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Abstract

For odd primes ¢ and number fields k, we study the asymptotic distribution of number
fields L/k given as a tower of relative cyclic Cy-extensions L/F'/k using the idélic approach
of class field theory. This involves a classification for the Galois group of L/k based on
local conditions on L/F and F/k, and an extension of the method of Wright in enumerating
abelian extensions. We call the possible Galois groups for these extensions generalized and
twisted Heisenberg groups. We then prove the strong Malle—conjecture for all these groups
in their representation on ¢2 points.
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1 Introduction

Let G < S, be a finite transitive permutation group and k£ be a number field. We say that
a finite extension L/k with [L : k] = n has Galois group G = Gal(L/k) if the normal closure L
has Galois group G as an abstract group, and the permutation action of G on the n embeddings
of L into the algebraic closure k is isomorphic to G as a permutation group.

We define N (G, X) to be the number of isomorphism classes of extensions L/k inside some
fixed algebraic closure of k with Gal(L/k) = G and norm of the discriminant Disc(L/k) =
N s0(dr /i) bounded above by X. Gunter Malle has proposed a precise conjecture about the
asymptotic behavior of the function Ny (G, X) for X — cc.

Conjecture 1 ([24, 25]). For all number fields k and all transitive permutation groups G < S,
there exists a constant ¢(G, k) > 0 such that

Ni(G, X) ~ c(k, G)xl/a(G) log(x)b(cvk)*l’
where a(G) and b(G, k) are both positive integers depending on k and G.

In this conjecture, Malle also gives a precise prediction for a(G) and b(k, G) [24, 25]. Please
see Section 2.2 for a detailed introduction of those constants.

Malle’s conjecture has been proven for abelian extensions over Q [23, 35]. For non-abelian
groups, the first case is S3 cubic fields proved by Davenport and Heilbronn and by Datskovsky
and Wright over general number fields [14, 13]. Bhargava proved this conjecture for Sy quartic
fields and S5 quintic fields in his ground breaking work [7, 8]. Later this was generalized to
general base fields by Bhargava, Shankar and Wang [9]. Bhargava and Wood [10] and Belabas
and Fouvry [6] independently proved the conjecture for S3 sextic fields. The case of D, quartic



fields is proved by Cohen, Diaz y Diaz and Olivier [12]. It was generalized by Kliiners to wreath
products of the form Cs? H [18] under mild conditions on H. Masri, Thorne, Tsai and Wang
[32, 26] proved this conjecture for groups of the form of S, x A for abelian groups A and
n = 3,4,5. Recent work of Fouvry and Koymans proves this conjecture for nonic Heisenberg
extensions [15]. Koymans and Pagano [22] prove the conjecture for a family of Galois nilpotent
extensions where the minimal index elements (see Section 2.2 for the definition) are central.

We also mention that there have been series of papers on proving the a(G)-constant in
Conjecture 1, see e.g. [20, 1, 21, 19, 22|, and variations of field counting questions for more
general invariants [5, 34]. Kliiners [17] has observed that the predicted b(G, k)-constant is not
correct in general.

In this paper, our main goal is to prove Conjecture 1 for Galois groups that we call generalized
Heisenberg group H(¢,d) and twisted Heisenberg group fI(E, d), see Section 2.1 for more details.

Theorem 1.1. Let ¢ be an odd prime number and k be an arbitrary number field. Conjecture 1
is true for G = H(¢,d) < Spz and G = H({,d) < Sp2 for every 1 < d < L.

The groups H (¢, d) and H((,d) for 1 < d < ¢ are exactly the possible Galois groups Gal(L/k)
when L/F is a relative Cy-extension over a Cyp-extension F'/k. Theorem 1.1 covers all cases when
Gal(L/k) is not the direct product Cy x Cy, the abelian group Cy2 and the wreath product Cy2Cy
(which are H(¢,1), H(¢,1) and H(£,£) in our classification). In particular, all cases addressed
in Theorem 1.1 are not Galois. We remark that the degree 9 Heisenberg group, H(3,2) < Sy, is
also proved in [15] for k = Q, but with a different approach from ours. They also compute the
constant ¢(G, Q) and also they prove their result with an explicit error term.

We now give a brief introduction of the ideas of the proof of Theorem 1.1. Given a fixed
Cy-extension F'/k, Theorem 3.6 gives an if-and-only-if criterion determining Gal(L/k) for a Cj-
extension L/F, based on finitely many local conditions for L/F. In the proof, firstly, we study
all continuous homomorphisms p from the idéle class group Cr to Cy as an Fy[Gal(F'/k)]-module
and prove that for each such p, its F;[Gal(F/k)]-module structure is completely determined by
its completions py : H‘mp Fsg — CYy for finitely many p. This will determine the parameter d

in H(¢,d) or H(¢,d) for Gal(L/k). Secondly, we consider the difference of group structures of
H(¢,d) and H(¢,d) (split or not as a group extension) to further pin down Gal(L/k) via studying
pp where p is an inert prime in F//k. Combining the two inputs, we write down a generating
series for all Cy-extensions L/F with a given Gal(L/k) for a fixed F/k.

Analytically, for a given (twisted) Heisenberg group, we first count in Theorem 4.5 the number
of extensions L/k containing a fixed intermediate field F'/k via studying the analytic behavior of
the generating series of p with a particular F,[Gal(F/k)]-module structure, see Section 4. This
method is inspired by and extends the techniques of Wright-Wood [35, 34] on counting abelian
extensions, where the generating series of p : Cp — C, was studied but without constraints on
the Fy[Gal(F'/k)]-module structure of p. This allows us to compare our generating series with
some Hecke L-functions and therefore we can study its right-most poles. Finally, we sum over
all Cyp-extensions F/k. This method of summation closely follows the ideas in [29]. At the same
time, a forthcoming work [4] of the second author and Alberts, Lemke Oliver and Wood will
apply this idea to give the asymptotic distribution for more general family of groups.

We mention that Theorem 4.5 can also be treated by other methods. A similar generating
series is also essentially studied in the appendix of [2], using an approach suggested by Wood. For
this special case, we adopt a different way to control the total Galois groups. Given Proposition
4.4, Theorem 4.5 also follows from [2, 3], which answers this question for more general family
of groups up to an existence result. See also [30, 31] on similar questions for other small degree



groups with more explicit results.

