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Abstract. We establish necessary and sufficient conditions for suspension flows over cer-
tain families of shift spaces to be topologically mixing. We also show the similarities and
differences between this case and the smooth measure theoretic setting on a manifold.
Additionally, we show that the set of roof functions defined on a shift space that produce
suspension flows that are not topologically mixing is dense in the set of all continuous roof
functions.

1. Introduction

Suspension flows (or special flows) are comprised of two components: a discrete dynamical
system f on a base space X paired with a roof function r : X → (0,∞). There is a natural
relation between a suspension flow and a Poincaré map given by a transversal to the flow
and the return map, see for instance [FH19, §1.2].

The dynamical property we will focus on in this paper is topological mixing. A map
f : X → X is topologically mixing if for any two open sets U, V ⊂ X, there exists an N ∈ N,
such that for all n ≥ N we have that fn(U)∩V ̸= ∅. Similarly, a continuous time dynamical
system φt : X → X is said to be topologically mixing if for any open sets U, V ⊂ X there
exists a T ∈ R such that for all t ≥ T , we have that φt(U) ∩ V ̸= ∅.

This paper will address two questions about topologically mixing suspension flows when
the dynamics in the base is a shift space.

(1) What properties of a roof function guarantee that a suspension flow is topologically
mixing?

(2) Is the set of continuous roof functions that induce topologically mixing suspension
flows open and dense?

1.1. Characterizing topological mixing. These two questions are motivated by a num-
ber of important results. Two such results for nontrivial (not a single periodic orbit) basic
sets for an Axiom A flow appear in the work of Bowen and Plante in [Bow76] and [Pla72],
respectively. These and other results are summarized in [FH19, §6].

Theorem 1.1 ([FH19]). If Λ is a locally maximal hyperbolic set of a flow φt on a smooth
connected manifold, then the following are equivalent.

(1) φt
⃓⃓
Λ
is topologically mixing.

(2) The periodic points of Λ are dense in Λ and their strong stable and strong unstable
manifolds are dense in Λ.
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(3) φt
⃓⃓
Λ

is transitive, and each open set contains a collection of periodic points with
setwise incommensurate periods (see Definition 1.4).

If the flow is a transitive Anosov flow, then combining [Pla72, Theorem 1.8] with Theorem
1.1 shows that the flow is either topologically mixing or it can be expressed as a suspension
flow with a constant roof function modulo a time change. Theorem 1.1 is similar to the
results of Bowen in [Bow72, Bow76] that show that if Λ is a basic set, then not topologically
mixing is equivalent to being a suspension flow with a constant roof function.

We can classify roof functions in the continuous setting by adapting the cohomological
condition from the measure theoretic setting.

Definition 1.2. Two roof functions r, s : X → R are cohomologous if there is a continuous
function g : X → X such that

r(x)− s(x) = g(f(x))− g(x).

The function g is called a transfer function.

Informally, one may think of the dichotomy from Bowen and Plante for topological mixing
as

not topologically mixing ⇐⇒ roof is cohomologous to a constant.

It is always true that a suspension flow with a roof function that is cohomologous to a
constant is not topologically mixing, but the converse is more difficult to establish. It is
clear that a necessary condition is that the base map must be transitive. Many textbooks
give an example of a topologically mixing homeomorphism of a compact metric space and
a constant roof function to show that a suspension flow over a topologically mixing base
need not be topologically mixing, and statements are often made about this being a rare
phenomenon. However, to our knowledge, this has not been quantified in the literature.
We obtain partial results to these questions and list some open questions at the end of §3.

Remark 1.3. It would be interesting to see if this dichotomy holds more generally for
suspension flows over connected metric spaces without leveraging hyperbolicity or a mani-
fold structure; however, we provide examples in §4.1 and §4.3 of suspension flows over shift
spaces where the converse fails. That is, there are roof functions that are not cohomologous
to a constant but produce suspension flows that are not topologically mixing.

