2024 1EEE International Conference on Big Data (BigData) | 979-8-3503-6248-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/BigData62323.2024.10825972

2024 IEEE International Conference on Big Data (Big Data)

Advancing Tabular Data Classification with Graph
Neural Networks: A Random Forest Proximity
Method

Soheila Farokhi*

Department of Computer Science
Utah State University
soheila.farokhi @usu.edu

Kevin Moon
Department of Mathematics and Statistics
Utah State University
kevin.moon @usu.edu

Abstract—Graphs are essential for modeling complex relation-
ships, analyzing networks, and offering versatile representations
that capture diverse data structures. Graph Neural Networks
(GNNs) excel in processing graph-structured data by leveraging
the relational information encoded in graph topology. However,
not all types of data possess an explicit graph structure, par-
ticularly tabular data, which is ubiquitous in the real world.
To enable the use of GNNs for tabular data, it is necessary
to convert tabular data into graph-structured data. Existing
methods for this conversion often lack a generic, straightforward
approach with unrestrictive assumptions that can directly apply
GNNs to tabular data for downstream tasks. In this paper, we
introduce RF-GNN, a novel method that enhances traditional
machine learning approaches by transforming tabular data into
graph structures and leveraging GNNs. Our approach calculates
the similarity between pairs of samples based on Random
Forest (RF) proximities, which measure how often the same pair
appears in the same terminal nodes of a tree in a Random
Forest. This enables the creation of an adjacency matrix for
instances of tabular data, allowing the application of GNNs.
Extensive experiments on 36 different datasets demonstrate that
RF-GNN consistently outperforms traditional machine learning
models and recent methods in terms of weighted F1-score. We
conduct additional experiments to evaluate the effectiveness of
RF-GNN components and settings. The code is available in
https://github.com/DSAatUSU/RF-GNN.

Index Terms—Tabular Data, Graph Neural Networks, Ran-
dom Forest, Graph Representation Learning

I. INTRODUCTION

Graphs are essential for modeling complex relationships,
analyzing networks, and offering versatile representations that
capture diverse data structures [1]-[6]. Graph Neural Net-
works (GNNs) [7] are pivotal as they directly process graph-
structured data using the relational information encoded in a
graph topology. GNNs excel in tasks such as node classifi-
cation, link prediction, and graph classification across various

*Co-first authors and equal contributions.

7011

Haozhe Chen*
Department of Mathematics and Statistics
Utah State University
a02314155@usu.edu

Hamid Karimi
Department of Computer Science
Utah State University

hamid.karimi @usu.edu

domains such as social networks [8], [9], biology [10], and
education [11]-[13]. Their scalability, efficiency, and versatil-
ity make them invaluable for learning from large-scale graph
datasets and solving a wide range of real-world problems
efficiently and effectively.

However, not all types of data possess an explicit graph
structure, particularly tabular data which is ubiquitous in the
real world. Unlike graph-structured data, which explicitly
encodes relationships between entities using nodes and edges,
tabular data often lacks such explicit relational information.
Instead, tabular datasets are commonly assumed to be inde-
pendent and identically distributed (i.i.d.), meaning that each
observation is drawn from the same underlying distribution
and is independent of other observations. Nevertheless, studies
have shown that breaking this assumption and creating explicit
links (edges) between records (i.e., representing the tabular
data in graph form) can bring about many benefits [14].
Among these is the ability to apply the power of GNNs to
tabular data for better performance on downstream tasks such
as credit loan classification. Now the question is how can we
effectively convert tabular data into a graph structure so we
can leverage the power of GNNs?

In this paper, we introduce RF-GNN, a novel method aimed
at improving the performance of traditional machine learning
methods by transforming tabular data into graph-structured
data and then applying GNNSs. Figure 1 shows an overview of
our model. Specifically, we propose constructing a Random
Forest (RF) proximity matrix for the data. Random Forest
proximities offer advantages over similarity measures like
Jaccard and cosine similarity, as well as kernel methods like
RBF. Random Forests can handle heterogeneous data, capture
nonlinear relationships, and perform automatic feature selec-
tion, enhancing model robustness and interpretability. Their
ensemble nature provides robustness to noise and outliers,
making them suitable for real-world datasets. Following the

979-8-350Authegizpddicensed usedimitgdite; Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

Dataset Random Forest Adjacency Matrix Graph
s [Dotaser] 110010 / AN O
B . _|ibenin |y
':>E iI: 001111 =>(GNNJ=)
110001 Predict
011110 ’Q < N, s ©

Fig. 1: An overview of the proposed method (RF-GNN). A random forest is first trained on the tabular data. Pairwise proximities
are extracted from the random forest and then converted to an adjacency matrix, which is used as input to a GNN.

calculation of proximity values, we apply a threshold to
these values to construct an adjacency matrix, effectively
capturing the relationships between samples and facilitating
the generation of pseudo-graphs based on the specified thresh-
old. Through this approach, we investigate the potential of
transforming tabular data into structured graphs, enabling the
usage of GNNs to enhance machine learning performance.

We present extensive experimental results on 36 different
datasets that showcase promising outcomes. These results
suggest that converting tabular data into a graph has the
potential to augment the efficacy of conventional machine
learning algorithms, particularly when an optimal threshold is
carefully selected. The integration of spatial relationships and
patterns derived from graph representations significantly en-
hances predictive performance. In summary, our contributions
are as follows:

« We introduce a novel, general, and straightforward
method based on Random Forest proximities that trans-
forms tabular data into a graph structure for use in a
GNN.

« We conduct extensive experiments on 36 benchmark

datasets encompassing a wide range of tasks, dataset

sizes, and features.

Our method, RF-GNN, achieves up to a 0.51 improve-

ment in the Fl-score over traditional machine learning

algorithms. RF-GNN consistently performs on par with
or surpasses the current state of the art.

The remainder of this paper is organized as follows: in
Section II, we review related research in this area. Section III
presents the background, followed by the formal problem
statements and notations in Section IV. In Section V, we
describe the proposed method in detail. Section VI is dedicated
to experiments and discussions. Finally, we conclude the paper
in Section VII and suggest future directions.

II. RELATED WORK

With graph representation learning gaining significant pop-
ularity in recent years, there have been numerous efforts to
represent tabular data in graph form and apply graph embed-
ding techniques for downstream classification or regression
tasks. Supervised methods like Deep Graph Learning (DGL)
have been explored in several studies [15]-[18]. DGL shows
promise by using GNNs to construct and refine the graph
topology. These approaches parameterize the adjacency matrix
using various models, such as probabilistic models [16], [19],

7012

full parameterization models [20], or metric learning mod-
els [15], [21]. Further, they optimize both the adjacency matrix
and GNN parameters through downstream task optimization.
Subsequently, unsupervised DGL methods have emerged, such
as the one proposed by Liu et al. [22], which operates without
relying on label information, thereby mitigating potential bi-
ases in learned edge distributions. However, these approaches
prioritize learning improved graphical structures over directly
converting tabular data into graphs. IDGL (Iterative Deep
Graph Learning) [15] employs a weighted cosine similarity
to refine graph learning iteratively, enhancing both the graph
structure and node embeddings. While they improve GNN
learning by refining noisy graphs and introducing graph struc-
tures to non-graphical data, direct conversion of tabular data
into graph form is not their focus.

