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Abstract

In the context of long-tail classification on graphs, the vast majority
of existing work primarily revolves around the development of
model debiasing strategies, intending to mitigate class imbalances
and enhance the overall performance. Despite the notable success,
there is very limited literature that provides a theoretical tool for
characterizing the behaviors of long-tail classes in graphs and gain-
ing insight into generalization performance in real-world scenarios.
To bridge this gap, we propose a generalization bound for long-tail
classification on graphs by formulating the problem in the fashion
of multi-task learning, i.e., each task corresponds to the prediction
of one particular class. Our theoretical results show that the gen-
eralization performance of long-tail classification is dominated by
the overall loss range and the task complexity. Building upon the
theoretical findings, we propose a novel generic framework HIERr-
TaiL for long-tail classification on graphs. In particular, we start
with a hierarchical task grouping module that allows us to assign
related tasks into hypertasks and thus control the complexity of the
task space; then, we further design a balanced contrastive learning
module to adaptively balance the gradients of both head and tail
classes to control the loss range across all tasks in a unified fashion.
Extensive experiments demonstrate the effectiveness of HIERTAIL
in characterizing long-tail classes on real graphs, which achieves up
to 12.9% improvement over the leading baseline method in balanced
accuracy.
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1 Introduction

The graph serves as a fundamental data structure for modeling
a diverse range of relational data, ranging from financial transac-
tion networks [8, 47] to social science [10]. In recent years, Graph
Neural Networks (GNNs) have achieved outstanding performance
on node classification tasks [18, 52, 54, 65] because of their abil-
ity to learn expressive representations from graphs. Despite the
remarkable success, the performance of GNNs is primarily attrib-
uted to the availability of high-quality and abundant annotated
data [11, 16, 19, 42, 53]. Nevertheless, unlike many graph bench-
mark datasets developed in the lab environment, it is often the
case that many high-stake domains naturally exhibit a long-tail
distribution, i.e., a few head classes (the majority classes) with
rich and well-studied data and massive tail classes (the minority
classes) with scarce and under-explored data. For example, in fi-
nancial transaction networks, a few head classes correspond to the
normal transaction types (e.g., credit card payment, wire transfer),
and the numerous tail classes can represent a variety of fraudu-
lent transaction types (e.g., money laundering, synthetic identity
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Figure 1: An illustrative figure of long-tail distribution in
the collaboration network (Cora-Full), where the green and
red curves show balanced accuracy (bAcc) (%) of GCN and
HierTAIL for node classification on each class. Blue and
yellow bars represent the class frequency of unlabeled and
labeled nodes.

transaction). Despite the rare occurrences of fraudulent transac-
tions, detecting them can prove crucial [1, 44]. Another example
is the collaboration network. As shown in Figure 1, the Cora-Full
network [4] encompasses 70 classes categorized by research areas,
showcasing a starkly imbalanced data distribution—from as few as
15 papers in the least represented area to as many as 928 papers in
the most populated one. The task complexity (massive number of
classes, data imbalance) coupled with limited supervision imposes
significant computational challenges on GNNs.

Important as it could be, there is limited literature that provides
a theoretical grounding to characterize the behaviors of long-tail
classes on graphs and understand the generalization performance
in real environments. To bridge the gap, we provide insights and
identify three fundamental challenges in the context of long-tail
classification on graphs. First (C1. Highly skewed data distri-
bution), the data exhibits extremely skewed class memberships.
Consequently, the head classes contribute more to the learning
objective and can be better characterized by GNNs; the tail classes
contribute less to the objective and thus suffer from higher sys-
tematic errors [63]. Second (C2. Label scarcity), due to the rarity
and diversity of tail classes in nature, it is often more expensive
and time-consuming to annotate tail classes than head classes [38].
What is worse, training GNNs from scarce labels may result in rep-
resentation disparity and inevitable errors [48, 50, 50, 66, 67], which
amplifies the difficulty of debiasing GNN from the highly skewed
data distribution. Third (C3. Task complexity), with the increasing
number of classes under the long-tail setting, the difficulty of sepa-
rating the margin [14] of classes is dramatically increasing. There
is a high risk of encountering overlapped regions between classes
with low prediction confidence [35, 62]. To deal with the long-tail
classes, the existing literature mainly focuses on augmenting the
observed graph [40, 51, 64] or reweighting the class-wise loss func-
tions [43, 60]. Despite the existing achievements, a natural research
question is that: can we further improve the overall performance by
learning more knowledge from both head classes and tail classes?

To answer the aforementioned question, we provide a general-
ization bound of long-tail classification on graphs. The key idea
is to formulate the long-tail classification problem in the fashion
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of multi-task learning [26, 45], i.e., each task corresponds to the
prediction of one specific class. In particular, the generalization
bound is in terms of the range of losses across all tasks and the
complexity of the task space. Building upon the theoretical findings,
we propose HIERTAIL, a generic learning framework to characterize
long-tail classes on graphs. Specifically, motivated by controlling
the complexity of the task space, we employ a hierarchical structure
for task grouping to tackle C2 and C3. It assigns related tasks into
hypertasks, allowing the information learned in one class to help
train another class, particularly benefiting tail classes. Furthermore,
we implement a balanced contrastive module to address C1 and C2,
which effectively balances the contributions of head classes and tail
classes to the gradient. This module reduces the loss of tail tasks
while ensuring the performance of head tasks, thus controlling the
range of losses across all tasks.
The main contributions of this paper are summarized below.

+ Problem Definition. We formalize the long-tail classification
problem on graphs and develop a novel metric named long-tailedness
ratio for characterizing properties of long-tail distributed data.

+ Theory. We derive a generalization bound for long-tail classifi-
cation on graphs, which inspires our proposed framework.

+ Algorithm. We propose a novel approach named HiERTAIL that
(1) extracts shareable information across classes via hierarchical
task grouping and (2) balances the contributions of head classes
and tail classes to the gradient.

« Evaluation. We systematically evaluate the performance of
HierTAIL with eleven baseline models on six real-world datasets
for long-tail classification on graphs. The results demonstrate the
effectiveness of HIERTAIL and verify our theoretical findings.

