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Introduction: Machine learning (ML) algorithms have been heralded as promising
solutions to the realization of assistive systems in digital healthcare, due to their
ability to detect fine-grain patterns that are not easily perceived by humans. Yet,
ML algorithms have also been critiqued for treating individuals differently based
on their demography, thus propagating existing disparities. This paper explores
gender and race bias in speech-based ML algorithms that detect behavioral and
mental health outcomes.

Methods: This paper examines potential sources of bias in the data used to train
the ML, encompassing acoustic features extracted from speech signals and
associated labels, as well as in the ML decisions. The paper further examines
approaches to reduce existing bias via using the features that are the least
informative of one's demographic information as the ML input, and
transforming the feature space in an adversarial manner to diminish the
evidence of the demographic information while retaining information about
the focal behavioral and mental health state.

Results: Results are presented in two domains, the first pertaining to gender and
race bias when estimating levels of anxiety, and the second pertaining to gender
bias in detecting depression. Findings indicate the presence of statistically
significant differences in both acoustic features and labels among demographic
groups, as well as differential ML performance among groups. The statistically
significant differences present in the label space are partially preserved in the
ML decisions. Although variations in ML performance across demographic
groups were noted, results are mixed regarding the models’ ability to accurately
estimate healthcare outcomes for the sensitive groups.

Discussion: These findings underscore the necessity for careful and thoughtful
design in developing ML models that are capable of maintaining crucial
aspects of the data and perform effectively across all populations in digital
healthcare applications.

KEYWORDS
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1 Introduction

In recent years, the field of digital healthcare has witnessed remarkable advancements,
driven by the prolific collection of vast and diverse datasets and the application of cutting-
edge machine learning (ML) algorithms (1). These advancements offer the promise of
achieving improved healthcare outcomes through detailed data analysis and the
generation of novel insights. However, within this landscape of opportunity lies a
pressing concern related to the potential bias inherent in the data and the fairness of
the algorithms employed. Data collected for digital healthcare applications often suffer
from non-representativeness, which can lead to skewed and biased decision-making
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processes (2). Furthermore, machine learning algorithms, if not
carefully designed and monitored, have the propensity to
data, thereby
exacerbating existing disparities in healthcare (3, 4). Given these

perpetuate existing biases present in the
inherent risks associated with ML in digital healthcare, recent
administrative and regulatory efforts, including the European
Union’s (EU) AI Act (AIA) (5) and the “Blueprint for an Al Bill
of Rights” by the U.S. White House (6), have taken the initiative
to lay out core principles that should guide the design, use, and
deployment of AI to ensure an inclusive progress that does not
come at the expense of traditionally underserved groups.

Speech-based ML technologies have observed an increased
focus by digital healthcare due to the fact that speech can be
unobtrusively collected via smartphones and wearable devices on
a continuous basis, and carries valuable information about the
human behavior and mental state. Speech is a result of the
complex interplay between cognitive planning and articulation
(7). The cognitive component of speech production involves
cognitive planning via the formation of the message that a
speaker intents to communicate. The motor component of
speech production, also referred to as “articulation,” relies on the
coordination of the lungs, glottis (i.e., including the vocal cords),
and vocal tract (i.e, mouth, nasal cavity) (8). Both the motor
and cognitive components of speech can be affected by the
speaker’s traits and states, the first reflecting one’s permanent
characteristics (e.g., race/ethnicity, gender) and the latter varying
over time (e.g., emotion, stress, health condition) (9). Due to this
richness of information, acoustic measures derived from speech,
such as prosody or spectrotemporal characteristics, can reflect
information that is critical for mental healthcare applications
(e.g., stress, emotion, depression), while at the same time they
can be confounded by demographic factors. The effect of state
and trait characteristics on acoustic measures has been explored
for each variable of interest separately. For example, previous
studies support that acoustic measures vary between female and
male speakers (10), and demonstrate the dependence of acoustic
measures on race and ethnicity (11-13). At the same time, the
effect of behavioral and mental health states on acoustic
measures has been investigated in prior work in affective
computing (14). Yet, limited work has examined whether ML
systems for state recognition based on speech can yield
differential results among demographic groups (15, 16).

Here, we examine demographic bias in speech-based ML
systems that detect outcomes relevant to digital healthcare. We
investigate potential differences in acoustic measures and labels
between groups defined via gender, race/ethnicity, and their
intersection. We further investigate the extent to which ML
systems trained on these acoustic measures can preserve
significant differences among groups in terms of labels (when
applicable), and whether they depict differential performance
among the considered groups. Finally, we study de-biasing
methods that rely on removing features indicative of demography
from the feature space, and transforming the feature space via
adversarial learning to reduce evidence of the demographic
information while preserving information about the focal
behavioral and mental health state. We present our analysis via

Frontiers in Digital Health

10.3389/fdgth.2024.1351637

two case studies; Study 1 focuses on estimating anxiety levels and
Study 2 on detecting depression from acoustic measures. Results
indicate a significant dependence of the considered acoustic
measures on gender and race/ethnicity. Despite the significant
difference among groups in terms of the considered anxiety and
depression labels, the ML systems were partially able to preserve
in ML
performance among groups, which are partially mitigated via the

those differences. Finally, we observe differences
de-biasing methods. Implications of these are discussed in the
context of accelerating equitable ML decision-support algorithms
for digital healthcare.

The contributions of this paper, in comparison to previous
research, can be summarized as follows: (1) Prior studies (10-12)
have explored demographic differences in acoustic features
independently of ML algorithms. However, in Studies 1 and 2,
we delve into the examination of acoustic feature differences
among demographic groups as a potential source of algorithmic
bias in speech-based ML decision-making; (2) Diverging from
earlier research that primarily focused on disparities in ML
performance among different groups (17-20), Studies 1 and 2
underscore the significance of preserving potentially meaningful
distinctions among populations. Our findings reveal that, despite
meaningful observed differences among groups in terms of
labels,
maintained in the ML decisions; and (3) There has been limited

anxiety and depression these differences are not
exploration of the effectiveness of de-biasing methods in the
domain of behavior and mental health analytics (16). Hence,
Study 2 contributes to expanding our understanding on how
these methods perform when applied to speech analytics.