On the other hand, some methods focus on constructing
graphs by labels. Rocheteau et al. [23] proposed linking
patients with similar diagnoses in a graph to predict outcomes
using an LSTM and GNN. However, its reliance on diag-
nosis outcomes for graph construction limits its generality.
Additionally, Li et al. [24] listed numerous methodologies
tailored to tabular datasets, some involving direct or indirect
graph construction techniques like k-nearest neighbors (NN)
and similarity measurement. Yet, model effectiveness crucially
hinges on selecting suitable k values and similarity measures.
The same issue persists for [25], which uses kNN to con-
struct graphs. In summary, current studies lack a general and
straightforward approach with nonrestrictive assumptions that
can directly convert tabular data into a graph and apply GNNs
for downstream tasks. In addition, only a handful of studies
provide public code. Those that do not, are complicated to
reproduce, limiting their usability'.

III. BACKGROUND

In this section, we review the foundational methodologies
that underpin our study.

Random Forests [26] are widely recognized as robust
predictors, consisting of an ensemble of binary recursive
decision trees. They typically perform well “out of the box”
and require little to no tuning. They are adapted for both
classification and regression tasks, offer straightforward paral-
lelization, accommodate mixed variable types (continuous and
categorical), remain unaffected by monotonic transformations,
demonstrate resilience to outliers, scale adeptly to datasets of

I'See https://github.com/Roytsai27/awesome-GNN4TDL

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

varying sizes, handle missing values effectively, capture non-
linear interactions, and exhibit robustness to noise variables.

Random Forest Proximity: Random forests naturally gen-
erate pair-wise proximity measures based on the partition-
ing space of their constituent decision trees. These prox-
imities, defined by Leo Breiman as the proportion of trees
in which observations share the same terminal node [27],
encode a supervised similarity measure, leveraging the op-
timized splitting variable values for the task at hand. Used
in various applications such as data visualization [28]-[31],
outlier detection [28], [32], and data imputation [33]-[35],
random forest proximities extend many unsupervised problems
to a supervised context effectively. A more robust proxim-
ity metric called Random Forest-Geometry- and Accuracy-
Preserving proximities (RF-GAP) has been introduced in [36].
The proximity-weighted sum (regression) or majority vote
(classification) using RF-GAP precisely replicates the out-of-
bag random forest prediction, capturing the data geometry
learned by the model. It outperforms original random forest
proximities in tasks like data imputation, outlier detection, and
visualization. However, as RF-GAP proximities are computed
using weighted sums of training points, the test-test proximity
is inherently zero. Hence, we chose to employ the original RF
proximity in our study due to this limitation as the test-test
proximities are required for our method.

IV. PROBLEM STATEMENT

Let D = {(thl), (Xg,yg), ey (XN7 yN)} be the given
tabular dataset, where x; € R? are the data points in the
dataset and y; € Ny are the labels. For each dataset, we
use ¢ > 2 to indicate the number of classes. We use X to
represent all data points, i.e. X = {X;,X2,...,Xy} and) to
represent labels, i.e. ¥ = {y1,y2,...,yn}. Our objective is
to first develop a model f(-) that, given a tabular dataset D,
constructs a graph where data points serve as nodes and edges
between these nodes indicate that the data points exhibit high
similarity. We can write this as:

A - f(nytrain)v (1)

where X is defined above, Vi, qin 1S a subset of labels YV
chosen for training model f(-), and A is the adjacency matrix
for the resulting graph. Then we employ a Graph Neural
Network (GNN) that, given the above adjacency matrix, node
features X, and target labels V.4, learns to predict labels of
test data points YV;.s:. The model’s predictive function can be
mathematically represented as follows:

Zji = ¢(A7X7ytrain)7 (2)

where y; € R¢ is the vector that represents the probability of
data point x; belonging to each possible class, and ¢ represents
any GNN model that is designed for node classification.

V. THE PROPOSED METHOD (RF-GNN)

In this section, we detail RF-GNN, a novel approach that
combines the robust feature extraction capabilities of random
forests with the dynamic relational modeling strength of

7013

GNN:Gs. Figure 2 illustrates our proposed method. RF-GNN first
transforms tabular data into a structured graph format, enabling
the application of advanced neural network techniques tailored
for graph data described in Section V-A. In Section V-B, we
elaborate on how the graph-structured data are processed using
Graph Convolutional Networks (GCNs).

A. Graph Construction

To leverage graph embedding techniques, we construct a
graph that captures the similarity between instances in a
tabular dataset using random forest proximities. The resulting
proximity matrix quantifies the similarity between pairs of data
points based on their co-occurrence in the same terminal node
(leaf) across multiple decision trees within a random forest
model. High proximity indicates that data points are “close”
or “similar” within the forest’s decision-making context, pro-
viding insights into relationships in the feature space. This
method is useful for tasks such as cluster identification and
outlier detection [36] and as a foundation for other machine-
learning models.

We begin by performing a grid search with 5-fold cross-
validation to identify the optimal random forest model trained
on the training set. After selecting the best model, we fit it
to the training data. Then, we apply the model to the whole
dataset, which applies the trees in the forest to all data samples
and returns leaf indices. In other words, for each data point
x € X and for each tree in the forest, this method returns the
index of the leaf x ends up in without fitting the model to the
whole data. The random forest proximity between observations
1 and j is computed as follows:

T
plid) = 131G € () ®
where T represents the number of trees, I;(¢) are the indices
of observations in the same leaf as x; in tree ¢, and 1(-) is the
indicator function. This equation determines the proportion of
trees where observations ¢ and j share the same terminal node.
For instance, in Figure 2, p(i, j) % indicating x; and z;
appear in the same leaf nodes in two trees out of the three
decision trees (Tree 2 and Tree 3).

Using Equation 3, we calculate the proximity between all
pairs of points, resulting in a proximity matrix P € RV*V
where P; ; = p(4, j). Since using P directly as the adjacency
matrix results in a highly dense (or fully connected) graph,
which would negatively impact the performance of GNNs and
increase both storage and computational complexity, we select
a threshold « to transform the matrix P into a binary adjacency
matrix A € R{0:1}:

A=P>a. 4)

Thus, A can serve as the adjacency matrix for an unweighted
graph with nodes as data points x; and edges representing
that the random forest proximity exceeds the threshold «. In
Section VI-D, we analyze the effect and distribution of this
threshold.

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

LTrain Random
Tl

_t| Apply

Tree 3
m e
00 |

R

Adjacency Matrix

01 ... 0

Lo .. 1 .
Thresholding

10 ..