2 Preliminary

In this section, we introduce the background and give the formal
problem definition. We represent a graph as G = (V, &, X), where
V represents the set of nodes, & € V x V represents the set
of edges, X € Rnxd represents the node feature matrix, n is the
number of nodes, and d is the feature dimension. A € {0, 1}"*" is
the adjacency matrix, where A;; = 1 if there is an edge e;; € &
from v; to v; in G and A;; = 0 otherwise. YV = {y1,...,yn} is the
set of labels, y; € {1,..., T} is the label of the ith node. There are T
classes in total, and T can be notably large.

Long-Tail Classification refers to the classification problem in
the presence of a massive number of classes, highly skewed class-
membership distribution, and label scarcity. Here we let D =
{(xi, i)}, represent a dataset with long-tail distribution. We
define D; as the set of instances belonging to class ¢t. Without
the loss of generality, we have D = {D1,Dy,..., Dr}, where
|D1] = |D2| = -+ > |Dr|, Zthl |D¢| = n. Tail classes may en-
counter label scarcity, having few or even only one instance, while
head classes have abundant instances. To measure the skewness of

long-tail distribution, Wu et al. [51] introduces the Class-Imbalance
min; (| D;|)

max, (|D;[)’
class to the size of the largest majority class.

Long-Tailedness Ratio. Suppose we are given a graph G with
long-tail class-membership distribution. While Class-Imbalance Ra-
tio [51] measures the imbalance level of observed data, it overlooks
the task complexity in the task of long-tail classification. As the

Ratio as i.e., the ratio of the size of the smallest minority
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Figure 2: Comparison between two long-tail distribution met-
rics on (a) the hard case of the original Cora-Full dataset and
(b) the easy case of the down-sampled Cora-Full dataset. We
observe that the class-imbalance ratio falls short in char-
acterizing the task complexity of two datasets, while the
long-tailedness ratio does.
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number of classes increases, the difficulty of the classification task
therefore increases. Taking the Cora-Full collaboration network as
shown in Figure 2 as an example, we down-sampled 7 classes from
the original Cora-Full dataset. Although the class-imbalance ratio
remains the same, i.e., 0.02 for both the original and down-sampled
datasets, the task complexity varies significantly, i.e., 70 classes in
Figure 2 (a) v.s 7 classes in Figure 2 (b). In light of this, we introduce
a novel quantile-based metric named the long-tailedness ratio to
jointly quantify the class-imbalance ratio and task complexity for
the long-tail datasets. The formal definition of the long-tailedness
ratio is provided as follows:

Definition 1 (Long-Tailedness Ratio). Suppose we have a dataset
D with long-tail classes that follow a descending order in terms of
the number of instances. The long-tailedness ratio is

Q(p)
T-Q(p)
where Q(p) = min{y : Pr(Y < y) = p,1 <y < T} is the quantile
function of order p € (0,1) for variable Y, T is the number of classes.
The numerator represents the number of classes to which p percent
instances belong, and the denominator represents the number of classes
to which the else (1 — p) percent instances belong in D.

RatioLT(p) = (1)

Essentially, the long-tailedness ratio implies the task complexity
of long-tail classification and characterizes two properties of D: (1)
class-membership skewness, (2) # of classes. Intuitively, the higher
the skewness of data distribution, the lower the ratio will be; the
higher the complexity of the task space (i.e., massive number of
classes), the lower the long-tailedness ratio. Figure 2 provides a case
study on the Cora-Full dataset by comparing the long-tailedness
ratio and class-imbalance ratio [51]. In general, we observe that
the long-tailedness ratio better characterizes the differences on the
original Cora dataset (Ratior7(0.8) = 1.09) and its down-sampled
dataset (Ratioy7(0.8) = 1.33). In our implementation, we choose
p = 0.8 following the Pareto principle [36]. In Appendix A, we
additionally offer insights into the utilization of the long-tailedness
ratio for the enhanced comprehension of long-tail datasets and as
a guiding factor for model selection in practice.
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3 Algorithm
3.1 Theoretical Analysis

In this paper, we consider the long-tail problems with data imbal-
ance and massive classes, an area with limited theoretical explo-
ration. For the first time, we propose to reformulate the long-tail
problems in the manner of multi-task learning, thereby leveraging
the theoretical foundation of multi-task learning to gain insights
into long-tail problems. In particular, we view the classification for
each class as a learning task! on graph G. A key assumption of multi-
task learning is task relatedness, i.e., relevant tasks should share
similar model parameters. Similarly, in long-tail learning, we aim to
learn the related tasks (classes) concurrently to potentially enhance
the performance of each task (classes). We propose to formulate
the hypothesis g of long-tail model as g = { ft}z:l o h, where o is
the functional composition, g;(x) = f; o h(x) = f;(h(x)) for each
classification task. The function h : X — RK is the representation
extraction function shared across different tasks, f : RK — R is the
task-specific predictor, and K is the dimension of the hidden layer.
The training set for the th task O, = {(xf , yf )}:21 contains n; anno-
tated nodes, x! is the it training node in class ¢, and yf =tforalli.
The task-averaged risk of representation h and predictors fi, ..., fr
is defined as € (h, fi, .. ., fT), and the corresponding empirical risk
is defined as € (h, fi, . .., fr). To characterize the performance of
head and tail classes in our problem setting, we formally define the

loss range of fi, ..., fr in Definition 2:

Definition 2 (Loss Range). The loss range of the T predictors fi, . .., fr
is defined as the difference between the lowest and highest values of
the loss function across all tasks.

Range(fi. ... fr) = max ,% 2, ehxi)) )
i=1
= @)
1
~min z; L(fi (h(x))), y)),

where [(+,-) is a loss function. For the node classification task, I(-, )
refers to the cross-entropy loss.

In the scenario of long-tail class-membership distribution, there
often exists a tension between maintaining head class performance
and improving tail class performance [63]. Minimizing the losses
of the head classes may lead to a biased model, which increases the
losses of the tail classes. Under the premise that the model could
keep a good performance on head tasks, we conjecture that con-
trolling the loss range could improve the performance on tail tasks
and lead to a better generalization performance of the model. To
verify our idea, we drive the loss range-based generalization error
bound for long-tail classes on graphs in the following Theorem 1.