The remainder of this paper is structured as follows. Section 2.
discusses the relationship between speech on demographic factors,
the impact of anxiety and depression on acoustic features, and
reviews prior work on algorithmic bias in healthcare and other
high-risk applications. Section 3. presents Study 1 focusing on
the examination of algorithmic bias when estimating anxiety
levels using acoustic measures. Section 4. delves into Study 2,
which explores the analysis and mitigation of algorithmic bias for
depression detection. Section 5. provides an overview of the
findings from both studies and discusses those findings in
relation to prior work, delineating implications of these findings
for fostering equitable digital healthcare. Finally, Section 6.
summarizes the conclusions drawn from this work.

2 Prior work

2.1 The dependence of speech on
demography

Differences in anatomical structure between male and female
speakers, such as vocal fold size and vocal tract length, have been
widely investigated (21) and serve as a main contributing factor
to the observed significant differences between the two in terms
of acoustic measures, such as fundamental frequency (F0) and
formant frequencies (22). Beyond the differences in anatomy,
behavioral factors might further result in acoustic differences
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between female and male speakers. For example, Sachs et al. found
that in an effort to comfort with stereotypes, male speakers will
sometimes speak with unnaturally low FO and female speakers
with an unnaturally high FO (10). Other work has examined
potential differences of acoustic measures based on race and
ethnicity with somewhat conflicting results. Xue & Hao found
differences in vocal tract diameters among White American,
African American, and Chinese male and female speakers, which
could serve as a factor of variation in acoustic measures (23).
Lass et al. demonstrated that naive listeners can distinguish
between 10 African American and 10 White speakers, balanced
in terms of gender, with approximately 75% accuracy when
listening to full sentences (24). Perceptual differences in speech
between African American and White speakers have been
observed (25), a finding with important social implications such
as racial or ethnic profiling (26). In terms of acoustic analysis,
Sapienza analyzed FO values of 20 African American and 20
White adult speakers (balanced for gender) and did not find any
(13). Li et al
demonstrated no difference between African American and

significant  differences between the two
White men in FO mean and range, but African American women
produced consistently lower mean FO than White women (12).
Hispanic female speakers further showed the highest values of
jitter in a sustained vowel task (27). Cantor-Cutiva et al
examined differences in vocal measures between English speakers
and bilingual English-Spanish speakers (11). Results indicate that
monolingual speakers depicted higher FO mode compared to
bilingual English-Spanish speakers. Bilingual male speakers had
higher jitter than monolingual speakers, while bilingual female
speakers had lower jitter and shimmer than monolingual speakers.

2.2 The impact of anxiety on speech

Evidence from prior work indicates that the sympathetic
activation caused by high state anxiety can produce an increase in
lung pressure, subglottal pressure, irregular palpitation of the vocal
folds, and vocal tremor, that can cause voicing irregularities and
discontinuities in frequency contours (28). These can be quantified
via changes in acoustic measures, such as FO, jitter, shimmer, and
vocal intensity (29, 30). For instance, Van Lierde et al. examined
the voice of female speakers in a stress-inducing task (i.e., reading
a passage before an audience of 70 people) and found that it was
more breathy and strained (31). Ozeven et al. found an increase in
FO and marginal increase in jitter when participants suffering from
social anxiety were asked to read the Beck Anxiety Inventory (32).
In a similar context, Weeks et al. demonstrated that male patients
suffering from social anxiety disorder depict increased FO during a
speaking task compared to participants of the non-socially anxious
control group (30). Prior work indicates that jitter and shimmer
are associated with increased emotional arousal (33, 34). Review
studies further support an increase in FO during stressful tasks, but
these trends are not universal (29). For example, Van Lierde et al.
observed lower objective vocal quality in female speakers during
the stress inducing task, characterized by lower FO, lower
frequency, and intensity. Kappen et al. examined the associations
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between negative affect elicited from a stress inducing task and
acoustic measures of FO, ratio of the energy of the first formant
(F1) to the energy of the second formant (F2), and harmonics-to-
noise ratio (HNR) (35). Results via a network analysis indicated
that jitter was the only speech parameter that was directly
connected to change in negative affect with a positive association
between the two. Finally, Jiang et al. demonstrated that speakers
perceived to be confident speak with higher voice intensity
compared to the non-confident ones (36).

2.3 The impact of depression on speech

Mental health disorders, such as depression, can produce

noticeable changes in speech patterns and yield prosodic
abnormalities (see (37) for a review). Findings from prior work
suggest that patients with depression are characterized by decreased
speech loudness, slowed speech rate, and monotonous pitch (38).
Prosodic timing measures, such as pause time, speech pause ratio,
and speaking rate have been found important indicators of
depression (39). Glottal measures that capture the association
between volume and velocity in the airflow have been further
successfully used for classifying between healthy participants and
participants with depression (40). Other work has further examined
features that reflect changes in the coordination of the vocal tract
motion across different time scales and formant frequencies (41).
Beyond feature analysis, prior studies have combined the prosody,
source features, formants, and spectral features with ML models for

automatically identifying depression (40, 42-44).

2.4 Bias in human-centered machine
learning

Recently there has been an upsurge of attention on identifying
and correcting algorithmic bias. Early efforts focused on generic
tasks of image processing (45, 46), natural language processing (47),
and speech recognition (48, 49). Emerging work has started to
discuss algorithmic bias in specific domains, such as healthcare (50).