The structure of this paper is as follows. In Section 2, we first define and describe the
generalized and twisted Heisenberg groups in Section 2.1, and then determine the constants
a(G) and b(G, k) in Section 2.2. In Section 3, we study class field theory and classify Gal(L/k)
based on the local information of p : Cp — Cy. In Section 4, we first study the generating series
of all L/F with a given Gal(L/k) for a fixed Cy-extension F/k in Section 4.3 and 4.4, and finally
we complete the proof by a partial summation in Section 4.5.

2 Generalized Heisenberg Groups

2.1 Galois Groups of Relative /-Towers

In this section, we are aiming for a characterization for the Galois group we will consider in
this paper. Most results for small /-groups are standard, we only include the discussion for the
convenience of the reader and for the introduction of notation that we will also use in later parts
of the paper.

Given a base number field k, a Cy-extension F/k and another Cy-extension L/F, our goal is
to describe the Galois group Gal(L/k) as a permutation group. Firstly, from standard Galois
theory, the group Gal(L/k) can be embedded as a subgroup of Gal(L/F') Gal(F/k), in our
case, Cy 1 Cy = Cg X Cyp < Sp2. We can canonically identify the vector space V := IFﬁ with
F¢[C¢] as an Fy[Cy]-module from the definition of the wreath product. Let o be a generator of
Gal(F/k) = C; and A = (0 — 1) to be the augmentation ideal of F,[C¢]. It follows from the fact
that F¢[C¢]/A ~ F, that the linear action of o on F¢[C] has one Jordan block with dimension ¢,
where the characteristic polynomial is (0 — 1)* = ¢ — 1 = 0. By linear algebra, the o-invariant
subspaces of F[Cy] are exactly the ideal A? for 0 < d < ¢. We will denote the At=9 to be Wy,
which is the unique dimension d invariant subspace of V.

Let’s denote the quotient map by « : V x Cp — C; and the projection to the i-th Cp-
component in V by m; : V = C’f — Cy. In order for G < Cy Cy to be a Galois group of L/k,
it must satisfy two conditions due to the existence of the intermediate field F: 1) the image
k(G) = Cy; 2) the image m;(GNV) = Cy. Tt follows from the first condition that G NV must be
a o-invariant subspace of V', thus equal to Wy for some 1 < d </, i.e., GG satisfies

1-Wy—-G—Cp— 1.

For each d, depending on whether the group extension of Cy by Wy is split or not, we can see
different group structures for G. We first give an easy lemma which will be of use in later parts.

Lemma 2.1. Let G be a group extension of Wy with Cy for d < £. Let g € G\ Wy. Then the
extension is split, if and only if ord(g) = ¢, if and only if exp(G) = £.

Proof. Say g = ((a1,...,a;),0%) € C,2Cy for 1 < k < £. Then by computation

¢ 14
g = (D ai-.. ) ai)e).
i=1 =1

Therefore ord(g) = ¢ if and only if Zle a; = 0 € Fy, which is equivalent to (ay,...,as) € A,
which is W,_1.

Since all other elements in G\W, can be written as w - gk where u € Wy C Wy_1, we see
that ord(g) = ¢ implies ord(u - g*) = ¢ for all possible u and 1 < k < £. Therefore we show the



second equivalence in the lemma. On the other hand, the extension splits if and only if there
exists a section, if and only if there exists an element in G\Wjy of order ¢, which is equivalent to
ord(g) = ¢ by the above argument. O

If the extension is split, then G' ~ W, x Cy where the action is just o acting on A*~<. If the
extension is non-split, it is not difficult to see that all groups of exponent ¢2 corresponding to
W, are isomorphic to each other, e.g. see [33, Theorem 2] for a reference.

Definition 2.2. For 1 < d < ¢ we define the generalized Heisenberg group of dimension d to
be the split extension of Wy by Cy and denote it by H(¢,d), and define the twisted Heisenberg
group of dimension d to be the non-split extension of Wy by Cy and denote by H({,d).

As special cases we get H(¢,1) = Cp x Cy, and fl(ﬁ, 1) = Cp2. The identification of H(¢,2)
with the usual Heisenberg group of order £3 explains the motivation for this definition. We also
define H(¢,0) := Cy 2 Cy.

2.2 Malle’s prediction

In this section, we are going to compute the constants a(G) and b(G, k) in Malle’s prediction
for all groups H(¢,d) < Spz and H(¢,d) < Sy for 1 < d < £. Let us first define a(G) and b(G, k)
for general permutation groups and number fields k.

Definition 2.3. Let G < S, for n > 1 be a transitive subgroup acting on Q = {1,...,n}.
1. For g € G we define the index ind(g) :==n — the number of orbits of g on Q.
2. ind(G) := min{ind(g) : id # g € G}, a(G) := ind(G).

Note that a(G) here is the inverse of the a(G) defined in [24]. Since all elements in a conjugacy
class C of G have the same index we can define ind(C) in a canonical way. The absolute Galois
group Gy of k acts on the set of conjugacy classes of G via the action on the Q-characters of G.
That is, denote the composition f : Gal(k/k) — Aut(peo) = [, Z; — (Z/|G|Z)* where |G| is
the order of the group. Then if f(o)(u,) = p, then the action of ¢ on an element g is o(g) = g*
for g € G. The orbits under this action are called k-conjugacy classes.

Definition 2.4. For a number field k and a transitive subgroup G < S,, we define:
b(k,G) := #{C : C non trivial k-conjugacy class of G of minimal index ind(G)}.

The minimal index is attained by elements of prime order. Let G be an ¢-group and denote
by C be the set of non-trivial conjugacy classes of minimal index in G. Then C is closed under
taking k-th power when 1 < k < £— 1 since ind(g) = ind(g*) for ord(g) = ¢. Moreover, it is clear
that g and ¢g* are not conjugate to each other in G. The action of the absolute Galois group
Gy, on C factors through the cyclotomic character Gy — 7. Let (e be a primitive ¢-th root of
unity and 7 € Gy, where 7(¢;) = (. Then its action on C is 7(g) = g*. Therefore it suffices to
consider the action of Gal(k((¢)/k) on C. By applying stabilizer-orbit formula to the action of
Gal(k(¢)/k) on {g,¢%, ...,9"" 1}, we immediately get the following lemma.

Lemma 2.5. Let G < S, be an {-group and k be a number field. Then we have the formula
(-1
b(G, k) =b(G,Q)———.
(G0 =4Oy m

In this case b(G,Q({r)) = (£ — 1)b(G, Q) is the number of conjugacy classes of minimal index.



