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A B S T R A C T

Machine learning has demonstrated superior performance in predicting vast materials properties. However,
predicting a spectral-like continuous material property such as phonon density of states (DOS) is more chal-
lenging for machine learning. In this work, with phonon DOS of 4994 inorganic structures with 62 unique el-
ements calculated by density functional theory (DFT), we developed a crystal attention graph neural network
(CATGNN) model for predicting total phonon DOS of crystalline materials. The computational cost of training the
CATGNN model is several orders of magnitude cheaper than full DFT calculations. We find that high vibrational
similarity or phonon DOS overlap is not the only requirement to obtain high interfacial thermal conductance
(ITC) instead, the average acoustic group velocity of heat source and heat sink for the acoustic branches in the
phonon DOS overlap region is equally important in determining ITC. Pearson correlation analysis yields a few
simple material descriptors that are strongly but negatively correlated with ITC. These easy-to-calculate material
features combined with the proposed high average acoustic group velocity and phonon DOS overlap predicted by
CATGNN model offer a new reliable and fast route for high-throughput screening of novel crystalline materials
with desirable high ITC for phonon-mediated thermal management of wide bandgap electronics.

1. Introduction

Machine learning has gained tremendous attention as a potent and
robust approach to discover and explore functional materials in a broad
materials space [1–7]. The success of machine learning is mainly due to
its immense competence to correlating and predicting outputs provided
with reasonable input features (called “descriptors”) and sufficient
high-quality data to detect hidden and uneasy-to-discover patterns from
the provided data. Performing experiments to get high quality data of
material properties can be extremely expensive in terms of cost, time,
and resources. In contrast, high-throughput calculations via density
functional theory (DFT) have largely been utilized to obtain a wide
range of material properties with high precision and with no artificial
input parameters to discover new materials with desirable properties
[8–15]. Machine learning has been able to utilize atomic-level or
compositional features along with structural features of various crys-
talline materials [16] and has demonstrated its excellence and massive

success in predicting a wide variety of material properties with high
accuracy comparable to DFT calculations including, but not limited to
optical and electronic properties such as refractive index [17], bandgap
[18], and superconductivity [19], mechanical properties such as bulk,
shear, and Young’s moduli, Poisson’s ratio, and Vickers hardness
[20–23], and thermal properties [24–26] such as heat capacity [27],
thermal conductivity [28–30], and Debye temperature [31]. During the
past decade, most material properties tackled in previous machine
learning studies are discrete values and predicted based on the entire
crystal structure, i.e., a specific crystalline topography corresponds to a
single or several materials properties. For instance, a crystal structure
would have a single value of bulk modulus and 3-component diagonal
terms for thermal conductivity (in case of cubic structures, these 3
outputs can be even reduced to 1 due to the material symmetry).
However, some other material properties that are remarkably and
equally significant to study are continuous functions and have
spectral-like formatting [32], e.g., the materials properties as a function
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of dependent variables such as dielectric function, absorption coeffi-
cient, electron density of states (DOS), and phonon DOS. Continuous and
spectral-like properties pose several inherent challenges for machine
learning related to the data itself, such as the high-demanding re-
quirements of the data smoothing process and the special attention to
peak positions which might trick machine learning models in deter-
mining the appropriate weights [33,34]. Moreover, spectral-like prop-
erties usually have different maximum values or cutoff among different
materials, making the length and/or resolution of the data itself
non-uniform across the training data and therefore it is hard to adapt the
trained machine learning model to the new or unseen data.

In the recent years, graph neural networks (GNN) [35,36] have
attracted a good deal of attention and are one of the fastest growing
classes of machine learning models, due to their flexibility in modeling
complex data structures in various fields such as social sciences [37],
drug discovery [38], gene DNA [38], brain structures [39], and mate-
rials science [40]. GNN are constructed to represent graph-like data
structures and to establish machine learning models based on the con-
stituent nodes with the node features and the connecting edges and links
[41]. GNN have already captivated the attention of researchers in the
materials science community due to their capability in interpreting
crystal structures constituted by atoms and bonds as graphs composed of
nodes and edges, respectively [41]. GNN models operate on
graph-structured data and have strong ties to the field of geometric deep
learning, and thus are of particular relevance for materials chemistry
and physics. The rapid development of GNNs has been demonstrated in a
wide range of applications in chemistry and materials science and in the
growing number of GNN-based packages such as Crystal Graph Con-
volutional Neural Networks (CGCNN) [42], Atomistic Line Graph Neural
Networks (ALIGNN) [40], Global Attention Graph Neural Network
(GATGNN) [43], and MatDeepLearn [44]. There are advantages and the
potential to outperform other machine learning methods by GNN
models and thus boost virtual materials design and materials science in
general. This strongly motivates us to deploy GNNmodels to our specific
material physics problem herein – interfacial thermal transport.

Large heat generation and insufficient heat removal mechanisms due
to inherent limitations in manufacturing methods and materials
employed in electronics have become the bottleneck that hinders the
disruptive development of high-power electronic device technologies
such as high electron mobility transistors (HEMTs) with wide bandgap
materials [45,46]. From a scientific point of view, high interfacial
thermal conductance (ITC) across the solid-solid interface is crucial for
solving the critical issue of thermal management of high heat flux
electronic devices. However, direct high-throughput DFT calculations of
ITC for large amount of possible material pairs forming the interfaces are
too computationally expensive and not practical. Previous interfacial
thermal transport theory indicates that ITC is directly linked to the
phonon DOS at the interface, which inspires us to use machine learning
to train and predict phonon DOS and then “transfer” the information or
knowledge to screen candidate substrate materials for potentially high
ITC. In this work, we implement a crystal attention graph neural
network (CATGNN) model to predict total phonon DOS using only
atomic positions and species as inputs. The total phonon DOS pre-
dictions are then used to screen possible combinations of candidate
materials through direct contact. We elucidate the hidden relationship
and strong correlation between high ITC and high average acoustic
group velocity of both heat sources and heat sinks, along with the pre-
viously known descriptor of high phonon DOS overlap. We also con-
ducted Pearson correlation analysis on ITC and identified a few simple
material descriptors that are strongly but negatively correlated with ITC.
These easy-to-calculate material features combined with the aforemen-
tioned criteria of high average acoustic group velocity and phonon DOS
overlap offer a new and reliable route for designing and fast screening
large-scale material pairs with high ITC at the interfaces for thermal
management of wide bandgap HEMT electronics.

