fatigue samples
between the wedge grips. The guides are installed using a flat calibration
sample and a level to insure vertical alignment of fatigue samples. The
high cycle fatigue (HCF) test conditions comprise a stress ratio (R) of 0.1,
a maximum stress (σmax) of 500 MPa, and a loading frequency of 20 Hz
with a sinusoidal wave form in room temperature lab air.

Fracture surface analysis of all samples is conducted to identify the
location of the critical defect. SEM imaging is performed on a Thermo
Scientific Phenom XL G2 scanning electron microscope. Samples are
sonicated in an acetone bath and cleaned with pressurized air prior to
being inserted into the SEM. An accelerating voltage of 10 kV is used for
imaging using a secondary electron detector in the Phenom SEM.

2.3.3. Microstructure characterization
After the HCF testing, part of the filleted region of each of the five

samples are sectioned out, mounted, and polished from 180 grit down to
a 0.04 μm colloidal alumina slurry to create a mirror finish free of

scratches. The exact brand used in this work for the final surface finish is
the Struers OP-U colloidal alumina. From each fatigue sample, three
orientations are obtained. The XY, YZ, and XZ orientations, as related to
the sample coordinate axes, are depicted in the schematic from Fig. 3.
For each of the five fatigue samples, six EBSD maps are taken at various
adjacent locations in each of the three orientations using a TESCANMira
FE-SEM. To obtain the EBSD patterns, an EDAX Velocity EBSD camera
(Mahwah, NJ) is used along with the TEAMS software by EDAX. An
acceleration voltage of 20 kV is employed along with working distances
between 20 mm and 27 mm. All EBSD data is processed using the ATEX
software.

2.3.4. Hardness testing
Vickers hardness testing is conducted in accordance with ASTM E384

on the grip regions of all samples (polished up to 400grit) using a LECO
LM248AT Microhardness Tester with 500 gf weight applied. Each
sample is indented 20 separate times and all indentations are measured

Fig. 2. Our in-situ multi-sensor multimodality LPBF process monitoring system: (a) physical setup; and (b) schematic of the coaxial STWIP camera and off-axis
camera which are synchronized.

Fig. 3. Schematic depicting the sample coordinate system in microstructure
characterization.
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using the integrated optical microscope of the LECO LM248AT system.

3. Results and discussions

3.1. Multimodality melt pool properties obtained from our unique
concurrent in-situ STWIP and off-axis camera monitoring systems

3.1.1. Melt pool surface temperature and geometrical properties
The coaxial STWIP-monitored MP signatures including MP temper-

ature, MP area, and MP width, are registered, respectively, with the off-
axis camera monitored spatial coordinates to form comprehensive layer-
wise MP signature maps (MPSMs). Due to the frequency difference be-
tween the STWIP (30,000 fps) and the off-axis camera (1000 fps), linear
interpolation is applied to estimate the spatial coordinates of MPs that
are not directly monitored by the off-axis camera. This is done by fitting
the linear curve using coordinates of every two consecutive MPs
observed by the off-axis camera, and further inserting the MPs moni-
tored by the STWIP camera uniformly into the range. Representative
layer-wise profiles of melt pool signatures (i.e., MPSMs) are shown in
Fig. 4.

Shown in Fig. 4, the processing transition, resulting from a change in
machine parameters between filling and contouring, can be readily
observed in MPSMs through temperature drops and variations in the
area. To comprehensively observe the variations of melt pool-level sig-
natures monitored by the high-speed STWIP (measurement frequency:
30,000 Hz), layer-wise high-resolution signatures including MP average
temperature, MP area and average intensity at the two wavelengths used
by STWIP - 620 nm and 550 nm, respectively, are calculated. Because
the MP area and intensity monitored under the two wavelengths in
STWIP are highly correlated, for efficiency only the melt pool area and
average intensity measured under 620 nm wavelength are used in the
following analysis. Results for layer-wise signatures used in subsequent

correlation analysis (Sections 3.4–3.6) are shown in Fig. 5, and the
standard deviations are plotted as error bars. It is observed that gener-
ally Sample 3 and Sample 4 exhibit higher average MP temperature
across all the layers monitored comparing to Samples 1, 2, and 5. Based
on the IN718 single-track experiment results reported from [37], tracks
printed using keyhole process setting result in the temperature around
3500 ◦C while tracks printed using transition or default process setting
have the temperature of 3000 ◦C. For the fatigue bars printed in this
work, the temperature difference among samples is about 400 ◦C,
indicating a possible processing regime transition from the planned
default regime to keyholing regime instead. It should be noted that the
temperature difference observed among samples are not well reflected
by the intensity scale monitored as the temperature is computed based
on the intensity ratio (Fig. 5(d)). This also indicates that the traditional
intensity-based monitoring methods are less effective compared to the
newly developed STWIP method in capturing variations in the LPBF
process.

3.1.2. Melt pool surface temperature gradient
The MP temperature gradients for the five fatigue bars are computed

using the registered MPSMs as illustrated in Fig. 4. These temperature
gradients are primarily aimed to capture and reveal the spatial varia-
tions in MP surface temperature across the three directions (x, y, z). To
calculate the gradient, the MP point cloud is organized into a grid format
first with each grid covering an area of 100 μm × 100 μm (Fig. 6). After
discretizing the point clouds into grid format, temperature gradients in
three directions (dTdx,

dT
dy,

dT
dz) were determined. Since the MP temperature

being monitored is the MP surface temperature, the gradient in z di-
rection is approximated using the nominal layer thickness (40 μm) as dz.

The temperature gradient results for Sample 2 at layer 40 are pre-
sented in Fig. 7. Indicated by the temperature gradients in the x and y

Fig. 4. Multimodality melt pool signature maps (MPSMs) measured and registered by our STWIP (30 kHz) in conjunction with the off-axis camera laser scan
tracking, including melt pool area, average intensity measured at two wavelengths (550 nm and 620 nm), and average temperature.
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directions, temperature variations are predominantly observed at the
scan stripe locations where the laser is switched off at the end of each
scan track. Moreover, noticeable temperature fluctuations occur at the
sample’s edges due to the contouring scans that adopt lower laser power
and faster scan speed.

To illustrate the dynamic changes in temperature gradients across
the five monitored samples, the layer-wise melt pool average surface
temperature gradients were calculated for each sample in three di-
rections. As shown in Fig. 8, the temperature gradients in these three
directions are generally positive, which can be attributed to the heat
accumulation during the LPBF printing process. Notably, Samples 3 and
4 exhibit more pronounced temperature variations compared to Samples
1, 2, and 5. These localized temperature fluctuations can be linked to
abnormal heat accumulation resulting from process defects or irregular

process behavior induced by factors such as gas flow and spattering.
These process signatures of thermal gradients are utilized as inputs to
correlate with the ex-situ characterized properties in the subsequent
sections to further investigate the relationship between these localized
temperature variations and the printed parts’ mechanical properties.