Now we are able to compute the constants a(G) and b(G, k) for our groups considered as
transitive subgroups of Sp2.

Lemma 2.6. For G = H({,d) or H({,d) with 1 < d < {, we have that

a(G)={-1)(—-d+1), bGk)= (da)e[kfg;gl;k]'

Proof. Firstly, we look at G = H(¢,d). Recall that G is a semi-direct product
1= Wy — H(,d) 5 Cp—1

Denote by H < W, an index ¢-subgroup with Coreg(H) = {e}. Then the left multiplication
action of G acting on the cosets of H realizes the permutation representation of H(¢,d) < S.
Since H(¢,d) has exponent ¢, every element has only ¢-cycles and fixed points. Therefore it
suffices to count the number of fixed points for each element. Let us denote by ¢;H the left
cosets of H in G for 1 <4 < ¢2. Then g fixes cH if and only if g € cHc™!. Therefore to count
the number of fixed points of g, it suffices to count the number of ¢ such that g € ¢; H c{l. Notice
that H :=c;Hc; b= H%(e) since G splits, so it suffices to consider the conjugation H° from
the semi-direct product, i.e. o € Cy.

Let o be a generator of the Cy-quotient and H; := H " Note that the number of fixed points
of an element g € G is equal to

({1<i<{t|geH}. (2.1)
We now show that for arbitrary I C {1,...,¢}, the intersection space as a subspace in Wy
satisfies
Codim(m H;) = min{|I|,d}. (2.2)
iel

We prove (2.2) by induction. For |I| = 1, this holds clearly since our H has index ¢ in W. For
|I| = 2, by inclusion-exclusion, we get for arbitrary ¢ # j that

Codim(H; + H;) = Codim(H;) + Codim(H;) — Codim(H; N Hj).
Using Codim(H;) =1 and Codim(H; + H;) = 0 we get

Now by induction for 2 < |I| < d, the general inclusion-exclusion formula for the dimension still
holds with the computation of codimension, so we get for a subset J(m) C I of size m:

Codim(ﬂ H;) = Z (LQ) Codim( ﬂ H;) - (=1)f-mtt

i€l 1<m<|I| ieJ(m)CI

= > (BNmepyrme

1<m<|I|

For the second last equality, we use by induction that Codim((;¢ (ycr Hi) = m. For the last

3 (:1) m(—1)"~m+ =,

1<m<n

This shows (2.2). Note that the intersection of d different H; is the trivial group and that for
|[I| = d—1 we get dim([

equality we use

ser Hi) = 1. Using (2.1) we see that non-trivial elements in g € (., H;



all have exactly ¢(d — 1) fixed points, since the intersection with a further H; has dimension 0.
02 —¢(d—1)

Now such a g has ——;— cycles of length ¢ and therefore we get:
2
— -1
ind(g) = ¢* — % —ld-1)=L-1)(—-d+1).

This is the minimal index using (2.1). Note that elements g € G \ Wy have no fixed points and
we get ind(g) > 2 —0=4({—1) > ({—1)({ —d+1) since d > 1.

Now we consider b(G, Q). For arbitrary I with |I| = d — 1, using (2.2) we find (£ — 1) many
group elements with minimal index. So the number of elements with minimal index is

() e

The conjugation action from G has orbit sizes ¢. Therefore the number of conjugacy classes of
minimal index is equal to

¢ \¢-1
H = —
a0 =, )5
This gives the stated formula for G' using the remark before the lemma.
For G = H({,d) or G = H(/,d), notice that if an element ¢ € G < Cy ! C; has non-trivial
image k(g) # 0 € Cy, then the permutation action of ¢ has no fixed point. So it suffices to

consider elements in W;. Both the cycle structure of Wy and the action of Cy, on W, stay the
same inside Cy 1 Cy. So both a(H (¢,d)) = a(H(¢,d)) and b(H (¢,d), k) = b(H(¢,d), k). O

3 Arithmetic Theory

In this section, our main goal is to prove Theorem 3.6 which gives complete criteria for
determining the Galois group Gal(L/k) from various local conditions on L/F where L/F/k is a
tower of number fields and both L/F and F/k are relative Cy-extensions. We denote by P(k)
and P(F) the set of all places (including the infinite ones) of k and F', respectively.

By class field theory, Cy-extensions L/F are in bijection with surjective continuous homomor-
phisms p : Cp — F; where Cp = Ip/F* is the idéle class group of F. Our goal is to determine
Gal(L/k) from p. We denote by GV := Hom(G, F,) the set of continuous group homomorphisms
from G to IFy.

3.1 S-idéle Class Groups

For any finite set of places S, we define the S-idéle class group Cp g = Ir s/ (9;7 g» Where
Irs = [lpes Fg X [lypes O% is the S-idéle group of F' and Of ¢ is the S-unit group of F.
Then there is a canonical embedding Cr s < Cr, it induces a map f : CF,S/C%,S — Cp/C% =
Ir/F*I%, and thus induces a map fV : C) — CY. g By class field theory, see e.g. [34, Lemma
2.8], if S C P(F') contains all infinite places and is large enough to generate the class group Clp,
then Cr ~ CFr 5. We will give a refined characterization for Cl\é, the ¢-part of C'r when ¢ is odd.

Lemma 3.1. Let S C P(F) be a finite set and £ be an odd prime. Then f : Cps/Ch ¢ = Cp/Ch
is an isomorphism if and only if S is large enough to generate the {-primary part of Clg.

Proof. Firstly, we show that f is injective if S generates the ¢-primary part of the class group.
If y € I s satisfies y = 2 - u for some z € I and u € F*, then for the ideals b = H‘13 spvals (vx)



and a = H;13 pyale(@x) we have b = a’ € Clp. The class group has a canonical decomposition
Clp = Ay X Ay where Ay = Clp[€>] is the Sylow-£ subgroup of Clg, then we denote a = (a1, as)
and b = (by,by) = (af,a) € Clp. Since ideal classes b; and b are both generated by S,
we see that by is also generated by S. Therefore in a € Clp the component a; can also be
generated by S since ¢ is invertible in Ay, thus a € Clp can be generated by S. Let’s say
a’ = a- (v) has valuations supported on S where v € F*, then denote 2’ := av € I 4. Clearly
y =2ty = (v 1 = (uww) - (2')" is an element in O}X?’SI%’S, here uv=* € Oy ¢ since y and
are both in Ir g.