In healthcare, Obermeyer et al. investigated sources of racial bias
in commercially available ML algorithms that are used to
recommend preventive care to patients based on their health
biomarkers (e.g., cholesterol, hypertension, diabetes severity) (17).
Results indicate that when these algorithms were trained based on
healthcare costs as an outcome, they predicted significantly higher
risk scores for White patients compared to African American
patients, thus rendering White patients significantly higher chance
of getting recommended for preventive care. This bias was
mitigated when the number of active chronic conditions was used
as the outcome. Raza predicted re-hospitalization likelihood of
patients with diabetes based on their medical records, medication,
and biomarkers (19) and used various de-biasing techniques, such
as re-weighting the samples from the sensitive groups during
training (51), applying adversarial learning for reducing the
evidence of sensitive attributes in the data (52), and transforming
features to improve group fairness, as well as both individual and
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TABLE 1 Number of speakers per demographic group.

| fican American_Hispanic_Whie American
3 2 9 14

Female
Male 3 7 6 16
Total 6 9 15 30

group fairness (53). Results indicate that sample re-weighting yields
classification accuracy similar to the original ML model, while also
improving upon the disparate impact metric compared to all the
considered algorithms (53). Park et al. used ML to predict
postpartum depression (PDD) based on demographics, pregnancy
outcomes, psychiatric comorbidities, medication use, and
healthcare utilization (18). Results on approximately 300,000
White and 200,000 African American participants with matching
age and insurance enrollment indicated that the first group was
twice as likely to be evaluated for and diagnosed with PPD. The
authors attempted to remove bias via re-weighting the samples
between the two groups and regularizing the dependency between
race and PDD outcome during training. Both methods yielded
improved disparate impact compared to the original ML
algorithm, even when removing race from the input. The re-
weighting method further yielded equivalent positive PDD rates
between groups. Zanna et al. explored demographic bias in anxiety
prediction using 10-week long electrocardiogram (ECG) data from
200 hospital workers (20). Algorithmic bias was found in terms of
age, income, ethnicity, and whether a participant was born in the
US. or not. The authors further proposed a multitask learning
approach to predict anxiety and one of the demographic labels.
They introduced a Bayesian approach that chose the trained
model whose weights depicted the highest uncertainty about the
sensitive demographic label, thus, yielding low predictive power of
that outcome and reduced demographic bias.

3 Study 1: bias related to gender and
race/ethnicity when estimating anxiety
levels from speech

The goal of this case study is to identify demographic bias in
terms of gender, race/ethnicity, and their intersection when using
acoustic measures to estimate anxiety. We explore different
sources of bias that can potentially be present in different stages
from the data origins to the model outcomes. In order to reduce
the complexity in the learning stage, we explore a simple ML
model, namely a linear regression model that estimates public
speaking outcomes based on acoustic measures, which allowed us
to constrain the effect of confounding factors related to ML
training (e.g., hyper-parameter tuning).

TABLE 2 Number of audio samples per demographic group.

| afican Amercan_Hspanic_White American
21 11 75 107

Female
Male 30 47 45 122
Total 51 58 120 229
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3.1 Data description

The data for this case study come from the VerBlo dataset, a
multimodal bio-behavioral dataset of individuals’ affective and
stressor responses in real-life and virtual public speaking settings
(54). The VerBIO dataset contains data from both Native and
non-Native English speakers. Due to the inherent differences in
accent between the two groups that can bias the acoustic
descriptors and introduce significant confounding factors in the
analysis, the data for this case study include the 30 Native
English speakers (14 female, 16 male). The decomposition of the
considered participants in terms of gender, race, and ethnicity is
shown in Table 1. While the distribution of participants is well-
balanced in terms of gender, our data has a larger number of
White
participants of Hispanic origin. Since each speaker conducted

Americans compared to African Americans and
more than one public speaking sessions, the total number of

audio files per group is reported in Table 2.

3.2 Methods

The considered outcome in our analysis is the self-reported
anxiety that was captured via the State-Anxiety and Enthusiasm
(SAE) scale. The input features of the model include the FO on a
semitone frequency scale, loudness, jitter, and shimmer, since
these are commonly used indicators of state anxiety and fear of
the public speaking encounter (54-56). Choosing a small number
of indicative and interpretable features allows us to focus the
analysis on the factors that have the most significant impact on
the problem at hand, in this case, the effect of anxiety on
acoustic features. Voice activity detection was conducted before
extracting the acoustic measures. Acoustic measures were
extracted using the openSMILE toolkit within each utterance.
The average measure over all utterances of an audio file was
subsequently considered in the analysis.

First, we explore bias in the input data. We report the mean
and standard deviation of the acoustic features and the anxiety
outcome per demographic group. Due to the physiological
differences between female and male voices (57), the two groups
are considered separately within each race/ethnicity when
examining the acoustic features. In order to determine the extent
to which the considered groups are different in terms of input
and output data, we conduct a two-way analysis of variance
(ANOVA) with gender and race/ethnicity as independent
variables. The dependent variables in the ANOVA include the
acoustic measures and the self-reported anxiety outcome.
Following that, we conduct a post-hoc analysis with t-tests to
identify significant differences between specific pairs of groups.

Second, we explore bias in the outcome of the ML model. We
train a linear regression model that estimates the anxiety outcome
based on the four acoustic measures. We opted for this shallow
model because of its low data requirements and since similar
models are widely used in healthcare and edge computing
applications (18, 19). We obtained similar results using decision
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TABLE 3 Mean and standard deviation of acoustic features per demographic group.

Group FO Loudness Jitter Shimmer
African American female 34.968 + 1.636 0.645 +0.293 1.094 £ 0.137 0.025 + 0.005
Hispanic female 35.800 = 1307 0.335 +0.066 1.104 +0.106 0.025 +0.004
White female 36.603 + 1.837 0.766 +0.283 1.080 +0.115 0.022 +0.004
African American male 23.776 +2.339 0.689 +0.289 1.317£0.141 0.024 + 0.004
Hispanic male 26.771+3.217 0.689 +0.240 1.242+0.138 0.022 +0.005
White male 26.188 +1.757 0.726 +0.248 1.178 +0.128 0.020 + 0.002

tree regression and random forest regression, thus, we will focus on
the linear regression in the rest of the paper. A leave-one-speaker-
out cross-validation is conducted, according to which samples
from each speaker serve as the test data in each fold and the rest of
the speakers are included in the training data. This process is
repeated as many times as the total number of speakers. The
estimated anxiety outcome from each fold is collected and used in
the subsequent analysis. We report the mean and standard
deviation of the anxiety outcome that was estimated by the linear
regression model. We further conduct a similar statistical analysis
that includes a two-way ANOVA and post-hoc tests, with the
anxiety outcome serving as the
gender and race/ethnicity as the independent variables. We

dependent variables, and

computed the absolute relative error (RE) between self-reported
anxiety and anxiety estimated by the ML model, as a measure of
the overall performance of the ML system. In addition, we
computed the equality of opportunity (EO) between each of
the sensitive and the corresponding non-sensitive groups as
EO =1 — ||RE(sensitive) — RE(non — sensitive)||. Values of EO
close to 1 indicate that outcomes for the sensitive and non-sensitive
groups are estimated with similar accuracy. When examining the
intersection between race and gender, we considered the White
female or White male speakers as the non-sensitive group and the
other groups as the sensitive group. When looking at gender alone,
we considered the male speakers as the non-sensitive group and
compared them with the female speakers. When looking at race
along, we considered the White speakers as the non-sensitive
group and the African American and Hispanic speakers as the
sensitive group.