3.1.3. Melt pool spatter quantification
As introduced in Section 2.2.2, a DeepLabV3 CNN was trained using

the dataset with 1000 manually labelled images to process the off-axis
camera-acquired melt pool images and extract spatters. The training
and validation histories are shown in Fig. 9, with the highest validation
accuracy achieved at 99.14 % during iteration 144. The model with
highest validation accuracy was saved and tested on an unseen test
dataset, yielding a test accuracy of 99.18 %. Sample results for the

Fig. 5. Layer-wise melt pool signatures measured by STWIP for all the 43 monitored layers across the five samples: (a) melt pool average temperature; (b) melt pool
area monitored at 620 nm; (c) melt pool intensity monitored at 620 nm; (d) melt pool intensity ratio (High temporal resolution: 1/30,000 s).

Fig. 6. A representative melt pool average temperature map in a point cloud format with each scatter representing individual melt pool (left) converted to a grid
format with 100 μm × 100 μm grid resolution (right) for melt pool temperature gradient estimation.
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registered melt pool spatter count of six monitored layers are displayed
in Fig. 9(c). These results reveal variations in spatter counts across
different layers, influenced by different hatching scan angles. Addi-
tionally, the small number of spatters observed on the contour of the
fatigue bars suggests a correlation between spatter occurrences and
nominal processing parameters such as laser power and scan speed.

To comprehensively understand the spatter dynamics throughout the
layers in this LPBF printing experiment, the layer-wise average spatter
counts for all the monitored 43 layers are plotted and presented in
Fig. 10. The average spatter counts in this work are defined as the
average number of spatter ejections per image frame from the complete
layer. It can be observed that the spatter counts for Sample 3 and 4 are
notably higher compared to the spatter counts from Samples 1, 2, and 5.
This observation aligns with the high temperatures observed for Sample
3 and Sample 4 using the STWIP, hinting at potential changes in the

processing regime.

3.2. In-process layer surface topography measured by our in-situ FPP

The layer-wise in-process surface topography was calculated using
the in-situ FPP system and methods as introduced in Section 2.2.3. The
three-step phase shifting algorithm, two-dimensional Fast Fourier
Transform for height map filtering, along with the measurement result
of final filtered surface height map are presented in Appendix A. From
the layer surface topography, the areal surface roughness (Sa), which is
the arithmetic mean of the surface deviation from mean profile, is
computed as a metric of the layer-wise surface quality. Fig. 11 shows the
layer-wise average surface roughness value for all the 43 layers moni-
tored by the in-situ FPP across all the five samples.

Detailed in Section 2.2.3, the binary K-means classification is applied

Fig. 7. Melt pool average surface temperature gradients for Sample 2 monitored at layer 40 in three directions. (a) dT
dx , (b)

dT
dy , and (c) dT

dz.

Fig. 8. Layer-wise average surface temperature gradients of the melt pools in the x, y, and z directions for all the monitored 43 layers across the five samples.
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to extract the abnormal surface topography. The overall data processing
workflow is presented in Appendix B Fig. B-1.

Furthermore, referring to Appendix Fig. B-2, Sample 4 is observed to

have the most abnormal surface features based on the results of K-means
unsupervised learning of the FPP-measured layer surface topographies.
This observation helps clarify why Sample 4 displays one of the shortest

Fig. 9. Machine learning-aided spatter measurement and registration. (a) training and validation accuracy history. (b) training and validation loss histories. (c)
sample results of spatter count map for six monitored layers.

Fig. 10. Layer-wise average spatter count for all the monitored 43 layers across the five samples.
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fatigue lives and the smallest hardness value compared to the other four
samples as detailed in Section 3.3. However, when we solely consider
the count of abnormal surface features, it becomes challenging to
explain why Sample 1, with much fewer abnormal surface features than
Sample 5, demonstrates a similar fatigue life. For this reason, a more
comprehensive set of process signatures is required to accurately assess
the printed part properties. Further quantitative analyses are presented
in the subsequent sections, where both the metrics of surface roughness
and the count of abnormal surface features, in conjunction with the melt
pool signatures derived in Section 3.1, are correlated with the me-
chanical properties presented in Section 3.3.

3.3. Ex-situ testing and characterization results

Following the testing and characterization protocols specified in
Section 2.3, mechanical properties including fatigue strength and
Vickers hardness value are measured, and EBSD maps are obtained for
the five printed samples. Shown in Table 1, even though the five fatigue
samples are manufactured under identical nominal processing pedigree,
the fatigue lives vary by more than a factor of two, from ~4 million to 9
million cycles, indicating that process variations among samples directly
impact their fatigue behavior. The subsequent measurements of hard-
ness value (HV) are conducted by using the LECO, and the results are
displayed in Table 1. The average hardness values for each sample show
a strong correlation with the fatigue strength, as higher HV corresponds
to longer fatigue lives. Both fatigue lives and hardness values indicate
that Samples 3 and 4 have degraded mechanical properties. Referring to
the in-situ monitored signatures presented in Sections 3.1 and 3.2, the
observation from ex-situ characterized mechanical properties qualita-
tively correlate with the in-situ monitored melt pool level properties and
layer-wise surface properties. The elevated melt pool temperatures,
temperature gradients, and rougher surfaces, accompanied by an
increased count of ejected spatters, particularly as observed in Samples 3
and 4, provide strong indicators of potential defects such as keyhole-
induced porosity and alterations in microstructure like grain size
(refer to Section 3.4). These observations offer a plausible explanation

for the comparatively weaker mechanical strength observed in the ex-
situ testing of these samples.

In order to understand the difference in fatigue life, ex-situ SEM-
based fractography is employed to identify the fatigue critical feature or
features in the fracture surface of each broken specimen. To further
explain the variance in fatigue behavior, EBSD and SEM analyses are
conducted on polished sections of the gage regions of each sample to
elucidate any microstructural differences between samples.

