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ABSTRACT
Nonparametric estimation of information divergence functionals be-

tween two probability densities is an important problem in machine

learning. Several estimators exist that guarantee the parametric

rate of mean squared error (MSE) of𝑂 (1/𝑁 ) under various assump-

tions on the smoothness and boundary of the underlying densities,

with 𝑁 being the number of samples. In particular, previous work

on ensemble estimation theory derived ensemble estimators of

divergence functionals that achieve the parametric rate without

requiring knowledge of the densities’ support set and are simple

to implement. However, these and most other methods all assume

some level of differentiability of the divergence functional. This ex-

cludes important divergence functionals such as the total variation

distance and the Bayes error rate. Here, we show empirically that

the ensemble estimation approach for smooth functionals can be

applied to less smooth functionals and obtain good convergence

rates, suggesting a gap in current theory.
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1 INTRODUCTION
Information divergence functionals are integral functionals of two

probability distributions. Accurate divergence estimation is of great

importance to the fields of machine learning, information theory,

and statistics. Some applications of divergences include estimat-

ing bounds on the Bayes error for a classification problem [2, 15,

18, 36], extending machine learning algorithms to distributional

features [16, 25, 34], feature selection and classification [2, 5, 27],

and image segmentation [8, 13]. See [1] for more applications of

divergence measures.
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The family of f-divergences is an important subset of informa-

tion divergences [7]. This family includes the well-known Kullback-

Leibler (KL) divergence [12], the Rényi-𝛼 divergence [26], theHellinger-

Bhattacharyya distance [4, 9], the Chernoff-𝛼 divergence [6], the

Henze-Penrose divergence [2], and the total variation distance. The

Bayes error rate (BER) is another important divergence functional

that represents the best generalization error that can be achieved on

a classification problem with a given feature space. Thus if known,

the BER is incredibly useful for model benchmarking as it can help

diagnose sub-optimal model performance or cases where inaccurate

evaluations may overestimate generalized accuracy.

In many problems, parametric divergence estimators are inaccu-

rate due to a mismatch between the data and the parametric model.

Thus many nonparametric estimators of different divergence func-

tionals have been proposed with varying levels of theoretical guar-

antees [2, 3, 10, 11, 15, 17, 19, 20, 23–25, 28–32, 35, 37]. Some of

these estimators are guaranteed to achieve the parametric mean

squared error (MSE) of 𝑂 (1/𝑁 ) under certain smoothness assump-

tions on the densities and the divergence functional [3, 10, 11, 15,

17, 19, 20, 23, 24, 29–31, 37]. However, the vast majority of these

guarantees require the divergence functional to be differentiable,

which excludes some of the most important functionals for machine

learning, such as the total variation distance and the BER.

Of particular interest to us are ensemble estimators, which take

a weighted average of an ensemble of simple base estimators [3,

20]. The theory of optimally weighted ensemble estimation is a

general theory originally presented by Sricharan et al [33] and later

extended in [20]. The theory is especially well-suited for problems

where the bias of a base estimator is high while the variance is

low. In this case, the theory allows us to construct a weighted

ensemble estimator where the weights are chosen to greatly reduce

the bias in exchange for smaller increases in the variance, thus

reducing the overall MSE. The theory has been applied successfully

to derive nonparametric estimators of entropy, divergence, and

mutual information that achieve the parametric convergence rate.

The base estimators for these ensemble methods typically consist

of either kernel density estimator (KDE) or 𝑘-nn plug-in estima-

tors. To select the optimal weights, a bound on the variance and

an expression for the bias of the plug-in estimators in terms of the

ensemble parameter (e.g. the bandwidth for KDE and 𝑘 for 𝑘-nn)

must be derived. These ensemble estimators are computationally

fast when the base estimators are computed efficiently, simple to

implement, achieve the parametric MSE convergence rate when the

densities are sufficiently smooth, and do not require direct knowl-

edge of the densities’ support set. The latter point is relevant in that

many competing non-parametric estimators require complicated

calculations at the boundary of the support [10, 11, 29, 30].

While these ensemble estimators are relatively straightforward

to implement, the theoretical groundwork required to derive the
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bias terms (which are necessary to set up optimization problem

and obtain guarantees on the convergence rate) can be cumber-

some [17, 20–22]. These derivations can be especially difficult when

the density support set contains boundaries. Furthermore, this the-

ory has (thus far) only been applied to differentiable functionals.

In this paper we provide empirical evidence that the ensemble esti-

mation approach can be applied to non-differentiable functionals,

such as the BER, and still obtain good MSE convergence rates.