2. First principle computational calculations

All the 4994 crystal structures used for training our CATGNN model
are obtained from the Open Quantum Materials Database (OQMD) [8]
which include binary, ternary, and quaternary compounds. There are
1161 noncubic and 3333 cubic structures in the training, validation, and
testing dataset. The data distribution of space groups and number of
atoms for the primitive cells of all structures is shown in Fig. S1 in
Supplemental Information. All 4994 data including OQMD ID, formula
and phonon DOS values are provided in the supplementary dataset.
First, these structures are re-optimized by performing first principles
calculations with the converged computational parameters to reach the
ground state using Vienna Ab Initio Simulation package (VASP)
[47–49]. The convergence criteria for crystal structures optimization are
10−8 eV and 10−4 eV/Å for the total energy and atomic forces, respec-
tively. The optimization calculations fully allow the cell shape, cell
volume, and atomic positions to change to reach the global minimum of
potential energy surface of each structure. The Pedrew-Burke-Ernzerhof
(PBE) parametrization of the generalized-gradient-approximation
(GGA) is applied to describe the exchange-correlation effects of elec-
trons [50] within the projector augmented wave (PAW) pseudopoten-
tials [51]. The plane wave kinetic energy cutoff of 520 eV in the basis set
of the electronic charge density wavefunction is set for all materials. The
Brillouin zone was sampled using the Monkhorst-Pack k-mesh depend-
ing on the lattice constants, with the density of k-points sampling of 0.2
Å−1 [52] to guarantee high quality of DFT calculations. It should be
noted that our purpose of re-optimization is not to find global minima of
the structures. Instead, we just want to get more accurate lattice pa-
rameters and atomic positions so that their phonon transport properties
will be more accurate. That being said, our re-optimization does not
guarantee the new structures will reach global minima as compared with
the original structures from OQMD. We emphasize that our stricter
convergence criteria implemented during DFT calculations should have
a higher chance to reach global minima for some materials phases. For
each optimized structure, we then generated 12 to 30 supercells, with
random displacement of 0.03 Å for each atom in the supercell and the
atomic forces evaluated for these displaced supercells by VASP. The
supercell size depends on the symmetry of the primitive cell of the
structure and the total number of atoms in the supercells generally
ranges between 80 and 240. The supercells are constructed such that the
lattice vectors of the supercells in the three crystallographic directions
are more or less the same. The convergence criterion for supercell SCF
DFT runs is 10−6 eV for the energy. After that, we fitted the harmonic
(2nd order) and anharmonic (3rd order) interatomic force constants
(IFCs) by the compressive sensing lattice dynamics (CSLD) method
[53–55] with the 3rd-order force constants truncated to the 3rd nearest
neighbor. With the 2nd order IFCs obtained, the phonon dispersions and
phonon DOS are then calculated using PHONOPY [56]. The quality of
phonon dispersions and DOS of selected structures is also validated by
comparing with those obtained from the finite displacement method and
density functional perturbation theory (DFPT), and the validation re-
sults of 8 selected materials can be found in Figure S2 and Figure S3 in
Supplemental Information for phonon dispersion and phonon DOS,
respectively. Finally, using the 2nd and 3rd IFCs as inputs, the lattice
thermal conductivity (LTC) of structures is calculated by iteratively
solving phonon Boltzmann transport equation using the ShengBTE
package [57]. The NGRIDS parameter in ShengBTE is set such that (1)
the product of NGRIDS and corresponding lattice length for all di-
rections is more or less; (2) the NGRIDS is large enough to ensure the
total number of phonon scattering channels is at least 1 × 108. Such
settings will yield converged LTC results using the anharmonic IFCs up
to the 3rd order. The ITC for interfaces formed by two candidate ma-
terials in contact is calculated using the almaBTE package [58] which
implements Monte Carlo simulations and uses diffusive mismatch model
(DMM) to approximate the interfacial phonon transmission coefficient.
Highly dense grids of 24× 24× 24 and 15× 15× 15 were implemented
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in the calculations for cubic (such as cubic GaN denoted as “c-GaN”) and
noncubic (such as wurtzite or hexagonal GaN denoted as “h-GaN”)
structures, respectively.

3. Results and discussion

a) CATGNN model architecture, training, and prediction of total
phonon DOS

The general outline of our CATGNN model training and prediction is
shown in Fig. 1. The crystal structures are first converted into graphs
within a certain cutoff after implementing periodic boundary condi-
tions. Rmax is the maximum cutoff radius up to which the neighbors of
each atom in the structure are considered. It is worth noting that,
determining the cutoff radius (Rmax) is extremely crucial in training the
CATGNN model because the model needs to have an adequate graph
with sufficient information from the neighboring environment for each
node (i.e., atom). Having a large cutoff radius increases the number of
neighbors, but it also makes the graph bigger and consequently increases
the computational cost. A smaller Rmax makes the graph smaller and
reduces the computational cost, but the graph may not capture enough
data from the neighboring environment for each node. The cutoff radius
or Rmax is generally around 4 to 8 Å which has been widely implemented
in various GNN algorithms and methodologies [40,42–44]. Such a cutoff
radius is physically meaningful for most inorganic solid crystals from a
general interatomic interaction distance point of view. After some
testing, we select Rmax of 4.5 Å in this work. This cutoff radius is also on
the same order as previous DFT studies on phonon transport properties
of various systems where 3rd nearest neighbor cutoff distance is usually
used [59–64]. Previous DFT calculations and convergence test on
phonon properties of inorganic crystals suggest that using larger cutoff
distance will not significantly affect the phonon results. Moreover, to
test the possible effect of different cutoff distances, we performed
additional training with cutoff distance being increased to 10 Å. As can
be seen from Fig. S4 in Supplemental Information, the validation loss

may not be significantly different from the previous training results with
a 4.5 Å cutoff radius. Training with a much larger cutoff distance simply
increases the computational cost without loss improvement. This con-
firms that our original 4.5 Å cutoff distance is enough to capture the
local environment for each atom. We used the CGCNN features as node
features (f) [42]. We also use one-hot encoding atomic number feature
vector as node attributes (fʹ). Encoding the atomic number gives the
model information on the species’ mass since the value “1” is at the
atomic number index in the one-hot encoding atomic number feature
vector. The mass of an element is a known quantity for governing the
phonon DOS which makes it a good node feature for our model as
pointed out by Slack’s model [65]. It is also known that the phonon DOS
for light elements tend to have higher frequencies whereas heavier el-
ements tend to have lower frequency phonon modes [66]. Therefore,
using one-hot encoding atomic number feature vector as a node attribute
is helpful in encoding mass as well. The edge features (eij) and edge
attributes (éij) are spherical harmonics and gaussian expansion of the
bond lengths, respectively. The CATGNN model with all its layers is
constructed with Pytorch [67] operating backend. Pytorch Geometric
[68] was also used to construct CATGNN especially in message passing,
mean pooling, and loading the graph data such as node features, node
attributes, etc. It is also worth mentioning that the convolution and gate
layers are imported from the e3nn package [28,69,70] with minor
modifications to properly account for structures periodicity. However,
the following two types of layers: (1) multi-head augmented crystal
attention and (2) atom attention layer are developed from scratch and
explained in more details below. The convolution and gate layers can be
explained through the following formula:

v́i =
1̅
̅̅n√
∑

j
vj ⊗

(h(⃒⃒⃒⃒uij
⃒

⃒

⃒

⃒

))Y
( uij
⃒

⃒

⃒

⃒uij
⃒

⃒

⃒

⃒

)

(1)

where j are neighbors for node i, v́i and vj are updated node feature
outputs and neighboring node messages, respectively, n is the average of
nodes degree, h is a multilayer perceptron, uij is the relative vector from j

Fig. 1. Detailed framework of the Crystal Attention Graph Neural Network (CATGNN) model. Crystal structures represented as graphs within certain cutoffs with
periodic boundary conditions with the node features (f) and node attributes (fʹ) and edge features (eij

) and edge attributes
(

éij
)

. Convolution, gated, multi-head
augmented crystal attention, and single head atom attention layers simple explanations and brief formulas. Outputting the predicted total phonon DOS of crystal
structure with forward and back propagation to minimize the loss in total DOS.
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to i, and Y represents the spherical harmonics basis set. Relu activation
function is used after the last convolution layer. Essentially, the weights
and biases of the source nodes in each convolution layer previous layer
inputs get updated based on the message from the neighboring nodes.
The multi-head augmented crystal attention layers are defined by

where v́i and vi are updated output source nodes features and input
source nodes features. hs represents the number of heads which is 8
heads in total implemented in the layer. g is the activation function
which is softplus in this layer. ⊙ represents the dot product operation
between matrices or vectors, and ⨁ represents matrix or vector
concatenation not addition. BN denotes a batch normalization layer.Wi
and Wi are weights initialization for source nodes and neighboring
nodes, respectively.Watt is the weights initialization for attention. v*i and
v*j are augmented features vector and can be defined as
v*i = vi ⨁

(Wi*⨀eij + bi*
) (3a)

v*j = vj ⨁
(Wj*⨀eij + bj*

) (3b)
softmax is an activation function which is commonly used in deep

learning. softmax exponentially normalizes the input vector. The for-
mula for the softmax activation function is ezi

∑K
j=1 e

zj . In attention GNN
layers, the softmax exponentially normalizes the input vector to give
normalized weights for the nodes. The reason why the connecting lines
between nodes vary in thickness as shown in Fig. 1 is because the layer
informs the source node to pay more or less attention on a neighboring
node. The source output node features from the multi-head augmented
crystal attention are constructed by the previous node source node
features -hence residual type of learning-combined with the attention
from the neighboring nodes. The multi-head augmented crystal atten-
tion layer output is applied 3 times, and Relu activation function is
applied to the multi-head augmented crystal attention layer output each
time. Then, the atom attention layer can be defined by

The purpose of this layer is for the source nodes to pay attention to
the initial weighted atom features which stem from the CGCNN features
which is why αatom weights go back to the same atom as shown by Fig. 1.
Therefore, the initial weighted CGCNN atom features are weighted to
update the input source node features coming from the multi-head
crystal attention layer. Again, the thickness of the connection between
the node to itself depends on the attention from αatom weights. The
updated source node features from the atom attention layer are equal to
the source node features from the multi-head augmented crystal atten-
tion combined with the atom attention of weighted CGCNN features.

