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ABSTRACT

Nonparametric estimation of information divergence functionals be-
tween two probability densities is an important problem in machine
learning. Several estimators exist that guarantee the parametric
rate of mean squared error (MSE) of O(1/N) under various assump-
tions on the smoothness and boundary of the underlying densities,
with N being the number of samples. In particular, previous work
on ensemble estimation theory derived ensemble estimators of
divergence functionals that achieve the parametric rate without
requiring knowledge of the densities’ support set and are simple
to implement. However, these and most other methods all assume
some level of differentiability of the divergence functional. This ex-
cludes important divergence functionals such as the total variation
distance and the Bayes error rate. Here, we show empirically that
the ensemble estimation approach for smooth functionals can be
applied to less smooth functionals and obtain good convergence
rates, suggesting a gap in current theory.
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1 INTRODUCTION

Information divergence functionals are integral functionals of two
probability distributions. Accurate divergence estimation is of great
importance to the fields of machine learning, information theory,
and statistics. Some applications of divergences include estimat-
ing bounds on the Bayes error for a classification problem [2, 15,
18, 36], extending machine learning algorithms to distributional
features [16, 25, 34], feature selection and classification [2, 5, 27],
and image segmentation [8, 13]. See [1] for more applications of
divergence measures.
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The family of f-divergences is an important subset of informa-
tion divergences [7]. This family includes the well-known Kullback-

Leibler (KL) divergence [12], the Rényi-a divergence [26], the Hellinger-

Bhattacharyya distance [4, 9], the Chernoff-a divergence [6], the
Henze-Penrose divergence [2], and the total variation distance. The
Bayes error rate (BER) is another important divergence functional
that represents the best generalization error that can be achieved on
a classification problem with a given feature space. Thus if known,
the BER is incredibly useful for model benchmarking as it can help
diagnose sub-optimal model performance or cases where inaccurate
evaluations may overestimate generalized accuracy.

In many problems, parametric divergence estimators are inaccu-
rate due to a mismatch between the data and the parametric model.
Thus many nonparametric estimators of different divergence func-
tionals have been proposed with varying levels of theoretical guar-
antees [2, 3, 10, 11, 15, 17, 19, 20, 23-25, 28-32, 35, 37]. Some of
these estimators are guaranteed to achieve the parametric mean
squared error (MSE) of O(1/N) under certain smoothness assump-
tions on the densities and the divergence functional [3, 10, 11, 15,
17, 19, 20, 23, 24, 29-31, 37]. However, the vast majority of these
guarantees require the divergence functional to be differentiable,
which excludes some of the most important functionals for machine
learning, such as the total variation distance and the BER.

Of particular interest to us are ensemble estimators, which take
a weighted average of an ensemble of simple base estimators [3,
20]. The theory of optimally weighted ensemble estimation is a
general theory originally presented by Sricharan et al [33] and later
extended in [20]. The theory is especially well-suited for problems
where the bias of a base estimator is high while the variance is
low. In this case, the theory allows us to construct a weighted
ensemble estimator where the weights are chosen to greatly reduce
the bias in exchange for smaller increases in the variance, thus
reducing the overall MSE. The theory has been applied successfully
to derive nonparametric estimators of entropy, divergence, and
mutual information that achieve the parametric convergence rate.

The base estimators for these ensemble methods typically consist
of either kernel density estimator (KDE) or k-nn plug-in estima-
tors. To select the optimal weights, a bound on the variance and
an expression for the bias of the plug-in estimators in terms of the
ensemble parameter (e.g. the bandwidth for KDE and k for k-nn)
must be derived. These ensemble estimators are computationally
fast when the base estimators are computed efficiently, simple to
implement, achieve the parametric MSE convergence rate when the
densities are sufficiently smooth, and do not require direct knowl-
edge of the densities’ support set. The latter point is relevant in that
many competing non-parametric estimators require complicated
calculations at the boundary of the support [10, 11, 29, 30].

While these ensemble estimators are relatively straightforward
to implement, the theoretical groundwork required to derive the
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bias terms (which are necessary to set up optimization problem
and obtain guarantees on the convergence rate) can be cumber-
some [17, 20-22]. These derivations can be especially difficult when
the density support set contains boundaries. Furthermore, this the-
ory has (thus far) only been applied to differentiable functionals.
In this paper we provide empirical evidence that the ensemble esti-
mation approach can be applied to non-differentiable functionals,
such as the BER, and still obtain good MSE convergence rates.