2 ENSEMBLE ESTIMATION
Consider an indexed ensemble of estimators {Êℓ }ℓ∈ ℓ̄ of a parameter

𝐸 and a set of weights {𝑤 (ℓ)}ℓ∈ ℓ̄ with
∑
ℓ∈ ℓ̄ 𝑤 (ℓ) = 1. The weighted

ensemble estimator of 𝐸 is simply Ê𝑤 =
∑
ℓ∈ ℓ̄ 𝑤 (ℓ)Êℓ . In [20], the

authors required that the variance of Êℓ be 𝑂 (1/𝑇 ), where 𝑇 is

the sample size, and that the bias of Êℓ can be written where its

dependence on 𝑇 and the index parameter ℓ is known precisely

for all bias terms that converge slower than 𝑂 (1/
√
𝑇 ). Then an

offline convex optimization problem can be derived that chooses

optimal weights 𝑤0 such that Ê𝑤0
achieves the parametric MSE

rate. The optimization problem does this by selecting weights 𝑤

that minimize a term that controls the variance of Ê𝑤 while forcing

the slow bias terms to converge faster to zero. Specifically, consider

the following conditions on {Ê}ℓ∈ ℓ̄ :
• C.1 The bias can be written as

Bias(Eℓ ) =
∑︁
𝑖∈ 𝐽

𝑐𝑖𝜓𝑖 (ℓ)𝜙𝑖,𝑑 (𝑇 ) +𝑂
(
1/
√
𝑇

)
,

where 𝑐𝑖 are constants that are independent of𝑇 and ℓ , 𝐽 is a

finite index set with 𝐼 < 𝐿 values,𝜓𝑖 are basis functions that

depend only on the parameter ℓ , and 𝜙𝑖,𝑑 depend only on 𝑇 .

• C.2 The variance can be bounded by 𝑂 (1/𝑇 ).

Theorem 2.1 (Adapted from [20]). Assume conditions C.1 and
C.2 hold for an ensemble of estimators {Ê}ℓ∈ ℓ̄ . Then there exists a
weight vector𝑤0 such that theMSE of the weighted ensemble estimator
is 𝑂 (1/𝑇 ). The weight vector𝑤0 is obtained by solving the following
convex optimization problem:

min

𝑤
𝜖

subject to
∑︁
ℓ∈ ℓ̄

𝑤 (ℓ) = 1

| 𝜙𝑖,𝑑 (𝑇 )
∑︁
ℓ∈ ℓ̄

𝑤 (ℓ)𝜓𝑖 (ℓ) |≤ 𝜖𝑇 −1/2, ∀𝑖 ∈ 𝐽

∥𝑤 ∥2
2
≤ 𝜂𝜖. (1)

The parameter 𝜂 is chosen to achieve a tradeoff between bias

and variance. Note how the second constraint ensures that the slow

bias terms in Eq. 3 have a rate of 𝑂 (1/
√
𝑇 ) by controlling the basis

functions𝜓𝑖 (ℓ).
We will now consider specifically the problem of divergence

functional estimation. Let 𝑓1 and 𝑓2 be 𝑑-dimensional probability

densities with common support. The 𝑓 -divergence between 𝑓1 and

𝑓2 has the following form [7]:

D𝜙 (𝑓1, 𝑓2) =
∫

𝜙

(
𝑓1 (𝑥)
𝑓2 (𝑥)

)
𝑓2 (𝑥)𝑑𝑥 .

For D𝜙 to be considered a true divergence, the function 𝜙 must

be convex and 𝜙 (1) = 0. Ensemble estimation can be extended to

other divergence functionals, although we focus on 𝑓 -divergences

for simplicity.

We will assume that the densities 𝑓1 and 𝑓2 have a common

bounded support set S and 𝑓1 and 𝑓2 are strictly lower bounded. As-

sume that𝑇 = 𝑁 +𝑀 independent and identically distributed (i.i.d.)

realizations X𝑇 = {𝑋1, 𝑋2, . . . , 𝑋𝑁 , 𝑋𝑁+1, . . . , 𝑋𝑁+𝑀 } are available
from the density 𝑓2 and𝑀 i.i.d. realizations Y𝑀 = {𝑌1, 𝑌2, . . . , 𝑌𝑀 }
are available from the density 𝑓1, where𝑀 is proportional to 𝑇 .

