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ABSTRACT

In domains such as ecological systems, collaborations, and the
human brain the variables can interact in complex ways. Yet
accurately characterizing higher-order variable interactions
(HOIs) is a difficult problem that is further exacerbated when
the HOIs vary locally. To solve this problem we propose a
new method called Local Correlation Explanation (CorEx)
to learn HOIs at a local scale by first clustering data points
based on their proximity on the data manifold. We then use a
multivariate version of the mutual information called the total
correlation, to construct a latent factor representation of the
data within each cluster to learn the local HOIs. We show
that Local CorEx matches or outperforms global methods in
effectively learning HOISs in synthetic data and demonstrate
its suitability to explore and interpret the inner workings of
trained neural networks.

Index Terms— Higher-Order Interaction Detection, Inter-
pretable Machine Learning, Total Correlation

1. INTRODUCTION

In complex systems, variables often interact together in com-
plicated ways [1, 2]. In data measured from neural activity
[3, 4], collaborations [5], and ecological systems [6, 7], higher-
order interactions (HOIs) have been shown to play a key role.
These complex systems can be effectively modeled as a graph
where entities exist with connections between them indicating
a shared relationship. Recent work on discovering HOIs has
focused on taking a single graph and extracting HOISs in the
form of hyper edges [8, 9, 10]. These methods all require
a graph as input where the edges are binary. However, data
measured from complex systems often do not directly include
information about edges between nodes. For instance, in gene
expression data, we may want to know the relationships be-
tween the application of a drug and specific g enes. But we
can only measure gene expressions when the drug is present
and when it is not. For neural networks, we might desire to
understand how the nodes within a hidden layer interact, but
we can only measure the activations of the nodes given dif-
ferent inputs. In both of these instances, we must infer the
relationships from the data collected.

This work was supported in part by the NSF under Grant 2212325.

Variable interactions have long been studied using tools
such as the Pearson correlation, the Spearman correlation,
mutual information, and total correlation (multivariate mutual
information) [11]. Such tools have proven useful in exploring
and understanding datasets and the relationships between sets
of variables. Unfortunately, these tools are either limited to
only pairwise interactions or do not scale well computationally
as the number of possible HOIs grows as O(2P) where p is the
number of variables.

In response to these challenges we present Local CorEx, an
unsupervised method for learning potential HOIs based on the
correlation structure of data. Local CorEXx is to the best of our
knowledge the first method for learning locally varying HOIs
from tabular data without relying on a pre-built graph or hy-
pergraph. Local CorEx is built on the principle of Cor-relation
Ex-planation (CorEx), which was introduced to construct infor-
mative representations that provide valuable information about
relationships between variables in high-dimensional data. A
particular variant, called Linear CorEx, estimates multivariate
Gaussian distributions by identifying independent latent fac-
tors that explain correlations among observed variables [12]. It
incorporates a modular inductive prior, favoring models where
the covariance matrix is block-diagonal, indicating clusters
governed by a few latent factors. Another variant is called Bio
CorEx, which focuses primarily on handling challenges inher-
ent in several biomedical problems: missing data, continuous
variables, and severely under-sampled data [13].

While both Linear and Bio CorEx have been used suc-
cessfully, they fail to consider that variable interactions may
vary across the data manifold. For example, in a classifica-
tion problem, interactions are often not shared across classes
because the data lie on separate data manifolds. Thus Linear
and Bio CorEx may only find the interactions that span classes
while obscuring or distorting class-specific interactions. Local
CorEx solves this problem by partitioning the data prior to
estimating variable interactions.

Our contributions are: 1) we derive a novel method for
estimating local variable interactions called Local CorEx (Sec-
tion 2); 2) we show on synthetic data that Local CorEx is
robust to hyperparameter selection and outperforms previous
works when HOIs vary across the data manifold (Section 3.1);
3) as a demonstration we interpret the inner workings of a
neural network classifier using Local CorEx and discover sets
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Fig. 1. Overview of the Local CorEx algorithm. (a) PHATE visualization of the MNIST dataset. () k-means clustering is
applied to the PHATE embedding to generate the local clusters. (c-d) A cluster is chosen and passed through Linear CorEx. (e)
We visualize the mutual information between the learned CorEx latent factors and the original features to identify HOIs.

of hidden nodes needed to accurately classify a local cluster
while leaving accuracies for other clusters relatively unaffected
(Section 3.2).