.0

ﬂ Graph G

== [GNN]===

T

PAp =3 Y 16 €L0)

t=1

a1 _2
PN =70+1+1D =3

p(,j) ¢]

O]

Predict

Yo

Fig. 2: The workflow of our proposed method (RF-GNN), which uses a random forest to learn a graph from tabular data. The

graph structure is then inputted to a GNN for final prediction.

B. Graph Neural Network

By transforming tabular data into a graph format, we rede-
fine our initial classification problem as a node classification
task. GNNs have proven highly effective in this domain by
exploiting both node features and their interconnections within
the graph [37]-[39]. In particular, GCNs [37] harness the
graph’s topology to aggregate and refine features from adjacent
nodes. This approach allows nodes to integrate information
from their immediate and extended neighborhood, adapting the
principles of convolutional neural networks to graph data [40].
As a result, GCNs are proficient at handling various graph-
related tasks, including node classification, graph classifica-
tion, and link prediction.

In the GCN framework, multiple graph convolutional layers
are used for neighborhood aggregation. Initially, at the O-th
layer, a node’s embedding vector, or latent representation, is
set to its feature vector. For instance, for node i corresponding
to data point x;, we define hl(.o) = x;, where hl(»o) represents the
embedding of node ¢ at the 0-th layer. In subsequent layers /,
within a GCN consisting of L layers, the embeddings of nodes
are updated through a weighted average of the embeddings
of their neighbors, combined with the node’s own previous
layer’s embedding, followed by the application of a non-linear
activation function. This process is mathematically expressed
as:

hf.l“):o— W, Z
JEN ()

+Bn" | Viedo,...,L-1}

®)
where o denotes a non-linear function such as the Rectified
Linear Unit (ReLU), and W; and B; are learnable parameters.
Wi is the weight matrix at layer [applied to the neighbors’
embeddings, B; is the weight matrix applied to the node’s
own embedding from the previous layer, N (i) represents the

7014

set of neighbors of the node 4, and | N (7)| indicates the count
of these neighbors. After processing through L layers, the final
embedding of node i is a k-dimensional vector given by hZ(L).

After applying the GCN, the final embedding of each node
or data point is used to predict its label. For this purpose,
we use a two-layer Multilayer Perceptron (MLP), known as
a fully connected network as well. This MLP takes the final
node embedding as input and predicts the probabilities of the
node belonging to each class. The mathematical formulation
of the MLP operations is given by:

(6)
)

In Equation 6, Wi, and b, are learnable parameters. Wi,
is the weight matrix for the input layer to the hidden layer,
b, is the bias for the hidden layer, and «a is the output of the
hidden layer. In Equation 7, Wy, and b, are learned by the
model. Wy, is the weight matrix connecting the hidden layer
to the output layer, b, is the bias for the output layer, and ¥;
is a c-dimensional vector representing the probability of data
point x; belonging to each class. Finally, a softmax function
is applied to y; to determine the final label. We used a cross-
entropy loss function to train the model for classification.

a = ReLU(Wi, - h\¥) +b,),
gi Wout * @ =+ bo.

VI. EXPERIMENTS
A. Datasets

We employ datasets available through the OpenML? API
in our experiments. Most of our datasets belong to OpenML-
CC18 benchmark [41], which comprises real-world classifica-
tion datasets specifically curated for benchmarking machine
learning algorithms and is widely recognized and commonly
used for tabular data classification. For our analysis, we select

Zhttps://www.openml.org/

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Statistics: IN (# of instances), d (# of
features), dcat (# of categorical features), c (# of classes).

ID ‘ Name ‘ N ‘ d ‘ dcat ‘ c
902 Sleuth Case 2002 147 | 6 4 2
1006 Lymphography 148 | 18 | 15 | 2
955 Teaching Assistant Evaluation 151 5 2 2
941 Low Birth Weight 189 | 9 7 2
1012 Nations’ Flags 194 | 28| 26 |2
446 Cushing’s Syndrome 200 7 1 2
40710 Heart Disease 303 | 13 8 2
915 Plasma Retinol 315 | 13 3 2
1167 “pcl_req” 320 8 1 2
40663 calendarDOW 399 |32 20 |5
475 German Political System 400 5 4 4
1498 South Africa Heart Disease 462 9 1 2
853 Boston Housing Data 506 | 13 1 2
825 Corrected Boston Housing Data 506 | 20 3 2
43757 Wisconsin Breast Cancer 569 | 30 0 2
40981 Australian Credit Approval 690 | 14 8 2
43942 Annealing 898 | 38 | 32 |2
40705 Tokyo SGI Server Performance 959 | 44 2 2
31 German Credit 1 1000 | 20 | 13 | 2
44098 German Credit 2 1000 | 20 | 13 | 2
43255 Student Performance 1000 | 7 4 2
983 Contraceptive Method Choice 1473 | 9 7 2
23 Contraceptive Method Choice (Multi) 1473 | 9 7 3
720 Abalone Age Prediction 4177 | 8 1 2
1557 Abalone Age Prediction (Multi) 4177 | 8 1 3
40701 Churn 5000 | 20 4 2
182 Landsat Satellite 6430 | 36 0 6
300 Isolated Letter Speech Recognition 7797 | 617 0 |26
1478 Human Activity Recognition 10299 | 561 | O 6
1053 Software Defect Prediction 10885 | 21 0 2
32 | Pen-Based Recog of Handwritten Digits | 10992 | 16 0 |10
4534 Phishing Websites 11055 30 | 30 | 2
6 Letter Image Recognition 20000 | 16 0 |26
1486 Nomao (Search engine of places) 34465 | 118 | 29 | 2
1461 Portuguese Bank Marketing 45211 | 16 9 2
1590 Adult (Census Income) 48842 | 14 8 2

36 datasets, each featuring a mix of numerical and categorical
attributes. These datasets are diverse in terms of the number
of instances, number of features, number of classes, and their
data sources. Table I details the statistics of these datasets. We
partitioned the datasets into training and test sets following an
80:20 split ratio.

B. Baselines

We compare our model with the following baseline models:

1) Random Forest (RF): Random Forestis an ensemble
learning method that builds multiple decision trees and av-
erages their outcomes to improve accuracy and control over-
fitting. It is effective for both classification and regression
tasks. For our experiments, we employed the Random Forest
implementation provided by scikit-learn®.

2) XGBoost (XGB): XGBoost is a highly efficient and
flexible gradient boosting library that enhances the speed
and performance of gradient-boosted trees. It is designed
for scalability and handles large-scale data effectively. We
employed the XGBoost Python package* in our experiments.

3https://scikit-learn.org/stable/
“https://xgboost.readthedocs.io/en/stable/python/

7015

3) LightGBM (LGBM): LightGBM is a fast, distributed
gradient boosting framework that uses tree-based learning
algorithms. It is optimized for speed and memory efficiency,
using advanced techniques like histogram-based splits. In our
experiments, we used the LightGBM python package’.