Secondly, in order to show that f is surjective, for an arbitrary element z = (zg) in Cr/C%,
we need to find a representative such that zq € O,ﬁ, for P ¢ S. Firstly, we are allowed to reduce
to the case where 0 < valy (zq3) < ¢ by the quotient by C%. Then for each 3 where valy (v ) # 0,
if the order of B € Clp is nyp = ¢F - n’ where (¢,n') = 1, we can write B =a- (usp) where a
is an ideal generated by primes in S. Then multiplying by suitable powers of ugp € F'*, we can
obtain another representative 2’ of z in Cr where valy(2g;) =0 mod ¢ but which has the same
valuation at any other prime outside S. We can iterate this operation to kill every non-zero
valy (zq) and find a representative of x in I g.

Conversely, if S does not generate the ¢-primary part of the class group, say p is not generated
by S, then f is not surjective since (1,1,...,7,...,1) € Op/C&, where 7 € O, is the uniformizer
for p, is not in the image of f. O

3.2 Rank of p

In the remaining part of this paper o will be a generator of Gal(F/k) = C,.
For p € P(k) we denote the component of I at p by Ip(p) := [y, Fy. For each p € O and
p € P(k), we get a local map p, € Ip(p)” induced by the natural inclusion Ix(p) — Ip — Cp.
Note that Ir(p) = (F ®kkp)™, therefore Ir(p) is naturally a Gal(F'/k)-module, where the action
is induced by its action on F. Thus Ir(p)¥ is also a finite dimensional Fy[Gal(F'/k)]-module by
defining the action to be o(py) = pp 0o 0~ !. Since Gal(F/k)-action preserves the valuation, we
see [ [, O, and (I O;')Y are also natural Gal(F/k)-modules. To simplify our notation, we
will define
U, = {HngmFg)‘f b e Sy,
[T O/ (O)" p & Sk,
whenever a set Sy is specified in the context. Notice that p, € Ip(p)¥ has a natural restriction
to U,/
The global object Cr = Ir/F* is also a Gal(F/k)-module since Gal(F/k) acts on Ir(p) for
each p. This also induces a Gal(F/k)-action on C% where o(p) = poo~1.
Notice that ¢ — 1 = 0 = (0 — 1)* € F;[Gal(F/k)], therefore for any F;[Gal(F/k)]-module M
we have (o0 — 1)*M = 0. We define the following notion of a rank for convenience of our paper,
which is not the same with the usual notion of the rank of a R-module.

Definition 3.2. Given an F;[Gal(F/k)]-module M we define the rank of M to be the smallest
integer r such that (o0 — 1)"M = 0. We denote it by rk(M). We also define tk(m) = rk({(m)) to
be the rank of the module generated by m € M. We define My := {m € M | (¢ — 1)%m = 0} to
be the maximal submodule of M of rank d.

Considering C). and Ir(p)Y both as F[Gal(F/k)]-modules, we have the following lemma
characterizing the global rank in terms of the local ranks. In case p ¢ Sy we remark that the
rank of p, € U, is smaller or equal to the rank of p, € Ir(p)”.



Lemma 3.3. Given p € CY., we have

k(p) = k(pp), wh € Ir(p)Y.

rk(p) o T (pp), where py € Ip(p)
Let S CP(F) be large enough to generate the L-primary part of Clp. We denote by Si C P(k)
the finite set containing all valuations lying below one contained in S and by T, C P(k) the set
of ramified primes of F/k. Then we have:

k(p) = k h U.
rk(p) pcnax T (pp), where p, € Uy,
Proof. For the first claim it suffices to notice that the restriction map Cp — [1, epiy 1 r(p)Y is
injective and compatible with the Gal(F'/k)-action.
For the second claim, we use Lemma 3.1 to see that C = Cy. 5. Since Cph = (Ir,5/Of ¢)Y —
[1, U, is injective and compatible with the Gal(F/k)-action we have

rk(p) = prél];i()é) rk(py), where p, € U,

Note rk(pp) = 0 for p ¢ Si, when p is unramified in F//k and we get the claim. O

Note that in the second formula the sets S; and T} are finite sets and we reduced the
computation of rk(p) to a finite local computation.

Lemma 3.4. Let p € C. and denote the corresponding Cy-extension by L/F. Then rk(p) = d
if and only if Gal(L/k) = H({,d) or H(¢,d).

Proof. For each subgroup M of C}, we define H := ﬂpeM Ker(p) € Cp. Then M is a
F,[Gal(F/k)]-submodule of C} if and only if H is a normal subgroup of Gal(F2b*/k) if and
only if the fixed field of H is Galois over k.

Let p € C) and denote L/F to be the corresponding Cj-extension over F. Then the
F,[Gal(F/k)]-module M = (p) generated by p will correspond to the Galois closure L of L over
k. Let o be the chosen generator of Gal(F'/k). A cyclic module M has a single Jordan block for
o since it is isomorphic to a quotient of Fy[Gal(F/k)]. Then the minimal polynomial for o acting
on M is (X — 1)% if and only if dimg,(M) = d. Finally, notice that Gal(L/F)Y = M (via quo-
tient out by H) as F¢[Gal(F/k)]-module, so we have dimg,(Gal(L/F)) = dimg,(Gal(L/F)V) =
dimg, (M) = d. O

Lemma 3.5. Let p € CY. = Hom(Cr,Fy) with tk(p) = d and py € P(k) be inert in F/k and not
above £. Let m be a uniformizer of ky,. Then Gal(L/k) = H(¢,d) if and only if p(m) = 0.

Proof. Recall that both H(¢,d) and H(,d) are extensions of the form
1> Wy;=Gal(L/F) = G— Gal(F/k)=Cy — 1,

where the extension splits if and only if any lift of a non-zero element of Cy in G has order /.
On the other hand the extension is non-split, if every lift of a non-zero element of Cy in G has
order ¢2. So it suffices to prove that p(7) = 0 if and only if any lift of o has order /.

Let’s say poOp = Py is inert in F/k and Frobgp, = o generates Cy. If Py is further inert
in L/F, then by local class field theory, the local map p, corresponds to the unique unramified
degree {-extension U over Fiy, where U/ky, gives the unique unramified degree (?-extensions over
ky, and has Gal(U/ky,) = Cyz, then the decomposition group at po is isomorphic to Gal(U/k,)
and is generated by Froby, which has order 2.