From fractographic analysis, the region of each fatigue sample
responsible for initial fatigue crack growth is identified using the radial
cracking patterns extending from pores and/or crystallographic fea-
tures. These regions coincide with the edges of the fracture surfaces that
exhibited the least amount of plastic deformation prior to failure which
is indicative of fatigue initiation. In Fig. 12, and detailed in Fig. 13, the
regions and critical features contributing to fatigue failure in each
specimen are identified. Samples 1 and 5 (Fig. 13) exhibit spherical
keyhole pores (marked with yellow arrows) and large areas of mostly
smooth transgranular crack growth (highlighted with yellow ovals).
These especially smooth transgranular crack growth regions contrast
with the more stereotypical transgranular crack growth extending from
the nucleation site and are understood to be locally vulnerable crystal-
lographic orientations in especially large grains with slip planes easily
activatable by the loading of the samples. The pores present in close
proximity to these very flat and angular regions of transgranular crack
indicate that crystallographic microstructure and porous microstructure
in these specimens contribute to the fatigue behavior. In Samples 3 and
4, which have the shortest fatigue lives, the fracture surfaces contain
multiple large pores in close proximity and minimal regions of smooth
transgranular crack growth. In these samples large keyhole pores near
the surface and in close proximity to one another appear to be respon-
sible for the decremented fatigue live. In the fracture surface of Sample
2, there is a ridgelike feature separating the regions shown by the solid
and dashed outlines. This feature indicates that there are cracks growing
from separate nucleation sites that grow into each other. This type of
competitive growth ends up resulting in a longer fatigue life for Sample
2. It can be seen in the upper region with the solid yellow outline there is
a region of smooth transgranular crack growth where cracks appear to
be initiating, whereas in the dashed yellow outline image, a pore can be
observed near the surface with cracks extending downwards from it. It is
the combination and competition between these crack nucleation sites
that likely provides the increased fatigue life in this specimen.

Through the SEM-based EBSD and microstructure analysis, and
further confirmed by the fractographic analysis, it is observed that small
keyhole porosities exist near the edges of all samples. Edges in this case
are defined as the regions in each sample where the laser tracks turn
around, which is known to form keyhole porosity, and where the

Fig. 11. Layer-wise surface roughness for all the monitored 43 layers across the five samples.

Table 1
Vickers hardness values with standard deviations and fatigue lives for all
samples.

Sample Vickers hardness [HV] Fatigue life [106 cycles]

1 491.3 ± 24.5 7.12
2 500.4 ± 11.4 9.30
3 482.8 ± 13.0 4.51
4 487.2 ± 15.1 4.00
5 490.2 ± 9.7 7.80
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contouring scan traces the outline of the sample geometry prior to
another layer of powder being spread. These porosities are observed to
be qualitatively consistent in size and frequency between all sectioned
samples and are thus not the cause of the differing fatigue behavior.
Quantitative X-ray computed tomography characterization was
attempted prior to testing but was unsuccessful in providing contrast
necessary to observe keyhole pores due to competing constraints

between the thickness of the specimen geometry, necessary voxel size,
and the difficulty in penetrating the IN718 microstructure.

The fractured samples and the sectioned fracture surfaces used in the
above analysis are shown in Fig. 14. The sample surfaces are all polished
up to 400 grit using SiC paper to a near mirror finish. The shiny nature of
this surface may appear to be discoloration in the upper image of Fig. 14
but is shown to be an artifact of the photography shown in the lower

Fig. 12. Stitched SEM fractography images of all samples with critical defect locations outlined and further detailed in Fig. 13.

Fig. 13. Higher magnification fractographic SEM images showing the fatigue critical features for each sample with outlines corresponding to where they exist in the
surfaces shown in Fig. 12.
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image where all sample surfaces are consistent in coloring and finish.
After the fatigue testing and post-mortem fractography, three por-

tions of the gage regions of each sample are mounted to show the
orthogonal orientations of the microstructure (XZ, YZ, and XY). All
sections are polished following the procedure discussed in Section 2.3
for EBSD analysis. For each sample, six IPF maps are taken from each
orientation. A single EBSD map from each orientation is shown in
Fig. 15. In all of the XZ and YZmaps, the build direction is positive in the
vertical direction, while for the XY maps the build direction is out of the
page. In a qualitative analysis of the microstructure of each of the
specimens, it can be readily observed that there are large grains
extending along the build direction due to the layer wise nature of this
LPBF process and the direction of heat flow into the build plate. From a
purely qualitative standpoint, there is no microstructural difference
readily observable between the different samples. As seen in Fig. 15,
there are similar amounts of texturing throughout XZ and YZ faces of all
samples with no preferential grain growth observed and likewise
observed when comparing all XY orientations. Given the difference in
fatigue life between Samples 2, 3, and 4, it is expected that there would
be a noticeable qualitative difference in the microstructure, but EBSD
characterization reveals that these microstructures appear to be very
similar. The only noticeable difference, which can likely be attributed to
the sectioning effect, is that the laser tracks are muchmore observable in
the XY orientation of Sample 2 than in any other sample. A rhombo-
hedral grid can be overlaid on this map showing the 67◦ rotation be-
tween layers which is not readily observable in any other sample.
Nevertheless, the EBSD images are explored further to extract some
quantitative measures of the microstructural texture features, as
described in the subsequent section.

3.4. Relationships among processing, microstructure, and fatigue life

To quantitatively compare the microstructures of the five samples,
the acquired IPF maps from each orientation are further processed by
using the ATEX software to measure grain properties including grain
area, grain size, and aspect ratio. The mean and standard deviation (Std)
of these microstructure features are presented in Table 2. Regarding the
mean and standard deviation metrics derived from the microstructure
characterizations, Sample 2 shows relatively smaller grain areas in XZ
and YZ plane as defined in Fig. 3. It should be noted that the scanning
angle in this printing experiment is 67◦, whichmeans that neither XZ nor
YZ plane captures the transverse section of the melt pool. However, the
grain viewed from both the XZ and YZ planes possess an aspect ratio
>1.0, as indicated in Table 2. This suggests that the grains formed are
primarily columnar due to anisotropic thermal gradients induced by
heat extraction (see Section 3.1.2). Sample 2 displays smallest or near
smallest grain area, size, and aspect ratio, suggesting a formation of
relatively equiaxed grains compared to other samples. This observation
provides a clear explanation for the fatigue testing results presented in
Table 1, where Sample 2 shows the longest fatigue life (9.30 million
cycles). In contrast, Sample 4 exhibits the highest values in most of the
grain metrics, signifying the formation of larger and more columnar-
shaped grains. This, in turn, elucidates why Sample 4 has the shortest
fatigue life (4.00 million cycles) among all the samples. In summary, the
quantitative microstructure metrics prove to be valuable in providing
accurate and consistent estimations of fatigue strength.