4) Gradient Boosting (GB): Gradient Boostingconstructs
a predictive model through a sequential ensemble of weak
models, typically decision trees. It optimizes arbitrary differen-
tiable loss functions, making it versatile for various regression
and classification problems. For our experiments, we used the
Gradient Boosting implementation available in scikit-learn.

5) Multi-layer Perceptron (MLP): MLP is a type of feed-
forward artificial neural network with multiple layers, using
backpropagation for training. It excels in complex pattern
recognition by modeling non-linear relationships between in-
puts and outputs. For our experiments, we implemented an
MLP with 2 hidden layers using the PyTorch library’.

6) Interaction Network Contextual Embedding (INCE):
In addition to the above ML algorithms, we compare RF-
GNN with the latest relevant method from the literature.
In INCE [42], both categorical and continuous features are
projected individually into a common dense latent space. The
resulting feature embeddings are then structured into a fully
connected graph, augmented with an additional virtual node.
Subsequently, a GNN is employed to model the relationships
among all nodes, including the original features and the virtual
node, thereby enhancing their representations. The enhanced
representation of the virtual node is then input into the final
classifier or regressor. For this model, we used the authors’
implementation available on GitHub®.

For each model, we employed grid search to find the
best hyper-parameters. We repeated each experiment 5 times
with different random seeds and recorded the mean and
standard deviation of weighted Fl-scores. The experiments
were conducted on a system with an AMD EPYC 7513 CPU,
4 NVIDIA RTX A4000 GPUs, and 1 TB of RAM. In RF-
GNN, we used PyTorch to implement the GCN component
and scikit-learn for the random forest. Since RF-GNN requires
a proximity threshold, for each dataset, we experimented with
51 evenly spaced proximity thresholds o ranging from O to 1
(inclusive). We then picked the best proximity threshold and
model hyper-parameters using 5-fold cross-validation on the
training set and applied the best model on the test set.

Table II shows the results of our experiments. Based on
these results, we make the following observations:

+ RF-GNN demonstrates outstanding performance, secur-
ing the top rank on 16 out of 36 datasets and the second
rank on another 10, resulting in the best overall average
rank of 2.22. This underscores the efficacy of integrating
Random Forest proximity with GNNs, which excellently
captures relationships within tabular data, thereby en-
hancing model performance.

Shttps://lightgbm.readthedocs.io/en/latest/Python-Intro.html
Ohttps://scikit-learn.org/stable/

Thttps://pytorch.org/
8https://github.com/MatteoSalvatori/INCE

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison of the performance of baseline models and our proposed model (RF-GNN) in terms of weighted
Fl1-score. The best result in each column is displayed in bold, and the second-best result is underlined.