2. LOCAL COREX

Figure 1 gives an overview of Local CorEx. Local CorEx first
uses PHATE [14] to create a low-dimensional embedding of
the data that preserves the local and global structure of the data
manifold(s). PHATE is a dimensionality reduction technique
that is specialized for data visualization [14]. It learns the
local structure via a specialized kernel function. The pairwise
kernel matrix is row-normalized to create a Markov transition
matrix, called the diffusion operator [15]. The global structure
of the data is learned via diffusion by simulating ¢-step random
walks between data points according to the normalized affini-
ties. Finally, information distances are calculated between the
diffused probabilities, and multidimensional scaling (MDS)
[16] is used to preserve these distances in low dimensions.

To partition the data, we apply k-means clustering to the
PHATE embedding where & is chosen to be large enough to en-
sure heterogeneity among the partitions according to a manual
inspection of a 2D PHATE plot. This is akin to spectral cluster-
ing [17], which essentially applies k-means to the Laplacian
Eigenmaps embedding. We choose this clustering approach
over other methods because of PHATE’s impressive visual-
ization capabilities. After clustering we can easily visualize
the data using PHATE and color by clusters to see how the
clusters relate to each other and if the partition makes visual
sense.

After the partition has been created, we next apply
Linear CorEx to each cluster to learn latent factors that
correspond to local HOIs. We now describe how Lin-
ear CorEx works. Let X = X, = {X1,Xs,---,X,}
denote a vector of p observable random variables and let
Z =Zy.m ={Z1,Za,- -+ , Zm} denote a vector of m latent
random variables. Instances of X and Z are denoted in low-
ercase with = (x1, 29, -+ ,xp) and z = (21,22, -+ , Zm),
respectively. We consider several information theoretic mea-

sures including differential entropy: H(X) = —E[logp(z)]
(p(z) is the probability density of X), mutual information:
I(X;Y) = HX)+ HY) — H(X,Y), Total Correla-
tion: TC(X) = ¥ | H(X;) — H(X), and their condi-
tional variants such as H(X|Z) = E,[H(X|Z = z)] and
TC(X|Z) = E,[TC(X|Z = z)]. In particular, the total
correlation measures the redundancy or dependency among a
set of p random variables.

Linear CorEx [12] estimates the latent factors z by opti-

mizing a tractable lower bound for the following expression:

+ZQ1,

where z = Wax+e, W € R™*P, e ~ N(0, %), X is a diagonal
matrix, and the );’s are non-negative regularization terms that
encourage modular solutions (i.e. solutions with small values
of TC(Z|X;)) and only equal O when the solution is modular.
In essence, Linear CorEx attempts to identify latent factors that
constitute a linear combination of the inputs, explain the total
correlation in the data, remain independent of one another, and
are modular. In practice, to solve equation 1, the data are used
to estimate the distributions of X (assumed to be Gaussian
in Linear CorEx) and stochastic gradient descent is used to
optimize the weight matrix W that minimizes equation 1.

The total correlation explained by a latent factor is a mea-
sure of its importance with respect to how much of the correla-
tion structure it explains. We can identify the predicted HOIs
by examining the mutual information between each latent fac-
tor and the original set of features. Here the magnitude of the
mutual information can be used as a proxy for the strength or
importance of the feature to the predicted HOI.

Local CorEx hyperparameters include the number of di-
mensions for the PHATE embedding, clusters for k-means,
CorEx latent factors, and thresholds for HOI inclusion. We
suggest around 10 dimensions for the PHATE embedding un-
less features are scarce. If desired a more principled way
would be to check the loss of the final MDS stage as a func-
tion of embedding dimension. For k-means we recommend
visually inspecting a 2D PHATE plot to determine the baseline

mlnTC X|Z)y+TC(Z (1)
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Table 1. Ablation study results. Based on the metrics, Local
CorEx outperforms the global methods when the data have
mixed variable interactions. Similar results were obtained for
different sample sizes in which Local CorEx also outperforms
or approximately matches the global methods when interac-
tions are not mixed for sufficiently large sample sizes.