Although these examples give us a negative answer, we will show that an analogous result
to Theorem 1.1 holds for certain families of subshifts (see Theorem 3.1 and Theorem 3.6).
To establish a dichotomy for topological mixing, we do not classify roof functions by a
cohomologous condition; rather, we leverage a condition similar to item 3 of Theorem 1.1.
In particular, we will use this condition to make a connection between period lengths under
the flow and the presence or absence of topological mixing.

Definition 1.4. A subset P ⊂ R is said to be setwise commensurate if there exists a δ > 0
such that P ⊂ δZ = {δn : n ∈ Z}. We say they are setwise incommensurate otherwise.
That is, the ratio of two elements of P is irrational, or equivalently, P generates a dense
subgroup of R.

For the majority of this paper, we will usually be referring to the collection of orbit
lengths of the periodic points of the flow when we are discussing setwise commensurate or
incommensurate sets.
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Relative to the measure theoretic setting, there is a scarcity of results regarding mixing
for suspensions in the topological setting. There are more results pertaining to mixing
for suspension flows in the measure theoretic case for a number of reasons. One reason
is that any flow on a measure space without fixed points is isomorphic to a suspension
flow [CFS82]. Additionally, in [FMT07], the authors point out that due to the work of
Sinai, Ruelle, and Bowen in the 1970s the notions of topologically mixing and (measure
theoretical) mixing are equivalent for hyperbolic basic sets for smooth flows. Moreover,
mixing in the measure theoretical setting carries important probabilistic meaning that is
not afforded in the topological sense like decay of correlations.

There have also been efforts to identify which roof functions produce mixing or non-
mixing suspension flows in the measure theoretic setting. Suspension flows over an interval
exchange transformation under a roof function of bounded variation is also not mixing
[Kat80]. Suspension flows over a rotation of the circle under a roof function of bounded
variation is not mixing [Koc72]. The work in [Rav18] shows that for a certain class of
parabolic flows a dichotomy similar to [Bow72] holds.

1.2. Prevalence of topological mixing. The prevalence of mixing basic sets for an Axiom
A flow has also been studied. We highlight two key results.

Theorem 1.5. [Bow76] The set of Axiom A flows in the Cℓ topology such that a nontrivial
basic set is not mixing is of the first category for 1 ≤ ℓ ≤ ∞. Furthermore, if B is the subset
of the Cℓ Anosov flows on a compact connected differentiable manifold that have a global
cross-section which is an infranilmanifold, then B is open in the set of Cℓ Anosov flows and
the set of mixing flows of B is open and dense in B.

Theorem 1.6. [FMT07] There exists a C2 open and Cℓ dense (for each 2 ≤ ℓ ≤ ∞) subset
of Axiom A flows for which each nontrivial basic set is mixing. Furthermore, there exists a
C1 open and Cℓ dense (for 1 ≤ ℓ ≤ ∞) subset of Axiom A flows such that each nontrivial
attracting basic set for the flow is mixing.

Theorem 1.5 was extended beyond the Axiom A case by [AAB04]. They consider C1

robustly transitive flows, which are a natural generalization of the hyperbolic setting.
The results in [Rav18] for parabolic flows also establish that the set of roof functions

that induce mixing flows is dense in the space of continuous roof functions. We show that
an open and dense property like this or similar to [Bow76] or [FMT07] fails for suspensions
over shift spaces (see Theorem 3.11).

2. Background

2.1. Symbolic dynamics. Let A be a finite (or countable) set, which we call the alphabet.
The elements of A are called symbols. We consider the set of all bi-infinite sequences
whose terms come from A and denote it as AZ. A point x ∈ AZ can be written as x =
. . . x−2x−1.x0x1x2 . . . where the “.” indicates the location of the 0th term in the bi-infinite
sequence.

We give the set AZ the metric d(x, y) = 2−min{|n|:xn ̸=yn}. If A is finite, then the set AZ is
a compact, totally disconnected set. The dynamics we consider is given by the (left) shift
map σ : AZ → AZ, which is a homeomorphism defined by (σx)n = xn+1.