Dataset [RF XGB GB LGBM MLP INCE [42] RF-GNN
902 0.8269 £0.0176 0.7819 £0.0153 0.7451 £0.0323 0.8125 £0.0000 0.8001 £ 0.0211 0.8332 £ 0.0236 0.8446 + 0.0048
1006 0.9044 4+ 0.0238 0.8707 £0.0251 0.8745 4+ 0.0531 0.8757 £0.0358 0.8734 +0.0134 0.8930 £ 0.0154 0.9472 + 0.0208
955 0.7874 £0.0253 0.7767 £0.0254 0.7324 £0.0414 0.6056 £ 0.0212 0.5901 £ 0.0607 0.8217 £ 0.0569 0.8571 £+ 0.0000
941 0.7641 £0.0314 0.6925 4 0.0211 0.7560 £ 0.0199 0.7091 £ 0.0264 0.5013 & 0.0745 0.8121 4+ 0.0295 0.7836 £ 0.0118
1012 0.4211 £0.0000 0.4071 +0.0248 0.4118 £0.0354 0.4261 £0.0712 0.4299 +£0.0243 0.6861 £+ 0.0193 0.6424 4+ 0.0121
446 0.8793 £0.0118 0.8949 £ 0.0120 0.9052 +£0.0129 0.9009 £ 0.0147 0.7150 £ 0.1617 1.0000 £ 0.0000 1.0000 + 0.0000
40710 0.7961 £ 0.0088 0.7414 +0.0225 0.7648 £0.0156 0.7550 £ 0.0103 0.6450 £ 0.0359 0.8723 £ 0.0269 0.8321 4+ 0.0132
915 0.5563 = 0.0300 0.5856 £ 0.0224 0.5889 + 0.0139 0.5788 £0.0370 0.4474 +0.0268 0.5716 = 0.0182 0.7293 + 0.0025
1167 0.3389 £ 0.0669 0.3226 £ 0.0000 0.3460 & 0.0574 0.2798 + 0.0267 0.6352 + 0.0237 0.6294 + 0.0817 0.4819 4+ 0.0132
40663 0.6755 + 0.0070 0.5904 £ 0.0115 0.6730 4+ 0.0066 0.6124 £ 0.0060 0.4985 + 0.0154 0.6335 £ 0.0319 0.6529 + 0.0100
475 0.3539 £0.0169 0.4029 + 0.0157 0.4372 4+ 0.0254 0.3710 £ 0.0268 0.3214 +£0.0277 0.4140 £ 0.1775 0.4395 4+ 0.0181
1498 0.5314 £0.0296 0.5728 = 0.0191 0.5589 + 0.0301 0.5733 £0.0245 0.6507 4+ 0.0328 0.7525 +0.0146 0.6383 + 0.0282
825 0.8591 £ 0.0059 0.8307 & 0.0050 0.8413 £0.0126 0.8408 £ 0.0081 0.7374 £0.0251 0.8682 £ 0.0175 0.9015 4+ 0.0081
853 0.9091 +0.0121 0.8986 +0.0039 0.9049 4+ 0.0147 0.9050 £ 0.0035 0.7496 £ 0.0152 0.8774 £0.0182 0.9152 + 0.0095
43757 0.9722 £0.0000 0.9735+0.0052 0.9630 £ 0.0055 0.9682 + 0.0056 0.9370 0.0034 0.9789 + 0.0100 . + 0.
40981 0.9163 & 0.0058 0.9109 £ 0.0099 0.9025 4+ 0.0065 0.9103 £ 0.0054 0.8005 + 0.0225 0.9304 £ 0.0067 0.9323 + 0.0091
43942 | 1.0000 + 0.0000 1.0000 =+ 0.0000 0.9969 & 0.0041 1.0000 + 0.0000 1.0000 =+ 0.0000 1.0000 =+ 0.0000 1.0000 + 0.0000
40705 | 0.9454 £0.0025 0.9408 & 0.0042 0.9452 4 0.0067 0.9455 £ 0.0039 0.7690 £ 0.0114 0.9404 & 0.0047 0.9548 + 0.0015
31 0.8318 £ 0.0128 0.8309 £ 0.0077 0.8264 +0.0096 0.8283 £0.0100 0.5765 & 0.0000 0.7557 £ 0.0215 0.8270 % 0.0032
43255 0.8938 +0.0044 0.8743 £0.0050 0.8850 +0.0083 0.8827 £0.0043 0.8633 £ 0.0086 0.7912 £ 0.2436 0.8858 £+ 0.0066
44098 0.8318 +0.0128 0.8309 £ 0.0077 0.8264 +0.0096 0.8283 £0.0100 0.5778 £ 0.0027 0.7193 £0.0802 0.8287 + 0.0031
983 0.6409 +0.0111 0.6241 £ 0.0041 0.6412 +0.0183 0.6313 £0.0098 0.6740 + 0.0211 0.7288 +0.0078 0.6645 + 0.0087
23 0.5256 £0.0113 0.5209 £0.0128 0.5209 4 0.0101 0.5173 +£0.0073 0.4842 £ 0.0119 0.4841 4+ 0.1277 0.5463 + 0.0039
720 0.7734 £0.0024 0.7735£0.0022 0.7716 +0.0044 0.7689 £ 0.0041 0.7277 £ 0.0018 0.7879 £ 0.0058 0.7965 + 0.0019
1557 0.6583 £0.0041 0.6562 £ 0.0036 0.6524 £0.0095 0.6529 £ 0.0085 0.5613 + 0.0129 0.6716 + 0.0040 0.6683 £+ 0.0021
40701 0.8700 +0.0055 0.8710 £ 0.0042 0.8657 +0.0061 0.8831 £0.0049 0.7976 + 0.0044 0.8849 4 0.0529 0.8853 + 0.0022
182 0.9184 £0.0020 0.9191 +0.0028 0.9245 +0.0030 0.9171 +0.0000 0.8285 4+ 0.0027 0.8728 £0.0082 0.9171 4+ 0.0029
300 0.9383 £0.0009 0.9517£0.0016 0.9482 +0.0004 0.9622 £ 0.0000 0.9387 £0.0022 0.6978 = 0.0461 0.9636 + 0.0018
1478 0.9758 £0.0026 0.9908 + 0.0000 0.9903 £ 0.0000 0.9919 + 0.0005 0.9440 4+ 0.0009 0.9237 £ 0.0738 0.9822 4 0.0009
1053 0.3291 4+ 0.0087 0.2918 £ 0.0000 0.2624 +0.0031 0.2423 £0.0024 0.7381 + 0.0070 0.7704 £+ 0.0017 0.7579 &+ 0.0034
32 0.9904 £ 0.0005 0.9893 +0.0000 0.9918 4 0.0000 0.9900 £ 0.0003 0.9497 £0.0079 0.9801 £ 0.0059 0.9934 + 0.0002
4534 0.9758 + 0.0006 0.9691 £ 0.0000 0.9695 4+ 0.0009 0.9685 £ 0.0010 0.9138 +0.0032 0.9687 £ 0.0004 0.9709 + 0.0011
6 0.9664 + 0.0003 0.9636 £ 0.0000 0.9655 + 0.0001 0.9646 £ 0.0018 0.6900 + 0.0062 0.7754 £ 0.0409 0.9388 + 0.0036
1486 0.9793 £ 0.0004 0.9801 =+ 0.0000 0.9783 +0.0002 0.9770 £ 0.0006 0.9334 & 0.0013 0.9545 +0.0036 0.9658 = 0.0005
1461 0.5105 £0.0032 0.5586 + 0.0000 0.5443 £ 0.0000 0.5438 £ 0.0057 0.8471 +£0.0101 0.9099 £ 0.0012 0.8916 4 0.0017
1590 0.6833 & 0.0015 0.7143 £ 0.0000 0.7185 4+ 0.0000 0.7134 £0.0017 0.7306 + 0.0082 0.8184 4+ 0.0901 0.7636 + 0.0119
Ist rank 7 2 1 2 2 12 16
2nd rank 3 5 5 2 2 7 10
Avg rank 3.55 4.28 4.22 4.42 5.80 3.50 2.22
« INCE is the second-best model with an average rank of each model.
3.50, leading in performance on 12 datasets and achiev- .)
. C. Proximity Measure Analysis
ing second place on 7 datasets. Its robust performance
highlights the benefits of graph embedding techniques for
tabular data classification. Similarity metric
EZZ2 RF-GNN E=d Cosine E=1 Jaccard B2 RBF Kernel

« Random Forest emerges as a strong contender, holding
a close third position with an average rank of 3.55. It
consistently performs well, emphasizing its reliability as
a robust method for diverse datasets.

o The superior performance of RF-GNN and INCE across
the majority of the datasets (26 out of 36) illustrates
their particular effectiveness in leveraging graph-based
approaches to improve predictions in tabular datasets.

o While RF-GNN generally outperforms INCE, it shows
notably higher scores on datasets such as 43255 and 6,
indicating significant improvements. Conversely, INCE
demonstrates better results than RF-GNN on datasets
such as 1498 and 983, suggesting that the choice between
these models may depend on specific dataset character-
istics or the nature of the data relationships captured by

Iy
)

o
)

Weighted Fl-score
() o
B o

o
N

Fig. 3:

Dataset
Effect of using different proximity measures on model

performance on 5 different datasets in terms of weighted F1-
score. The RF proximity gives the best performance.

In this section, we assess the effectiveness of the proposed
RF proximity approach, which is the core of our proposed

7016
Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

Dataset ID: 902

Dataset ID: 941

Dataset ID: 23

0.90 0.85 0.60
[0.85 (] 0.80 [
§ § § 0.55
Jo.80 J0.75 A} W
'S 'S 'S
To0.75 3 B 0.50
- = 0.70 -
< < <
%0_70 .g’ %0.45
H 20.65 2
0.65 0.40
0.60
0.60
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proximity Threshold (a) Proximity Threshold (a) Proximity Threshold (a)
Dataset ID: 23 Dataset ID: 182
1.00
0.60
< < 0.95
S0.55 [
9 P
T i * ¥y \ T VT ¥ S SR S
5 0-50 - 0.90
[} [}
- -
< <
.%’0.45 .%’0 85
H s
0.40
0.80
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Proximity Threshold (a)

Proximity Threshold (a)

Fig. 4: Sensitivity analysis of GNN performance across varying proximity thresholds « for five datasets. The results show
general stability in performance for o values between 0.4 and 0.6, with notable variability in dataset 941, indicating differing

sensitivity to threshold settings.

method. As an alternative to the RF proximity, one might
be tempted to use readily available similarity measures. To
evaluate the efficacy of the RF proximity compared to such
measures, we opted to use cosine, Jaccard, and RFB kernel
measures where for each pair of samples x; and x;, they
will yield a similarity scalar between 0 and 1 based on the
features of these two samples. The following are mathematical
formulations of these similarity measures:
T Ty

®)

Cosine(x;,xj) = —————
T | x |
where - is the inner product operation, and ||-|| is the Euclidean
norm operation.

e min(zi g, w)

d
Y e Max (T g, T4 k)

9

Jaccard(z;, x;)
where z; j, is the k-th element in the d-dimensional vector x;.