COSINE DIST AUPRC

DATA  SIZE METH «:0.0 a:l0 a:00 «a:1.0
Dis- 100 LIN 0.484 0.424 0.607 0.591
JOINT Bio 0.447 0.473 0.607 0.509
Loc 0.477 0.190 0.610 0.894

1000 LIN 0.516 0.408 0.606 0.604

Bio 0.414 0.474 0.652 0.507

Loc 0.504 0.146 0.607 0.902

10000 LIN 0.526 0.412 0.599 0.598

Loc 0.140 0.142 0.907 0.907

NoN- 100 LiN  0.207 0.197 0.883 0.856
DIS- Bio 0.236 0.289 0.842 0.754
JOINT Loc 0.254 0.197 0.844 0.890
1000 LN  0.191 0.182 0.886 0.856

Bio 0.203 0.276 0.869 0.773

Loc 0.197 0.141 0.870 0.908

10000 LiN  0.189 0.183 0.887 0.855

Loc 0.190 0.139 0.883 0.912

number of clusters. For CorEx factors you can examine the
total correlation explained by each factor and only keep factors
where the contribution isn’t nominal. For thresholding learned
HOIs we recommend constructing a scree plot of the mutual
information a factor explains to determine a threshold.

3. RESULTS

3.1. Ablation Study - Synthetic Data

To demonstrate the effectiveness of Local CorEx to learn
HOIs we constructed a synthetic dataset containing two clus-
ters where the variable interactions are known and consist of
grouped pairwise interactions, since to the best of our knowl-
edge no tabular dataset with known HOIs exists. We also
compare to standard Linear and Bio CorEx. We note that we
also ran a local version of Bio CorEx, but since it performed
on par with Local CorEx and takes substantially longer to run
we excluded it from the Table. In this ablation study, we show
how all methods perform when we vary the number of chosen
latent factors, the difference in interactions between partitions,

Fig. 2. The set of covariance matrices used in generating
simulated data for the ablation study. The matrix on the left
was the covariance matrix used in all simulations for Cluster
1. Cluster 2 uses either the middle or right matrix for its
covariance matrix depending on whether we were simulating
non-disjoint (middle) or disjoint (right) HOIs between the two
clusters.

and the number of data samples. For each simulation setup,
we ran 16 replicates.

The synthetic dataset is composed of two multivariate
normal distributions following two setups. In each setup, we
varied the class means between the two distributions using
the parameter « to control the degree of separation (o« = 0
when clusters share the same mean and o = 1 when cluster
means are maximally separated). This controlled how close
the two clusters are in proximity and as a result how pure the
clusters are after partitioning. In the first setup, which we
call non-disjoint, the two clusters share the majority of their
interactions (Left and middle covariance matrices in Figure
2). In the second setup, which we label as disjoint, none of
the interactions match (Left and right covariance matrices in
Figure 2). The interactions are identified by extracting each
row from the covariance matrix and then examining all of the
nonzero values in the row. These non-zero elements in each
are grouped together as a HOL. To find the set of interactions
present in the data we collect all of the unique rows and store
them in a set.

To find each learned HOI we first ran either Linear CorEx
or Bio CorEx on all of the simulation data points or Local
CorEx on a cluster of datapoints (as shown in Figure 1), where
the number of clusters was chosen to be 2. Then, for each
CorEx latent factor, we examined the mutual information be-
tween the learned latent factor and the original covariates in
the data. If a variable is highly associated with the latent factor
it will share a high mutual information value with the latent
factor, and if not, it will share a low mutual information value
with the latent factor. To score how well the predicted HOI
matches the ground truth interactions, we compute the fol-
lowing two metrics between a learned HOI and ground truth
HOI pair: 1) the cosine distance and 2) the area under the
precision-recall curve. For each metric, we take each ground
truth HOI and find the learned latent factor that matches it
best with respect to the metric being used. These scores are
averaged for all ground truth HOIs. Additionally, because the
effect of the number of latent factors used on the scores was
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Fig. 3. Visualization of the average samples in each of the 20
clusters for the MNIST test dataset used in Section 3.2.

minimal, we further averaged metrics across different numbers
of latent factors. The scores for a sample size of 100, 1000,
and 10000 per cluster are shown in Table 1.