Definition 2.1. A (two-sided) shift space is a closed, σ-invariant set X ⊂ AZ.
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A word is a finite string of symbols w ∈ An for some n. If w ∈ An, then we write |w| = n
to denote the length of w. Given x ∈ AZ and i, j ∈ Z with i < j, let x[i,j] denote the
word xixi+1 · · ·xj−1xj , and x[i,j) denote the word xixi+1 . . . xj−1. Given a shift space X,
the language of X is

L :=
∞⋃︂
n=0

Ln, where Ln := {w ∈ An : w appears in some x ∈ X}.

We will occasionally use the notation L≥n = {w ∈ L : |w| ≥ n}.
One can define transitivity and topological mixing for shift spaces in terms of the lan-

guage.

Definition 2.2. A shift space is transitive if, for any u, v ∈ L, there exists a word w ∈ L
such that uwv ∈ L. A shift space is topologically mixing if, for any u, v ∈ L, there exists an
N ∈ N such that for any n ≥ N , there is a word w ∈ Ln such that uwv ∈ L.

Definition 2.3. A word v is a synchronizing word if for every pair u,w ∈ L such that
uv ∈ L and vw ∈ L we also have that uvw ∈ L.

Synchronizing words can be used to concatenate blocks of words together. Indeed, if v is
a synchronizing word and vuv, vwv ∈ L, then vuvwv ∈ L. We can construct many periodic
points by leveraging transitivity and a synchronizing word.

Requiring that the shift possess a synchronizing word is a weaker condition than the shift
space being a subshift of finite type. Thus, Theorem 3.1 applies to a broader class of bases
than subshifts of finite type. Shifts with specification, S-gap shifts, and irreducible sofic
shifts are all examples of shift spaces that possess synchronizing words [Ber05, Fis75].

If w ∈ L, we denote the two-sided cylinder of w by [w]. In particular, if |w| = 2n + 1,
then we define

[w] = {x ∈ X : x[−n,n] = w}.
Similarly, if |w| = 2n, then

[w] = {x ∈ X : x[−n,n) = w}
We will also let wm = w . . . w where w is repeated m times. We let w∞ denote the

one-sided sequence ww . . . , and we will let w denote the bi-infinite sequence of repeated w’s
. . . www . . . .

Note that we will occasionally abuse notation and write wi to denote a word rather than
the ith symbol of w. We will make it clear whenever we do this.

2.2. Suspension flows.

Definition 2.4. [BS02, p. 21] Given a map f : X → X and a function r : X → (0,∞),
consider the quotient space

Mr = {(x, t) ∈ X × (0,∞) : 0 ≤ t ≤ r(x)}/∼
where ∼ is the equivalence relation (x, r(x)) ∼ (f(x), 0). The suspension flow of f with
roof function r(x) is the flow φt : Mr → Mr defined by φT (x, s) = (fn(x), s′), where n and
s′ satisfy

n−1∑︂
j=0

r(f j(x)) + s′ = T + s, 0 ≤ s′ ≤ r(fn(x)).

One may also think of a suspension flow as the quotient by ∼ of the vertical flow on X×R.
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Theorems 3.1 and 3.6 require that the roof function r satisfies the Walters property from
[Wal78]. In our setting, the Walters property is stronger than continuity but weaker than
Hölder continuity. We formulate the definition here for symbolic spaces.

Definition 2.5. A function r : X → R satisfies the Walters property if for all ε > 0, there
exists a k ≥ 0 such that for any n ∈ N and x, y ∈ X satisfying x[−k,n+k] = y[−k,n+k], it
follows that ⃓⃓⃓⃓

⃓⃓n−1∑︂
j=0

r(σjx)− r(σjy)

⃓⃓⃓⃓
⃓⃓ < ε.

Although we do not use a cohomologous condition to classify topological mixing prop-
erties, we highlight an important connection between suspension flows with cohomologous
roof functions.