Theorem 1 (Generalization Error Bound). Given the node em-
bedding extraction function h € H and the task-specific classifier

Here we consider the number of tasks to be the number of classes for simplicity, while
in Section 3.2 the number of tasks can be smaller than the number of classes after the
task grouping operation.
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fis. .., fr € F, with probability at least 1 — 6,5 € [0, 1], we have

. f91n(2/5)
€-es Z 27’ltT2

t
~)fT))

c1lpRG(HX))
n,T

®)

L2 suppeqq 1R(X)|[Range(fi, . .
ntT
where X is the node feature, T is the number of tasks, n; is the num-
ber of nodes in task t, R denotes the Lipschitz constant of fuctions
in F, loss function I(-,-) is p-Lipschitz, G(-) denotes the Gaussian
complexity [3], and c1 and ca are universal constants.

Proor. The proof is provided in Appendix B. ]
Remark #1: Theorem 1 implies that the generalization error is
dominated by three key factors, including the Gaussian complexity
of the shared representation extraction h € H, the loss range of
the task-specific predictors fi, ..., f7, the number of classes with

varying number of samples.
CIPRG(’]I:[(X)) s TapRGHX))
ng -

Remark #2: We can derive ),

2N
w by utilizing Jensen’s Inequality. The observation il-
lustrates that when grouping all samples to one task rather than
grouping all samples to T tasks, the first term of the upper bound be-
comes tight. Our conclusion for long-tail learning is different from
multi-task learning in that each task corresponds to a fixed number
of observed samples [32]. Conversely, in long-tail learning, task
complexity is determined by the number of classes T, each class ex-
hibiting varying numbers of samples n, . .., nT. Hence, controlling
the complexity of the task space could improve the generalization
performance, which motivates the design of the hierarchical task
grouping module in Section 3.2.

Remark #3: Reducing the loss range Range(fi, . . ., fr) for all tasks
results in a tight third term of the upper bound. This insight inspired
the development of long-tail balanced contrastive learning module
in Section 3.2, which aims to obtain better task-specific predictors

fl’,...,fT’ with Range(fl’,...,fT’) < Range(fi,..., fr)-

3.2 HiIERTAIL Framework

The overview of HIERTAIL is presented in Figure 3, which con-
sists of two major modules: M1. hierarchical task grouping and
M2. long-tail balanced contrastive learning. Specifically, the Re-
mark #2 of Theorem 1 inspires that controlling the task complexity
with massive and imbalanced classes can potentially improve the
generalization performance. Thus, M1 is designed to control the
complexity of task space and capture the information shared across
tasks by grouping tasks into the hypertasks to improve overall per-
formance. As highlighted in Remark #3 above, controlling the loss
range could improve the generalization performance. Therefore, in
M2, we designed a long-tail balanced contrastive loss to balance
the head classes and the tail classes. In the following subsections,
we dive into the two modules of HIERTAIL in detail.

M1. Hierarchical Task Grouping. We propose to address C2 (La-
bel scarcity) and C3 (Task complexity) by leveraging the information
learned in one class to help train another class. We implement task
grouping to share information across different tasks via hierarchical
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pooling [12, 58], different from previous work which conducts node
clustering and ignores the challenges in long-tail learning [24]. The
core idea of our hierarchical pooling is to choose the important
nodes (tasks) and preserve the original connections between the
chosen nodes (tasks) and edges to generate a coarsened graph. As
shown in Figure 4, the task grouping operation is composed of two
steps: Step 1. we group nodes (tasks) into several tasks (hypertasks)
and Step 2. learn the embeddings of the task (hypertask) prototypes.
This operation can be easily generalized to the I layers, which
leads to the hierarchical task grouping.

Specifically, we first generate a low-dimensional node embed-
ding vector for each node zW = (zil), . zill)) via graph convolu-
tional network (GCN) [23] layers. Next, we group nodes into tasks
(with the same number of classes) and then group these tasks into
hypertasks by stacking several task grouping layers. The 1M task
grouping layer is defined as:

T = ToP-RANK(PROJ(ZD), T(),

xBD — 7z (7 )0 (PROJ(Z(I))IZ;), (4)

A(l+1) — A(l) (I,I),

where [ = 1,...L is the layer of hierarchical task grouping. We
generate a new graph with selected important nodes, where these
nodes serve as the prototypes of tasks (hypertasks), and 7 is the
indexes of the selected nodes. PROJ(, ) is a projection function

0
1
to a scalar. TOP-RANK identifies the top T nodes with the high-
est value after projection. The connectivity between the selected
nodes remains as edges of the new graph, and the new adjacency
matrix A(*1) and feature matrix X("*1) are constructed by row
and/or column extraction. The subsequent GCN layer outputs the
embeddings Z("*1) of the new graph based on X(!*1) and A1)
Notably, Z(1) is the node embeddings, Z?) s the embeddings of
the task prototypes corresponding to the classes, and zZD (1> 2)is
the hypertask prototype embeddings.

The number of tasks T(!) represents the level of abstraction of
task grouping, which decreases as the task grouping layer gets
deeper. In high-level layers (I > 1), the number of tasks may be
smaller than the number of classes. By controlling T , information
shared across tasks can be obtained to alleviate the task complexity,
which is associated with characterizing an increasing number of
classes under varying number of samples. Meanwhile, nodes that
come from different classes with high-level semantic similarities
can be assigned to one task. By sharing label information with
other different classes within the same hypertask, the problem of
label scarcity can be alleviated. In layer 2 (Figure 4), we consider a
special case of 2 head classes (i.e., class 2 and 4) and 2 tail classes
(ie., class 1 and 3). By grouping the prototypes of classes 1, 2, and 3
into the same hypertask at a later task grouping layer, our method
will automatically assign a unique hypertask label to all nodes
belonging to the three classes.