The ensemble theory was first applied to 𝑘-nearest neighbor (nn)

density plug-in estimators. Let 𝑘 ≤ 𝑀 and let 𝜌
2,𝑘 (𝑖) be the distance

of the 𝑘𝑡ℎ nearest neighbor of 𝑋𝑖 in {𝑋𝑁+1, 𝑋𝑁+2, · · · ..., 𝑋𝑁+𝑀 }.
Similarly, define 𝜌

1,𝑘 (𝑖) be the distance of the 𝑘𝑡ℎ nearest neighbor

of 𝑋𝑖 in {𝑌1, 𝑌2, · · · ..., 𝑌𝑀 }. Then the 𝑘-nn density estimator [14]

at the point 𝑋𝑖 is

ˆ𝑓𝑗,𝑘 (𝑋𝑖 ) =
𝑘

𝑀𝑐𝜌𝑑
𝑗,𝑘

(𝑖)
,

where 𝑐 is the volume of a 𝑑-dimensional unit ball. The functional

D𝜙 is then approximated as

ˆD𝜙,𝑘 =
1

𝑁

𝑁∑︁
𝑖=1

𝜙

(
ˆ𝑓
1,𝑘 (𝑋𝑖 )
ˆ𝑓
2,𝑘 (𝑋𝑖 )

)
. (2)

Choose an ensemble of positive numbers ℓ̄ = {ℓ1, ℓ2, · · · ..., ℓ𝐿}
where 𝐿 > 𝑑 − 1 and let 𝑘 (ℓ) = ℓ

√
𝑀 . It was shown that if 1. the

density support set is bounded without any boundaries (e.g. the

surface of a torus), 2. the functional 𝜙 has a sufficient number of

derivatives, and 3. the densities have at least 𝑑 derivatives, then the

bias and variance of
ˆD𝜙,𝑘 (ℓ ) are [17]

Bias( ˆD𝜙,𝑘 (ℓ ) ) =
𝑑∑︁
𝑗=1

𝑐 𝑗

(
ℓ

√
𝑀

) 𝑗

𝑑

+ O
(

1

√
𝑀

)
(3)

Var( ˆD𝜙,𝑘 (ℓ ) ) = O
(
1

𝑁
+ 1

𝑀

)
, (4)

where the constants are independent of 𝑀 and ℓ . Then given a

weight vector 𝑤 with length 𝐿, define ˆD𝜙,𝑤 =
∑
ℓ∈ ℓ̄ 𝑤 (ℓ) ˆD𝜙,𝑘 (ℓ ) .

Then the optimization problem in Eq. 1 with 𝜓𝑖 (ℓ) = ℓ
𝑖
𝑑 and

𝜙𝑖,𝑑 (𝑁 ) = 𝑁 − 𝑖
2𝑑 for 𝑖 ∈ {1, . . . , 𝑑} returns a weight vector 𝑤0

such that the weighted ensemble estimator
ˆD𝜙,𝑤0

achieves the

parametric MSE rate under the same assumptions given above.

By a similar procedure, ensemble estimators were obtained for

KDE plug-in estimators where the bandwidth ℎ of the KDE is cho-

sen to depend on the parameter ℓ , resulting in basis functions that

can be similarly controlled by the weight vector 𝑤 [20]. The re-

sulting ensemble estimator can achieve the parametric rate when

the densities have more than 𝑑/2 derivatives and can be applied

to densities with boundaries on their support set as long as the

boundaries are sufficiently smooth. However, deriving the bias re-

sults in both scenarios is tedious and difficult, especially when the

density support set contains boundaries, and it has not been per-

formed for the case when 𝜙 is not differentiable. Our work suggests

empirically that assuming the bias and variance for less smooth
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divergences have the same form as in Eqs. 3 and 4 results in an

effective ensemble estimator.

3 BIAS CONSIDERATIONS

The bias expression in Eq. 3 is a polynomial function of

(
ℓ√
𝑀

) 1

𝑑
. If𝜙

is not differentiable everywhere, the bias expression for
ˆD𝜙,𝑘 could

include polynomial terms of the form

(
ℓ√
𝑀

) 𝜆
𝑑
with 𝜆 > 0. In that

case, the constraints in the optimization problem in Eq. 1 should in-

clude terms𝜓𝑖 (ℓ) = ℓ
𝜆𝑖
𝑑 and 𝜙𝑖,𝑑 (𝑁 ) should have terms of the form

𝑁 − 𝜆𝑖
2𝑑 . Thus one way to apply the ensemble estimation approach

to estimate less smooth functionals is to include these extra terms

in the optimization. On the other hand, including extra terms in

the constraints that aren’t present in the bias could potentially hurt

estimation performance. Thus in our experiments, we assess the

potential benefit or harm of including additional constraint terms

by estimating both the BER (unknown bias terms) and the Renyi-𝛼

divergence integral (known bias terms) with different values of 𝜆.