2 ENSEMBLE ESTIMATION

Consider an indexed ensemble of estimators {E;} ,; of a parameter
E and a set of weights {w(¢) } ,c7 with },c7 w(£) = 1. The weighted
ensemble estimator of E is simply E., = e w(€)Ep. In [20], the
authors required that the variance of E; be O(1/T), where T is
the sample size, and that the bias of Eg can be written where its
dependence on T and the index parameter ¢ is known precisely
for all bias terms that converge slower than O(1/VT). Then an
offline convex optimization problem can be derived that chooses
optimal weights wy such that Ewo achieves the parametric MSE
rate. The optimization problem does this by selecting weights w
that minimize a term that controls the variance of E,, while forcing
the slow bias terms to converge faster to zero. Specifically, consider
the following conditions on {E},.z:

e (C.1 The bias can be written as

Bias(Ee) = ) cifhi(D;a(T) + O (1/VT),
ie]
where c; are constants that are independent of T and ¢, J is a
finite index set with I < L values, i; are basis functions that

depend only on the parameter ¢, and ¢; 4 depend only on T.
e (.2 The variance can be bounded by O(1/T).

THEOREM 2.1 (ADAPTED FROM [20]). Assume conditions C.1 and
C.2 hold for an ensemble of estimators {E},c;. Then there exists a
weight vector wg such that the MSE of the weighted ensemble estimator
is O(1/T). The weight vector wy is obtained by solving the following
convex optimization problem:

min €
w
subject to Z w(t) =1
tef
| $1.a(T) Y w(Oyi(0) [< T2 vie
tel
lwll3 < ne. )

The parameter 7 is chosen to achieve a tradeoff between bias
and variance. Note how the second constraint ensures that the slow
bias terms in Eq. 3 have a rate of O(1/VT) by controlling the basis
functions ¥;(¢).

We will now consider specifically the problem of divergence
functional estimation. Let fi and f> be d-dimensional probability
densities with common support. The f-divergence between f; and
/> has the following form [7]:

T

)fZ( )dx.
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For Dy to be considered a true divergence, the function ¢ must
be convex and ¢(1) = 0. Ensemble estimation can be extended to
other divergence functionals, although we focus on f-divergences
for simplicity.

We will assume that the densities fi and f, have a common
bounded support set S and fi and f; are strictly lower bounded. As-
sume that T = N + M independent and identically distributed (i.i.d.)
realizations X7 = {X1, X2, .. ., XN, XN+1, - - - » XN+M } are available
from the density f> and M i.i.d. realizations Yy = {Y1, Yo, ..., Ypr}
are available from the density fi, where M is proportional to T.

The ensemble theory was first applied to k-nearest neighbor (nn)
density plug-in estimators. Let k < M and let p; & (i) be the distance
of the k" nearest neighbor of X; in {Xn41, XN+2, oo XN4+M )
Similarly, define p; 4 (i) be the distance of the k’ h nearest neighbor
of X; in {Y1,Ys,- -+ ..., Yar}. Then the k-nn density estimator [14]
at the point X; is
A k

(X)) = ———,
f],k( l) Mﬁp;{k(i)

where ¢ is the volume of a d-dimensional unit ball. The functional
Dy is then approximated as

Sk (Xi)
Z¢( @)
fZ k (Xi)
Choose an ensemble of positive numbers £ = {¢1, €2, ..., .}

where L > d — 1 and let k() = £v/M. It was shown that if 1. the
density support set is bounded without any boundaries (e.g. the
surface of a torus), 2. the functional ¢ has a sufficient number of
derivatives, and 3. the densities have at least d derivatives, then the
bias and variance of ZA)¢,,k([) are [17]