In order to well capture the hierarchical structure of tasks and
propagate information across different tasks, we need to restore
the original resolutions of the graph to perform node classification.
Specifically, we stack the same number of unpooling layers as the

to score the node importance by mapping each embedding z
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Figure 3: The proposed HIERTAIL framework with L task-grouping layers.
Layer 2 0O Layer 2 a principled graph contrastive learning strategy for M1 (Hierarchi-
O cal task grouping) by passing labels across multiple hierarchical
layers. Unlike Graph contrastive learning (GCL) [13, 39, 52, 69
Q O Step 2 34 p g
O == for learning unsupervised representation of graph data, in this pa-
O GCN , LS .
per, we propose to incorporate supervision signals into each layer
Prototype Z& of graph.contrastive learning. Specifically, we employ supervis?d
- contrastive loss Lscr on the labeled node to augment the orig-
2l B P inal graph. It allows joint consideration of head and tail classes,
S 5 5 ~ d which balances their contributions and alleviates the challenge of
@“; " & high-skewed data distribution. Additionally, we employ balanced
Layer 1 , 3 contrastive loss Lpcr on each layer of HIERTAIL. We group all
// nodes on the graph into several tasks, which facilitates label infor-
b’ O Class 1 mation to be passed among similar nodes during task grouping.
O Class 2 These tasks are subsequently grouped into higher-level hypertasks,
O Class 3 which enables label sharing across layers. Through the sharing of
zo O Class 4 label information across nodes and layers, we effectively mitigate

Figure 4: An illustrative figure for M1 with two task-grouping
layers. Step 1: nodes are first grouped into four tasks (each
representing a class). Step 2: We learn the embeddings of the
task prototypes. Finally, the node embeddings are updated
by back-propagation.

task grouping layers, which up-samples the features to restore the
original resolutions of the graph.

x(#+D) = prsT (Onxd,X(l“),I), )

where DIST restores the selected graph to the resolution of the
original graph by distributing row vectors in X (I+1) into matrix
0,,x4 based on the indices 7, 0,4 represents the initially all-zeros
feature matrix, X (+1) ¢ RT(” xd represents the feature matrix of
the current graph, and 7 represents the indices of the selected nodes
in the corresponding task grouping layer. Finally, the corresponding
blocks of the task grouping and unpooling layers are skip-connected
by feature addition, and the final node embeddings are passed to
an MLP layer for final predictions.

M2. Long-Tail Balanced Contrastive Learning. To address C1
(High-skewed data distribution) and C2 (Label scarcity), we propose
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the challenge of label scarcity in tail classes.

Next, we introduce supervised contrastive loss Lgcr on the
restored original graph. It makes node pairs of the same class close
to each other while pairs not belonging to the same class far apart.
The mathematical form of the loss function Lscy, on the it node
z; can be expressed as follows:

1
X
ng—1 Z .
GLAY
exp (z; - 2j/7)
1 ,
21<q<T 7y LkeV, eXP (2i - 2k /7)

Lscr(zi) = -
(6)

log

where z; belongs to class ¢, V; denotes all the nodes belonging to
class t, z. represents the embedding of the k* node, and temper-
ature 7 controls the strength of penalties on negative node. Lscr
reduces the proportion of contributions from head classes and high-
lights the importance of tail classes to alleviate the bias caused by
high-skewed data distribution.

Moreover, we introduce balanced contrastive loss Lgcr, on a
coarsened graph, where each node represents a task prototype.
For the I task grouping layer, we group tasks in layer [ into T
hypertasks and calculate the balanced contrastive loss based on the
task embeddings Z( and the hypertask prototypes VAGSUR: pulls
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the task embeddings together with their corresponding hypertask
prototypes and pushes them away from other prototypes. Lpcr on
the i node z; can be expressed as follows?:

1
Lpcr(zi) = X Z
LS TOAY!
exp (z; - zj/1)

- :
21<q<T o1 2keV, XP (i - 2k /7)

™

log

where we suppose z; belongs to hypertask t, here V; denotes all the
nodes within the " hypertask including the hypertask prototype
(I+1)
z
¢

, n¢ represents the number of nodes in hypertask ¢, z =z,

represents the embedding of the k™ node, and 7 is the temperature.
Therefore, Lpcy solves the long-tail classification in two aspects:
(1) It potentially controls the range of losses for different tasks.
The ng + 1 term in the denominator averages over the nodes of
each task so that each task has an approximate contribution for
optimizing; (2) The set of T hypertask prototypes is added to obtain
a more stable optimization for balanced contrastive learning. In
summary, M2 combines supervised contrastive loss and balanced
contrastive loss. With M2, we alleviate the label scarcity by passing
label information across all nodes and all layers; and solve the data
imbalance by balancing the performance of the head and tail classes.
Overall Objective Function. Our objective is to minimize the node
classification loss (for few-shot annotated data), the unsupervised
balanced contrastive loss (for task combinations in each layer), and
the supervised contrastive loss (for categories), which is defined as:

Liota = Lnc +v * (Lper + Lscr) ®)
where y balances the contribution of the three terms. The node
classification loss L ¢ is defined as follows:

T
Lnc =) Lek (9(6),Y), ©
i=1

where L is the cross-entropy loss, G represents the input graph
with few-shot labeled nodes, and Y represents the labels.

4 Experiments

To evaluate the effectiveness of HIERTAIL for long-tail classification
on graphs, we conduct experiments on six benchmark datasets with
a large number of classes and data imbalance. Our model exhibits
superior performances compared to various state-of-the-art base-
lines, as detailed in Section 4.2. Further, through ablation studies
in Section 4.3, we demonstrate the necessity of each component of
HierTAIL. We also report the parameter and complexity sensitivity,
which shows that HIERTAIL achieves a convincing performance
with minimal tuning efforts and is scalable, as given in Section 4.4.

4.1 Experiment Setup

Datasets: We evaluate our proposed framework on Cora-Full [4],
BlogCatalog [46], Email [57], Wiki [34], Amazon-Clothing [33],
and Amazon-Electronics [33] datasets to perform node classifica-
tion task. The first four datasets naturally have smaller Ratior T,
and they are randomly sampled according to train/valid/test ra-
tios = 1:1:8 for each category. While the last two datasets with

2We use the same contrastive loss for each layer. To clarify, we omit layer (1).
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Table 1: Dataset statistics.