The following explains the layers and how they can help the model learn
from the structures. The first layer is the convolution layer. The layer
helps the source nodes from the edges receive messages from the target
nodes (i.e., neighbors which include the neighbors from the other pe-
riodic cells). The messages from all the neighbors are summed into each

source node (i.e., each atom in the original cell). As can be seen from
both attention layers: mutli-augmented crystal attention layer and single
head atom attention layer, the nodes embeddings get updated by sum-
ming the previous node embeddings and multiplying the previous node
embeddings with the attention weights represented by “α”. The α from
the mutli-augmented crystal attention layer is obtained through getting
features through concatenating embedding of augmented source and
target nodes embeddings. The augmented node features (i.e., source or
target nodes) are linearly transformed from concatenated gaussian
expansion and node embeddings. The purpose of α in this layer is to
assign varying degrees of importance based on the distance between the
source and target nodes. Such node embedding updates can help the
CATGNN model in analyzing the strength of interactions between the
atoms based on the distance and node features. The α from the single
head atom attention layer is obtained from the non-linearly transformed
CGCNN features for each node. In this case, α attention weights are
utilized to assign varying degrees of importance based on the CGCNN
elemental features of each node. Such node embedding updates can help
the CATGNN model in learning and adjusting the node embeddings
based on their nonlinearly transformed elemental features. The mean
pooling is performed on the node embeddings to average the contribu-
tion from all the nodes in the cell. After pooling, CATGNN makes the
total phonon DOS prediction.

The training, validation, and testing data split with respect to the
entire dataset (i.e., 4994 materials) is approximately 80 %/10 %/10 %,
respectively, i.e., the number of materials in training, validation, and
testing sets are 4,013, 482, and 499, respectively. The balance in
training, validation, and testing datasets splitting is dictated by the el-

ements. The data balance is performed for the structures that include
each element from the 62 distinct elements in the dataset. For example,
structures that contain the element Hydrogen (H) incorporate approxi-
mately 80 % of training, 10 % of validation and 10 % of testing datasets.
For example, if the number of materials that contain hydrogen (H) is
100, then approximately 80 of those materials will be used for training,
10 for validation, and 10 for testing. Although such numbers are not
always guaranteed, the numbers should be close to such splitting in
terms of percentages or fractions. This way we will ensure that the
distribution of elements in the training, validation, and testing datasets
will be more or less the same to a large extent. Such data balance method

vʹ
i =vi+

∑

j

∑

hs

h
softmax

(

g
(

BN
(

Watt⨀g
(

g(Wi⨀v*i
)

⨁g
(

Wj⨀v*j
)))))

⨀v*j
hs =vi+

∑

j
α⨀v*j

α=softmax
(

g
(

BN
(

Watt⨀g
(

g(Wi⨀v*i
)

⨁g
(

Wj⨀v*j
)))))

(2)

v́i = vi + softmax
(

WatomAtt2
(

BN
(

g
(

WatomAtt1
(

vi⨁v*iCgcnn
)

+ batomAtt1
)))

+ batomAtt2
)

⨀vi = vi + αatom⨀vi
αatom = softmax

(

WatomAtt2
(

BN
(

g
(

WatomAtt1
(

vi⨁v*iCgcnn
)

+ batomAtt1
)))

+ batomAtt2
)

v*iCgcnn = g(WiCgcnn⨀viCgcnn + biCgcnn
)

(4)
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is confirmed by Fig. 2a which shows the percentage of structures for
each element in training, validation, and testing datasets. This meth-
odology of balancing the datasets is to ensure that the CATGNN model
trains, validates, and tests the total phonon DOS using all types of ele-
ments. Balancing the dataset is necessary prior to training machine
learning models in general to avoid biased dataset so that successful
training on all possible scenarios can be ensured. Fig. 2a shows the
normalized and balanced training, validation, and testing splitting
among all elements. The columns that represent species are normalized
to unity due to the unbalanced number of samples that contain each
element. However, as long as the CATGNN model trains, validates, and
tests on each element, we consider the dataset balanced. Herewith,
executing a statistical analysis which outputs the number of samples (i.
e., materials) with a particular range of lattice constants (a, b, and c) can
help in understanding how the selected Rmax capture the periodicity of
atoms in other periodic cells. The statistical analysis for the lattice
constants is shown in Fig. 2b. The y-axis in Fig. 2b shows the number of
materials that have a lattice constant shown in the x-axis. The average
lattice parameters in the following format (a / b /c) are 4.85/4.84/5.32
Å. The average lattice constants are not too large so a cutoff radius be-
tween 4 and 5 Å should be sufficient to capture the neighboring envi-
ronment for each node and even capture the structures periodicity from
other neighboring periodic cells. The loss criterion used in the model is
the Mean Squared Error (MSE) at each iteration (i.e., epoch). The loss or
MSE in the model is calculated based off the total DOS predicted by the

model and compared with the “true” DFT calculated total DOS. After
each total DOS prediction epoch, the loss is calculated, and the error
backpropagates to update the embeddings, weights and biases in
CATGNN layers. The model performance of the loss represented by MSE
in training and validation datasets is shown in Fig. 2c by the blue
training curve and orange validation curve. The training dataset loss
decreases at each epoch and continues to decrease even though it looks
like it plateaus. However, that is not the case with the validation dataset
loss represented by the orange curve which seems to plateau around the
50th epoch. The total number of training epochs is 150. The AdamW
optimizer is used in the model as an adaptive learning rate optimization
algorithm at each epoch. The learning rate controls how much the em-
beddings can change which was taken to be 0.02 initially with a weight
decay of 10−5. However, the scheduler reduces the initial learning rate
from 0.02 to 0.001 gradually and linearly up to the 100th epoch. Then,
the learning rate stays at 0.001 till the 150th epoch. The batch size used
in the training process is 256, i.e., 256 graphs or materials are trained at
a time. We would like to point out that, training the CATGNN model for
150 epochs takes less than 2 h using 24 CPU cores. After training, the
model on average takes less than 1 s to predict phonon DOS for a new
material. In contrast, DFT takes exceedingly longer to calculate the 2nd
order IFCs for one material which is used to obtain the phonon DOS. For
example, calculating the phonon DOS for a cubic BN, which has high
symmetry and low number of atoms in the primitive cell, requires 2
supercells with displaced atoms in the finite displacement method. The

Fig. 2. a) Normalized and balanced training, validation, and testing splitting for all 62 elements from the dataset which ensures the balance in the dataset. b) A
histogram of lattice constants (a, b, c) for the entire dataset. c) Training and validation loss curves in blue and yellow, respectively, in each epoch up to 150 epochs.
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computational cost of self-consistent field (SCF) DFT calculations for
each supercell might take more than 2 h with 24 CPU cores. It will take
much longer e.g. >10 h if the material contains heavier elements or the
material has low symmetry and large number of atoms in primitive cell.
Therefore, a rough estimate of the speedup of CATGNN as compared to
SCF DFT would be on the order of 103–104.