It is worth noting that while Sample 3 also exhibits a relatively
shorter fatigue life (4.50 million cycles), the microstructure character-
ization involves sampling six sections with polished surfaces from each
individual whole sample, and these sampled surfaces may not share the
same consistency. This phenomenon occurs because the thermal history
especially at different heights of the sample could vary significantly due
to heat accumulation during the manufacturing process.

Prior research on the effects of processing parameters on the
microstructure of LPBF-manufactured IN615 and investigations into the
relationship between MP temperatures and grain length for IN718
[37–39] have shown that as the energy density calculated from nominal
processing parameters increases, the resulting microstructure tends to
display longer grain lengths. With this insight, the ex-situ microstructure
characterization results, combined with the in-situ monitored melt pool
signatures, provide a comprehensive understanding of the different
mechanical properties exhibited by the five samples manufactured
under the same condition. As discussed in Section 3.1, the MP temper-
atures for Samples 3 and 4 are approximately 400 ◦C higher than those
of Samples 1, 2, and 5. When combining the in-situ observed higher MP
temperature with the other monitored signatures including larger MP
areas, higher counts of spatter ejections, and rougher layer surfaces in
Samples 3 and 4, it becomes obvious that these two samples appear
abnormal. These samples are confirmed to have lower fatigue lives
through our ex-situ testing. It can be concluded from the comprehensive
monitoring signatures that the process regime has shifted from the
default to keyholing for these two samples, resulting in relatively larger
and columnar grains with porosity. The final fatigue lives characterized
are results of the combination of microstructure and near-surface
porosity. This comprehensive analysis of the interplay between pro-
cess dynamics, microstructure, and mechanical properties underscores
the distinct advantage of possessing multimodal process monitoring
capability to evaluate mechanical properties without resorting to
expensive and destructive testing methods.

3.5. Correlating melt pool, spatter, and layer surface features with fatigue
life

To quantify the LPBF process-property relationship, the averages of
each in-situ monitored signature for each sample were summarized as
shown in Table 3. The reason average signatures are selected in this case

Fig. 14. Image showing all fractured samples with the locations of the fatigue
failures (upper) and image showing the sectioned fracture surface used in
fractography, along with the polished surface finish of all specimens (lower).
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Fig. 15. Compilation of EBSD IPF maps of the XZ, YZ, and XY orientations for each of the fatigue samples.
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is that it is more representative of the dynamic printing process whereas
maximum andminimum are sensitive to noises and outliers. The support
vector machine (SVM) regression models are trained to fit the in-situ
monitored process signatures to predict the fatigue lives of the

manufactured samples. Details of SVM implementation are included in
Appendix C. Linear kernel is used as the kernel function to provide a
direct measure of feature importance [40]. A total of six models are
constructed, each utilizing different combinations of input features. The

Table 2
Mean and standard deviation (Std) of the characterized grain metrics from IPF maps. The maximum
and minimum values for each attribute are highlighted with red and blue colors, respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Mean Std Mean Std Mean Std Mean Std Mean Std

Grain 
Area XY 282.97 699.93 280.25 697.64 220.75 594.29 317.00 787.96 251.85 676.17

Grain 
Area XZ 438.03 1625.3 199.55 671.92 411.01 1230.7 555.11 2075.2 555.11 2075.0

Grain 
Area YZ 387.72 1359.5 356.68 1036.7 412.08 1282.5 464.85 1719.7 360.67 1355.9

Grain 
Size
XY 

13.52 13.32 12.72 13.96 11.65 12.06 13.87 14.54 12.81 12.52

Grain 
Size

XZ
18.39 14.81 11.45 11.09 17.37 14.89 20.59 16.82 17.84 14.20

Grain 
Size
YZ 

13.79 17.42 14.59 15.53 14.88 17.42 15.74 18.55 13.16 16.91

Aspect 
Ratio 
XY

0.96 2.069 0.89 1.99 0.99 2.07 0.93 2.08 1.05 2.12

Aspect 
Ratio XZ 1.74 2.85 1.36 2.38 1.54 2.69 1.78 2.96 1.86 2.92

Aspect 
Ratio YZ 1.69 2.70 1.60 2.70 1.54 2.63 1.85 3.02 1.90 2.89

Table 3
Summary of the input features and output responses (shaded) in process-property correlation modeling. Each
input feature is the average of each monitored signature per sample. The average is calculated as the mean of
each individual signature across all the monitored layers.

M
el

t p
oo

l 
te

m
pe

ra
tu

re
 (

)

M
el

t p
oo

l 
in

te
ns

ity
 (a

u)

M
el

t p
oo

l a
re

a 
(

)

Sp
at

te
r 

C
ou

nt

Su
rf

ac
e 

R
ou

gh
ne

ss
 (

)
C

ou
nt

 o
f 

A
bn

or
m

al
 

Su
rf

ac
e 

Fe
at

ur
es

Fa
tig

ue
 L

ife
 

(c
yc

le
)

H
ar

dn
es

s

Sample 
1 2725.5 3205.5 0.0306 31.30 34.36 3.22 6.0 21.97 394e3 7.12e6 491.3
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2 2824.5 3204.6 0.0312 43.53 39.53 2.89 5. 7 21.94 570e3 9.30e6 500.4 

Sample 
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Sample 
5 2806.4 3197.9 0.0310 46.29 49.77 4.87 5.9 24.31 772e3 7.80e6 490.2
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selection of features for each model is based on the specific monitoring
system used to acquire these features. Generally, the monitoring systems
can be categorized into four groups.

1. The conventional coaxial camera monitoring such as infrared camera
and optical tomography (Models 1 and 2), which is designed to
monitor MP intensity and area.

2. The coaxial imaging pyrometer such as our STWIP (Models 3 and 4),
which monitors not only the MP area and intensity profile but also
the absolute temperature profile and thermal gradients as reported in
Section 3.1.

3. The third monitoring system includes the off-axis high-speed camera
for spatter ejection monitoring and the FPP system for layer-wise
surface topography measurement (Model 5).

4. The last model (Model 6) integrates all the features monitored
through all three monitoring system modalities.

Prior to training, all input features and predictors are normalized to
the same scale using z-score normalization. To prevent overfitting, K-
fold cross-validation is applied to the training dataset. Given the limited
dataset size with five samples, K in this context equals 5. This means the
model is trained on 4 samples and validated on 1 sample during each
iteration. All the models are coded and implemented using MATLAB,
with the random seed for training set sampling fixed to ensure the
reproducibility of identical results.