3.3 Results

The statistics of each feature per demographic group are provided
in Table 3, and the statistics of the actual and estimated anxiety per

TABLE 4 Mean and standard deviation of anxiety labels and predictions
per demographic group.

oo acual Esimated

African American female 41.62 + 6.95 50.06 + 2.66
Hispanic female 54.73 + 6.54 51.78 + 1.98
White female 49.75 + 9.98 49.96 + 2.56
African American male 4433 + 9.28 51.25 + 2.82
Hispanic male 56.77 £ 7.79 51.77 £ 2.19
White male 51.84 + 6.39 51.89 + 2.69
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demographic group are in Table 4. Results from the ANOVA and
post-hoc analysis are presented in Tables 5, 6, respectively.

Results indicate significant differences with respect to FO, jitter,
and shimmer for gender, race/ethnicity, and their interaction
(Tables 5). Based on the post-hoc analysis (Table 6), loudness
depicts significant differences for race/ethnicity, but not for
gender. White female speakers depicted significantly higher FO
compared to African American female speakers. Similarly, White
male speakers depicted a significantly higher FO compared to
African American speakers. The loudness exhibited by white
female speakers was significantly higher than that observed in
Hispanic female speakers. Moreover, white female speakers also
demonstrated higher loudness levels in comparison to African
American female speakers, although this difference was not
(p = 0.09).
American female speakers displayed significantly higher values of

statistically ~ significant Hispanic and African
jitter compared to White female speakers. Hispanic and African
American male speakers exhibited significantly higher values of
jitter and shimmer compared to White male speakers.

The ANOVA revealed the presence of significant differences
concerning gender, race/ethnicity, and their interaction in
relation to self-reported anxiety (Table 5). Subsequent post-hoc
analyses (Table 6) indicated that Hispanic female speakers
reported the highest levels of anxiety, although the difference in
this measure between Hispanic female speakers and White
female speakers was not statistically significant (p = 0.11).
Conversely, African American female speakers reported the
lowest levels of anxiety, a difference that achieved statistical
significance when contrasted with White female speakers.
Additionally,

significantly lower anxiety levels compared to their White male

African American male speakers reported
counterparts. In parallel, Hispanic male speakers reported the
highest levels of anxiety, a difference that was statistically
significant when compared to White male speakers.

Results finally indicate that the anxiety estimates provided by
the ML model do not necessarily follow the patterns of the
actual values (Table 4). For example, Hispanic speakers depicted
the highest levels of state anxiety, but this ordering is not
reflected in the ML estimates (Table 4). The significant
differences among groups with respect to self-reports are further
not maintained in the estimated anxiety values (Tables 5, 6).
This might suggest that the ML system is not able to maintain
potentially meaningful differences between demographic groups.
Regarding variations in ML performance across demographic
groups (Table 7), the ML system exhibits the greatest level of

error, RE, in anxiety estimation when analyzing African
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TABLE 5 2 x 3 Analysis of variance (ANOVA) analysis examining significant differences among demographic groups.

Measure Race/ethnicity
FO F(2, 223) = 19.96, p < 0.01

Interaction
F(2, 223) = 2.496, p < 0.01

Gender
F(1, 223) = 1083.710, p < 0.01

Loudness F(2, 223) = 6.055, p < 0.01

F(1, 223) = 1.948, p = 0.16 F(2, 223) = 7.592, p < 0.01

Shimmer F(2, 223) = 15.024, p < 0.01

F(1, 223) = 5.868, p < 0.01 F(2, 223) = 0.523, p < 0.01

Jitter F(2.0, 223) = 6.800, p < 0.01

F(1.0, 223) = 56.210, p < 0.01 F(2, 223) = 4.120, p < 0.01

Self-reported anxiety F(2, 223) = 30.673, p < 0.01

F(1.0, 223) = 3.489, p < 0.01 F(2, 223) = 0.026, p < 0.01

Estimated anxiety F(2, 223) = 1.076, p = 0.34

F(1.0, 223) = 14.928, p < 0.01 F(2, 223) = 2.040, p = 0.13

American female speakers, African American male speakers, and
their their
demographic counterparts. Consequently, the EO is lower for the

combination, in comparison to respective
African American group, indicating the ML system does not
estimate the anxiety labels equally well for the African American
group compared to the White American group. When
segregating by gender alone, the ML system yields higher RE in
anxiety estimation and lower EO for female speakers when

contrasted with male speakers.

4 Case study 2: gender bias in
detecting depression

The goal of Case Study 2 is to explore gender bias in a speech-
based ML algorithm used to detect depression. We explore
potential gender bias using a set of acoustic features that
represent time-based, frequency-based, and spectral balance
parameters of speech that are commonly used for mental health
tasks. We further investigate the effect of feature selection and
transformation algorithms in reducing evidence of bias in the
decisions of the ML models and their performance based on the
aforementioned features. Finally, we investigate differences
between depression labels and depression outputs estimated by
the ML models for female and male speakers, in an attempt to
understand to what extent the estimated rates of depression are

different compared to the actual rates of depression for each group.

4.1 Data description

The data for this case study came from the Distress Analysis
Interview Corpus Wizard of Oz (DAIC-WoZ) dataset, which
consists of audio interviews from 107 participants (63 males and
44 females) (58). A participant was assigned to the depression
class if their score in the Patient Health Questionnaire (PHQ-8)

was greater than 9; otherwise they were assigned to the healthy
class. Thirty one participants were classified as having depression
(14 males and 17 females), and the remaining as healthy. Each
audio was split into individual utterances based on the
transcripts, resulting in 16,906 utterances from all participants.