It is worth noting that the total phonon DOS by PHONOPY are
generated every 0.1 THz up to 40 THz i.e., the total frequency points in
the phonon DOS curve (data) will be 400. Then we smoothened the
phonon DOS by utilizing Gaussian smearing with sigma equal to 0.4 to
take care of the peaks, which is an important step of the so-called “data
cleaning”. We have carefully tested the smearing parameter and finally
identified a good parameter that gives out the best performance of our
model training. After smoothening we output the phonon DOS data
every 0.6 THz, so the length of the output array should be 67 for all the
materials. In Fig. 3, the black colored curves represent DFT calculated
total DOS. The cyan and blue colored curves are the predicted total DOS
curves. It is seen from Fig. 3 that the predicted total DOS curves in the
testing set are generally close to the DFT calculated DOS, and that proves
the model’s accuracy in predicting the total DOS of materials that the
model was not trained on. The prediction of total DOS in the testing set
materials seem to be precise enough to even capture the DFT total
phonon DOS curves, peaks, and the location of those peaks. Since the
error is different for each material, we divide the error of the material’s
total phonon DOS into MSE quartiles which are different from the total
MSE from the total phonon DOS of all the materials (i.e., 0.012 which is
higher than MSE of 0.015 from Ref. [28] model) in the testing set. The
quartiles are represented by light green, blue, yellow, and light red,
respectively. Most of the materials occur in the second quartile (i.e.,
blue). Upon looking at some of the total phonon DOS curves in that
quartile, we see great matching between the black DFT total phonon
DOS curve with the blue predicted curve by CATGNN. The MSE quartile
with the secondmost commonmaterials is the light green which also has
the least MSE, and we see even more matching between the black DFT

total phonon DOS curve with the light green curve predicted by
CATGNN. The yellow color indicates the 3rd quartile which has the 3rd
most materials among the rest of the quartiles. Although the MSE is
larger compared to the previous two quartiles, the CATGNN predicted
total phonon DOS curves also largely match the DFT results with minor
deviations. The red color represents the 4th quartile with the highest
MSE and least number of materials. The phonon DOS of some materials
that contain light elements (e.g., H) such as Ca2H6NiPt have low MSE,
but some materials phonon DOS that contain H have higher MSE such as
ClH3Sr2. Similar phenomenon was found in Ir-containing structures such
as Hg2Ir4S8 and Ir4Na4O4S4 with low and high MSE, respectively.
Through these observations, high MSE in the model is not caused by the
existence of light or heavy elements in the materials. High MSE might
have been caused by the model not being sufficiently good to learn the
peaks of phonon DOS, which could be one of the major reasons for the
model not being able to predict phonon DOS well. In addition, the local
atomic environment varies for some specific elements which could also
cause the phonon DOS to vary. The result indicates that most of the
materials in the testing set are predicted phenomenally well by
CATGNN. The CATGNN predicted red curves are not largely off from the
black DFT total phonon DOS curves, except for some peaks in ClH3Sr2.
Our CATGNN model can also distinguish between materials with heavy
elements and light ones which is important for phonon related appli-
cations, since materials with light element tend to have total phonon
DOS at higher frequencies and materials with no light elements do not
have total phonon DOS at high frequencies [66]. CATGNN predicted the
total phonon DOS of Ca2H6NiPt that contains a light element of H
extraordinarily well although it contains other heavy elements and
several peaks as well. CATGNN also accurately predicted total phonon
DOS of IrRe3 which contains heavy elements.

b) Screening substrates for cooling high electron mobility transistors by
phonon DOS overlap

Fig. 3. Validation of trained CATGNN model by randomly selected materials. (Left panel) The MSE quartiles in the testing set of total phonon DOS. (Right panels)
The black color represents the “true” total phonon DOS of the materials calculated by DFT whereas the other color represents the predicted total phonon DOS withing
MSE quartiles regions of light green (0–0.25), blue (0.25–0.5), yellow (0.5–0.75), and light red (0.75–1).
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HEMTs are outstanding devices for high-frequency and high-power
applications [71–73]. Hexagonal GaN (h-GaN) is one of the most com-
mon and crucial materials in HEMT applications due to its desirable
attributes, such as medium to high LTC, high electron mobility, wide
bandgap, and high breakdown electric field [45,46]. However, some of
the issues that HEMT devices encounter are current leakage [74,75] and
heat dissipation limitations from the excessive heating which cause large
increase of temperature in the device channel [45]. Electric current
leakage is normally solved usingmaterials with large bandgap or various
materials combinations of metal-insulator-semiconductor HEMT [76].
The heat dissipation issues in high power electronics are often solved
using high ITC between the layers to dissipate the excessive heat more
effectively and thus reduce the temperature increase in the device
channel. Several materials have recently emerged with potential appli-
cations in HEMT device channels along with h-GaN, such as AlN [77]
and BN [78]. It was also reported that cubic GaN (c-GaN) was used in
HEMTs [79,80]. Here we calculate ITC and analyze several combina-
tions of heat sources and heat sinks from previously unexplored mate-
rials, based on the phonon DOS predicted using the trained CATGNN
model. Here we consider the effect of total phonon DOS on ITC. Further
ITC analysis demonstrates that our model can accurately predict phonon
DOS of new structures, and the predicted total phonon DOS can further
explain most of ITC results associated with HEMT devices.

Fig. 4a illustrates how heat flows from the channel in HEMT device to

the substrate that acts as a heat source. ITC plays a significant role
because if the ITC is low, heat will not dissipate at a sufficient rate which
poses temperature limitations to HEMT and eventually degrades the
performance of HEMT devices. Fig. 4b shows the schematic of a repre-
sentative temperature profile of a HEMT interface and how to calculate
ITC using necessary outputs such as heat flux and temperature drop from
the hot source to the cooler substrate at the interface. Table 1 shows
several materials with high LTC from the dataset used to train the
phonon DOS. Materials with high LTC are selected because they possess
weak phonons anharmonicity, and they are traditionally considered to
be promising candidates as heat sinks. For example, diamond is
considered in this analysis because it is used in many HEMT devices as a
heat sink or substrate [45–48]. Such materials were involved in ITC
calculations since they were considered in multiple HEMT studies as
previously stated.

With the obtained 2nd and 3rd order IFCs, we utilize almaBTE [58]
to approximate the interfacial phonon transmission coefficient in DMM
and calculate the heat flux and temperature drop across the interface
between the heat source and heat sink (substrate). almaBTE utilizes the
Monte Carlo simulations to help calculate ITC at the interface when
phonons dominate interfacial thermal transport [58]. The DMM assumes
that phonons lose memory of the state after reaching the interface. Once
the phonons reach the interface, they either scatter back into the initial
material or the subsequent medium. Whether the phonon scatters back
or transmits into another medium depends on the phonon DOS of the
two contacting materials [83]. The phonons will scatter into the same
energy phonon state in either medium, which implies that the trans-
mission probability of the phonon states with the same frequency is the
same. The ITC for a phonon with frequency ω and mode j transmitting
from material A to material B [84] can be defined as:

ITC=1
4
∑

j

∫ ωv
A,j

0
DA,j(ω)

∂n(ω,T)
∂T ћωvA,j⍺ A→B (ω) dω (5)

where ωv is the cutoff frequency, D(ω) is the phonon DOS, and ⍺ A→B is
the transmission coefficient from material A to B which is defined by the
DMM model as

⍺DMM,A→B =

∑

j
DB,jvB,j

∑

j
DA,jvA,j +∑

j
DB,jvB,j (6)

where v is the phonon group velocity. To calculate heat flux, almaBTE
[58] divides the 200 nm thick heterogeneous material into 300 bins. The
temperature deviation in bin l for a particle moving from depth xi at time

Fig. 4. a) A schematic outline on how the heat dissipates from the HEMT device channel into the substrate (i.e., heat spreader). b) Overall schematic of repre-
sentative temperature profile on how to calculate interfacial thermal conductance (ITC) from Monte Carlo simulation outputs using heat flux and temperature
difference at the interface.