RBF(z;,7;) = exp (—7llz; — z;|%) (10)

where || - || is the Euclidean norm operation and + is a hyper-
parameter that determines the impact of each training example
on the decision boundary. We set the value of v to 0.01 in our
experiments. We also standardized the RFB value to be in the
range [0, 1].

We compare the weighted F1-score of RF-GNN with GNNs
trained on graphs constructed using the aforementioned sim-

7017

ilarity measures across 5 different datasets’. We employ the
same training scheme, constructing proximity matrices for the
dataset via all these similarity measures and then applying
a threshold to construct graphs for GNNs. The results are
shown in Figure 3. Each experiment was executed 5 times with
different random seeds, and the mean and standard deviation
of weighted Fl-scores are reported. We make the following
observations.

e Our experimental results in Figure 3 show that RF-
GNN consistently outperforms GNNs trained on graphs
constructed from other proximity measures.

« Unlike traditional proximity measures that solely focus on
the feature space, RF proximity considers both features
and labels, providing a more comprehensive understand-
ing of sample similarity and potentially enhancing per-
formance in tasks where label information is informative
or critical.

o The RF proximity, trained within the context of a random
forest model, inherently prioritizes the most informative
features during the learning process.

o The RF proximity tends to be less sensitive to outliers
compared to other similarity measurements due to the
ensemble nature of the Random Forest algorithm and the
way proximities are calculated within it.

9We obtained similar results for other datasets.

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

D. Threshold Sensitivity Analysis

We conducted a sensitivity analysis to determine the impact
of various proximity thresholds a on the performance of the
GNN. This analysis was performed across five of the datasets
in Table I, using 51 evenly spaced thresholds ranging from 0
to 1. For each threshold, experiments were repeated five times,
and both the mean and standard deviation of the weighted F1-
scores were recorded. The results are illustrated in Figure 4.

The analysis indicates that, apart from some minor varia-
tions between seeds, the performance for datasets generally
stabilizes for o values between 0.4 and 0.6. However, dataset
941 shows fluctuating performance at certain thresholds, sug-
gesting variable sensitivity to the proximity threshold setting.

Frequency
w =y] o

2
1

0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: Distribution of optimal T)roximity thresholds o across
36 datasets, highlighting a concentration between 0.1 and 0.5.
This range suggests that moderate graph density is optimal for
GNN performance.

Additionally, we examined the distribution of the optimal
proximity thresholds across all 36 datasets by averaging the
best-performing thresholds from each of our 5 experiments.
The resulting histogram and Kernel Density Estimate (KDE)
plot, shown in Figure 5, demonstrate that optimal « values
typically range from 0.1 to 0.5. This pattern indicates that
moderately dense graph structures, which strike a balance
between connectivity and noise, tend to yield the best per-
formance in GNNs.

E. Dataset Attribute Analysis

In this section, we investigate whether dataset attributes
affect the performance of RF-GNN and other methods. Specifi-
cally, we examine the relationship between the performance of
a predictive model and several dataset attributes. We consider
the performance of a method as the dependent variable and
the number of instances, the number of features, the number of
classes, and the number of categorical features as independent
variables. Subsequently, we perform a regression analysis.
Table III summarizes the results for all methods. Based on
these results, we make the following observations.

o Negative R-squared Values: All models resulted in
negative R-squared values, indicating that the linear re-
gression models do not fit the data well. This suggests
that the dataset attributes do not adequately explain the
variability in a model’s performance.

7018

e Mean Squared Error (MSE): The MSE values are
relatively low, but given the negative R-squared values,
this does not imply good regression performance. The
low MSE might be misleading without considering the
R-squared values.

o Consistent Intercept Across Models: The intercept
(const) is consistently positive and significant across all
models, with coefficients ranging from approximately
0.6672 to 0.7914. This indicates that even when all in-
dependent variables are zero, the models predict positive
values for the dependent variables.

« #Instances Variable: The coefficient for #Instances is
small and not statistically significant in any of the models,
with p-values well above the 0.05 threshold. This suggests
that the number of instances does not have a meaningful
impact on the performance of the models.

« #Features Variable: The #Features variable has pos-
itive coefficients in all models but is not statistically
significant, except for MLP (with a borderline p-value
of 0.055). This indicates that the number of features may
have a slight positive influence on model performance,
particularly for MLP, but the evidence is not strong.

« #Classes Variable: The coefficient for #Classes is gen-
erally positive but not significant across all models. This
implies that the number of classes does not significantly
affect the performance of the models.

« #Categorical Features Variable: The #Categorical Fea-
tures variable also has positive coefficients across all
models but is not statistically significant. This suggests
that the presence of categorical features does not signifi-
cantly influence model performance.

« Significance Levels: None of the independent variables
are statistically significant at the 0.05 level in any of the
models. This indicates that none of these features strongly
explain the variance in the dependent variables for this
particular dataset.

« Potential Multicollinearity: The lack of significance for
all independent variables across all models could indicate
potential multicollinearity issues or that these features are
not the key drivers of model performance. Further inves-
tigation into feature interactions or alternative features
might be necessary.

Overall, the regression analysis indicates that dataset at-
tributes have an insignificant impact on the classification
performance of an ML model. Specifically, for RF-GNN, this
suggests that our proposed method can consistently perform
well across various datasets, regardless of dataset size, number
of features, number of classes, and number of categorical
features. This further supports the versatility of RF-GNN.

VII. CONCLUSION AND FUTURE WORK

This study presented a novel method, RF-GNN, which
successfully enhances the performance of traditional machine
learning algorithms by converting tabular data into graph
structures using Random Forest proximities and then applying
Graph Neural Networks. RF-GNN proved to be effective in

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Regression analysis of the relationship between the dataset attributes and the performance of a method (weighted

F1-score). Overall, the regression analysis suggests that dataset

attributes have an insignificant impact.