If Py is split in L/F, then py, is the trivial map and the decomposition group at py intersects
trivially with Wy, therefore Frob,, has order £.

If Py is ramified in L/F, there are two cases. On one hand, there is a unique ramified Cy-
extension R/Fy, such that Gal(R/ky,) = Cp x Cy. The extension R/k,, is also the compositum
of Fy, and ky,(7/?). Then R = Fy,(7'/*) and 7 = NmR/F%(wl/z), therefore R corresponds
to p, that maps py(m) = 0. In this case, the decomposition group at po is isomorphic to
Gal(R/kp,) = C¢ x Cy and Frob,, has order ¢. On the other hand, all other ramified Cj-
extensions of Fy, are subfields of RU/Fyp, with Gal(RU/ky,) = Cp2 x¢, (Ce x Cp) = Cp2 x Cy,
which has decomposition group Cp2 and Frob,, has order 2. O

Now combining Lemmata 3.3, 3.4, and 3.5 we get the following theorem.

Theorem 3.6. Let S C P(F) be large enough to generate the £-primary part of Clg and Sy, Ty, C
P(k) be the sets defined in Lemma 3.3. Let po € P(k) be inert in F/k and not above £. Let w be

a uniformizer of ky,. For p € CY., py, € U,

1. Gal(L/k) = H(¢,r) if and only if

and the corresponding Cy-extension L/F we have

rk(p) = pomax rk(py) =7, and py, (1) =0,

2. Gal(L/k) = H(L,r) if and only if

rk(p) = pomax rk(py) =7, and py, () # 0.

3.3 Rank of u

Here we study rk(u) for u € A:= Op /( ;S)e. We use the sets S and Sy, defined in Lemma
3.3. It is clear that both A and U, are F,[Gal(F/k)]-modules. For 1 < d < ¢, we recall

Upa = {up € Uy [ tk(up) <}, Uyg:={py € Uy | 1k(py) < d}.

The following theorem relates rk(u) of the global unit w with rk(u,) of the local units for p € P(k).

Theorem 3.7. With the above condition, let u € (’);75. Then for u € A, we have

rk(u) = prgﬁi) rk(up),

where u, € Uy is the natural image of u in U,. Moreover, with v := (o0 — 1)%u for p ¢ Sy, and
split in F((p)/k, denote by lp any prime ideal in F((;). Then we have

rk(up) > d <= g inert in F(Cp,v"*)/F().
Proof. For the first statement, we have rk(u) < d is equivalent to
v=0€A < ve(0F,)" — YPeP(F) ve (F}),

where the second equivalence comes from Hasse’s local-global principle, see e.g. [28, Theorem
9.1.11]. The last condition is equivalent to rk(u,) < d for every p, therefore we showed that
tk(u) < d <= Vp,rk(u,) < d, it then implies that rk(u) = max,cp(r) rk(up).

Let’s call K = F(v'/*, () with Gal(K/F) ~ Cy x C,. where r = [F((,) : F]. Let p ¢ Sy be a
prime in k that is split in F({y)/k and p be a prime ideal in F({,) with pNF =P and pNk = p.
Notice that Fy = ky, and K, = Fy(v'/*), therefore

rk(uy) <d <= v e (Fy)" < K,=Fp <= g split in K/F((). O



For any F¢[Gal(F'/k)]-module M, recall that MY = Hom(M,F,), there is a natural pairing
MY x M — F,. The following statements will be important to us in Section 4.3.

Lemma 3.8. Let M = F¢[Cy] and MV be its dual. For any 0 < d < { the two subspaces MY
and My_4 are mutually orthogonal complements under the natural pairing {-,-) : MV x M — Fy.

Proof. For M = F4[Cy] we define the submodule My = (o — 1)*"¢M.

Recall that the induced action on MV is (op)(m) = p(oc=1(m)). Therefore (p,c tm) =
(op,m). For p € MY and m € M_q4, we see that the pairing (p, m) = ((c—1)*"', (c—1)¢m’) =
0 is always trivial.

On the other hand, if (p,m) = 0 for every p with rk(p) < d, then (p, (o — 1)*~9m) = 0 for
every p, so (0 —1)*"%m = 0, i.e, rk(m) < £ — d. This shows that the orthogonal complement of

MY is My_4. Similarly, we can show the other direction. O

Recall from Section 2 that we have Cy 1 Cy = Wy x Cy and we have identified Wy with Fy[Cy]
as an Fy[C/]-module. We can identify F¢[C,] and F,[C]¥ by choosing a basis £ := {g; = 0% | 1 <
i < £} for Fy[Cy] as an Fy-module. Therefore we can identify Fy[Cy]¥ with W,. Then we define
foreach 1 < d < ¢,

Q4= {p € F[C,]" | ind(p) = a(H(¢,d))}, xXa(m) = Z (ép’m>7 where (, = exp(2wi/{) € C.
pEDy

Notice that xq(m) is always an integer since @4 is closed under multiplication by F, . For each
p € Py, ZieFZX Cémm) is either £ — 1 or —1 depending on whether Cépm) is 1 or not.

Lemma 3.9. For 1 <d </ we have xq(m) = |®q4| if and only if m € My_g4.

Proof. Tt follows from Lemma 3.8 that if u € M,_,4 then (p, m) = 0 and therefore xq(m) = |Dq4].
Conversely, notice that ®4 contains (o — 1)%6™ for any m, therefore ®; generates Wy as an
Fs-module, therefore if (p,m) = 0 for every p, we know that u € My_4 by Lemma 3.8. O

Now notice that when p ¢ Sy is split in F/k, then U, ~ F¢[C/], therefore it follows that U, 4
and UpV’ ¢+ are orthogonal complements under this natural pairing. Moreover, since U, ~ F,[Cy],
via this identification, we can identify the p € U, with those in @4, then for u € Uy, xa(u) = |®4]
if and only if u € Uy y—q.

4 Analytic Theory

Theorem 3.6 has given a full description of those p : Ir5/Of ¢ — C; with Gal(p) = H(¢, d)
or H(£,d). In this section, we are going to write up a Dirichlet series for Disc(L/F) where L/F
are Cy-extensions with Gal(L/k) = H(¢,d) or H({,d) for a fixed 1 <d < £ — 1.