Table 1
Candidate materials (in alphabetical order) with high LTC to be analyzed for
HEMT devices. The structure ID and bandgap information is obtained from the
OQMD database [8].
OQMD
ID

Formula Bandgap
(eV)

LTC (W/mK) at 300 K Heat source/sink
classification

1218324 AlN 3.458 272.93 (high) Heat source or
sink

8235 BAs 1.416 2358.3 (ultrahigh) Heat sink
1218562 BN 4.795 839.28 (ultrahigh) Heat source or

sink
5664 BP 1.367 532.39 (high) Heat sink
1218583 BSb 0.81 420.02 (high) Heat sink
1215492 Cdiamond 4.4 2966 (ultrahigh) [81] Heat sink
1222562 c-GaN 2.026 199.27 (high) Heat source or

sink
1472729 h-GaN 2.2 335.37 (in-plane) and

316.29 (out-of-plane)
(high) [82]

Heat source or
sink

4566 SiC 1.586 470.57 (high) Heat sink
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ti to depth xf at time tf is calculated by
1
wCl

(tf − ti
)

ρ
|Δxl|

⃒

⃒xf − xi
⃒

⃒

(7)

where w is the bin width, Cl is volumetric heat capacity, and ρ is
deviational intensity for each particle. The deviational intensity for each
particle is defined by

ρ= ± |Thot | + |Tcold|
Nparticles

(8)

where T is isothermal reservoir and the sign (±) depends on the
isothermal reservoir that emitted the particles. The isothermal reservoir
is defined as

Tiso =
ℏ

V
∑

k
(vk ⋅ n) H(vk ⋅ n) ωk

[fBE(ωk,Tiso)− fBE
(

ωk,Tref
)] (9)

where vk is group velocity at wavevector k, n is normal vector, H is
Heaviside function, ωk is angular frequency at wavevector k, fBE is Bose-
Einstein distribution of phonons, Tref is reference temperature (Tref =
Thot+Tcold

2 ). The heat flux in each bin is calculated by accumulating± ρ/ Ltot
each time a trajectory segment traverses the bin center. The sign (± )
depends on the particles’ movement: (+) if hot-to-cold or (−) if cold-to-
hot. Even though the spectral heat flux equation is not explicitly written
in Ref. [11], it is obtained by the particles’ angular phonon frequency
they are associated with and the moment they cross a bin as shown in
Fig. 4b. After obtaining the heat flux, onc can calculate ITC by dividing
the heat flux by the temperature change at the interface. The DMM was
originally developed to predict ITC in Helium in contact with other solid
interfaces [85] but was later used to predict ITC in other systems [86]. It
is worthmentioning that the DMMmodel does not consider the details of
the interfacial structure, such as roughness, interatomic bonding, re-
sidual strain, etc. Precisely determining ITC requires very computa-
tionally expensive simulations, such as nonequilibrium molecular
dynamics (MD) simulations which consider both harmonic and anhar-
monic phonon scattering [87,88] and Green’s function method [89,90]
where full phonon anharmonicity is challenging to consider. However,
the MD simulations would require accurate and fast interatomic po-
tentials for many different materials and diverse interfacial structures.
Even for recently developed so-called universal machine learning po-
tentials, their accuracy and effectiveness to interfacial structures are still
unknown. Despite the shortcomings of DMM [91], it remains a useful
tool for capturing the trends in phonon transmission across interfaces
[92] and it provides a reasonably accurate yet fast approach for quick
screening materials for interfacial thermal transport. Moreover, the
above more accurate approaches to calculate ITC still depend on phonon
DOS overlap from fundamental physics point of view, and therefore
using our developed CATGNN to down select materials with high
phonon DOS overlap with target source materials remains a good initial
screening strategy for other more accurate approaches. A more sophis-
ticated workflow that combines fast screening of candidates using
CATGNN model and subsequent fine filtering and validation by MD
simulations will be our future work.

A good first approximation condition to having a high ITC in DMM at
the heat source/sink interfaces has long been thought to be possessing
large overlap between the phonon DOS of the two materials [93–99].
The formula for phonon DOS overlap is defined as follows

Phonon DOS Overlap= 2 ∫∞

0 Doverlap(ω)dω
∫∞

0 Dheat source(ω)dω +
∫∞

0 Dsubstrate(ω)dω
(10)

where D(ω) represents the phonon DOS of a material, and ω is the
phonon frequency. The unit of phonon DOS is 1/THz or THz−1, while the
phonon DOS overlap is unitless as can be deduced from equation (10).
The previous equation is suggested to help screen materials candidate

pairs with potentially high ITC since it can be observed that it is close to
the transmission coefficient equation formulation. ITC was calculated
for the interface between two layers with 100 nm thickness for each
layer. ITC results between the heat source materials (i.e., AlN, BN, c-
GaN, and h-GaN) and the heat sink materials from Table 1 are shown in
Tables S1–S4 in Supplemental Information. The heat sources AlN, BN,
and c-GaN are isotropic, but h-GaN is anisotropic. Therefore, ITC should
not depend on orientation in AlN, BN, and c-GaN. For anisotropic h-GaN,
we performed additional almaBTE runs by using different crystal ori-
entations. The results shown in Table S5 in Supplemental Information
reveal that the ITC with materials contacting in different crystalline
directions are different, but the values do not differ too much. That can
be mainly explained by the low difference in the LTC of h-GaN among
three directions. Some difference can be also explained by the stochastic
nature of Monte Carlo simulations in almaBTE that produce slightly
different results in different runs. Overall, the orientation of the crystal
can take effect through group velocity in the ITC calculation as indicated
in Eq. (5). Each table has 5 columns: (1) various heat source–heat sink
combinations with one HEMT material for each table, (2) OQMD ID for
the heat sink, (3) LTC for heat sink, (4) phonon DOS overlap between the
heat source and heat sink calculated by Eqs. (10), and (5) ITC between
heat source and heat sink. The tables present the results for all high LTC
materials in Table 1 regardless of the phonon DOS overlap. Furthermore,
Tables S1–S4 in Supplemental Information give out the ITC for other
substrates with lower LTC and possibly higher phonon DOS. The
objective is to see how ITC varies with diverse LTC (i.e., high, moderate,
or low LTC) when the phonon DOS overlap is also varying between the
heat source and substrate. Note that all ITC are calculated at 300 K
because we believe many relevant applications such as heat dissipation
for HEMT devices are near room temperature. We have not investigated
ITC of the studied heat sources at higher temperatures yet, but ITC at
higher temperatures is certainly worth being investigated. With inter-
atomic force constants available, it is straightforward to extend the
current ITC calculation to higher temperatures. Covering phonon
transport at high temperatures will be one of the major tasks in the near
future.