From Table 1, we observe that global methods, such as
Linear CorEx and Bio CorEXx, experience a decline in perfor-
mance when data with mixed variable interactions (disjoint)
are introduced. In contrast, Local CorEx, a local method,
remains unaffected in this setting when the data is easily clus-
tered (¢ = 1). However, when the data is not easily clus-
tered (o = 0), the differences in scores between Local CorEx
and the global methods are negligible, regardless of whether
the variable interactions are disjoint or non-disjoint. Addi-
tionally, when the variable interactions are mostly consistent
(non-disjoint), we find that Local CorEx still outperforms the
global methods when the data are easily clustered, although
by smaller margins compared to the disjoint setup.

3.2. Neural Network Model Interpretability

For our final case study, we use Local CorEx to explore the
hidden representations and model weights for a neural network
classifier trained on the MNIST dataset. All explorations
are conducted on the test data which is partitioned into 20
clusters using k-means clustering on a 10-dimensional PHATE
embedding of the data. We focus on cluster 16 for brevity and
due to the heterogeneity of the class labels between 9s and 4s
(see Figure 3 for a visualization of the average sample of each
cluster).

Here we use Local CorEx to identify groups of hidden
nodes and explore their impact on the model in two ways: 1)
We used the first two layers of the classifier as an encoder with
frozen weights and then trained a decoder that takes the output
of the encoder as its input. This allows us to reconstruct hidden
state representations back to inputs. By taking the average
hidden state representation and perturbing a group of nodes in
proportion to their mutual information with the hidden nodes,
we can map the perturbed hidden state representation to the
input space in an attempt to visualize the information encoded
in the grouped nodes. 2) We delete groups of hidden nodes
from the classifier model and compare the reduced classifier’s
accuracies to the unaltered model’s accuracies across clusters
to see if the impact is global or local. Local CorEx is used in
both analyses to select which groups of nodes to perturb or
delete.

We first apply Local CorEx to the concatenation of a hid-
den layer output of the classifier with their respective logits.
The logits are included to aid with interpretability and are
excluded when determining which nodes to perturb or delete.
Using this we can find sets of related hidden nodes and get an
intuition for which class they’re associated with by using the
logits.

We demonstrate our two methods of analysis for the first
two Local CorEx factors of cluster 16 as shown in part (a) of
Figure 4 and parts (a) and (c) in Figure 5. From examining
these figures we can see that the first Local CorEx factor is
associated with the model predicting a 4 and perturbing the
values of the hidden nodes associated with the first latent
factor alters the curvature of the digit in the top left portion of
the number changing a four to look more like a nine. When
we delete the 50 nodes with the highest mutual information
associated with this factor and recompute the accuracies across
clusters, it has a large impact on classification accuracy for
clusters 2, 10, and 16, as shown in Figure 5. All of these
clusters have large quantities of 4s and 9s present as shown in
Figure 3. Remarkably, almost all other clusters are relatively
unaffected by this despite deleting 25% of the hidden nodes in
the first layer.

When we repeat this analysis on the second Local CorEx
factor we see that this factor is associated with the probability
of being classified as a zero, two, or a six. Perturbing the
hidden nodes associated with the second Local CorEx factor
alters the pixels on the base of the four, the height of the base
of the horizontal line in the center, and density of the top left
arm of the four. When 25% of the nodes associated with this
factor are deleted the effect on accuracy is more widespread.
The clusters most impacted are 1, 2, 5, 10, 16, and 17. Clusters
2, 10, and 16 contain 4s and 9s so it isn’t surprising that
removing a feature calculated on a group of 4s and 9s affects
their classification. Groups 1, 5, and 17 are composed almost
entirely of 6s. If you were to mask out the middle portion of a
six it could look like either an unfinished O or 6.