Dataset #Nodes #Edges #Attributes #Classes Imb. Ratiorr
Cora-Full 19,793 146,635 8,710 70 0.016 1.09
BlogCatalog 10,312 333,983 64 38 0.002 0.77
Email 1,005 25,571 128 42 0.009 0.79
Wiki 2,405 25,597 4,973 17 0.022 1.00
Amazon-Clothing 24,919 91,680 9,034 77 0.097 1.23
Amazon-Electronics 42,318 43,556 8,669 167 0.107 1.67

larger Ratior, we manually process them to achieve harsh long-
tail with Ratiorr = 0.25. We remove low-degree nodes and their
corresponding edges to downsample while maintaining the con-
nections between the remaining nodes. For valid/test sets, we
sample 25/55 nodes from each category. To sum up, HIERTAIL
is evaluated based on four natural datasets, and two additional
datasets with semi-synthetic long-tail settings. The statistics, the
original class-imbalance ratio, and the original long-tailedness ra-
tio (Ratioy7(0.8) as defined in Definition 1) of each dataset are
summarized in Table 1.

Comparison Baselines: We compare HIERTAIL with five imbal-
anced classification methods and six GNN-based long-tail classifi-
cation methods.

« Classical long-tail learning methods: Origin (utilizing a GCN [23]

as the encoder and an MLP as the classifier), Over-sampling [6],
Re-weighting [59], SMOTE [7], and Embed-SMOTE [2].

+ GNN-based long-tail learning methods: GraphSMOTE [64],
GraphSMOTE, [64], GraphMixup [51], InGAGN [40],
GraphENS [37], and LTE4G [60].

Implementation Details: We run all the experiments with 10
random seeds and report the evaluation metrics along with standard
deviations. Considering the long-tail class-membership distribution,
balanced accuracy (bAcc), Macro-F1, and Geometric Means (G-
Means) are used as the evaluation metrics, and accuracy (Acc) is
used as the traditional metric. For a fair comparison, we use vanilla
GCN as backbone and set the hidden layer dimensions of all GCNs
in baselines and HIerTAIL to 128 for Cora-Full, Amazon-Clothing,
Amazon-Electronics and 64 for BlogCatalog, Email, Wiki. We use
Adam [21] optimizer with learning rate 0.01 and weight deacy 5e—4.
The maximum training epoch for all the models is set to 10, 000. If
there is no additional setting in the original papers, we set the early
stop epoch to 1,000, i.e., we force the training to stop if there is no
improvement in F1 value on the validation set in 1000 epochs. For
baseline methods, we use the same default hyperparameter values
as in the original paper. For our model, the weight y of contrastive
loss is set to 0.01, and the temperature 7 of contrastive learning is
selected in {0.01, 0.1, 1.0} for different datasets. We set the depth of
the hierarchical graph neural network to 3; node embeddings are
calculated for the first layer, the number of tasks is set to the number
of categories for the second layer, and the number of tasks is half
the number of categories for the third layer. All the experiments
are conducted on an A100 SXM4 80GB GPU.

4.2 Performance Analysis

Overall Evaluation. We compare HIERTAIL with eleven methods
on six real-world graphs, and the performance of node classification
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Table 2: Comparison of different methods in node classification task.

Method Cora-Full BlogCatalog

bAcc Macro-F1 G-Means Acc bAcc Macro-F1 G-Means Acc
Origin 528 +0.6 545+0.7 725+04 62.7+05| 71+04 73+04 264+0.7 151+1.0
E‘f Over—sampling 52.7+0.7 544+0.6 724+£05 62.7+04| 7.1+03 7.2+03 263+06 15.1+1.2
% Re—weight 529+0.5 544+05 725+£03 626+04| 7.2+04 73+05 264+08 15.1+0.8
) SMOTE 52.7+0.6 544+05 724+04 627+04| 71+04 7.2+05 263+08 153+1.2
Embed-SMOTE | 52.9+ 0.5 544+05 73.9+04 62.6+04| 71+05 73+05 263+09 14.8+0.8
= GraphSMOTET 54.2+08 54.7+08 734+06 621+06| 86+x04 85+0.5 289+0.7 183+1.1
% GraphSMOTEO 54.1+0.8 545+0.7 73.3+£05 620+06| 8.6+x04 85+04 289+06 18.3+0.9
'Z-? GraphMixup 539+13 539+13 73.2+£09 614+1.2]| 8006 79+08 279+12 18.8+0.8
Z ImGAGN 93+1.1 6.6+10 30.2+19 209+21| 62+x06 49+05 246+13 205+1.3
© GraphENS 55.0+0.6 54.2+05 73.9+04 621+04] 9.0+0.6 89+0.5 308+09 12.8+1.1
LTE4G 558+0.6 545+04 745+04 61.6+04| 6.9+0.5 6.7£0.6 260+09 11.7+1.3
Ours 55.8+0.5 57.1+£05 745+03 64.7+0.7] 98+0.2 9.6+0.1 309+04 23.2+0.6

Email Wiki

Method bAcc Macro-F1 G-Means Acc bAcc Macro-F1 G-Means Acc
Origin 48.9+45 45.2+43 695+3.2 66.7+2.1|48.2+15 499+19 68.6+1.1 64.2+09
E Over-sampling | 48.4 +4.2 454+3.7 69.2+3.1 66.4+2.0|473+21 48.7+22 679+15 63.6+14
§ Re-weight 479+46 44.2+42 688+34 663+1.7|48.1+2.1 49.7+25 685+1.6 640+14
O SMOTE 48.4+4.2 454+37 692+3.1 664+20|473+2.1 48.7+2.2 679+15 63.6+t14
Embed-SMOTE | 47.9 + 4.6 442+4.2 688+33 66.2+1.7[48.1+21 49.7+25 685+1.6 63.9+1.4
2 GraphSMOTET 434+29 39.1+28 655+2.2 604+15(503+17 51.8+2.2 70.1+£1.2 658+09
2 GraphSMOTEO 423 +3.1 383+29 64.7+24 60.1+23[49.6+23 51.1+2.7 69.6+1.7 655+1.2
; GraphMixup 43.2+23 38.1+23 654+1.7 60.1+1.7[503+29 51.2+29 70.0+2.1 651+1.3
Z ImGAGN 27.6 34 268+29 520+3.2 465+35[41.2+5.7 423+64 63.2+49 655+5.8
© GraphENS 50.5+3.1 43.7+33 71.1+2.2 62.0+27(508=+33 50.1+3.4 703+24 61.7+4.4
LTE4G 464+25 393+24 67.8+18 57.8+3.1|51.0+29 49.7+19 705+2.1 60421
Ours 50.5+3.0 46.6 +3.0 70.7+2.1 654+17(528+20 54.1+23 719+14 67.2+1.1

Table 3: Comparison of different methods in node classification task on semi-synthetic long-tail datasets with long-tailedness

ratio Ratio;7(0.8) ~ 0.25.