Fig. 5 shows 3D visualization of the ITC results with AlN, BN, c-GaN,
and h-GaN as heat source in HEMT. The corresponding substrate LTC,
detailed ITC values, and phonon DOS overlap for all cases reported can

Fig. 5. 3D bar plot for all ITC results using AlN, BN, c-GaN, and h-GaN as heat
source in HEMT. The height of the bar reflects the magnitude of ITC, while the
color bar represents the phonon DOS overlap between heat source and heat sink
(substrate). The corresponding substrate LTC, detailed ITC values, and phonon
DOS overlap can be found in Tables S1–S4 in Supplemental Information.
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be found in Tables S1–S4 in Supplemental Information. The height of the
bar in Fig. 5 reflects the magnitude of ITC values, while the color bar
represents the phonon DOS overlap between heat source and heat sink
(substrate). The results are grouped into 4 islands, corresponding to AlN,
BN, c-GaN, and h-GaN as labeled as heat source. Most of the heat sinks or
substrates have medium to low LTC and only a few have ultrahigh LTC.
The top two materials in terms of substrate LTC are Cdiamond and BAs.
The highest bar, i.e., the highest ITC of 3542 MW/m2K, occurs at BN-
Cdiamond interface as denoted by the dark brown color, with corre-
sponding highest phonon DOS overlap of around 0.6. Many other
interface combinations possess ITC over 1000 MW/m2K and those are
listed in detail in Tables S1–S4 in Supplemental Information Fig. 5 also
illustrates that, medium to high ITC does not always occur at two ma-
terials with high LTC. Indeed, we found many high ITC interfaces, but
the two constitutive materials only have medium LTC, such as those in
the left-bottom corner of Fig. 5. For instance, h-GaN/BSb interface
possesses a moderate ITC of 598 MW/m2K although their phonon DOS
overlap is high (0.51) and LTC is also high for both materials (316.29
and 420.02 W/mK for h-GaN and BSb, respectively). This result also
confirms that the high phonon DOS overlap, or vibrational similarity
between two materials in contact does not necessarily lead to high ITC.

More rigorous analysis for the correlation between ITC and phonon
properties of component materials relies on the numerical simulation
results of large number of structure pairs. To this end, we performed
additional DFT calculations by randomly selecting a few hundred new
structures from the prediction structure pool and calculated the IFCs of
these structures. We further calculated their phonon DOS, the DOS
overlap with representative heat sources, and the ITC of the corre-
sponding interfaces. These additional calculations raise the number of

materials between 900 and 1000 for each heat source. The visual
portrayal of the correlation between ITC and phonon DOS overlaps
along with other phonon properties of the component materials are
shown in Fig. 6. It is worth mentioning that, for best illustration of strong
correlation, we have tried a few different material properties as the
second dependent variable, i.e., the color coding in Fig. 6, including LTC
of heat sink materials (see Fig. S5 in Supplemental Information). We
finally choose the product of average group velocity from the acoustic
branch of the heat source and heat sink (denoted as GV1 and GV2,
respectively) of the phonon DOS overlapping region for the color bar in
Fig. 6, as it reflects the best correlation of the data presented herein.
Here, the average acoustic branch GV1 × GV2 is calculated as

GV1 ac ×GV2 ac =

∑

f2

f1
v1

n1 ×

∑

f2

f1
v2

n2 (11)

where the subscripts “1” and “2” refer to material 1 and 2, respectively,
“ac” denotes acoustic branch, v1 and v2 are the corresponding group
velocity values for material 1 and 2, respectively, obtained from the
acoustic branch phonon modes from the phonon dispersions within the
cutoff frequencies f1 and f2 in which the phonon DOS of the two mate-
rials overlap, n1 and n2 are the total number of those acoustic branch
phonon modes in the overlap window. The product of average group
velocity of the heat source and heat sink as defined by Eq. (11) provides
a measure of thermal transport properties in the overlapped phonon
DOS frequency ranges and distinguish the performance of heat sinks
with high average group velocity from the ones with low group velocity.
Multiple mechanisms affect thermal transport across the interface in

Fig. 6. ITC vs. phonon DOS overlap between the heat source a) AlN, b) BN, c) c-GaN, and d) h-GaN and various heat sink substrates. The color bar indicates the
product of average group velocity of the acoustic branches of heat source and heat sink log10(GV1 × GV2) in the overlapping phonon DOS frequency range for the
formed interfaces.
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terms of almaBTE simulation such as intrinsic, interface, and absorption
phonon scatterings. However, group velocity plays a major role in ITC in
DMM [83–92] which is why we suggested the product of average group
velocity of the acoustic branches of heat source and heat sink as major
structure features in terms of high ITC. However, this does not guarantee
the ITC will be high for all cases with high product of average group
velocity of the acoustic branches of heat source and heat sink, and vice
versa. We anticipate that the reason for exception cases might stem from
the interface phonon scattering predicted by the DMM model where the
detailed phonon band structures of both heat source and heat sink get
involved in a complicated way but are simply treated in DMM model.
The reason why the group velocity is only considered in the acoustic
branch is because of the insignificant contribution of the heat flux
transported across the interface from the optical branches, due to their

usually low phonon group velocities, as can be seen and confirmed from
Fig. 7 as well. The analysis shown in Fig. 6 is performed on almost 1000
materials by DFT calculations and can provide clear insights on in-
terfaces with various values of phonon DOS overlaps and average group
velocities in the acoustic branch. Similar analysis is performed on LTC of
heat sinks, which is shown in Fig. S5 in Supplemental Information to
give more insights on what makes an interface have a high ITC. The
advantage of using CATGNN for computing ITC is to screen the phonon
DOS overlap from large number of unknown potential candidates. Even
though CATGNN cannot predict the group velocity so far, the initial
accelerated screening of phonon DOS will be extremely helpful due to
the direct correlation between phonon DOS overlap and ITC as evi-
denced by Fig. 6. Moreover, we would like to emphasize that, generally
speaking, the group velocity is a 2nd order physical quantity that is easy

Fig. 7. Phonon DOS overlap between HEMT materials with various substrates. a) AlN/SiC, b) AlN/GeC, c) BN/AlN, d) BN/NaH, e) h-GaN/LiF, and f) h-GaN/BSb. The
left panels represent high ITC of the formed interfaces, while the right panels represent low ITC, but both panels have similar phonon DOS overlap (labeled by red
numbers). The phonon DOS of heat source and heat sink are represented by the light-blue and light-yellow, respectively, while the gray area represents the phonon
DOS overlap between the heat source and heat sink. The phonon DOS overlap and the product of average group velocity of the acoustic branches of heat source and
heat sink (GV1 × GV2) in the overlapping phonon DOS frequency range for the formed interfaces are indicated by red numbers.
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to train by various machine learning models including the
state-of-the-art graph neural networks, like other 2nd order mechanical
properties as we did before by global attention graph neural network
such as bulk modulus and shear modulus [20]. Then, in principle we
believe our CATGNN model can also be used for training and predicting
group velocity. Future work will be done by training and predicting
phonon DOS and group velocity simultaneously to make smooth and
robust workflow for screening ITC.

The first clear trend shown in all panels in Fig. 6 is that ITC ap-
proaches zero when phonon DOS overlap approaches zero. This result is
consistent with DMM model and mathematically accurate from Eqs. (5)
and (6). Second, from Fig. 6, it is observed that as phonon DOS overlap
increases, ITC in general increases, but has an interesting divergent
behavior. The higher the phonon DOS overlap, the larger diversity the
predicted ITC. The divergent behavior can be understood clearly from
the panels through color mapping. If the phonon DOS overlap is in the
medium or high range, but the average GV1 × GV2 is low (i.e., blue color
region in the color bar), then ITC should be low as well. The opposite is
also true, i.e., high phonon DOS overlaps with high average GV1× GV2
should yield a high ITC. In contrast, this is not so obvious when using
LTC of heat sinks as color mapping (see Fig. S5 in Supplemental Infor-
mation). Some interesting results with high ITC that can be observed in
Fig. 6 include AlN/BN interface with low phonon DOS overlap of 0.26
and ultrahigh ITC of 1037 (MW/m2K), AlN/ScN with medium phonon
DOS overlap 0f 0.37 and ultrahigh ITC of 1066 (MW/m2K), BN/MgO
with medium phonon DOS overlap of 0.22 and ultrahigh ITC of 1038
(MW/m2K), and h-GaN/MgOwith phonon DOS overlap of 0.33 and high
ITC of 747 (MW/m2K). These results suggest a route for searching for
high ITC interfaces by using medium phonon DOS overlap but possess-
ing high average acoustic group velocity product (GV1 × GV2) in the
phonon DOS overlap frequency range. The same trend occurs for the
medium to low LTC materials whose interfaces do not always result in
low ITC. Some medium to low LTC materials could also have ultrahigh
ITC, such as BN/MgO (1044 MW/m2K), h-GaN/LiF (1237 MW/m2K),
and h-GaN/ZnO (1016 MW/m2K). The same phenomenon was observed
experimentally in Ref. [97]. The ITC for TiN/AlN interface can reach as
high as 800MW/m2K, while the LTC of TiN is only 16W/mK. Also, there
are some materials with low to medium LTC, such as ZnO (~50 W/mK
averaging over all directions), MgO (~30 W/mK), HfN (~14 W/mK),
but their associated interfaces possess ITC on the order of a few hundred
MW/m2K [100].