We fix F/k with Gal(F/k) = (o). Let S C P(F) be a finite Gal(F'/k)-invariant set containing
all primes above ¢, and which is large enough to generate the {-primary part of Clp. Furthermore
S contains a prime Py not above (¢) which is inert in F/k. We denote the prime below By by
po and we fix a uniformizer 7 for k,, and Fy,. Like in Lemma 3.3 we define the set S, C P(k)
to contain all primes below primes in S.
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4.1 Dirichlet Series for Homomorphisms

We give the generating series for all continuous homomorphisms from Ir s to Cy with rk(p) <
d and p(m) = 0. By Theorem 3.6, to get rk(p) < d it suffices to require rk(p,) < d for every
p € Sk UTy, where T}, denotes the set of ramified places of F'/k. We define our generating series
as complex functions for s € C

1 1 1
fals) = > Disclols — > Disc(ppy)* 11 ZW

Disc
pEIY 5.1k(p)<d,p(m)=0 (p) P €U asp(m)=0 p#po \pp€UY,

where Disc(pp) = [[g, Disc(pg) and Disc(py) is the relative discriminant of the local field

extension over Fip associated to pg : F,;; — (. Similarly, we will also define

. 1 1
CEP R~ rchl WP VRSl B 1 DO e
PEI}. 5.tk(p)<d.p(m) 70 Pro €Uy, ap(M)#0 p#Po \pp €U

to be the Dirichlet series enumerating p with rk(p) < d and p(w) # 0. Both functions are
well-defined and analytic when $(s) is large enough.
The function f4(s) is obviously over-counting the number of extensions L/F with Gal(L/k) =
H(¢,d) for two reasons: not every homomorphism p from I g factors through (’)S 3 the rank
rk(p) can be strictly smaller than d. We solve the first issue using some character sum to test
whether p factors through (9§7 - In particular, in the next section, we will introduce the series
ga(s) and gq(s) which takes issue into consideration. This method is inspired by [35] and [34] in
counting abelian extensions over general number fields, although the analysis is more complicated
in this generalization. We will solve the second issue simply by taking the difference of generating
series for rk(p) < d and that for rk(p) < d — 1.

4.2 Character Sum

Recall that p factors through Og . if and only if p(Og ) = 0 € Fy, i.e., for each u € Og .
we have p(u) = 0. Define A := O, S/(O; )%, and for each u € A, we also abuse the notation u
to mean a representative in OF’S, then it suffices to test p(u) = 0 for every u € A.

We define the characters t,, and x to be

1, if p(u)=0 1, if p(O%5 ) =0,
tup) =4 and x(p) = T8
0, if p(u) #0, 0, if otherwise.

Say uq,...,u, is a basis for A with t,,(p) = 1 for each 4, then x(p) = 1. We can also rewrite

1 um
tu(p) = z Z CP( )7

0<m<e—-1
then
n n 1 u 1 "
xo) =TTt =TT 50 32 ¢ = o™
=1 i=1 0<m<e—-1 ucA

Now we are ready to give the generating series for all homomorphisms Ip g/ (’);} g — [y with
rk(p) < d and p(7) = 0, that is

— ~x(p)
ga(s) :== Z DlSC ) |A| Z 9d,u(s), where

pirk(p)<d,p(m)= ueA

11



p(u) Py (u) pp(u)

o YA S >t
9a.u(s) = > Disc(p)® 2 Disc(pp, )? 11 Disc(pp)®

PEIY :rk(p)<d,p(m)=0 Pro €U 4:p(m)=0 p#Po \Pp€UY 4

since Disc(p) and ¢} () are both multiplicative. We then define ga(s) and gq,.(s) to be exactly
the same except replacing p(m) = 0 with p(r) # 0. For each p ¢ Si, we have

Cé’p (u)

gd,um(s) = pr)s

Pr€UY 4

We will denote the Euler product supported outside Sy by

gd,u(s)/ = H gd,u,p(s)a (41)

pESk

and similarly for Gq.(s)".

4.3 Poles of g4,(s) and Gg.(s)

In this section, we are going to consider the right-most pole of gq,(s) including its order.
Recall that A, is defined in Definition 3.2. Our main theorem in this section is the following:

Theorem 4.1. Let a = a(H((,d)) and b = b(H(¢,d), k) be Malle’s constants (see Lemma 2.6)
and 1 < d < L. For each u € A, the Dirichlet series gaq.(s) and §q.(s) have an analytic
continuation to the right half plane R(s) > 1/a except for a possible pole at s = 1/a of order
at most b. Moreover, the Euler products gq.(s) and gau(s) (the truncated Euler products
supported outside Sy in (4.1)) have a pole at s = 1/a of order b if and only if u € Ay_q.

Proof. Firstly, notice that when R(s) > 1/a, the two total series gq,.(s) and gq,.(s) only differ
by a holomorphic factor at py and the truncated ones gq.(s)" = gau(s)" coincide completely.
Therefore it suffices to study the poles for gq,.(s).

We denote by (,(s) the Dedekind-¢ function. For each u and d, we will show that if u € Ay_g4
then g4.,(s) = ga1(s) = (1(as)?-h(s) with h(s) being holomorphic for R(s) > 1/a; if u & A,—q,
then gq.(s)" has at most a pole at s = 1/a of order strictly smaller than b.

If u e Ap_q, then u € Uy, y_q by Theorem 3.7 and by Lemma 3.8, p,(u) = (pp,u) = 0. For

p & Sk, recall g p(s) is the local factor for g4.(s) at p, then
1
Gaap(s) = 9a15(8) = D2 G

and

9au(s) = ga,1(s) = H Z W = Q%(Q)(as) “ha(s),

pESk \pp EU;{d

where h4(s) is holomorphic for R(s) > 1/a. For the last equality, we notice that only primes
p with [p| = 1(¢) can admit a non-trivial p,. If p is split in F/k, then by the identification
between U, and W, in Section 3.3, we have Disc(p,) = |p|md(Pe) > |p|* by Lemma 2.6. If p is
inert in F'/k, then we also have Disc(p,) > |p|* since a < ¢(¢ — 1) when d > 1. And again by
Lemma 2.6 the number of p, witnessing |p|* is exactly |®q4| = (2) - (£ — 1), which is equal to
b(H(£,d),k) - £-[k() : k] by Lemma 2.6. Then it follows that the order of the pole at s = 1/a
is exactly b(H (¢, d), k).