Table 4 shows a comparison of the trained models with mean
squared error (MSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) to assess the model’s performance. Among the
models, Model 6, trained using all of nine process signatures monitored
by the three systems, achieves the best performance in predicting fatigue
life with a MAPE of 15.00 %. Additionally, Model 5, utilizing only
spatter and in-process layer surface features, outperforms Model 1,
which represents traditional methods using melt pool imaging intensity
features as inputs, but it slightly underperforms Model 2, representing
some other traditional methods that combine melt pool imaging

intensity and melt pool area. These findings vividly illustrate the pivotal
importance of integrating multimodal sensing data in LPBF process-
property correlation modeling.

Furthermore, Model 3 and Model 4, trained using signatures derived
from our STWIP data, exhibit superior performance in terms of all
defined metrics (MSE, MAE, and MAPE) when compared to both tradi-
tional models - Models 1 and 2, which are trained using signatures from
traditional coaxial camera monitoring. Notably, Model 4, which in-
corporates the melt pool surface temperature gradients, ranks as the
second-best performing model among all the models. This highlights the
significance of being able to measure absolute temperature and, conse-
quently, calculate thermal gradients in enhancing the accuracy of fa-
tigue life estimation. As discussed in Section 3.4, the fatigue lives of
manufactured samples are influenced by both porosity and microstruc-
ture differences resulting from process variations. The melt pool tem-
perature and thermal gradients monitored through coaxial imaging
pyrometer, particularly in this case of using the STWIP, effectively
reflect processing variation and provide better insights into mechanical
properties.

In addition to comparing the feature contributions through training
various models, the feature importance of the input signatures is eval-
uated by extracting the weight coefficients from Model 6 trained with
linear kernel. As presented in Fig. 16, the top three most important
features obtained from Model 6 are spatter count, thermal gradient in y
direction, and MP intensity. This indicates that the spatter count carries
the most significant weight as the dominant input feature in the
regression model. Moreover, the thermal gradient in y direction stands
out as the second most crucial factor highly correlated to the fatigue
lives of LPBF-manufactured samples.

It is important to note that this feature importance study may not
provide an entirely accurate reflection of the contributions of different
input features due to the limited training data size which restricts the
generalizability. However, by combining the results from feature
removal/addition, as shown in Table 4, with the estimated feature
importance depicted in Fig. 16, we can develop a clear and

Table 4
Comparison of Support Vector Model (linear kernel) with different input combinations for predicting fatigue
life. The best-performed model is highlighted in green, while the worst-performed model with the worst
performance is highlighted in red.

Monitoring 
System

RMSE (cycle) MAE (cycle) MAPE (%)

Model 1 
(melt pool intensity)

Conventional 

coaxial camera
1.618e6 1.506e6 27.45

Model 2 (melt pool
intensity, melt pool 

area)

Conventional 

coaxial camera

1.608e6 1.367e6 22.99

Model 3 (melt pool
temperature)

Coaxial imaging

pyrometer

(STWIP)

1.568e6 1.444e6 22.65

Model 4 (melt pool 
temperature, melt 

pool area, melt pool 
gradients)

Coaxial imaging 

pyrometer 

(STWIP)

1.434e6 1.313e6 20.44

Model 5 (melt pool 
spatter, in-process 

layer surface 
roughness)

off-axis camera, 

and FPP 

1.544e6 1.408e6 23.38

Model 6 (all 9 input 
features)

Coaxial imaging 

pyrometer 

(STWIP)FPP, 

and off-axis 

camera

1.153e6 9.528e5 15.00
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comprehensive understanding of the correlations between in-situ
monitored signatures and fatigue lives. Overall, the fatigue life predic-
tion model performs better when a broad range of signatures is used as
inputs, emphasizing the critical role of multimodal sensing data fusion in
comprehending the correlation between the LPBF process and
properties.

3.6. Correlating melt pool, spatter, and layer surface features with
hardness

Six SVM regression models, similar to those developed in Section 3.5
for fatigue life prediction, are trained to correlate the in-situ monitored
process signatures with the Vickers hardness. Same kernel function and
dataset split strategy are implemented to train the hardness correlation
models. The six trained models are also categorized based on the
monitoring systems deployed for data acquisition in the same way as in
Section 3.5. A comparison of these hardness models is shown in Table 5.

Model 4, trained using MP temperature, area, and surface temperature
gradients, reaches the best performance in predicting HV with a MAPE
of 0.81 %. On the other hand, Model 5, which is trained using spatter
count and surface roughness, has the highest MAPE of 1.05 %. Overall,
all the input signatures monitored can be highly correlated and reach
better performance in predicting hardness (≤1 % MAPE) compared to
the fatigue life models in previous section (~20 % MAPE). This is
potentially due to that the difference in fatigue life across the samples is
up to a factor of two, which is significantly larger than the percentage
difference in the monitored signatures across the samples (~13 %), as
shown in Table 3. Moreover, limited samples and cross-validation set-
tings lead to a relatively large error.

Feature importance analysis for the hardness prediction models was
also conducted using the coefficients of the kernel function. As presented
in Fig. 17, the top three most important features for the HV prediction
model are temperature gradient in y direction, count of abnormal in-
process layer surface features, and temperature gradient in x direction.

Fig. 16. Feature importance of all the inputs used in fatigue life prediction models.

Table 5
Comparison of Support Vector Model (linear kernel) with different input combinations for predicting Vickers
Hardness: the best-performed model is highlighted in green, while the worst-performed model with the worst
performance is highlighted in red.

Monitoring 
System

RMSE MAE MAPE (%)

Model 1 
(melt pool intensity)

Conventional 

coaxial camera

4.3 2.7 0.55

Model 2 (melt pool 
intensity, melt pool 

area)

Conventional 

coaxial camera

5.0 3.3 0.68

Model 3 (melt pool 
temperature)

Coaxial imaging 

pyrometer 

(STWIP)

4.9 3.9 0.78

Model 4 (melt pool 
temperature, melt 

pool area, melt pool 
gradients)

Coaxial imaging 

pyrometer 

(STWIP)

4.0 2.5 0.51

Model 5 (melt pool 
spatter, in-process 

layer surface 
roughness)

off-axis camera, 

and FPP 
6.5 5.2 1.05

Model 6 (all 9 input 
features)

Coaxial imaging 

pyrometer 

(STWIP), FPP, 

and off-axis 

camera

5.4 3.9 0.78
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It is evident that temperature gradients are especially important in both
the hardness and fatigue life prediction models. Furthermore, it high-
lights that the concurrent monitoring of both melt pools and in-process
layer surfaces greatly enhances the accuracy of hardness prediction. This
once again demonstrates the importance of multimodal multi-sensor
monitoring in LPBF for a more accurate modeling of process-property
relationships.