Proposition 2.6. [FH19] Suppose X is a compact metric space, and r1 and r2 are coho-
mologous by a transfer function g : X → R. If φt

1 is the suspension flow under r1 and φt
2 is

the suspension flow under r2, then φ
t
1 and φt

2 are conjugate.

As a consequence of Proposition 2.6 which asserts that cohomologous roof functions
induce conjugate flows, determining when two roof functions are cohomologous becomes an
important question to answer. The following proposition provides a quick way to verify
when two roof functions are not cohomologous.

Proposition 2.7. Let r and s be roof functions, and suppose p ∈ X is a periodic point with
period per(p) under f . If

per(p)−1∑︂
j=0

r(f j(p))− s(f j(p)) ̸= 0

then r and s are not cohomologous.

The following theorems are well-known results that apply to transitive subshifts of finite
type. The Closing Lemma dates back to [Ano67], but we have written it here to suit our
setting.

Theorem 2.8 (Closing Lemma). If X is a transitive subshift of finite type, then for every
ε > 0 there exists γ > 0 such that if x ∈ X and n ≥ 0 are such that d(σnx, x) < γ, then
there exists y ∈ X such that σny = y and d(σjy, σjx) < ϵ for all 0 ≤ j < n.

The Livšic theorem was proved for Hölder functions in [Liv72], but it is also true for
functions satisfying the Walters property [Bou01, Theorem 4]. We have written it here in
its more general form but have replaced the “coboundary” terminology with the “cohomol-
ogous” language that is relevant in this context.

Theorem 2.9 (Livšic Theorem). Let X be a compact metric space, f : X → X a continuous
map satisfying the closing lemma and possessing a point whose orbit is dense, and r, s : X →
R are continuous functions satisfying the Walters property. Then r and s are cohomologous
if and only if for every periodic point x = fp(x) ∈ X, we have

n−1∑︂
j=0

r(f j(x))− s(f j(x)) = 0.
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3. Main results

We now state our main theorems and include some open questions at the end of this
section.

Theorem 3.1. Suppose X is a transitive shift space (from a finite or countable alphabet)
with a synchronizing word v and the roof function r : X → (0,∞) satisfies the Walters
property. The flow induced by the roof function r is not topologically mixing if and only if
there exists a δ > 0 such that for every periodic point p ∈ [v], we have

(1)

per(p)−1∑︂
j=0

r(σjp) ∈ δZ,

where per(p) is the period of p under the shift map σ.

The proof of Theorem 3.1 can be found in §5.

Remark 3.2. The statement in Theorem 3.1 is written as a complement to Theorem 1.1.
Note that the definition of setwise commensurate does not mean that period lengths are
all pairwise commensurate. For the roof function to satisfy equation (1) of Theorem 3.1,
the periods must all be collectively integer multiples of δ. We show that this distinction is
necessary with an example in §4.2.

If X is a subshift of finite type, then we can say more about the roof function r.

Definition 3.3. A function r : X → R is locally constant if, for every point x ∈ X, there is
a neighborhood U of x such that f |U is constant.

Theorem 3.4. Suppose X is a transitive subshift of finite type, and r : X → (0,∞) is a
roof function satisfying the Walters property. If the suspension flow associated to X and r
is not topologically mixing, then there exists a δ > 0 such that r is cohomologous to a locally
constant roof function s : X → δN.

The space of Walters functions over a shift space can be given a norm that makes it a
separable Banach space. We describe the norm in §6, and direct the reader to [Bou01] for
further information about the norm and the space of Walters functions. Under the topology
induced by this norm, we obtain the following result.

Theorem 3.5. If X is a transitive subshift of finite type, then the set of roof functions
satisfying the Walters property that yield a topologically mixing suspension flow over X is
a Gδ dense subset in the set of all Walters roof functions defined on X.

The proofs of Theorems 3.4 and 3.5 can be found in §6.
A characterization similar to Theorem 3.1 holds for suspension flows over β-shifts.