4.2 Methods

Acoustic measures were extracted at the utterance-level and
included the 88 features of the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) that include parameters
related to frequency, energy/amplitude, spectral balance, and
timing (59). Our analysis focused on classifying between
depression and no depression. Due to the binary nature of this
classification task, prior work on the same task has achieved
good performance with accuracies of around 70%-80% (60). In
contrast, the automatic estimation of the degree of depression
severity is a more challenging task with prior work indicating a
root mean square error of 5-7 and the PHQ-8 scale ranging
between 0-27 (61). Considering that the study of algorithmic
bias for automatically detecting depression from speech is at its
infancy, we decided to focus on the binary classification task.

We implemented two debiasing methods. The first is a feature
selection method in which we remove from the input of the ML
model the features that depict the highest discriminative ability
of gender. We conducted a t-test analysis for each of the
aforementioned features and measured the extent to which they
are significantly different between female and male speakers. We
ranked those features in increasing order of p-value and removed
the M  features with the lowest p-value, where
M =5, 10, 15, 20, 30, 60, to include as an input in the ML
model. The second de-biasing method is a feature transformation
approach that modifies the original input space so that it
becomes less predictive of gender, while still preserving its
discriminative ability of depression. Grounded in prior work on

TABLE 6 Post-Hoc analysis examining significant pairwise differences between demographic groups.

Measure AF-WF HF-WF AM-WM HM-WM

FO t(94) = 3.69, p = 0.00 t(84) = 1.40, p = 0.17 t(73) = 5.09, p = 0.00 t(90) = —1.07, p = 0.29
Loudness t(94) = 1.72, p = 0.09 t(84) = 5.00, p = 0.00 t(73) = 0.58, p = 0.56 t(90) = 0.72, p = 0.47
Jitter t(94) = —0.46, p = 0.64 t(84) = —0.65, p = 0.52 t(73) = —4.43, p = 0.00 (90) = —2.28, p = 0.02
Shimmer t(94) = —3.25, p = 0.00 t(84) = —2.41, p = 0.02 t(73) = —5.17, p = 0.00 t(90) = —2.25, p = 0.03
Self-reported anxiety t(94) = 3.50, p = 0.00 t(84) = —1.60, p = 0.11 t(73) = 4.16, p = 0.00 t(90) = —3.30, p = 0.00
Estimated anxiety t(94) = —0.15, p = 0.88 t(84) = —2.26, p = 0.03 t(73) = 0.99, p = 0.32 £(90)=0.24, p = 0.81

AF, African American female; HF, Hispanic female; WF, White female; AM, African American male; HM, Hispanic male; WM, White male.
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TABLE 7 Absolute relative error (RE) and equality of opportunity (EO) per
group.

Goups &0

AA females 0.093 0.984
Hispanic females 0.055 0.977
White females 0.077 -
AA males 0.089 0.956
Hispanic males 0.078 0.967
White males 0.045 -
African American 0.090 0.975
Hispanic 0.074 0.991
White 0.065 -
Females 0.075 0.976
Males 0.051 -

adversarial learning that depicts promising results for this purpose
(62, 63), we leverage an auto-encoder architecture that takes as an
input the original feature vector and yields an output feature vector
via a non-linear transformation implemented through an
autoencoder. The autoencoder conducts an identity mapping to
minimize the difference between the input and the output. At
the same time, the bottleneck layer goes through two additional
transformations. The first one outputs the gender of the speaker
and the second one vyields the depression outcome. The
autoencoder is trained to minimize the cross-entropy function
that corresponds to the depression outcome and maximize the
cross-entropy function that corresponds to the gender. It
comprises of 2 hidden layers, with 256 and 128 nodes in the
encoding and decoding layers, respectively. We used the Rectified
Linear Unit (ReLU) activation function and the Adam optimizer
with a learning rate of 0.0001 to train the autoencoder for 50
epochs. Mean squared error served as the loss function.

to further
performance, the Pearson’s correlation between the PHQ scores

In order improve depression classification
and the aforementioned features (i.e., the original features and
the features resulting from the adversarial learning debiasing
method) was computed. The top K features, where
K =5, 10, 15, 20, 30, 60, 88, with the highest correlation were
further selected to serve as an input to the ML model that
conducted depression classification. The ML model comprised of
a feedforward neural network that had 2 hidden layers with 32
nodes each and ReLU activation function, and an output layer
with 2 nodes that corresponded to the depression classification
outcome with softmax activation. Binary cross entropy was used
as the optimization loss. We trained the network using the Adam
optimizer with a learning rate of 0.001 for 100 epochs and a
mini batch size of 32. Early stopping was incorporated to
optimize training performance. The final depression decision was
taken at the participant-level by aggregating the individual
decisions of the network from all utterances and taking their
maximum. A leave-one-participant-fold-out cross-validation was
conducted, in which samples from each participant fold (i.e.,
each fold consisted of samples from 10 participants) serve as the
test data and the rest of the folds are included in the training
data. This process was repeated as many times as the total
number of participant folds.
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Evaluation of the results was conducted via three metrics: (1)
balanced accuracy (BA) that computes the average of true
positive rate (TPR), corresponding to the depression class, and
true negative rate (TNR), corresponding to the healthy class; (2)
equality of opportunity (EO) that computes the difference in
TPR  between female and male participants, ie,
EO =1 — ||TPR(male) — TPR(female)||, quantifying to what
extent the same proportion of female and male participants
receive a true positive outcome (53); and (3) predicted positive
rate (PPR) for female speakers, computed as the percentage of
female speakers from the whole population of female speakers
that were assigned to the depression class by the ML, and the
PPR for male speakers, computed as the percentage of male
speakers from the whole population of male speakers that were
assigned to the depression class by the ML. The PPR for female
and male speakers contributes to better understanding potential
differences in which the two groups receive a positive ML
outcome. The PPR for each group of speakers based on the ML
estimations was compared with the corresponding base PPR
based on the data labels using a two-proportion Z-test.
Significant results from this test would indicate that the PPR
derived from the ML estimations is significantly different from
the base PPR obtained using the data labels.