A d Y 1

Bias(Dgy () = c(—) +O(—) 3)
o) = 2,9\ ) 0\

Var(Dy k() = 0(% + ﬁ) @)

where the constants are independent of M and ¢. Then given a
weight vector w with length L, define ZA)qs,w =Drei W([)DAqg,k(l).
Then the optimization problem in Eq. 1 with ;(¢) = ¢ @ and
¢ia(N) = N72 fori € {1,...,
such that the weighted ensemble estimator 25¢,M,0 achieves the
parametric MSE rate under the same assumptions given above.
By a similar procedure, ensemble estimators were obtained for
KDE plug-in estimators where the bandwidth h of the KDE is cho-
sen to depend on the parameter ¢, resulting in basis functions that
can be similarly controlled by the weight vector w [20]. The re-
sulting ensemble estimator can achieve the parametric rate when
the densities have more than d/2 derivatives and can be applied
to densities with boundaries on their support set as long as the
boundaries are sufficiently smooth. However, deriving the bias re-
sults in both scenarios is tedious and difficult, especially when the
density support set contains boundaries, and it has not been per-
formed for the case when ¢ is not differentiable. Our work suggests
empirically that assuming the bias and variance for less smooth

d} returns a weight vector wy
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divergences have the same form as in Eqs. 3 and 4 results in an
effective ensemble estimator.

3 BIAS CONSIDERATIONS

1
The bias expression in Eq. 3 is a polynomial function of (\/LM) I 1)

is not differentiable everywhere, the bias expression for ZA)¢’ x could

A
include polynomial terms of the form (\/LM) ¢ with A > 0. In that
case, the constraints in the optimization problem in Eq. 1 should in-
clude terms ¢; (£) = ¢ 4 and ¢; 4(N) should have terms of the form

N~ QT;. Thus one way to apply the ensemble estimation approach
to estimate less smooth functionals is to include these extra terms
in the optimization. On the other hand, including extra terms in
the constraints that aren’t present in the bias could potentially hurt
estimation performance. Thus in our experiments, we assess the
potential benefit or harm of including additional constraint terms
by estimating both the BER (unknown bias terms) and the Renyi-a
divergence integral (known bias terms) with different values of A.

We do not need any constraints with A < 1 if the densities are
bounded above and below and the function ¢ is Lipschitz contin-
uous (this includes most functionals of interest). In that case, it
can be shown that the bias of ZA)W( is bounded above by the bias

of the density estimators. Finally, the slowest term of the density
1

L) ¢ when the densities’ support set contains

VM

boundaries [22]. So in our experiments, we will only consider A > 1.

We analyze the ensemble estimator bias to determine the poten-
tial effects of including extra terms in the constraints. Assume that
wo and €y are the solutions to Eq. 1. Define

estimators is O (

r(d) =) wo(t)eINTHEANZ), )
tef
— Ald n—Af2d z71/2
= OEEN N/“|. 6
nax = max ;WO( ) (6)

Suppose that there exists a term of the form ¢ 7 for some 1 in the
bias that is not included in the optimization problem in Eq. 1. Then
the bias of Dy ,,, will have a term of the form:

Dlei Y w(eANTHEN <N | N w(eyet AN
i teLl i tel
< el Y- w(eyetdNH
i tel

< Z|Ci| (rmaxN_(l/z))

< flellyrmaxN ™2, @)
Thus in the worst case scenario (a term is neglected in the bias), the
bias of the ensemble estimator is asymptotically bounded above by
Fmax N =(1/2) 1n our experiments, we will compare the MSE of the
estimators to the asymptotic squared bias terms by(N) = egN -1

and byax (N) = r2 N71.
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Figure 1: MSE as a function of sample size N when estimating
the Rényi-a divergence integral when including different sets
of constraints in the optimization problem in Eq. 1. Error
bars on the MSE reflect the standard deviation from 20 trials.
The asymptotic squared bias bounds by and b are also
included.

4 EXPERIMENTS

To compare the performance of the ensemble estimator ZA)¢,W0 on
smooth versus non smooth divergence functionals, we estimated
the Rényi-a divergence integral and the BER between two truncated
normal densities restricted to the unit cube with varying dimension
and sample size. Note that the true divergences will change as d
changes and can be computed analytically. Assuming the prior class
probabilities are equal, the respective functionals ¢(¢) are then t*
and 1 min(#, 1). The densities have means fi; = 0.7+14, iz = 0.3%14
and covariance matrices o; * J; where o1 = 0.1, 02 = 0.3, 15 isa
d-dimensional vector of ones, and 7; is a d-dimensional identity
matrix. We used @ = 0.5 and computed wq by solving the convex
optimization problem in Eq. 1.