Method Dataset Attribute (Variable) Coefficient Std. Error t-value P > |t| 95% Confidence Interval
const 0.7031 0.0543 12.9472 0.000 [0.5923, 0.8139]
#Instances -0.000001 0.000003 -0.5061 0.616 [-0.000007, 0.000004]
RF #Features 0.000276 0.000303 09118 0.369 [-0.000342, 0.000894]
#Classes 0.007963 0.007423 1.0727 0.292 [-0.007176, 0.023102]
#Categorical Features 0.004202 0.003895 1.0789 0.289 [-0.003742, 0.012146]
Mean Squared Error (MSE): 0.0325 R-squared (R?): -0.944
const 0.6966 0.0539 12.9301 0.000 [0.5867, 0.8064]
#Instances -0.000000 0.000003 -0.1631 0.872 [-0.000006, 0.000005]
XGB #Features 0.000309 0.000301 1.0281 0.312 [-0.000304, 0.000922]
#Classes 0.007435 0.007364 1.0098 0.320 [-0.007583, 0.022454]
#Categorical Features 0.003443 0.003864 0.8910 0.380 [-0.004438, 0.011323]
Mean Squared Error (MSE): 0.0357 R-squared (R?): -1.189
const 0.6966 0.0530 13.1511 0.000 [0.5886, 0.8047]
#Instances -0.000001 0.000003 -0.2979 0.768 [-0.000007, 0.000005]
GB #Features 0.000294 0.000296 0.9944 0.328 [-0.000309, 0.000897]
#Classes 0.008033 0.007241 1.1094 0.276 [-0.006735, 0.022800]
#Categorical Features 0.003991 0.003799 1.0506 0.302 [-0.003757, 0.011740]
Mean Squared Error (MSE): 0.0334 R-squared (R?): -1.207
const 0.6831 0.0561 12.1681 0.000 [0.5686, 0.7976]
#Instances -0.000001 0.000003 -0.2151 0.831 [-0.000007, 0.000005]
LGBM #Features 0.000325 0.000313 1.0386 0.307 [-0.000313, 0.000964]
#Classes 0.008159 0.007673 1.0633 0.296 [-0.007491, 0.023809]
#Categorical Features 0.004250 0.004026 1.0555 0.299 [-0.003962, 0.012462]
Mean Squared Error (MSE): 0.0334 R-squared (R?): -1.207
const 0.6672 0.0433 15.4256 0.000 [0.5790, 0.7554]
#Instances 0.000004 0.000002 1.6066 0.118 [-0.000001, 0.000008]
MLP #Features 0.000482 0.000241 1.9961 0.055 [-0.000010, 0.000974]
#Classes -0.001551 0.005912 -0.2624 0.795 [-0.013609, 0.010506]
#Categorical Features 0.001211 0.003102 0.3904 0.699 [-0.005116, 0.007538]
Mean Squared Error (MSE): 0.0565 R-squared (R?): -3.559
const 0.7914 0.0408 19.3826 0.000 [0.7121, 0.8706]
#Instances 0.000002 0.000002 0.7532 0.457 [-0.000002, 0.000007]
INCE #Features 0.000147 0.000215 0.6837 0.498 [-0.000295, 0.000589]
#Classes -0.004842 0.005594 -0.8657 0.392 [-0.015676, 0.005992]
#Categorical Features 0.001261 0.002787 0.4523 0.654 [-0.004424, 0.006946]
Mean Squared Error (MSE): 0.0283 R-squared (R?): -2.879
const 0.7797 0.0405 19.2645 0.000 [0.6971, 0.8622]
#Instances 0.000002 0.000002 0.7357 0.467 [-0.000003, 0.000006]
RF-GNN #Features 0.000256 0.000226 1.1338 0.266 [-0.000204, 0.000717]
#Classes 0.002758 0.005532 0.4986 0.622 [-0.008525, 0.014041]
#Categorical Features 0.001771 0.002903 0.6102 0.546 [-0.004149, 0.007691]
Mean Squared Error (MSE): 0.0269 R-squared (R?): -1.207

capturing complex relational information within tabular data,
thus overcoming the limitations of conventional techniques
that typically struggle with such tasks. Through extensive
experimentation across 36 diverse datasets, RF-GNN demon-
strated significant improvements over several strong baselines,
including Random Forests, XGBoost, LightGBM, Gradient
Boosting, Multi-layer Perceptron, and Interaction Network
Contextual Embedding. Our results showed that RF-GNN
achieved the best performance on 16 out of the 36 datasets
and was among the top-performing models on most others,
highlighting its robustness and versatility.

Additionally, the analysis of different proximity measures
reaffirmed the superiority of Random Forest proximity in con-
structing effective graphs for GNNs. The sensitivity analysis
of the proximity threshold further emphasized the importance
of selecting an optimal threshold to maximize performance,
while the dataset attribute analysis indicated that RF-GNN
consistently provided strong results across various dataset
characteristics.

Overall, RF-GNN offers a general, straightforward approach
for transforming tabular data into graph structures, enabling
the application of advanced GNN techniques. This method

7019

has the potential to significantly enhance the predictive perfor-
mance of machine learning models on tabular data, making it a
valuable contribution to the field of data science and machine
learning.

Possible future directions include exploring alternative prox-
imity measures to better capture relationships in tabular data,
integrating more sophisticated or hybrid similarity metrics,
and developing automated methods for optimizing proximity
thresholds across different datasets. Additionally, it is worth
studying the impact of dynamic thresholding strategies during
training, improving the scalability of RF-GNN for very large
datasets, and implementing parallel processing techniques for
efficiency. Experimenting with other GNN architectures like
Graph Attention Networks (GAT) [38] or GraphSAGE [39]
could provide further performance improvements, as could
combining RF-GNN with other neural network models like
transformers. Extending the RF-GNN method to handle tem-
poral and sequential data, and testing robustness to noisy
and incomplete data using noise-resistant methods and data
augmentation techniques are also important directions.

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

X. Cheng, C. Yang, Y. Zhao, Y. Wang, H. Karimi, and T. Derr, “A
comprehensive analysis of social tie strength: Definitions, prediction
methods, and future directions,” arXiv preprint arXiv:2410.19214, 2024.
K. Kheiri, M. FE. A. Khan, T. Derr, and H. Karimi, “An analysis of the
dynamics of ties on twitter,” in 2023 IEEE International Conference on
Big Data (BigData). 1EEE, 2023, pp. 5809-5817.

H. Karimi, K. T. Knake, and K. A. Frank, “An analysis of diffusion of
teacher-curated resources on pinterest.” International Educational Data
Mining Society, 2023.

D. Moore, J. Edwards, H. Karimi, R. Khadka, and P. Bodily, “Temporal
abstract syntax trees for understanding student coding thought process,”
in 2022 Intermountain Engineering, Technology and Computing (IETC).
IEEE, 2022, pp. 1-6.

S. Javadi, A. Moradan, M. Sorkhpar, K. Zaporojets, D. Mottin, and
I. Assent, “Wiki entity summarization benchmark,” arXiv preprint
arXiv:2406.08435, 2024.

H. Boomari and S. Farokhi, “Computing boundary cycle of a pseudo-
triangle polygon from its visibility graph,” in Topics in Theoretical
Computer Science: Third IFIP WG 1.8 International Conference, TTCS
2020, Tehran, Iran, July 1-2, 2020, Proceedings 3. Springer, 2020, pp.
61-71.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
Al open, vol. 1, pp. 57-81, 2020.

H. Karimi, T. Derr, A. Brookhouse, and J. Tang, “Multi-factor con-
gressional vote prediction,” in Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, 2019, pp. 266-273.