We do not need any constraints with 𝜆 < 1 if the densities are

bounded above and below and the function 𝜙 is Lipschitz contin-

uous (this includes most functionals of interest). In that case, it

can be shown that the bias of
ˆD𝜙,𝑘 is bounded above by the bias

of the density estimators. Finally, the slowest term of the density

estimators is 𝑂

(
ℓ√
𝑀

) 1

𝑑
when the densities’ support set contains

boundaries [22]. So in our experiments, we will only consider 𝜆 ≥ 1.

We analyze the ensemble estimator bias to determine the poten-

tial effects of including extra terms in the constraints. Assume that

𝑤0 and 𝜖0 are the solutions to Eq. 1. Define

𝑟 (𝜆) =
�����∑︁
ℓ∈ ℓ̄

𝑤0 (ℓ)ℓ𝜆/𝑑𝑁 −𝜆/2𝑑𝑁 1/2
�����, (5)

𝑟max = max

𝜆∈[1,𝑑 ]

�����∑︁
ℓ∈ ℓ̄

𝑤0 (ℓ)ℓ𝜆/𝑑𝑁 −𝜆/2𝑑𝑁 1/2
�����. (6)

Suppose that there exists a term of the form ℓ
𝜆
𝑑 for some 𝜆 in the

bias that is not included in the optimization problem in Eq. 1. Then

the bias of
ˆD𝜙,𝑤0

will have a term of the form:�����∑︁
𝑖

𝑐𝑖

∑︁
ℓ∈𝐿ℓ̄

𝑤 (ℓ)ℓ𝜆/𝑑𝑁 −𝜆/2𝑑
����� ≤

�����∑︁
𝑖

𝑐𝑖

�����
�����∑︁
ℓ∈ ℓ̄

𝑤 (ℓ)ℓ𝜆/𝑑𝑁 −𝜆/2𝑑
�����

≤
∑︁
𝑖

|𝑐𝑖 |
�����∑︁
ℓ∈ ℓ̄

𝑤 (ℓ)ℓ𝜆/𝑑𝑁 −𝜆/2𝑑
�����

≤
∑︁
𝑖

|𝑐𝑖 |
(
𝑟max𝑁

−(1/2)
)

≤ ∥c∥
1
𝑟max𝑁

−(1/2) . (7)

Thus in the worst case scenario (a term is neglected in the bias), the

bias of the ensemble estimator is asymptotically bounded above by

𝑟max𝑁
−(1/2)

. In our experiments, we will compare the MSE of the

estimators to the asymptotic squared bias terms 𝑏0 (𝑁 ) = 𝜖2
0
𝑁 −1

and 𝑏max (𝑁 ) = 𝑟2
max

𝑁 −1
.

Figure 1: MSE as a function of sample size 𝑁 when estimating
theRényi-𝛼 divergence integral when including different sets
of constraints in the optimization problem in Eq. 1. Error
bars on the MSE reflect the standard deviation from 20 trials.
The asymptotic squared bias bounds 𝑏0 and 𝑏max are also
included.

4 EXPERIMENTS
To compare the performance of the ensemble estimator

ˆD𝜙,𝑤0
on

smooth versus non smooth divergence functionals, we estimated

the Rényi-𝛼 divergence integral and the BER between two truncated

normal densities restricted to the unit cube with varying dimension

and sample size. Note that the true divergences will change as 𝑑

changes and can be computed analytically. Assuming the prior class

probabilities are equal, the respective functionals 𝜙 (𝑡) are then 𝑡𝛼

and
1

2
min(𝑡, 1). The densities have means 𝜇1 = 0.7∗1̄𝑑 , 𝜇2 = 0.3∗1̄𝑑

and covariance matrices 𝜎𝑖 ∗ I𝑑 where 𝜎1 = 0.1, 𝜎2 = 0.3, 1̄𝑑 is a

𝑑-dimensional vector of ones, and I𝑑 is a 𝑑-dimensional identity

matrix. We used 𝛼 = 0.5 and computed𝑤0 by solving the convex

optimization problem in Eq. 1.