Theorem 3.6. Suppose X is a β-shift and r : X → (0,∞) satisfies the Walters property.
The flow induced by the roof function r is not topologically mixing if and only if there exists
a δ > 0 such that for every periodic point p ∈ [0], we have

(2)

per(p)−1∑︂
j=0

r(σjp) ∈ δZ,

where per(p) is the period of p under the shift map σ.
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The proof of Theorem 3.6 can be found in §7.
If the roof function is locally constant, then we can say more about the topological mixing

properties of the suspension for arbitrary shift spaces on a finite alphabet.

Theorem 3.7. Suppose r is a locally constant roof function over a shift space X. Let Im(r)
be the range of r. If the elements in Im(r) are setwise commensurate, then the suspension
flow φt determined by r is not topologically mixing.

We show in Lemma 8.1 that a locally constant function on a compact space can only
take on finitely many values. This implies the following corollary.

Corollary 3.8. If r is a locally constant roof function over a shift space X, where Im(r) ⊂
Q, then the flow φt determined by r is not topologically mixing.

Remark 3.9. In [Bow76] and [Pla72], the roof functions for a non-mixing suspension flow
had to be cohomologous to a constant. If a roof function r is cohomologous to a constant
k, then it is relatively easy to find k, especially with the presence of periodic points. This
is because the constant k must be unique.

However, if a roof function r is cohomologous to a locally constant roof function s, then
it is much more difficult to identify such a function because there is no unique choice of s.
Indeed, if r is locally constant, then for any locally constant transfer function g, the roof
function s(x) = r(x)+g(σx)−g(x) is also locally constant. Moreover, it is unclear whether
a continuous function is always cohomologous to a locally constant one.

Remark 3.10. For more general shift spaces, a result like Theorem 3.4 does not hold.
In §4.3, we provide an example of a locally constant roof function over a coded subshift
that produces a flow that is not topologically mixing, but the flow has periodic points with
incommensurate orbit lengths. Thus, it cannot be cohomologous to a roof function that
only takes values in δN for any δ ∈ R.

Since any continuous roof function can be approximated by a locally constant roof that
takes values in Q, we immediately get the following theorem.

Theorem 3.11. For any shift space X on a finite alphabet, the set of roof functions that
induce suspension flows that are not topologically mixing is dense in the set of positive
continuous real-valued functions.

The proofs of Theorem 3.7 and 3.11 can be found in §8.
Unlike connected topological spaces, a locally constant function defined on shift space

need not be constant because shift spaces are totally disconnected. As we see in Theorem 3.7
and Corollary 3.8, there is an abundance of locally constant roof functions that produce flows
that are not topologically mixing but are not necessarily constant. However, these kinds of
roof functions cannot be defined on a connected metric space without losing continuity.

Remark 3.12. It would be interesting to see if an absence of topological mixing in the flow
implied that the roof function must be cohomologous to a constant for connected metric
spaces, but it is currently unknown.

3.1. Open questions. In Theorem 1.1 and in [Bow76], the periodic points are dense in
the set Λ. Although the statements in Theorems 3.1 and 3.6 do not explicitly mention that
the periodic points are dense, it is true in both of these settings. However, not all subshifts
with dense periodic points possess a synchronizing word or are β-shifts, so there are still
questions to be answered more generally.
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In addition to general shift spaces that have dense periodic points, it is currently un-
known how to characterize a topologically mixing dichotomy for suspension flows over shift
spaces without dense periodic points. There are many examples of such shift spaces in-
cluding minimal shift. Topological mixing properties of some minimal shifts were studied
in [DK78, Pet70]. Other examples of minimal shifts include the Morse-Thue shift, which
is uniquely ergodic [Bru22]. There are also examples of minimal subshifts with arbitrarily
many measures of maximal entropy [DGS76].

There are also topologically mixing shift spaces with only finitely many periodic points.
For instance, [Kwi13] studies a weakly topologically mixing shift space with only a single
periodic orbit. In §9, we have included a construction of a topologically mixing shift with
only two periodic orbits. Very little is known about the topological mixing properties of
suspension flows over these kinds of shift spaces.