As a summary, the regression analyses above effectively demonstrate
that in-situ monitored signatures can be significantly correlated with ex-
situ properties such as fatigue life and hardness value. Furthermore, the
investigation of feature importance and model training with input
ablation reveals signatures related to MP temperature, as monitored
through coaxial imaging pyrometer (STWIP in this work), play a crucial
role capturing process deviations and identifying differences in resulting
mechanical properties across various LPBF processes. This holds true
even for processes using the same nominal machine setup and process-
ing parameters.

4. Conclusions

This research has explored the potential of using in-situ multi-sensor
monitoring system to evaluate microstructure and mechanical proper-
ties of as-built parts in LPBF. It has demonstrated a framework towards
comprehensively evaluating multi-level multimodality process dy-
namics, microstructure features, and mechanical properties, and estab-
lishing their correlations in laser powder bed fusion. The contributions
of this work can be summarized as follows:

1. The research has demonstrated a unique in-situ multi-sensor moni-
toring system andmethods, including the coaxial high-speed (30,000
fps) Single Camera Two-wavelength Imaging Pyrometry (STWIP),
off-axis camera-based (1000 fps) laser scan and spatter tracking, and
Fringe Projection Profilometry (FPP). These methods provide
comprehensive measurements of MP intensity, temperature, area,
and temperature gradient, spatter count, in-process layer surface
roughness, and abnormal layer surface feature count. The system
successfully monitored an unprecedented number of layers (43
layers by STWIP, off-axis camera, and FPP) during LPBF experiments
of five practical-size fatigue specimens and generated a large amount
of multi-sensor data.

2. Experimental results have shown that even under identical process-
ing conditions (default parameters for In718), the actual process,
microstructure, and mechanical properties of the samples can vary
significantly. All the in-situ monitored signatures listed above
exhibited vivid variations, reflecting both stochastic disturbances
and systematic deviations in the process. Ex-situ tested properties
also displayed differences related to the process variations, with
variations in grain sizes, areas, aspect ratios, fatigue life (by a factor

up to 2), and hardness values (with an absolute difference of ~10)
among the samples.

3. Relationships between the process signatures and outcomes were
investigated. In particular, larger MP temperatures and areas, higher
counts of spatter ejections, and rougher layer surfaces observed
during the printing of Sample 4 align well with its larger and more
columnar-shaped grains as well as its lower fatigue lives.

4. Various regression models were trained and compared to quantita-
tively evaluate the relationships between the LPBF process and me-
chanical properties. The best-performing models achieved accurate
predictions of fatigue life and Vickers hardness, with mean absolute
percentage errors of 15 % and 0.51 %, respectively. Melt pool
temperature-related features were found to be dominant and can
enhance the prediction of mechanical properties, especially when
combined with layer surface and/or spatter surface properties.

In summary, this work provides a deeper and more comprehensive
understanding of the intricate relationship between multi-level process
dynamics, microstructure, and mechanical properties. It emphasizes the
significant advantage of having multimodal process monitoring capa-
bilities, enabling the accurate evaluation of microstructural and me-
chanical properties without the need for costly and destructive testing
methods. With an effective multimodal monitoring system, accurate
process dynamics can be captured, revealing direct correlations between
processing and properties. Furthermore, this work highlights the value
of deriving and combining physically meaningful quantities, particu-
larly the measurement of the absolute temperature of melt pools, spatter
count, and in-process layer surface roughness, as pivotal factors in
predicting part properties. These approaches have proven to be more
advantageous than traditional monitoring methods that rely on image
intensity-based features. The demonstrated framework of multi-sensor
in-situ monitoring and multimodal features fusion will significantly
contribute to a comprehensive understanding and closed-loop control of
LPBF processes. This approach is crucial for realizing the full potential of
LPBF-based additive manufacturing when it comes to producing
advanced materials and components with the desired performance
characteristics, particularly concerning mechanical strength. Future
works include testing the generalizability of the framework on different
materials and across different processing parameters. Furthermore,
works on incorporating the proposed multimodality melt pool moni-
toring feedback to control the manufacturing process will be performed.
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Appendix A. In-situ fringe projection profilometry

A.1. Three-step phase shifting algorithm and phase to height calibration

The three-step phase shifting method is performed by projecting three sinusoidal patterns to the build area during the printing with phase shift of
0 π, 23 π, and 4

3 π. The three-step phase shifting algorithm is used to compute the wrapped phase value.

I(x, y) = B(x, y) +M(x, y)cos(ϕ(x, y) + δ ) (A.1-1)

ICalibrated =
ICamera
Cxy

, Cxy =
ICamera

IProjected
(A.1-2)

ϕ(x, y) = arctan

⎛

⎜
⎜
⎜
⎝

−
∑N

i−1
ICalibratedi (x, y)sin(δi)

∑N

i−1
ICalibratedi (x, y)cos(δi)

⎞

⎟
⎟
⎟
⎠

(A.1-3)

Shown in Eq. (A.1-1), the camera captured intensity at the given pixel location x and y (I(x, y)) is the function of ambient background intensity B,
projector bias M, and wrapped phase value ϕ. δ is the phase shift of the projected pattern. For FPP system, one major phase error source is from the
camera and projector nonlinearity. To account for the nonlinearity between the projected intensity and camera captured intensity, the correction
factor Cxy is implemented as presented in Eq. (A.1-2). The value of Cxy is determined empirically by projecting 20 even-spaced different grayscale
intensities from 0 to 255. The two-dimensional Fast Fourier Transform (2D FFT) filter is used to reduce the phase jump error after phase unwrapping
stage. In this work, the linear model is used to calibrate the unwrapped phase to height relation [35,41].

A.2. Phase unwrapping, filtering, and final surface topography

The manual 2D FFT filter is designed to reduce the phase jump error introduced during the phase-unwrapping stage. Shown in Fig. A-1(c), the
resulting fused part relative to the powder surface is negative, and the stripe overlapping region presents the relative deeper height value (≤ −50 μm)
due to the nominal setting of 80 μm stripe overlapping introducing local heat accumulation. From the height map, the areal surface roughness (Sa),
which is the arithmetic mean of the surface deviation from main profile, can be computed as the signature or representation of the layer-wise surface
quality.
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Fig. A-1. The application of 2-dimensional Fast Fourier Transform for surface topography filtering. (a) Unwrapped phase map; (b) transformed spectral magnitude
diagram, and the filter is applied to the black masked region; (c) final surface topography.

Appendix B. Unsupervised learning of in-process layer surface topography measurement

In our initial study that aimed to remove the need for effort-taking manual labeling, an unsupervised learning approach was explored, which can
automatically categorize pixels from the FPP measured surface topography.