For each value of k, we used a leave-one-out estimator instead
of the data-splitting approach given in Eq. 2. Thus N is effectively
equal to T. The default simulation parameters were chosen as fol-
lows: sample size N = 1000, dimension of data d = 7, trade-off
parameter between bias and variance = 0.3, the minimum and
maximum values of £ are respectively 0.3 and 3.0, and the number
of values in this range is L = || = 50. When we varied N, we chose
N € {100, 400,700, ...,3100}. When varying the dimension, we
chose d € {2,5,8,...,25,30}. Experiments were repeated 100 times
for each setting to estimate the MSE and this was repeated 20 times
to obtain error bars on the MSE.

Based on Eqs. 1 and 3, the standard terms to include in the
optimization problem for smooth functionals include integer val-
ues of A between 1 and d. In our experiments, we considered
the effects of including additional values of A in the optimization
problem, specifically all terms with A € {1,1.5,2,...,d} and with
Ae{1,1.1,1.2,...,d}.

Figure 1 shows the MSE of the ensemble estimator under each of
these scenarios as well as the asymptotic bounds bg and byax when
estimating the Rényi-a divergence integral. From these results, it is
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Figure 2: MSE as a function of sample size N when estimating
the BER when including different sets of constraints in the
optimization problem in Eq. 1. The asymptotic squared bias
bounds by and by« are also included.

clear that the ensemble estimators’ MSE decreases as N increases
and the choice of terms in the optimization problem has a little effect.
This is corroborated by the behavior of the bounds by and bpax,
which show a similar trend. Note that since the constants ¢; are
unknown, by and byax may not be true upper bounds on the squared
bias and thus have a different scale from the MSE, although they do
reflect the asymptotic behavior. These results suggest that including
extra terms in the constraints of the optimization problem in Eq. 1
beyond those corresponding to A € {1,2,...,d} is unlikely to hurt
the estimation performance when those terms are not actually
present in the bias. We hypothesize that this is because controlling

the behavior of the i, (¢) = ¢4 for integer values of A is sufficient
to control any terms with noninteger values of A.

Figure 2 shows the same results when estimating the BER. We
observe similar trends as before where all configurations of the en-
semble estimators perform well, even though the exact bias for the
BER estimator is unknown. These results suggest that the ensemble
estimation approach can be applied to this less smooth divergence
functional without modification.

Figures 3 and 4 show similar plots when varying d instead. Here
the asymptotic bounds by and bmax generally increase as the dimen-
sion increases. However, for the Rényi-a ensemble estimators, the
MSE initially increases but then steadily decreases as d increases
while the MSE for the estimators for the BER steadily decreases.
The reason for this is that as the dimension increases, the value of
both the Rényi-a divergence integral and the BER gets closer to
zero. Since neither value can be negative, the estimation problem
becomes somewhat simpler. However, the estimators are not sim-
ply defaulting to zero as the error bars are nonzero. As before, the
differences in performance between the different optimization con-
figurations are small, suggesting that including extra constraints in
Eq. 1 is unnecessary for both smooth and nonsmooth functionals.

5 CONCLUSION

We applied the theory of optimally weighted ensemble estimation
to an ensemble of k-nn plug-in estimators to estimate a nonsmooth
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Figure 3: MSE as a function of dimension d when estimating
the Rényi-a divergence integral when including different
sets of constraints in the optimization problem in Eq. 1. The
asymptotic squared bias bounds by and by, are also included.
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Figure 4: MSE as a function of dimension d when estimating
the BER when including different sets of constraints in the
optimization problem in Eq. 1. The asymptotic squared bias
bounds by and by,,x are also included.

divergence functional (the BER) when assuming the same bias ex-
pression that was obtained in the literature for smooth divergence
functionals. The ensemble estimator performed well in terms of
MSE convergence. There are several possibilities that could ex-
plain this performance. One is that the currently unknown bias
expression for k-nn plug-in estimators of the BER matches that of
estimators for smooth functionals. Another is that the true bias
expression for the BER estimator contains additional terms, but
they are controlled by controlling the terms from the smooth case.
Future work involves deriving the theoretical bounds for the non-
smooth case so that guarantees can be obtained for settings and
distributions beyond those considered for our experiments.
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