4.3 Results

Here we present the results from Case Study 2. First, we discuss
differences in labels between female and male speakers and the
results of the machine learning models using the original acoustic
features (Section 4.3.1). Following that, we describe the acoustic
features that are the most indicative of depression, as well as the
acoustic features that the most indicative of gender, and their
potential overlap. We further discuss these in association to the
results of the machine learning models that are trained using the
features resulting from feature selection (ie., selecting the most
relevant features to depression, removing the most relevant
features to gender) (Section 4.3.3). Finally, we present the results

of the machine learning models yielding from further
transforming the feature space with adversarial learning
(Section 4.3.3). Evaluation metrics include the depression

classification performance via BA and fairness metrics via EO
and PPR.

4.3.1 Results using the original features
The average PHQ-8 score for female and male speakers were 7.43
(£6.12) and 5.59 (£ 4.72), respectively. The t-test results between the
the null hypothesis
reaching

two groups indicate evidence
(t(105) = —1.723, p = 0.087)
significance. When binarizing the PHQ scores, the depression base

against
without statistical
rates among female speakers in the dataset under consideration is
38.6% (ie., 17 out of 44), while among male speakers, it stands at
222% (ie, 14 out of 63). Similarly to the continuous PHQ-8
scores, the difference in actual depression rates between the two
groups indicates evidence against the null hypothesis (z = —1.842,
p =10.066), but without depicting statistical significance. This
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finding potentially aligns with empirical evidence suggesting higher The original acoustic features depict BA of 52.79% for female
depression rates among women, possibly attributed to psychological ~ speakers and BA of 49.90% for male speakers (Figure 1A, blue
or biological factors (64-66). lines, last point corresponding to K = 88). While these two BA
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FIGURE 1

Balanced accuracy (BA), equality of opportunity (EO), and predictive positive rate (PPR) of depression when using the K acoustic measures most
relevant to depression (D) (sub-figures A, C, E; blue lines), or after removing the M acoustic measures most relevant to gender (G) (sub-figures B,
D, F; blue lines), and their transformation via adversarial learning (all sub-figures green lines). Same legend applies to subfigures (A) and (B).
Feature transformation via adversarial learning improves performance. The optimal tradeoff between balanced accuracy and EO yields from the 10
most relevant features to depression after applying the adversarial learning transformation (sub-figures A, B; green line). All model configurations
overestimate depression outcomes for male speakers (sub-figures E, F; green/black dotted lines), a finding which is statistically significant. The
majority of model configurations overestimated depression for female participants, but also underestimated depression in three cases (sub-figures
E, F; green/black dashed lines) with these results not being statistically significant. The difference between PPR and depression base rate in male
speakers is higher compared to female speakers.
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metrics do not depict a statistically significant difference between the
two groups (z = 0.961, p = 0.337), they are both close to chance
accuracy indicating that the original set of features might not be
effective in the considered depression classification system. Finally,
based on the original features, the ML systems tend to
underestimate depression for both female and male speakers
(Table 8) depicting very low rates of depression estimation (ie., 1
out of 44 for female speakers, 1 out of 63 for male speakers). These
predicted depression rates are statistically different compared to the
actual base depression rates for each group (z = —4.228, p = 0 for
female speakers; z = —3.969, p = 0 for male speakers).

4.3.2 Results using the selected features

Out of the twenty most discriminative features of depression, we
got 6 frequency-based, 9 spectral, 4 energy-based, and 1 temporal
(see Supplementary Table S1 for a detailed list). In addition, 11 of
these features were also significantly different between female and
male speakers. It is worth noting that the five most discriminative
feature of depression, including the bandwidth of the third
formant (“F3bandwidth_sma3nz_amean”), as well as the mean
and 20%"/50% /80" percentile of the semitone F, frequency
(“FOsemitoneFrom27.5Hz_sma3nz_amean,” “FOsemitoneFrom
27.5Hz_ sma3nz_percentile20.0,” “FOsemitoneFrom27.5Hz_sma3
1e50.0,”
percentile80.0”) are also included in the list of the 20 most

nz_percenti “FOsemitoneFrom27.5Hz_sma3nz_
discriminative features of gender (see Supplementary Table S2).
These indicate the dependency of features used to classify
depression on gender.

When using the K features most relevant to depression as an
input to the ML model, BA tends to increase above 50% and
depicts differences between male and female speakers (Figure 1A,

TABLE 8 Z-test results comparing the true depression rate and the
estimated depression rate by machine learning based on the original
features, the K transformed features most relevant to depression, and
the M transformed features least relevant to gender for female and male
speakers separately.

T —

Original features z = —4.228,p =0.000 | z= —3.576, p = 0.000

Most relevant to depression z=0.434,p = 0.665 | z=3.331,p=10.001

(K=5)

Most relevant to depression z=—0.669, p =0.503 | z=1.204,p=0.229
(K = 10)

Most relevant to depression z=—0.220,p=0.826 | z=1.392,p=0.164
(K=15)

Most relevant to depression z=0.648,p = 0.517 | z=1.204,p = 0.229
(K =20)

Most relevant to depression z=0.434,p = 0.665 | z=2.990, p = 0.003
(K = 30)

Most relevant to depression z =1.496, p = 0.135 z=3.669,p=0
(K = 60)

Most relevant to depression z=0.861, p = 0.389 z=4.006,p=0

(K = 88)

Least relevant to gender (M = 5)
Least relevant to gender (M = 10)
Least relevant to gender (M = 15)
Least relevant to gender (M = 20)

Least relevant to gender

(M = 30)
Least relevant to gender
(M = 60)
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z=0.861, p = 0.389
z=1.707,p = 0.088
z=1.919, p = 0.055
z=0.434, p = 0.665
z=0.861, p = 0.389

z = —0.220, p = 0.826

z =2.818, p = 0.005

Z2=16.236,p=0
z=4.174,p =0
z=13.500,p =0

z = 3.331, p = 0.001

z=2472,p=0.013
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blue lines). Specifically, BA is higher for male speakers when
choosing the K = 20, 60 features most indicative of depression,
suggesting the presence of algorithmic bias against female
participants. On the contrary, when using the K = 30, 88
features most indicative of depression, BA is higher for female
speakers compared to male speakers, suggesting the presence of
bias on the opposite direction (i.e., against male participants).
However, we observe that EO measures tend to decrease below 1
as more acoustic features are incorporated into the model
(Figure 1C, blue line). As we increase the number K of features
that are the most relevant to depression, there is a risk of adding
features to the model that could be influenced by gender. This
might introduce bias in the decision of the model, which is
evidenced by differential BA measures between male and female
speakers, as well as EO measures falling below 1.