Moving on to the second hidden layer we repeat the same
analysis. When we examine the first Local CorEx factor we
see that we get largely the same results as seen for the first
Local CorEx factor for the first hidden state representation.
Perturbing these hidden nodes and reconstructing them seems
to accentuate the change that we saw in the first hidden layer.
We also see similar effects when deleting the 80 nodes (40% of
the nodes in the hidden layer) most associated with the factor.
It is surprising that we can delete almost half of the hidden
nodes in a layer and only affect the classification accuracy of
a local partition of our data which accounts for two out of ten
classes.

We see this pattern continued when we examine the second
Local CorEx factor in the second hidden layer and see it also
largely follows what we saw from the second Local CorEx
factor in the first hidden layer. Perturbing these nodes seems to
accentuate the change seen from the first layer with the raising
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Fig. 4. Visualizing the effect of perturbing the average neural network hidden state representations of cluster 16 in the MNIST
test dataset. (a) The plots are associated with perturbing the first hidden layer (H1) representation. This first row is associated
with the first Local CorEx factor and the second row is associated with the second Local CorEx factor. (b) Same as in (a) but
for the second hidden layer (H2). For each group of plots, the leftmost column image is generated by subtracting the mutual
information between the Local CorEx factor and the hidden nodes from the average representation. The second column image
gives the average hidden state representation. The third column image is generated by adding the mutual information between
the Local CorEx factor and the hidden nodes from the average representation. Finally, the rightmost column plots the mutual
information between the Local CorEx factor and the model logits. This analysis gives us a visual intuition for what role the

grouped hidden nodes play.

of the middle bar, changing the base of the four, and changing
the angle or density of the top left arm of the four. This
along with what was seen with the first Local CorEx factors
suggests that the correlation structure from one hidden layer
to another is preserved between layers. However, deleting the
top 50 nodes associated with the second Local CorEx factor
on the second hidden state representation seems to have far
less of an effect on classification accuracy than the second
Local CorEx factor on the first hidden state representation.
The clusters most affected though are 1, 2, 10, and 16, which
contain mostly digits with a flat horizontal line in the center of
the digit.

4. CONCLUSION

We have shown that Local CorEx is superior to global meth-
ods at capturing variable interactions when these interactions
vary across the data manifold. In Table 1, we demonstrated
that even when interactions largely overlap, Local CorEx out-
performs global methods with mostly pure clusters when the
sample size exceeds 100. Furthermore, despite impure clusters,
Local CorEx performs comparably to global methods once the
sample size reaches 1000. The more the variable interactions
vary, the greater the benefit of using Local CorEx over other
global methods for extracting HOISs in the data.

We then effectively used Local CorEx to explore several
different data types to extract meaningful variable interac-
tions, including tabular synthetic data and internal neural net-
work representations. With the neural network, we used Local
CorEx in an unsupervised manner to determine the hidden
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Fig. 5. (a) Difference in classification accuracy between the
unaltered model and the model after deleting 50 hidden nodes
in the first hidden layer with the highest mutual information
with the first Local CorEx factor associated with cluster 16.
(b) Same as (a) except when using the second CorEx factor to
determine the 50 hidden nodes to delete. (¢) Same as in (a)
except when deleting 80 hidden nodes in the second hidden
layer. (d) Same as in (b) except in the second hidden layer.
Note that the y-axis scale differs for each plot.
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nodes the model leveraged for predicting a specific class and
showed that by removing them that only the main class was
affected. This demonstrates that despite the interconnected-
ness of neural networks we can isolate clusters of nodes that
perform a particular task of interest.

We believe that this approach can be used to further ex-
plore and interpret the inner workings of neural networks. For
example, Local CorEx could be used to study robustness in
neural networks by identifying features the network associates
with a class and use them to create adversarial data points to
improve model performance in a manner conceptually similar
to work done by [18, 19]. Additionally, Local CorEx can be
used as part of exploratory data analysis to detect variable
interactions in different regions of the data manifold such as
in ecological systems [6, 7], collaborations [5], the human
brain [3, 4], and any network-based data including biological
networks. For future work, we believe this method can be
further adapted as a visualization tool to aid in summarizing
complex datasets.
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