12



If u ¢ Ay_q, equivalently rk(u) > ¢ — d, then by Theorem 3.7, for every w(p in F((,) that is
inert in F((o — 1)*~4(u)1/%, (), we have tk(u,) > ¢ — d. Recall xq(u) from Section 3.3, we can
rewrite

Xa(up)

| |as

Gdup(s) =1 + X + higher order terms in |p|~*,

for split p in F/k with |p| = 1(¢). Here xq(up) = |®q4| if and only if u, € U, —q if and only
if p is split in F((o — 1)=4(u)'/*,{;)/F(¢), and otherwise xq(up) is an integer that is strictly
smaller than |®,4|. More precisely, for each p = 1(¢), say B|p is a prime above p in F, and w|P
is a prime above ‘B in F'({;), for each local field Fiz, we will fix a generator yp = (-1 mod P
(the global roots of unity in Q) for Og /(O )E then by (34, Lemma 2.14], if pg(yp) = m € Fy,
then

pp(u) Frobw(um/e)

‘ = Y
where Frob,, can be considered as the local Frobenius automorphism over F((s),. If p is split
in F/k, say pOp = [[1<i<;Bi = [11<;<, 0" (B), then since Fy ~ F, ) via o, the local images
of u are related by up = o (1) (q). Denote u; := usp,, then we can also rewrite

ro / "
ZHCW(W) ZH(F bl/z )) ,

pPEDPL P |p pPED Pilp

where p(yp,) = m; € F,. This value xq4(up) is therefore completely determined by Frob,,
in L/F(¢;) where K := F((,u 1/6, . ,uz/é), therefore in general the truncated series can be
compared to a Hecke L-function of K/F((), i.e., there exists hg,(s) that is holomorphic at
R(s) > 1/a such that
9a,u(8)" = L(Xx/F(¢)» a8) - hau(s)-

We thus showed that gq,,(s)" is holomorphic at R(s) > 1/a except at s = 1/a. By Chebotarev
density theorem, the density of primes in F({y) that has xq(up) = |®q| is 1/¢ by Theorem 3.7.
Therefore when v ¢ A,_4, the order of the possible pole for g4, (s)" at s = 1/a is strictly smaller
than b. O

Remark 4.2. For d = {, the series gq(s)+ ga(s) is exactly the Dirichlet series for Cy-extensions
over F, which was studied before in [35, 34].

Remark 4.3. Ford =1, both H((,1) and H(¢,1) are abelian groups and are studied in [35, 34],
but not by understanding g1, (s). Let a = ({ —1)¢ and b= (£ —1)/[k(¢¢) : k]. Using the method
above, we can see that g1, (s) = §1.u(s) foru =1 differ from CZ(Q)(GS) by a holomorphic factor.
The only difference is that inert primes B in F/k with |B| = 1(£) can also contribute p, with
Disc(py) = |p|® in this case. For general u, the series g1.,(s) = G1,.(s)" differ from an Artin
L-function L(xk/k(c),as) by a holomorphic factor where K := F({¢,u 1/5, .. 1/2) Owverall, the
two series g1(s) and g1(s) both have a holomorphic continuation to R(s) > 1/a and have at most
a pole at s = 1/a of order at most b.

4.4 Asymptotic Behavior of Ny, (H((,d),X) and Ng(H (¢, d), X)

In this section, we give the asymptotic estimate for

Npp(H(C,d), X) ;= ${L/F | Gal(L/k) = H({,d) < Sp>,Gal(L/F) = Cy, Disc(L/F) < X},
and Np/k(lff(ﬁ, d), X)) defined similarly when 1 < ¢ < d. We first state a lemma on the existence

of twisted Heisenberg extensions for any given F/k.
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Proposition 4.4 ([11], Corollary 3.7). Let F/k be a Cy-extension of (abstract) fields for an odd
prime £. Then there exists an extension L/F with Gal(L/k) = H(¢,1) or H({,2).

Note that this proposition also guarantees the existence of extensions L/F with Gal(L/k) =
H(¢,d) for 2 <d < ¥, e.g. see [11, Prop. 4.1] or consider the proof of the following theorem.

Theorem 4.5. Let a = a(H((,d)) = a(H((,d)) and b = b(H((,d), k) = b(H(L,d), k) for 1 <
d < £ and an odd prime L. Then for each Cy-extension F/k there exist Cq.r >0 and C’d7F >0
such that

Npe(H(6,d), X) ~ Cap X'/ *log" " X,

and
Npp(H(0,d), X) ~ Cq p X *1log" " X.

Proof. The partial sum Np/,(H(¢,d), X) has the Dirichlet series gq(s) — gq¢—1(s) where gq(s) =
ﬁ > wea 9d.u(s) by Theorem 3.6, similarly for N/ (H (¢, d), X). It suffices to prove that both
Dirichlet series have a pole at s = 1/a of order b, then the theorem follows by a Tauberian
theorem [27, p. 121].

Firstly, notice that a(H(¢,d — 1)) > a(H(¢,d)) (for d = 2, we have a(H(¢,1)) = £({ — 1) in
Remark 4.3), therefore it suffices to show for each d, that the series gq(s) and gq4(s) have a pole
at s = 1/a of exact order b. In Theorem 4.1, we have proved that for each u € A, the Euler
products ¢q,.(s)" and §g.(s) have at most a pole at s = 1/a of order at most b. The series
ga,u(s) only differ from g4, (s)’ by finitely many holomorphic local factors at S when s > 1/a,
thus the Dirichlet series gq4(s) and gq(s) are also holomorphic at R(s) > 1/a with at most a pole
at s = 1/a of order at most b. On the other hand, to show the pole at s = 1/a for g4(u) has
exactly order b, it suffices to show a lower bound for the number of p € C) with rk(p) < d,
p(m) = 0 and Disc(p) < X in the order of X/%log?™! X for 1 < d < ¢, because otherwise we
will get a contradiction from the Tauberian theorem. Similarly for gq(s).