Training the depression classification models after removing
the M features that are the most relevant to gender from the
feature space overall improves the BA (Figure 1B, blue lines),
surpassing the BA achieved when selecting the K features that
are most relevant to depression (Figure 1A, blue lines). In this
case, BA measures tend to be higher for female participants
compared to male participants, indicating that this technique can
potentially introduce bias in favor of female participants and
against male participants, as also demonstrated by the EO
measures which tend to be lower than 1 in the majority of cases
(Figure 1D, blue line).

Predicted depression rates for both feature selection strategies
are very low for both female and male speakers (ie., ranging
between 0%-6.6% for female speakers and 0%-0.76% for male
speakers) and significantly different from the actual depression
base rates. Consequently, for the sake of clarity in visualization,
these rates are not depicted in Figures 1A, F. These suggest that
feature selection alone cannot preserve the base depression rates
exhibited in the original data.

4.3.3 Results using the transformed features
When the adversarial learning transformation is applied to the
K selected features, we observe a significant boost in BA. In this
case, BA is consistently higher for female speakers compared to
male speakers (Figure 1A, green lines). This suggests that de-
biasing via applying adversarial learning to the K most relevant
features to depression favors female participants who depict
higher BA for depression classification compared to male
participants. While the EO measure is much lower than 1 in
many cases, there seems to be an optimal tradeoff between
balanced accuracy and EO which occurs when we choose the
K =10 most relevant features to depression followed by applying
the adversarial learning transformation that reduces the evidence
of gender in the corresponding measures (Figures 1A, C). In this
case, BA is at similar levels for both genders (i.e., 65.44% and
62.96% for female and male speakers, respectively) and the EO is
close to 1 (i.e., EO = 0.976), suggesting that the selection of the
most relevant features to the focal outcome followed by feature
transformation via adversarial learning can reduce algorithmic bias.
Adversarial learning on the feature space that does not contain
the M features most relevant to gender also improves the BA
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compared to using the same feature space without adversarial
learning (Figure 1B, green lines). The optimal tradeoff between
BA and EO metrics appears to be when we remove the M =5
features that are most relevant to gender followed by feature
transformation with adversarial learning, yielding 62.28% BA
(i.e, 65.7% for female speakers, 58.52% for male speakers) and
0.875 EO. However, these results are inferior compared to the
optimal tradeoff achieved by keeping the K features that are
most relevant to depression followed by feature transformation
with adversarial learning (ie., 65.44% BA for female speakers,
62.96% BA for male speakers, 0.976 EO). For the majority of
cases, applying adversarial transformation to the feature space
that does not contain the M features that are most relevant to
gender seems to be less effective for mitigating bias yielding
lower EO metrics, compared to applying the same transformation
to the feature space with the K most relevant features to
depression (Figures 1B, D, green lines).

The machine learning models that use the transformed features
exhibit a tendency to overestimate depression among male speakers,
as indicated by a higher estimated depression rate compared to the
actual depression rate (see Table 8). The difference between actual
and estimated depression rates for male speakers is statistically
significant across all cases when utilizing the least relevant features
to gender (Table 8, Figure 1E, green line), and in four out of the
seven cases when employing the most relevant features to
depression (Table 8, Figure 1F, green line). The ML models tend
to underestimate the depression for female speakers when using
the 10 and 15 most relevant features to depression or removing
the 60 least relevant features to gender (Figures 1E, F). For the
remaining of the feature transformation cases, the depression for
female speakers is overestimated. These differences in the female
speaker group are not statistically significant (Table 8).

5 Discussion

Significant differences among demographic groups based on
commonly used acoustic measures were found in both Case
Study 1 (Table 5), Table 6 and Case Study 2 (Supplementary
Table S2), a finding which corroborates with prior work. In
Study 1, for example, White female speakers depicted the
highest FO measures as in (10, 12), African American women
had the lowest FO similar to (12), and Hispanic female speakers
depicted the highest jitter as in (11, 27) (Table 6). We also
found significant differences in FO, jitter, and shimmer between
African American and White male speakers (Table 6). These
differences might be a result of anatomical factors (21, 23). Yet,
part of these differences might be also attributed to the
corresponding state of the speaker. For example, Hispanic
speakers reported increased state anxiety during the public
speaking presentation. This finding might further explain the
high jitter values in this group that reflect increased speech
trembling. Similarly, the larger set of energy, frequency, and
spectral features in Study 2 depicted dependencies on both
gender and depression (Supplementary Tables S1, S2). In Study
2, differences in between female and male speakers were
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observed in terms of various features that are discriminative
of depression, and particularly frequency-based features
(Supplementary Table S2). However, those differences were not
statistically significant. This finding indicates that acoustic
information related mental health is confounded by the
speaker’s gender. This can potentially lead to unintended
consequences when utilizing these features for automated
depression detection, as a model that leverages frequency-based
features may inadvertently learn associations between depression
and gender that are not clinically relevant.

Case Study 1 demonstrates significant differences among
demographic groups (ie., gender, race/ethnicity) in terms of the
ML labels Table 5). Case Study 2 further
demonstrates differences in terms of the PHQ-8 scores and the

(ie, anxiety;
ratio of patients with depression between female and male
speakers, but this difference is not statistically significant. These
differences have been found in prior psychological studies. For
example, the higher global prevalence of depression among women
compared to men is well-documented (65-67). In a study that
presents a systematic review of the epidemiological literature, the
global 12-month prevalence of major depressive disorder was 5.8%
in females and 3.5% in males (67). Similarly, in two meta-analyses
on gender differences in depression in nationally representative
U.S. samples, the odds ratio was 1.95 for gender differences in
diagnoses of major depression and the effect size for gender
differences in depression symptoms was d = 0.27 (68). This
difference might be attributed to psychological factors (e.g.,
increased sensitivity to interpersonal relationships among women)
and biological factors (e.g., hormonal changes throughout the
lifespan) (64). Prior work further indicates that women report
higher anxiety patterns compared to men (69, 70), which might be
partially due to their nature and upbringing. This is consistent to
results in Case Study 1, in which female speakers demonstrated
higher anxiety scores than male speakers.