The acquired surface topography is filtered through average pooling followed by the K-means clustering algorithm for detection of local rough
pixels. A post-processing check is applied to ensure that the pixels with irregular surface height value (rough feature) are consistent across layers. This
automated process allows for rapid data analysis of the 5 fatigue bars. In this case, a simple count of positive rough pixels for each bar is performed.
The representative workflow to process layer 14 is shown in Fig. B-1.

Fig. B-1. Feature extraction example for Layer 14 via K-means classification.

As shown in Fig. B-2, the irregular pixels clustered from the k-means algorithm are counted, providing a metric of “Abnormal Surface Feature
Count”. This metric is correlated with both hardness and high cycle fatigue life which indicates the close correlation between the surface features
extracted to the ex-situ characterized mechanical properties. With more abnormal surface features presented in a sample, mechanical properties
including hardness and fatigue life degrade correspondingly.
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Fig. B-2. Abnormal surface features for the five samples and their correlations to mechanical properties. (a) Abnormal surface feature count for all five samples (b)
abnormal surface feature count versus Vickers hardness (c) abnormal surface feature count versus fatigue life.

Appendix C. Support vector machine regression model

Support vector machine (SVM) is the machine learning algorithm for classification or regression [42,43]. For classification task, the algorithm
searches for the optimal hyperplane which maximizes the margin between classes. When performing regression task, the algorithm finds the hy-
perplane which best fits all the training data.

Specifically, epsilon insensitive SVM (ε-SVM) is implemented in this work through MATLAB statistics and machine learning toolbox. For SVM
regression model, the problem is formulated as the optimization problem which a function f with optimized weights β and bias b is trained to fit all the
training data points x.

f(x) = βx+ b (C.1-1)

Since the function should be as flat as possible, a convex optimization problem for the weight coefficients β can be formulated by minimizing its
norms as:

J(β) =
1
2

βTβ (C.1-2)

The optimization function f is subjected to the L1 residual (ε) loss function.

|yn − (βx+ b) | ≤ ε, ∀n training data 1…n (C.1-3)

The specific algorithm is epsilon insensitive which means that all the residual losses less than ε are ignored which is formally represented as:

Lε =

{
0, if |y − (βx + b) | ≤ ε

|y − (βx + b) | − ε, otherwise (C.1-3)

The optimization problem is solved to find the best fit function for the regression task.

H. Zhang et al.



Journal of Manufacturing Processes 127 (2024) 511–530

530

References

[1] DebRoy T, et al. Scientific, technological and economic issues in metal printing and
their solutions. Nat Mater 2019;18(10):1026–32.

[2] Blakey-Milner B, et al. Metal additive manufacturing in aerospace: a review.
Materials & Design 2021;209:110008.

[3] Gibson, vol. I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies:
3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. 2014:
Springer-Verlag New York. vol. XXI, 498.

[4] Ramachandiran N, et al. Effects of post heat treatment on microstructure and
mechanical properties of Ti5553 parts made by laser powder bed fusion. J Alloys
Compd 2023;938.

[5] Leicht A, et al. Effect of process parameters on the microstructure, tensile strength
and productivity of 316L parts produced by laser powder bed fusion. Mater Charact
2020;159.

[6] Sehhat MH, et al. Investigation of mechanical properties of parts fabricated with
gas- and water-atomized 304L stainless steel powder in the laser powder bed fusion
process. Jom 2021;74(3):1088–95.

[7] Gallmeyer TG, et al. Knowledge of process-structure-property relationships to
engineer better heat treatments for laser powder bed fusion additive manufactured
Inconel 718. Addit Manuf 2020:31.

[8] Ronneberg T, Davies CM, Hooper PA. Revealing relationships between porosity,
microstructure and mechanical properties of laser powder bed fusion 316L
stainless steel through heat treatment. Materials & Design 2020;189.

[9] Gordon JV, et al. Defect structure process maps for laser powder bed fusion
additive manufacturing. Addit Manuf 2020;36:101552.

[10] Khairallah SA, et al. Laser powder-bed fusion additive manufacturing: physics of
complex melt flow and formation mechanisms of pores, spatter, and denudation
zones. Acta Mater 2016;108:36–45.

[11] Martin AA, et al. Ultrafast dynamics of laser-metal interactions in additive
manufacturing alloys captured by in situ X-ray imaging. Materials Today. Advances
2019:1.

[12] Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive
manufacturing of Ni-based superalloys: a review of heterogeneities in
microstructure and mechanical properties. Materials & Design 2022;223:111245.

[13] King WE, et al. Laser powder bed fusion additive manufacturing of metals; physics,
computational, and materials challenges. Applied. Phys Ther Rev 2015;2(4).

[14] Zhang Q, et al. Estimates of the mechanical properties of laser powder bed fusion
Ti-6Al-4V parts using finite element models. Materials & Design 2019;169.

[15] Reijonen J, et al. Cross-testing laser powder bed fusion production machines and
powders: variability in mechanical properties of heat-treated 316L stainless steel.
Materials & Design 2021;204.

[16] Heckman NM, et al. Automated high-throughput tensile testing reveals stochastic
process parameter sensitivity. Mater Sci Eng A 2020;772.

[17] Sing SL, et al. Perspectives of using machine learning in laser powder bed fusion for
metal additive manufacturing. Virtual and Physical Prototyping 2021;16(3):
372–86.

[18] Bevans B, et al. Heterogeneous sensor data fusion for multiscale, shape agnostic
flaw detection in laser powder bed fusion additive manufacturing. Virtual and
Physical Prototyping 2023;18(1):e2196266.

[19] Ren Z, et al. Machine learning–aided real-time detection of keyhole pore
generation in laser powder bed fusion. Science 2023;379(6627):89–94.

[20] Scime L, Beuth J. Anomaly detection and classification in a laser powder bed
additive manufacturing process using a trained computer vision algorithm. Addit
Manuf 2018;19:114–26.

[21] Liu Q, et al. Machine-learning assisted laser powder bed fusion process
optimization for AlSi10Mg: new microstructure description indices and fracture
mechanisms. Acta Mater 2020;201:316–28.

[22] Moorthy S. Modeling and characterization of mechanical properties in laser
powder bed fusion additive manufactured Inconel 718. In: Mechanical engineering.
Colorado School of Mines; 2018.

[23] Kappes, B., et al., Machine learning to optimize additive manufacturing parameters
for laser powder bed fusion of Inconel 718, in Proceedings of the 9th International
Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial
Applications. 2018. p. 595–610.