Firstly, we consider the subset S of Cy-extensions of F' that are split at every prime in S.
This corresponds to counting p : IF75/0;7S — F, with rk(p) < d and p, is trivial for all p € S.
Notice that this subset of p has generating series

oals) = 3 Df;éf;) - ﬁ S () = “Tiud'gd,l(s)' + ‘71” S gauls),

p,rk(p)<d,VpESy:pp=0 ug¢Ag_qa

(4.2)
where gq.,(s)’ is exactly the truncated series of g4.,(s) defined in (4.1), and the last equality
follows since ¢q,,(s)" = ga,1(s)’ when u € A;_4 as shown in Theorem 4.1. By Theorem 4.1, the
second term in (4.2) has at most a pole at s = 1/a of order strictly smaller than b, and the first
term has a pole of order exactly equal to b with |Ay_4| > 1. Therefore by the Tauberian theorem,
our subset of Cy-extensions has an asymptotic distribution in the order of X1/¢ logb_1 X. The
lower bound for Np /. (H (¢, d), X) thus follows.

Next we consider the lower bound for N/, (H (¢,d), X). By Proposition 4.4, there exists Lo/F
with Gal(Lo/F) ~ H(£,1) or H(¢,2). Denote po : Ir,s/Of ¢ — F; to be the homomorphism
corresponding to Lo/F, and S := {p + po : Irs/Op g — Fe| p € S}. Since (0 — D% p+ po) =
(0 = D)%p) + (0 - 1)%(po) = 0 and p + po(mo) = p(mo) + po(mo) = po(mo), we see that all
p=p+po €S have rk(p) < d and p(mp) # 0. On the other hand, at every p that is unramified
in po we have Disc(p,) = Disc(pp), therefore there exists a constant C' depending at most on
po such that Disc(p) > C Disc(p) for every p € S. It follows that the number of p € S with
Disc(p) < X is at least X/ log"™' X. O
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4.5 Summation

In this section, we sum up Np/(H (¢, d), X) and NF/k(ﬁ(f,d),X) over all F//k and prove

our main theorem. We first give an upper bound for Np/(H(¢,d), X) and Ng,,(H(¢,d), X)
with a uniform dependence on Disc(F'). The method closely follows the idea in [29].

Lemma 4.6. Let { be an odd prime. For each 1 < d < 0, let a = a(H(¢,d)) = a(H(¢,d)) and
b=b(H,d), k) =b(H(¢,d),k). Then we have for all e > 0

Npp(H (¢, d), X) = Op(Disc(F)* X"/ log" ! X),

and
Np/p(H (¢, d), X) = O (Disc(F)* X"/ log" ! X).

Proof. In order to determine an upper bound for both counting functions, it suffices to give an
upper bound for the partial sum of g4(s) + ga(s) with a uniform dependence on Disc(F'). The
series gq(s) + ga(s) is the Dirichlet series for p € C. with rk(p) < d.

Class field theory gives the following exact sequence

1—>O§—>HO;§—>CF—>CIF—>1,
Ry

which induces the sequence
0—Clp = Cp = ([]03)",
B

where the left term in the sequence is bounded by | C1}. | = | Clg[f]| = O, x(Disc(F)¢) for all e > 0
by [21]. Since the maps in the sequences above are all Gal(F/k)-equivariant, for all p € (C})q,
their restriction to (][ Og)" also has at most rank d. The Dirichlet series for p € ([[y Ogp)y
is

1 b
11 2. By | = k(@) aals) R(s) > 1/a,
F pp €T O)d

where ¢4(s) is a holomorphic factor that can be bounded absolutely only in terms of [k : Q] and
¢. Now we denote by a, be the number of p € ([ Og), with Disc(p) = n. Then by Perron’s
formula we have

1+€e+i00
—n € s
g an < E ane' X = —/1 I(s) ~C$’7(Q)(a5) ~qa(s) - X?ds.

n<X n 2mi +e—ico

Next we shift the contour integral to R(s) = 1/a — e. Using a similar argument as in [4], we
apply the convexity bound for the Dedekind zeta function (r(c,), see e.g. [16, Equation (5.20)],

s—1)Cr ) = Op(c.01.(Disc(F)1=0)/2%e(1 4 |g|)[F(C):QIU=0)/241+e) for 0 < R(s) = 0 < 1,
(Ce) [F(¢e):Q,
and obtain

> an SRes(T(5) - G, (a5) - 4a(s)" - X*)sm1/a + Op(cy)igl.e (Disc(F) 72X 17
n<X O

= O[F(Cg):(@},g(DiSC(F)GXl/a log®~! X).

Now we are ready to give the proof of the main theorem.
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Proof of Theorem 1.1. Fix G to be H(¢,d) < Sg or H({,d) < Sp for 1 < d < . By Theorem
4.5, for each F/k, we get that the number of L/F with Gal(L/k) ~ G and Disc(L/k) < X is

X Cr

N 1/a(G) 1. b(G k)1
Dise(FY) ~ Disc(R)ia@ 108 X

New(G

For each Y > 0, we define an approximation of Ny (G, X) by

X .
Ny (X) = Ne(G. — 2 ) 0 Oy X/ 0(G) oG =1
o 2. NeplG, Disc(F)?) ~ Y og :
F,Disc(F)<Y

here the asymptotic estimate follows since it is a finite sum. The constant C'y is monotonically
increasing as Y increases, and is uniformly bounded from above by Lemma 4.6 via a partial
summation over F', therefore C := limy _, o, Cy exists.

By definition Ny (X) < N(X) gives a lower bound for N(X). Therefore for any ¥ > 0,

L Ny (X) L N (G, X)
Cy = Xh_%o X1/a(G) 1og"( &R —1 x = lﬂlgof X1/a(G) [ogh(@ R =1 x (43)
Letting Y go to infinity, we have
Ci= Jim Ov STinl <7y FOFT Y (a4

This gives a lower bound for Ny (G, X).
For the upper bound on Ny (G, X), notice that

Ni(G, X) _ Ny (X) Ni(G, X) — Ny (X)
X1/a(G) 1ogb(G’k)_1X T x1/a(G) logb(G’k)_lX X1/a(G) logb(GJC)—l X

By the uniform bound in Lemma 4.6 and a partial summation, we have

X1/a(G) logb(G’k)*l X

X
Nel@X) =M= 3, NewlG o) S 2 Ol e )
F,Disc(F)>Y F,Disc(F)>Y

:Xl/a(G) logb(G’k)71 X A Ok: 6(y—€/a(G)+1/(@—1)+6).

(4.5)
When 1 < d < ¢, we have a(G) = ({ —d+1)- (£ —1) < £({ — 1), therefore by letting Y go to
infinity, we obtain

N (G, X)

. . < 1 _C .

L P 0@ Logh @R x =i Y =€ (+6)
The theorem follows by combining the lower bound and the upper bound on Ny (G, X). O
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