Despite  these
meaningful differences in the considered outcomes among

conceptually-grounded and  potentially
demographic groups, the ML models were partially able to
preserve those differences in their predictions. In Case Study 1,
Hispanic male speakers depicted significantly higher levels of
self-reported anxiety compared to White male speakers, but this
difference between the two groups was not maintained in terms
of estimated anxiety (Tables 3, 5). In addition, African American
female and male speakers self-reported significantly lower anxiety
than White female and male speakers, respectively, with this
difference not being maintained in terms of estimated anxiety by
the ML models (Tables 3, 5). In Case Study 2, the ML models
that the
transformation underestimated depression for both female and

used original acoustic features without any

male speakers (Table 8). When using the transformed features,
the ML models the
participants resulting in significantly higher ML-estimated PPR

overestimated depression for male
compared to base depression rate (Table 8, Figures 1E, F). Mixed
findings were observed for female participants, where the ML
models both overestimated and underestimated depression
without yielding statistically significant differences between ML-

estimated and base depression rate (Table 8, Figures 1E, F).
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The ML models’ reduced ability to preserve significant
differences among demographic groups in the outcomes can be
attributed to data
representation, and feature interactions. The models used (ie.,

several factors such as model design,

linear regression in Case Study 1, feedforward neural network with
two hidden layers in Case Study 2) might be too simplistic or lack
the capacity to capture subtle variations in the data, overlooking
important differences between demographic groups. The nature of
the data itself may further contribute to the difficulty in preserving
significant differences. For Case Study 2, for example samples
from the positive class were fewer compared to the ones from the
negative class (e.g., depression samples were only 28.9% of the
data). This can potentially be a reason why the ML models were
not able learn robust representations that generalize well across
different populations. As part of our future work, we will explore
re-weighting methods that increase the importance of samples
from the sensitive groups during training, thus might be able to
reduce discrepancies between actual and estimated outcomes of
these groups (20, 51, 53). Finally, the small sample size might
have resulted in the ML models not being able to adequately
capture the potentially complex and non-linear associations
between features and demographic variables. Leveraging data
augmentation methods, such as using contrastive learning to
compare samples from underrepresented demographic groups with
the rest of the population (71), could potentially mitigate this issue.

Overall, our results indicate that while the identification of
varjations in mental health labels across different demographics is
well-documented in psychological studies, the ML models used in
this paper only partially preserved the conceptually-grounded and
potentially meaningful differences in their predictions. Designing
and implementing a ML system involves many crucial decisions
that can affect its effectiveness and efficiency and potentially lead to
automated  health
assessments, particularly when dealing with conditions influenced

inaccuracies and  misinterpretations in
by factors specific to gender or race/ethnicity. Findings of this
paper raise awareness on the importance of thoughtful design of
ML algorithms with a focus on preserving conceptually meaningful
differences among demographic groups and practicing ongoing
vigilance in the development and deployment of these ML systems.

In terms of differences in ML performance among groups,
results for Case Study 1 were mixed. There were experimental
configurations in which the sensitive groups, such as African
Americans and Hispanics, depicted the lowest performance, but
this was not always the case. A potential reason for that might be
the small sample size of the sensitive groups. Results for Case
Study 2 were a bit more clear and depression was more correctly
identified for female speakers compared to male speakers. Prior
work in emotion recognition has observed performance differences
between female and male speakers (15, 16), but results as to which
demographic group depicts highest ML accuracy were not
conclusive. For instance, Sagha et al. showed that face-based
emotion recognition was better for female speakers (16), while
Gorrostieta et al. found that speech-based emotion recognition
had better performance for male speakers (15).

Results from Case Study 2 indicate that there is no ML bias
when using the original features, but these features yield
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accuracies close to chance, so they cannot be used in a
meaningful manner for the purpose of depression classification.
Depression classification accuracies improve above chance when
we conduct feature selection followed by feature transformation,
yet this introduces bias in favor of female and against male
speakers. Certain configurations of the ML systems are able to
mitigate this bias and result in improved depression classification
accuracies (e.g., the K = 10 most relevant features to depression
followed by feature transformation yield BA of 65.44% and
62.96%
EO = 0.976). Bias mitigation is slightly more effective when we

for female and male speakers, respectively and
select the K most relevant features to depression followed by
feature transformation, as opposed to removing the M features
that

transformation. Nonetheless, it remains uncertain whether the

are most relevant to gender followed by feature
above would translate effectively to similar types of speech
datasets. Further exploration and testing across would be
essential to validate the broader utility and effectiveness of these
feature selection and transformation methods in mitigating bias.
The findings of this paper should be considered in the light of
the following limitations. Data from both case studies had a small
sample size (i.e., N = 30 for Case Study 1; N = 107 for Case Study
2). While it might be easier to obtain larger sample size for studies
that examine non-continuous variables (e.g., electronic health
records), it is not always easy to collect continuous speech and
multimodal data from thousands of participants, since this
usually requires the physical presence of participants in the lab.
Online studies conducted via teleconferencing systems can
potentially overcome this challenge and yield richer datasets. The
majority of publicly available speech datasets on emotion and
mental health contain limited meta-information, either in order
to protect the participants’ identities or because the retention of
detailed demographic information was not a common practice at
the time when these datasets were developed. It would be
detailed

part of the future work and examine

important to seek information pertaining to

demographics as
algorithmic bias at the intersection of age, gender, ethnicity,
gender, and race. Finally, this study only investigated acoustic
features from speech. Prior work demonstrates demographic
leakage in human-centered ML models that are based on
linguistic markers (62), thus it would be important to examine

demographic bias in both linguistic and paralinguistic information.

6 Conclusion

We examined sources of algorithmic bias in speech-based models
of health outcomes via two different studies, which allude to
Results from both
significant differences in terms of gender, race/ethnicity, and their

converging conclusions. studies indicate
intersection) for acoustic measures of frequency, spectral balance,
and energy, which might be a reason contributing to the
differential ML performance among the groups. Differences in ML
performance were observed, but patterns were not consistent across
all configurations. Finally, ML models do not preserve meaningful

differences in estimated outcomes among groups; the considered
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health labels depicted significant differences across groups and while
these differences are conceptually meaningful based on prior work,
they were partially preserved in the ML decisions.
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