S. Farokhi, A. Azizian Foumani, X. Qi, and H. Karimi, EDGE-UP:
Enhanced Dynamic GNN Ensemble for Unfollow Prediction in Online
Social Networks, ser. Lecture Notes in Computer Science, L. M. Aiello,
T. Chakraborty, and S. Gaito, Eds. Springer Cham, 2024, vol. 1.

R. Li, X. Yuan, M. Radfar, P. Marendy, W. Ni, T. J. O’Brien, and P. M.
Casillas-Espinosa, “Graph signal processing, graph neural network and
graph learning on biological data: a systematic review,” IEEE Reviews
in Biomedical Engineering, vol. 16, pp. 109-135, 2021.

S. Farokhi, A. Yaramal, J. Huang, M. F. A. Khan, X. Qi, and H. Karimi,
“Enhancing the performance of automated grade prediction in mooc
using graph representation learning,” in 2023 IEEE 10th International
Conference on Data Science and Advanced Analytics (DSAA). 1EEE,
2023, pp. 1-10.

A. Yaramala, S. Farokhi, and H. Karimi, “Navigating the data-rich
landscape of online learning: Insights and predictions from assistments,”
in Proceedings of the 17th International Conference on Educational
Data Mining, 2024, pp. 321-331.

H. Karimi, T. Derr, J. Huang, and J. Tang, “Online academic course
performance prediction using relational graph convolutional neural net-
work.” International Educational Data Mining Society, 2020.

C.-T. Li, Y.-C. Tsai, and J. C. Liao, “Graph neural networks for tabular
data learning,” in 2023 IEEE 39th International Conference on Data
Engineering (ICDE). 1EEE, 2023, pp. 3589-3592.

Y. Chen, L. Wu, and M. Zaki, “Iterative deep graph learning for graph
neural networks: Better and robust node embeddings,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” 2019.

Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A pytorch library
for adversarial attacks and defenses,” arXiv preprint arXiv:2005.06149,
2020.

Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, , and L. Wang, “Deep graph
structure learning for robust representations: A survey.” arXiv preprint
arXiv:2103.03036, 2021.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” International Conference on
Learning Representations, 2018.

R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie, “Graph
structure estimation neural networks,” pp. 342-353, 2021.

B. Fatemi, L. E. Asri, , and S. M. Kazemi, “Slaps: Self supervision
improves structure learning for graph neural networks.” 2021.

7020

(22]
[23]
[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan, “Towards

unsupervised deep graph structure learning,” pp. 1392-1403, 2022.
E. Rocheteau, C. Tong, P. Velickovi¢, N. Lane, and P. Lio, “Predicting

patient outcomes with graph representation learning,” 2021.

C.-T. Li, Y.-C. Tsai, C.-Y. Chen, and J. C. Liao, “Graph neural networks
for tabular data learning: A survey with taxonomy and directions,” 2024.
S. Kang, “k-nearest neighbor learning with graph neural networks,”
Mathematics 2021, 9(8), 830.

T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. 1EEE, 1995,
pp. 278-282.

L. Breiman and A. Cutler, “Random forests,” https://www.stat.
berkeley.edu/\ protect\begingroup\immediate\ write\ @unused \ def\
MessageBreakm\ let\ protect\ edef Youmayprovideadefinitionwith\
MessageBreak'\ DeclareUnicodeCharacter\errhelp)\ let\ def\
MessageBreakm(inputenc)\def\ errmessagePackageinputencError:
Unicodecharacter(U+223C)\MessageBreaknotsetupforusewithLaTeX.
mmSeetheinputencpackagedocumentationforexplanation.mTypeH (return)
forimmediatehelp\ endgroupbreiman/RandomForests/cchome.htm#prox,
accessed on 05/16/2024.

H. Pang, A. Lin, M. Holford, B. E. Enerson, B. Lu, M. P. Lawton,
E. Floyd, and H. Zhao, “Pathway analysis using random forests classifi-
cation and regression,” Bioinformatics, vol. 22, no. 16, pp. 2028-2036,
2006.

E. J. Finehout, Z. Franck, L. H. Choe, N. Relkin, and K. H. Lee,
“Cerebrospinal fluid proteomic biomarkers for alzheimer’s disease,”
Annals of Neurology: Official Journal of the American Neurological
Association and the Child Neurology Society, vol. 61, no. 2, pp. 120-
129, 2007.

J. S. Rhodes, A. Cutler, G. Wolf, and K. R. Moon, “Random forest-
based diffusion information geometry for supervised visualization and
data exploration,” in 2021 IEEE Statistical Signal Processing Workshop
(SSP). 1EEE, 2021, pp. 331-335.

J. S. Rhodes, A. Aumon, S. Morin, M. Girard, C. Larochelle, E. Brunet-
Ratnasingham, A. Pagliuzza, L. Marchitto, W. Zhang, A. Cutler et al.,
“Gaining biological insights through supervised data visualization,”
bioRxiv, pp. 2023-11, 2023.

N. Nesa, T. Ghosh, and I. Banerjee, “Outlier detection in sensed
data using statistical learning models for iot,” in 2018 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2018,
pp. 1-6.

A. Pantanowitz and T. Marwala, “Missing data imputation through the
use of the random forest algorithm,” in Advances in computational
intelligence. Springer, 2009, pp. 53-62.

M. Kokla, J. Virtanen, M. Kolehmainen, J. Paananen, and K. Hanhineva,
“Random forest-based imputation outperforms other methods for imput-
ing lc-ms metabolomics data: a comparative study,” BMC bioinformatics,
vol. 20, pp. 1-11, 2019.

A. D. Shah, J. W. Bartlett, J. Carpenter, O. Nicholas, and H. Hemingway,
“Comparison of random forest and parametric imputation models for
imputing missing data using mice: a caliber study,” American journal
of epidemiology, vol. 179, no. 6, pp. 764-774, 2014.

J. S. Rhodes, A. Cutler, and K. R. Moon, “Geometry- and accuracy-
preserving random forest proximities,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1-13, 2023.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio
et al., “Graph attention networks,” stat, vol. 1050, no. 20, pp. 10-48 550,
2017.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

K. O’shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv preprint arXiv:1511.08458, 2015.

B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang,
R. G. Mantovani, J. N. van Rijn, and J. Vanschoren, “Openml bench-
marking suites,” arXiv preprint arXiv:1708.03731, 2017.

M. Villaizan-Vallelado, M. Salvatori, B. Carro Martinez, and A. J.
Sanchez Esguevillas, “Graph Neural Network contextual embedding
for Deep Learning on Tabular Data,” Neural Networks, 2024. [Online].
Available: https://arxiv.org/pdf/2303.06455.pdf

Authorized licensed use limited to: Utah State University. Downloaded on July 28,2025 at 20:03:04 UTC from IEEE Xplore. Restrictions apply.