[24] Liu S, et al. Machine learning for knowledge transfer across multiple metals
additive manufacturing printers. Addit Manuf 2021:39.

[25] Gaikwad A, et al. Multi phenomena melt Pool sensor data fusion for enhanced
process monitoring of laser powder bed fusion additive manufacturing. Materials &
Design 2022;221:110919.

[26] Snow Z, et al. Toward in-situ flaw detection in laser powder bed fusion additive
manufacturing through layerwise imagery and machine learning. Journal of
Manufacturing Systems 2021;59:12–26.

[27] Feng S, et al. Predicting laser powder bed fusion defects through in-process
monitoring data and machine learning. Materials & Design 2022;222.

[28] Gaikwad A, et al. Heterogeneous sensing and scientific machine learning for
quality assurance in laser powder bed fusion – a single-track study. Addit Manuf
2020;36:101659.

[29] Elangeswaran C, et al. Predicting fatigue life of metal LPBF components by
combining a large fatigue database for different sample conditions with novel
simulation strategies. Addit Manuf 2022;50:102570.

[30] Zhang M, et al. High cycle fatigue life prediction of laser additive manufactured
stainless steel: a machine learning approach. International Journal of Fatigue 2019;
128:105194.

[31] Vallabh CKP, Zhao X. Continuous comprehensive monitoring of melt pool
morphology under realistic printing scenarios with laser powder bed fusion. 3D
Printing and Additive Manufacturing 2021. https://doi.org/10.1089/
3dp.2021.0060.

[32] Vallabh CKP, Zhao X. Melt pool temperature measurement and monitoring during
laser powder bed fusion based additive manufacturing via single-camera two-
wavelength imaging pyrometry (STWIP). Journal of Manufacturing Processes
2022;79:486–500.

[33] Zhang H, Vallabh CKP, Zhao X. Registration and fusion of large-scale melt pool
temperature and morphology monitoring data demonstrated for surface
topography prediction in LPBF. Addit Manuf 2022;58:103075.

[34] Zhang H, Vallabh CKP, Zhao X. Influence of spattering on in-process layer surface
roughness during laser powder bed fusion. Journal of Manufacturing Processes
2023;104:289–306.

[35] Zhang H, et al. A systematic study and framework of fringe projection profilometry
with improved measurement performance for in-situ LPBF process monitoring.
Measurement 2022;191:110796.

[36] Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information
Theory 1982;28(2):129–37.

[37] Vallabh CKP, et al. Predicting melt pool depth and grain length using multiple
signatures from in-situ single camera two-wavelength imaging pyrometry for laser
powder bed fusion. J Mater Process Technol 2022;308:117724.

[38] Arısoy YM, et al. Influence of scan strategy and process parameters on
microstructure and its optimization in additively manufactured nickel alloy 625 via
laser powder bed fusion. The International Journal of Advanced Manufacturing
Technology 2017;90(5):1393–417.

[39] Farshidianfar MH, Khajepour A, Gerlich AP. Effect of real-time cooling rate on
microstructure in Laser Additive Manufacturing. J Mater Process Technol 2016;
231:468–78.

[40] Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20(3):
273–97.

[41] Zhang H, Prasad Vallabh CK, Zhao X. Machine learning enhanced high dynamic
range fringe projection profilometry for in-situ layer-wise surface topography
measurement during LPBF additive manufacturing. Precision Engineering 2023;84:
1–14.

[42] Vapnik V. The nature of statistical learning theory. Springer Science & Business
Media; 2013.

[43] Platt J. Sequential minimal optimization: a fast algorithm for training support
vector machines. 1998.

H. Zhang et al.

http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0005
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0005
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0010
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0010
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0015
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0015
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0015
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0020
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0020
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0020
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0025
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0025
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0025
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0030
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0030
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0030
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0035
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0035
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0035
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0040
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0040
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0045
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0045
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0045
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0050
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0050
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0050
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0055
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0055
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0055
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0060
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0060
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0065
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0065
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0070
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0070
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0070
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0075
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0075
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0080
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0080
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0080
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0085
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0085
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0085
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0090
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0090
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0095
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0095
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0095
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0100
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0100
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0100
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0105
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0105
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0105
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0110
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0110
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0115
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0115
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0115
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0120
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0120
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0120
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0125
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0125
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0130
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0130
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0130
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0135
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0135
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0135
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0140
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0140
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0140
https://doi.org/10.1089/3dp.2021.0060
https://doi.org/10.1089/3dp.2021.0060
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0150
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0150
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0150
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0150
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0155
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0155
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0155
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0160
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0160
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0160
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0165
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0165
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0165
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0170
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0170
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0175
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0175
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0175
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0180
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0180
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0180
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0180
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0185
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0185
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0185
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0190
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0190
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0195
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0195
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0195
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0195
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0200
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0200
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0205
http://refhub.elsevier.com/S1526-6125(24)00811-9/rf0205

	Evaluating and correlating multimodal process dynamics, microstructure features, and mechanical properties in laser powder  ...
	1 Introduction
	2 Materials and methods
	2.1 LPBF experiment: sample printing and process monitoring
	2.2 In-situ multi-sensor multimodality process monitoring
	2.2.1 Single-camera two-wavelength imaging pyrometry for high-speed co-axial monitoring of melt pool temperature and morphology
	2.2.2 Melt pool registration and spatter monitoring via an off-axis camera
	2.2.3 In-situ fringe projection profilometry

	2.3 Sample preparation, testing, and characterization
	2.3.1 Sample heat treatment procedure
	2.3.2 High cycle fatigue testing and fatigue fracture characterization
	2.3.3 Microstructure characterization
	2.3.4 Hardness testing


	3 Results and discussions
	3.1 Multimodality melt pool properties obtained from our unique concurrent in-situ STWIP and off-axis camera monitoring systems
	3.1.1 Melt pool surface temperature and geometrical properties
	3.1.2 Melt pool surface temperature gradient
	3.1.3 Melt pool spatter quantification

	3.2 In-process layer surface topography measured by our in-situ FPP
	3.3 Ex-situ testing and characterization results
	3.4 Relationships among processing, microstructure, and fatigue life
	3.5 Correlating melt pool, spatter, and layer surface features with fatigue life
	3.6 Correlating melt pool, spatter, and layer surface features with hardness

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Funding

	Appendix A In-situ fringe projection profilometry
	A.1 Three-step phase shifting algorithm and phase to height calibration
	A.2 Phase unwrapping, filtering, and final surface topography

	Appendix B Unsupervised learning of in-process layer surface topography measurement
	Appendix C Support vector machine regression model
	References