It is worth pointing out that, since the ITC values are approximately
calculated by the empirical DMM model in terms of the interfacial
transmission coefficients, there could be some so-called “outliers”
coming out from the workflow. We have checked our data and indeed
found some exceptions. For example, AlN/SrH2 has ITC of 93 MW/m2K
even though the interface has phonon DOS overlap of 0.34 and
log10(GV1 × GV2) of 2.91 log10(Å2/ps2), whereas AlN/RbCaH3 has
lower phonon DOS overlap of 0.28 and lower log10(GV1 × GV2) of 2.47
log10(Å2/ps2) but surprisingly a few times higher ITC of 418 MW/m2K.
Moreover, h-GaN/Li2S has ITC of 143 MW/m2K with phonon DOS
overlap of 0.38 and log10(GV1 × GV2) of 2.5 log10(Å2/ps2), but h-GaN/
PbS has higher ITC of 255 MW/m2K even with lower phonon DOS
overlap of 0.33 and lower log10(GV1 × GV2) of 2.2 log10(Å2/ps2). Even
with such exceptions, the trend can be viewed clearly from the data that
for the same phonon DOS overlap value, as log10(GV1 × GV2) increases,
ITC generally increases, and vice versa.

Regarding the group velocity descriptor, for some materials, a range
of phonon frequencies with high DOS but low group velocities may
contribute comparably to a range of (acoustic) phonon frequencies with
low DOS but high group velocities. Rigorously speaking, there is so-
called frequency dependent accumulative ITC associated with this,
which can be obtained by post-processing the simulation data such as in
almaBTE, similar to the frequency dependent accumulative LTC of single
crystals obtained from phonon BTE calculation. From such curve, one

can find out the dominant frequency range where heat energy is trans-
mitted most efficiently across the interface, and such dominant fre-
quency range should be material dependent. However, all these detailed
or bottom-level information cannot be easily obtained in a high-
throughput manner, as one must fully calculate the IFCs of two mate-
rials first and then solve BTE for phonon transport across the interface
formed by these two materials. Instead, here we use the acoustic phonon
frequency as cutoff frequency as a fast and robust approach, and we find
that this choice shows excellent performance to represent the strong
correlation between ITC and fundamental and more importantly easy-
to-obtain physical properties for the majority of material interfaces we
analyzed. Fig. 6 supports our above statements since it shows a clear
trend among ITC, phonon DOS overlap, and our average group velocity
descriptor. Our descriptor clearly explains the deviation of ITC at each
phonon DOS overlap value.

It is well known that the phonon DOS overlaps affect how the heat
fluxes travel across the interface between the heat source material and
substrate [91–96]. Fig. 7 displays the phonon DOS overlap of some
selected combinations of heat source materials and substrates. The heat
source/substrate pairs are selected based on high and low ITC values for
each heat source material except for c-GaN which is not shown here
because it has a substantially similar phonon DOS behavior to h-GaN.
For brevity, we only show phonon DOS overlap for h-GaN as the heat
source with other substrates. Fig. 7 demonstrates the cases of similar
phonon DOS overlap but with distinct ITC values for each heat source
material, where the phonon DOS of heat source and substrate are rep-
resented by the light-blue and light-yellow colors, respectively, and their
phonon DOS overlap regions are indicated by the gray area. Fig. 7a
exhibits high phonon DOS overlap of 0.43 at AlN/SiC interface with ITC
of 1659 MW/m2K (also see Table 1 in Supplemental Information).
Fig. 7b shows a similar phonon DOS overlap value of 0.45 in AlN/GeC
but with an ITC of 874 MW/m2K which is approximately half of AlN/SiC
shown in Fig. 7a. The explanation for the previous results in the AlN heat
source cases is explicitly stated from Fig. 6, ie., higher average
GV1 × GV2 in the acoustic branches in AlN/SiC yields higher ITC
compared to that of AlN/GeC. In Fig. 7c, the interface of BN/AlN has a
phonon DOS overlap, ITC, and average GV1 × GV2 as 0.27, 1056
MW/m2K, and 3383 A2/ps2, respectively. However, BN/NaH interfaces
in Fig. 7d shows a higher phonon DOS overlap of 0.35 with a signifi-
cantly lower ITC of only 322 MW/m2K which can be explained by the
lower average GV1 × GV2 in the acoustic branches of 1101 A2/ps2.
h-GaN/LiF in Fig. 7e and h-GaN/BSb in Fig. 7f have the same phonon
DOS overlap of 0.51. However, the ITC in h-GaN/LiF is 1249 MW/m2K
which is roughly twice the ITC of 603 MW/m2K for h-GaN/BSb. The
disparity in ITC is elucidated by the higher average GV1 × GV2 in the
acoustic branches in h-GaN/LiF of 721 A2/ps2 compared to 457 A2/ps2
in h-GaN/BSb. The results illustrated in Fig. 7 further confirm the strong
positive correlation between ITC and average GV1 × GV2 of the acoustic
branches in the overlap frequency range.

c) Spectral heat flux analysis of selected interfaces

Fig. 8 shows how the spectral heat flux varies along the distance of
heat source and substrate with respect to the phonon frequency. The
colormap represents the magnitude of the heat flux transported which
has various ranges depending on the LTC of the materials in contact,
where the red and blue colors denote high and low heat flux, respec-
tively. The heat flux is extremely high in the overlapping regions of
phonon frequencies between 3.8 and 12 THz in AlN/SiC as shown in
Fig. 8a. Although another region of phonon DOS overlap between 21
and 24 THz exists in AlN/SiC as shown from Fig. 7a, that overlap does
not seem to contribute significantly to ITC. For AlN/GeC interface, the
frequencies from 3 to 10 THz show a high heat flux transport, which is
exactly where the phonon DOS overlap occurs as seen from Fig. 7b.
Another phonon DOS overlap occurs in 19–23 THz, but it does not
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transport high heat flux as indicated by the blue color in Fig. 8b. As for
the heat source BN, Fig. 8c shows the high heat flux transported at 5 to
15 THz at BN/AlN interface which is where the phonon DOS overlap
occurs as illustrated in Fig. 7c. Another phonon DOS overlap occurs
between 19 and 25 THz in the optical branches but does not transport
high heat fluxes. For BN/NaH, Fig. 8d shows higher heat flux between 3
and 5 THz (acoustic phonons for BN) where the phonon DOS overlaps,
while the overlap in the optical branches does not transport the heat flux
much. One more result that deserves attention is the maximum heat flux
of 47 MW/m2 in BN/AlN which is higher than the maximum heat flux of
23 MW/m2 in BN/NaH. The higher heat flux transported in BN/AlN is
due to AlN possessing a relatively higher LTC of 272 W/mK than NaH
(only 14 W/mK). Regarding h-GaN/LiF in Fig. 8e, the high heat flux is
more prevalent between 3 and 7 THz which is also where the phonon