For each value of 𝑘 , we used a leave-one-out estimator instead

of the data-splitting approach given in Eq. 2. Thus 𝑁 is effectively

equal to 𝑇 . The default simulation parameters were chosen as fol-

lows: sample size 𝑁 = 1000, dimension of data 𝑑 = 7, trade-off

parameter between bias and variance 𝜂 = 0.3, the minimum and

maximum values of ℓ̄ are respectively 0.3 and 3.0, and the number

of values in this range is 𝐿 = |ℓ̄ | = 50. When we varied 𝑁 , we chose

𝑁 ∈ {100, 400, 700, . . . , 3100}. When varying the dimension, we

chose 𝑑 ∈ {2, 5, 8, . . . , 25, 30}. Experiments were repeated 100 times

for each setting to estimate the MSE and this was repeated 20 times

to obtain error bars on the MSE.

Based on Eqs. 1 and 3, the standard terms to include in the

optimization problem for smooth functionals include integer val-

ues of 𝜆 between 1 and 𝑑 . In our experiments, we considered

the effects of including additional values of 𝜆 in the optimization

problem, specifically all terms with 𝜆 ∈ {1, 1.5, 2, . . . , 𝑑} and with

𝜆 ∈ {1, 1.1, 1.2, . . . , 𝑑}.
Figure 1 shows the MSE of the ensemble estimator under each of

these scenarios as well as the asymptotic bounds 𝑏0 and 𝑏max when

estimating the Rényi-𝛼 divergence integral. From these results, it is
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Figure 2: MSE as a function of sample size 𝑁 when estimating
the BER when including different sets of constraints in the
optimization problem in Eq. 1. The asymptotic squared bias
bounds 𝑏0 and 𝑏max are also included.

clear that the ensemble estimators’ MSE decreases as 𝑁 increases

and the choice of terms in the optimization problem has a little effect.

This is corroborated by the behavior of the bounds 𝑏0 and 𝑏max,

which show a similar trend. Note that since the constants 𝑐𝑖 are

unknown,𝑏0 and𝑏max may not be true upper bounds on the squared

bias and thus have a different scale from the MSE, although they do

reflect the asymptotic behavior. These results suggest that including

extra terms in the constraints of the optimization problem in Eq. 1

beyond those corresponding to 𝜆 ∈ {1, 2, . . . , 𝑑} is unlikely to hurt

the estimation performance when those terms are not actually

present in the bias. We hypothesize that this is because controlling

the behavior of the𝜓𝜆 (ℓ) = ℓ
𝜆
𝑑 for integer values of 𝜆 is sufficient

to control any terms with noninteger values of 𝜆.

Figure 2 shows the same results when estimating the BER. We

observe similar trends as before where all configurations of the en-

semble estimators perform well, even though the exact bias for the

BER estimator is unknown. These results suggest that the ensemble

estimation approach can be applied to this less smooth divergence

functional without modification.

Figures 3 and 4 show similar plots when varying 𝑑 instead. Here

the asymptotic bounds 𝑏0 and 𝑏max generally increase as the dimen-

sion increases. However, for the Rényi-𝛼 ensemble estimators, the

MSE initially increases but then steadily decreases as 𝑑 increases

while the MSE for the estimators for the BER steadily decreases.

The reason for this is that as the dimension increases, the value of

both the Rényi-𝛼 divergence integral and the BER gets closer to

zero. Since neither value can be negative, the estimation problem

becomes somewhat simpler. However, the estimators are not sim-

ply defaulting to zero as the error bars are nonzero. As before, the

differences in performance between the different optimization con-

figurations are small, suggesting that including extra constraints in

Eq. 1 is unnecessary for both smooth and nonsmooth functionals.

5 CONCLUSION
We applied the theory of optimally weighted ensemble estimation

to an ensemble of 𝑘-nn plug-in estimators to estimate a nonsmooth

Figure 3: MSE as a function of dimension 𝑑 when estimating
the Rényi-𝛼 divergence integral when including different
sets of constraints in the optimization problem in Eq. 1. The
asymptotic squared bias bounds𝑏0 and𝑏max are also included.

Figure 4: MSE as a function of dimension 𝑑 when estimating
the BER when including different sets of constraints in the
optimization problem in Eq. 1. The asymptotic squared bias
bounds 𝑏0 and 𝑏max are also included.

divergence functional (the BER) when assuming the same bias ex-

pression that was obtained in the literature for smooth divergence

functionals. The ensemble estimator performed well in terms of

MSE convergence. There are several possibilities that could ex-

plain this performance. One is that the currently unknown bias

expression for 𝑘-nn plug-in estimators of the BER matches that of

estimators for smooth functionals. Another is that the true bias

expression for the BER estimator contains additional terms, but

they are controlled by controlling the terms from the smooth case.

Future work involves deriving the theoretical bounds for the non-

smooth case so that guarantees can be obtained for settings and

distributions beyond those considered for our experiments.
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