Method Amazon-Clothing Amazon-Electronics
bAcc Macro-F1 G-Means Acc bAcc Macro-F1 G-Means Acc

Origin 99+02 95+0.2 313+£03 99+0.2 |169+0.2 15.2+0.2 41.0+£0.3 16.9+0.2
E Over-sampling 99+02 95+0.2 313+03 99+0.2 |16.8+0.1 15.1+0.1 40.9+0.2 16.8+0.1
§ Re—weight 10,0+£0.2 9.6+0.2 314+03 10.0+0.2|17.0+0.2 152+0.2 41.1+0.3 17.0+0.2
@) SMOTE 10.0+£0.1 95+£0.2 314+0.2 10.0+0.1|169+0.2 151+0.2 41.0+0.3 16.9+0.2
Embed-SMOTE | 99+0.2 95+0.2 31.3+03 99+0.2 |17.0+0.2 152+0.2 41.1+03 17.0+0.2
2 GraphSMOTET 11.7+0.2 104+03 34.0+03 11.7+0.2|18.2+0.2 156+0.2 425+0.2 18.2+0.2
4 GraphSMOTEO 11.7+0.2 104+0.3 34.0+03 11.7+0.2|182+0.2 155+0.2 425+0.2 18.2+0.2
; GraphMixup 109+0.5 93+0.7 328+0.7 109+0.5|18.1+£0.4 155+0.5 425+0.5 18.1+0.4
Z ImGAGN 129+0.2 9.2+£0.1 357+0.2 129+0.2|13.7+0.2 11.0+0.0 36.9+0.2 13.7+0.2
© GraphENS 11.6 £2.7 109+2.7 33.6+4.3 11.6+2.7|19.2+3.8 17.2+3.6 435+44 19.2+38
LTE4G 155+0.3 16.0+0.5 39.1+0.3 155+0.3/209+0.3 199+0.3 45.7+0.3 20.9+0.3
Ours 171+ 05 16.8+0.6 41.1+0.6 17.1+0.5(23.6+0.9 21.0+1.3 485+1.0 23.6 +0.9

is reported in Table 2 and Table 3. In general, we have the follow-
ing observations: (1) HIERTAIL consistently performs well on all
datasets under various long-tail settings and especially outperforms
other baselines on harsh long-tail settings (e.g., Ratior7(0.8) =~
0.25), which demonstrates the effectiveness and generalizability of
our model. More precisely, taking the Amazon-Electronics dataset
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(which has 167 classes and follows the Pareto distribution with "80-
20 Rule") as an example, the improvement of our model on bAcc
(Acc) is 12.9% compared to the second best model (LTE4G). It implies
that HIERTAIL can not only solve the highly skewed data but also
capture a massive number of classes. (2) Classical long-tail learning
methods have the worst performance because they ignore graph
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Figure 5: Performance on groups of ten classes in Cora-Full,
where the yellow, red and green curves show bAcc (%) of GCN,
HrierTAIL and GraphSMOTE_T for node classification.

structure information and only conduct oversampling or reweight-
ing in the feature space. HIERTAIL improves bAcc up to 36.1% on the
natural dataset (BlogCatalog) and 71.0% on the manually processed
dataset (Amazon-Clothing) compared to the classical long-tail learn-
ing methods. (3) GNN-based long-tail learning methods achieve
the second-best performance (excluding the Email dataset), which
implies that it is beneficial to capture or transfer knowledge on
the graph topology, but these models ignore the massive number
of classes. In particular, since InGAGN only considers the high-
skewed distribution, as the number of classes increases (from Wiki
to Cora-Full), the model becomes less effective. Our model outper-
forms these GNN-based methods on almost all the natural datasets
and metrics (excluding Email), such as up to 12.9% improvement
on the manually processed dataset (Amazon-Electronics).
Performance on Each Class. To observe the performance of our
model for the long-tail classification, we plot the model performance
(bAcc) on each class in Figure 1 and for groups of ten classes in
Figure 5. We find that HIERTAIL outperforms the original GCN
method (which fails to consider the long-tail class-membership
distribution), especially on the tail classes.

4.3 Ablation Study

Table 4 presents the node classification performance on Cora-Full
when considering (a) complete HIERTAIL; (b) hierarchical task group-
ing, balanced contrastive loss, and node classification loss; (c) hi-
erarchical task grouping, supervised contrastive loss, and node
classification loss; (d) hierarchical task grouping and node classifi-
cation loss; and (e) only node classification loss. From the results, we
have several interesting observations: (1) Hierarchical task group-
ing (M1) helps the model better share information across tasks,
which achieves impressive improvement on Cora-Full by up to 3.2%
((d) > (e)). (2) Long-tail balanced contrastive learning module (M2)
leads to an increase in bAcc by 2.4%, which shows its strength in
improving long-tail classification by ensuring accurate node em-
beddings ((a) > (d)). (3) Supervised contrastive learning leads to an
improvement from 54.3 to 55.8 in bAcc ((a) > (b)). (4) Balanced con-
trastive learning leads to an improvement from 54.6 to 55.8 in bAcc
((a) > (c)). Overall, the ablation study firmly attests both modules
are essential in successful long-tail classification on graphs.
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Table 4: Ablation study on each component of HIERTAIL.

Components Cora-Full
M1 M2 Lck bAcc Macro-F1 ~ G-Means Acc
Lper  Lsci

v v v v 558+05 57.1+05 745+03 64.7+0.7

v v v 543+0.7 56.1+0.7 735+0.5 644104

v v v 546+04 562+04 737+03 643104

v v 545+05 56.2+04 73.6+03 645+0.4
v 528+ 0.6 545+0.7 725+04 62.7+£0.5

Table 5: Hyperparameter analysis on Cora-Full with respect
to the number of tasks in the second and third layers.

Cora-Full
bAcc Macro-F1 G-Means Acc
[198,70] 55.5 56.7 74.2 64.6
[70,35] 55.8 57.1 74.5 64.7
[2,1] | 54.9 56.8 739  65.5
B8 53.2
. 52.8
% 52.4
o 50 52.0
e 51.6
51.2
40 50.8
0.0 50.4
= 50.0
S, 0.4 /
0.02
0.04
0.06
0 0.08  eo™

Figure 6: Hyperparameter analysis on Cora-Full with respect
to weight y and temperature .