DOS match in Fig. 7e. The overlapped phonon states in the optical
branch in h-GaN/LiF do not contribute to transporting heat flux at the
interface. In h-GaN/BSb shown in Fig. 8f, the heat flux is transported by
frequencies between 3 and 6 THz and the optical branch frequencies
between 16 and 18 THz do not transport significant amount of heat flux
even though the phonon DOS overlaps at those frequencies. It can also
be noted that the maximum heat flux of 52 MW/m2 in h-GaN/BSb is
higher than the maximum heat flux of 26 MW/m2 in h-GaN/LiF due to
the higher LTC in BSb than LiF. As seen from these results, the optical
phonons generally do not transport heat flux much although phonon
DOS overlaps in these regions. This further demonstrates that the
average GV1 × GV2 should only be taken in the acoustic branches in the
overlap region to better explain and understand the ITC trend in Fig. 6.
Fig. 8 also highlights the importance of high LTC of heat sinks or

Fig. 8. Spectral heat flux at the interfaces corresponding to the cases in Fig. 7 a) AlN/SiC, b) AlN/GeC, c) BN/AlN, d) BN/NaH, e) h-GaN/LiF, and f) h-GaN/BSb. The
red and blue color indicate the high and low heat flux transported by the specific frequency phonon modes, respectively.
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substrates in thermal management applications, as high LTC indicates
high heat flux that can be quickly dissipated in the substrates once being
transported across the interface.

d) Pearson correlation analysis of simple material descriptors for ITC

Although Fig. 6 shows a clear trend among ITC with phonon DOS
overlap and our proposed group velocity descriptor, the group velocities
involved in GV1 × GV2 are hard to calculate since it requires the
calculation of second order IFC which is computationally expensive by
DFT. Here we discuss the possibility of exploring some material de-
scriptors with cheaper computational cost. The material descriptors
studied in this work are the mean atomic number, mean covalent radius,
and mean ground state volume per atom of the constituent elements in
the chemical composition of the substrate materials. Features from the
chemical composition of the materials can be compared with ITC using a
statistical correlation measure such as Pearson correlation [18] defined
as

∑

(xi−x)(yi−y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

(xi−x)2
∑(yi−y)2

√ , where xi is the data point for material descriptor

and yi is the corresponding ITC value, x and y is the mean value of the
variable. The corresponding Pearson correlations using mean atomic
number, mean covalent radius, and mean ground state volume per atom
as descriptors are shown in Fig. 9 for 900 to 1000 datapoints of ITC with
AlN, BN, c-GaN, and h-GaN as heat sources. Pearson correlation values
are between−1 and+1. Strong correlation is reflected by the value close
to either −1 or +1, whereas zero value corresponds to weak correlation.
The negative (positive) values indicate negative (positive) correlation
between the two features. In Fig. 9, all Pearson correlations are repre-
sented in absolute values to show the strength of the correlation, and the
direction of the correlation can be seen from the sign of the values on top
of the bars. All Pearson correlation values in Fig. 9 are between−0.4 and
−0.6, which indicates strong negative correlation or dependence be-
tween ITC and the studied features, i.e., a lower mean value of the
studied features leads to a higher ITC. For instance, a substrate with low
mean atomic mass more likely has a higher phonon frequency leading to
possibly a higher phonon DOS overlap with heat sources, which fulfills a

good preliminary screening condition to likely obtain high ITC. The
covalent radius is a measure of the atomic size that is a part of a covalent
bond with the same atom. The covalent radius grows as the row in the
periodic table goes down since the orbital size or energy levels increases.
However, in the same row of the periodic table the covalent radius in-
creases from left to right since the electrons undergo higher effective
charge from the nucleus which decreases the covalent radius. Overall,
low covalent radius from elements which possess low atomic numbers
and masses should lead to similar phonon DOS overlap between the heat
sources and heat sinks which have high chance to lead to high ITC. The
ground state volume is the volume of the cell in ground state calculated
by DFT. Low mean ground state volume per atom means the atoms are
more densely packed and interatomic bonding should be strong, and
usually such materials have low mean atomic numbers and possess low
atomic radius. Thus, the substrates with low mean ground state volume
per atom would have higher ITC. Generally speaking, similar species in
terms of atomic numbers of heat sources and substrates are more likely
to have higher phonon DOS overlap which might result in high ITC as
well. Although the Pearson correlation values of studied material de-
scriptors are not close to the bounds (−1 or +1), these descriptors pro-
vide new route for the first step of quickly screening potential substrates
from large-scale hypothetical structures with very low computational
cost and thus are very useful for future high-throughput material
screening. We also need to point out that various limitations might
occur. One could be the case when a similar average mass could occur
between h-GaN and a heat sink, but the atomic masses of the heat sink
might have large deviation (i.e., light and heavy elements constitute the
primitive cell) in which case the heat sink will not have large phonon
DOS overlap with h-GaN. Another limitation could be the low product of
group velocity of acoustic branch phonons in the phonon DOS over-
lapped frequency region. Even if the phonon DOS overlap between
h-GaN and a heat sink is high, the group velocity product of the acoustic
phonon might be low which will result in lower ITC. The bottom line is
that the average mass does not guarantee high ITC, but it is a good initial
screening descriptor. Further fine screening could be completed by
phonon DOS overlap and the average acoustic group velocity of
constituting material pairs (GV1× GV2) as proposed in this work.

Fig. 9. Absolute Pearson correlation values of mean atomic number, mean covalent radius, and mean ground state volume per atom correlated with ITC. 900 to 1000
datapoints of ITC with AlN, BN, c-GaN, and h-GaN as heat sources are used for the analysis. The color represents different heat sources. The original negative Pearson
correlation values indicate that the ITC negatively depends on all descriptors.
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4. Conclusion

To summarize, we constructed a CATGNN model and trained it on
phonon DOS of 4994 crystal structures with 62 unique elements calcu-
lated by high precision DFT. The predicted phonon DOS results from our
CATGNN model match the DFT calculations to a large extent, which
demonstrates the capability of the model in predicting spectral-like
materials properties. From computational speed point of view,
training CATGNNmodel is several orders of magnitude computationally
cheaper than the full DFT calculations. We further screened materials by
phonon DOS overlap to discover new combinations of materials with
ultrahigh interfacial thermal conductance for heat dissipation of HEMT
devices. We elucidate the hidden relationship and strong correlation
between high ITC and high average acoustic group velocity of both heat
sources and heat sinks, along with the previously known descriptor of
high phonon DOS overlap. We reveal a few unexpected cases where
ultrahigh ITC does not necessarily occur at interfaces with large phonon
DOS match, for example, BN/MgO interface with phonon DOS overlap
of only 0.22 but ITC of 1044 MW/m2K. This indicates that vibrational
similarity or high phonon DOS overlap is not the only requirement to get
high ITC, and the average acoustic group velocity is instead equally
important. We demonstrate that, although the LTC of substrates does not
have deterministic effect on ITC, it affects the magnitude of total heat
flux that can be dissipated in the substrates after transporting across the
interface, and therefore the traditional strategy of searching high LTC
materials for heat dissipation is still valid. Finally, we conducted Pear-
son correlation analysis on ~1000 DFT ITC datapoints and identified a
few simple material descriptors, namely mean atomic number, mean
covalent radius, and mean ground state volume per atom, that are
strongly but negatively correlated with ITC. These easy-to-calculate
material features combined with the aforementioned criteria of high
average acoustic group velocity and phonon DOS overlap offer a new
and reliable route for designing and fast screening large-scale material
pairs with high ITC at the interfaces for thermal management of wide
bandgap HEMT electronics.
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work. The DFT raw data for GNN model phonon DOS training and
testing are provided in the Excel file “SI_DFT_data_for_CATGNN_train-
ing.xlsx” and “SI_test_dataset_for_CATGNN_model.xlsx”. All DFT raw
data used for obtaining hidden structure-material property relationship
and performing Pearson correlation analysis for the 4 heat source ma-
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