4.4 Parameter and Complexity Analysis

Hyperparameter Analysis. We configure the number of tasks in
the second layer to align with the number of classes in Section 3.2.
To investigate the potential effects of overclustering [17, 20] where
the number of clusters is larger than the number of classes, we
conduct experiments by adjusting the number of tasks in the second
and third layers. Table 5 illustrates the impact of varying the number
of tasks on model performance. The experimental results reveal that
our model achieves great performance within a certain reasonable
range of hyperparameters. However, there is a slight performance
degradation when the number of hypertasks is small.

In addition, we study the following hyperparameters: (1) the
weight y to balance the contribution of three losses and (2) the
temperature ¢ of balanced contrastive loss in M2. As shown in
Figure 6, the fluctuation of the bAcc (z-axis) is less than 5%. The bAcc
is slightly lower when both weight y and temperature 7 become
larger. Overall, we find HIERTAIL is reliable and not sensitive to the
hyperparameters under a wide range.

Complexity Analysis. We report the running time and memory
usage of HIERTAIL, GCN, and LTE4G (a efficient state-of-the-art
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method). For better visualize the performance, we run the experi-
ment on an increasing graph size, i.e., from 100 to 100,000 nodes. As
depicted in Figure 7, our approach HIeERTAIL consistently exhibits
superior or similar running time compared to the LTE4G method.
Although our method has slightly higher running time than GCN,
the gap between our approach and GCN remains modest especially
when for graph sizes smaller than 10%. The relationship between
the running time of our model and the number of nodes is simi-
larly linear. The best space complexity of our method can reach
O(nd + d? + |&|), which is linear in the number of nodes and the
number of edges. From the memory usage given in Figure 8, it is
shown that HIERTAIL exhibits significantly superior memory usage
compared to LTE4G and closely approximates the memory usage
of GCN. The results illustrate the scalability of our method.

5 Related Work

Long-tail Problems. Long-tail data distributions are common in
real-world applications [63]. Several methods are proposed to solve
the long-tail problem, such as data augmentation methods [6, 27]
and cost-sensitive methods [9, 59, 68]. However, the vast major-
ity of previous efforts focus on independent and identically dis-
tributed (i.i.d.) data, which cannot be directly applied to graph
data. Recently, several related works for long-tail classification on
graphs [15, 28, 30, 37, 40, 49, 51, 56, 60, 61] have attracted attention.
Despite this, the long-tail approaches often lack a theoretical basis.
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The most relevant work lies in imbalanced classification. Cao et al.
[5] and Kini et al. [22] present model-related bounds on the error
and the SVM margins, while Yang and Xu [55] provide the error
bound of a linear classifier on data distribution and dimension. In
addition, previous long-tail work is performed under the class im-
balance settings where the number of classes can be small, and the
number of minority nodes may not be small; but for long-tail learn-
ing, the number of classes is large, and the tail nodes are scarce. In
this paper, we provide a theoretical analysis of the long-tail problem
and conduct experiments on long-tail datasets.

Graph Neural Networks. Graph neural networks emerge as state-
of-the-art methods for graph representation learning, which capture
the structure of graphs. Recently, several attempts have been fo-
cused on extending pooling operations to graphs. In order to achieve
an overview of the graph structure, hierarchical pooling [12, 25,
29, 41, 58] techniques attempt to gradually group nodes into clus-
ters and coarsen the graph recursively. Gao and Ji [12] propose an
encoder-decoder architecture based on gPool and gUnpool layers.
However, these approaches are generally designed to enhance the
representation of the whole graph. In this paper, we aim to explore
node classification with the long-tail class-membership distribution
via hierarchical pooling methods.

6 Conclusion

In this paper, we investigate long-tail classification on graphs, which
intends to improve the performance on both head and tail classes.
By formulating this problem in the fashion of multi-task learning,
we propose the generalization bound dominated by the range of
losses across all tasks and the task complexity. Building upon the
theoretical findings, we also present HIERTAIL. It is a generic frame-
work with two major modules: M1. Hierarchical task grouping to
control the complexity of the task space and address C2 (Label
scarcity) and C3 (Task complexity); and M2. Long-tail balanced con-
trastive learning to control the range of losses across all tasks and
solve C1 (High-skewed data distribution) and C2 (Label scarcity).
Extensive experiments on six real-world datasets, where HIERTAIL
consistently outperforms state-of-art baselines, demonstrate the
efficacy of our model for capturing long-tail classes on graphs.

Reproducibility: Our code and data are released at https://
github.com/wanghh7/HierTail.
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A Details of Ratio;7(p)

To better characterize class-membership skewness and number of
classes, we introduce a novel quantile-based metric named long-
tailedness ratio for the long-tail datasets.

Q(p)
T-0(p)
where Q(p) = min{y : Pr(Y <y) =p,1 <y < T} is the quantile
function of order p € (0, 1) for variable Y, T is the number of
categories. The numerator represents the number of categories to
which p percent instances belong, and the denominator represents
the number of categories to which the else (1—p) percent instances
belong in D.

The hyperparameter p allows end users to control the number
of classes in the head of the long-tail distribution. If there is no

specific definition of the head class in certain domains, we suggest
simply following the Pareto principle (p = 0.8). Using the same p

Ratiorr(p) =
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value for two long-tail datasets allows us to compare the complexity.
Otherwise, if the Ratiorr(p) of two datasets are measured based
on different p values, they are not comparable. If there is a specific
definition of the head class in certain domains, we can directly
calculate the number of head classes and thus infer the p value.

In addition, in light of class-imbalance ratio and long-tailedness
ratio, we gain a better understanding of the datasets and methods
to use. (1) High class-imbalance ratio and low Ratior imply high-
skewed data distribution, and we may encounter a large number of
categories. In such situations, a long-tail method that is designed
for data imbalance and an extreme number of classes may be nec-
essary to achieve optimal results. (2) High class-imbalance ratio
and high Ratiorr suggest that the task complexity is low with
a relatively small number of categories and the dataset may be
imbalanced. Therefore, imbalanced classification approaches such
as re-sampling or re-weighting may be effective. (3) Low class-
imbalance ratio and low Ratiorr imply high task complexity but
relatively balanced samples. In such cases, extreme classification
methods would be preferred. (4) Low class-imbalance ratio and
high RatiorT suggest that the dataset may not follow a long-tail
distribution, and ordinary machine learning methods may achieve
great performance.

B Details of Theoretical Analysis

We obtain the range-based generalization error bound for long-
tail categories in the following steps: (S1) giving the loss-related
generalization error bound based on the Gaussian complexity-based
bound in Lemma 1; (S2) deriving the generalization error bound
(Theorem 1) related to representation extraction h and the range
of task-specific predictors fi, ..., fr based on the loss-related error
bound in S1, the property of Gaussian complexity in Lemma 2, and
the chain rule of Gaussian complexity in Lemma 3.

First, we have the following assumptions from the previous
work [32].

Assumption 1 (R-Lipschitz Function). Assume each function f € F
is R-Lipschitz in £, norm, i.e, Vx,x" € X,
FG0 = f ()] < Rl =X,

Assumption 2 (p-Lipschitz Loss). Assume the loss function I(-, -)
is p-Lipschitz if 3 p > 0 such thatVx € X, y,y’ € Y and f, f’ € H,
the following inequalities hold:

(' 0.9) - 1)) < p|f () - f&],

I (fx.y) = 1F .9 < ply' -yl

Based on Maurer et al. [32], we can derive the Gaussian complexity-

based bound on the training set X as follows (S1).

Lemma 1 (Gaussian Complexity-Based Bound). Let F be a class of
functions f : X — [0,1]7, and xf represents i instances belonging
to class t. Then, with probability greater than 1 — 6 and for all f € F,
we have the following bound

1 1
= Z Ex~p, Lfi(X)] - Z e (xi)
(10)

V2rnG(Z)
SZ ntT *
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where i1, ..., T are probability measures, Z C R™ is the random set
obtained by Z = {(ﬁ (xf)) ‘fr € T}, and G is Gaussian complexity.

Proor. Following Theorem 8 in [32], we have Ex., [f#(X)] —
> nltft(xf) < \/27[5(2) + 4/ 91nz(jt/§) . Next, we perform the sum-

mation operation for . O

Lemma 1 yields that the task-averaged estimation error is bounded
by the Gaussian complexity in multi-task learning. Next, we will
give the key property of the Gaussian averages of a Lipschitz image
in Lemma 2, and will present the chain rule of Gaussian complexity
in Lemma 3.

Lemma 2 (Property of Gaussian Complexity, Corollary 11 in [32]).
Suppose Z C R™ and ¢ : Z — R™ is (Euclidean) Lipschitz continuous
with Lipschitz constant R, we have

G(¢(2)) < RG(Z). (11)

Lemma 3 (Chain Rule of Gaussian Complexity). Suppose we have
S= {(l(ﬁ(h(x;)), Yl.t)) i € F and h e H} C R™. F is a class of
functions f : Z — R™, all of which have Lipschitz constant at most
R,Z C R" has (Euclidean) diameter D(Z). Then, for any zy € Z,

G(S) € c1pRG(Z) + caD(Z)Range(fi, ..., fT)
+pG (F (20)),
where c1 and cy are universal constants.

ProoF. By the Lipschitz property of the loss function I(, ) and
the contraction lemma 2, we have G(S) < pG (S’), where

[(#(hx1) < fi € Fand h e H} € 7. Let
v f@) - )

llz =2l

R(F) = (12)

sup
2,7 €7,2#7'

E sup
feF

where y is a vector of independent standard normal variables. Fol-

lowing Theorem 2 in [31], we have
G (S) <c1pRG(H (X)) + c2pD(H (X))R(F)
+p rznelél G(F (2)). 13)

where ¢ and ¢y are constants. Furthermore,
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. f(2) - f(#))

E
P wetowr oy -7l
o M@ -Gl e f () = ()
2,2/ €Z2#7 lf(z) - f£)lI feF Al
< wp Esyp PE@-IG@).)
22/ €Z2#7  feF llz —2"||
< sup  E|sup(yl(f(2),y)) - sup <y,l(f(Z’),y’)>}
z,2' €7,2+7' feF feF
1 1
< M UfhX),y) - = » LFhX)),y
<Z’z(zlzlgﬁ[nz ()~ = S ISR y)]
< max ,% 21 Hfe(h(x)). ) — min = 21 1(fe (A(x)), y7).
(14)
[m]

Finally, we can move to the second step and then derive the gen-
eralization error bound related to h and fi, . . ., fr under the setting
of long-tail categories on graphs. With the previous assumptions,
the generalization bound is given as in the following Theorem 1.

Theorem 1 (Generalization Error Bound). Given the node em-
bedding extraction function h € H and the task-specific classifier
A, ..o fr € F, with probability at least 1 — 5,5 € [0, 1], we have

R c1pRG(H (X)) {91n(2/5)
€-es Zt: ( ng * 2n; T2

T
~~,fT))

®3)
. C2SUPhegt lIh(X)[[Range(f1, .
I’ltT
where X is the node feature, T is the number of tasks, n; is the num-
ber of nodes in task t, R denotes the Lipschitz constant of fuctions
in F, loss function (-, -) is p-Lipschitz, G(-) denotes the Gaussian
complexity [3], and ¢ and cy are universal constants.

Proor. By Lemma 1, we have that

X \V27G(S) /91n(z/5)
G—ESZ I’ltT * 2ntT2 )’

where § = {(l( Fi(h(X)), yl.f)) . fy € F and h e H} C R™ Next,
because we have f;(0) = 0 for all f; € F, the last term in (13)
vanishes. Substitution in (13) and using Lemma 3, we have

G(S) < c1pRG(H (X)) + co VTD(H (X))Range(fi, .. .. fr)-

(15)

(16)
Finally, we bound D(H (X)) < 2supy, [|[h(X)]| and substitution in
(15), the proof is completed. O

Theorem 1 shows that the generalization performance of long-
tail categories on graphs can be improved by (1) reducing the loss
range across all tasks Range(f1, ..., fr), as well as (2) controlling
the task complexity related to T.
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