Question 3.13. Suppose X is a transitive shift space with dense periodic points. If r is a
continuous roof function where the period lengths under the flow are all setwise commen-
surate, is the suspension flow not topologically mixing? Is the roof function cohomologous
to a locally constant roof function?

Question 3.14. Suppose X is a transitive shift space with finitely many periodic points.
If r is a continuous roof function that produces a suspension flow that is not topologically
mixing, is it cohomologous to a constant function or a locally constant function?

Question 3.15. If X is a minimal shift space and r is a continuous roof function that pro-
duces a suspension flow that is not topologically mixing, is it cohomologous to a constant?

4. Examples

4.1. Cohomologous to a constant is too restrictive. Todd Fisher produced a simple
example of a roof function that is not cohomologous to a constant and yields a suspension
flow that is not topologically mixing. We will refer to the suspension flow with the following
roof function as φt in this section.

Example 4.1. Consider the full shift on two symbols Σ2 = {0, 1}Z and define the roof
function to be

(3) r(x) =

{︄
2 if x ∈ [0]

3 if x ∈ [1].

The roof function r is not cohomologous to a constant, and the resulting suspension flow
φt is not topologically mixing.

Proof. Let 0 be the bi-infinite sequence of 0s and 1 be the bi-infinite sequence of 1s. The
points 0 and 1 are the fixed points of the system (Σ2, σ). Since r(0) ̸= r(1), it is apparent
that this function is not cohomologous to a constant by Proposition 2.7.

We partition the phase space M of φt into five subsets of height 1, as sketched in Figure
1.
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[0] [1]

1

2

3

A

B

C

D

E

Figure 1. Partition of the phase space of the flow φt.

A = {(x, y) ∈M : x ∈ [0] and x ∈ [0, 1)}
B = {(x, y) ∈M : x ∈ [0] and x ∈ [1, 2)}
C = {(x, y) ∈M : x ∈ [1] and x ∈ [0, 1)}
D = {(x, y) ∈M : x ∈ [1] and x ∈ [1, 2)}
E = {(x, y) ∈M : x ∈ [1] and x ∈ [2, 3)}

We associate the orbit of a point in M with a coding based on which partition elements
the point visits under the flow. For example, if a point in M begins in A it must flow into
B and can either return back to A, or it can get mapped to the other cylinder and flow
into C. The set of codings yields a subshift of finite type associated with the direct graph
in Figure 2.

A

B

C

D

E

Figure 2. Base dynamics of conjugate flow ψt

It follows that X = {AB,CDE}Z is the resulting subshift of finite type. We construct
a new suspension over X whose roof function is identically equal to 1 and call it ψt. The
flow ψt is conjugate to the original suspension φt.
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[A] [B] [C] [D] [E]

1

Figure 3. ψt is a suspension flow with roof function 1.

It is well known that a suspension flow with a constant roof function is not topologically
mixing. Since φt is conjugate to ψt, φt is not topologically mixing. □

This counterexample shows that a suspension flow can have a roof function that is not
cohomologous to a constant, but also fails to be topologically mixing.

An alternative way to think about this example is that we are constructing a new sus-
pension flow by taking the appropriate transverse cross-section of the original flow φt. If we
choose Σ2×{0}∪Σ2×{1}∪ [1]×{2} as our transverse cross-sections, then we would obtain
ψt because the return time to this cross-section is always 1, and the return map defined on
the cross-section would be governed by X.

4.2. Pairwise commensurate periodic orbits is insufficient. Suppose P is a finite
subset of R. If x/y ∈ Q for any pair x, y ∈ P , then we know that P is a setwise commensurate
set. However, if P is countably infinite, then x/y ∈ Q for any pair x, y ∈ P , may not imply
that P is a setwise commensurate set. The following example demonstrates the importance
of this distinction in our context.

Example 4.2. Let Σ2 = {0, 1}Z and define ρ : Σ2 → Z ∪ {∞} to be the number of con-
secutive 0s starting from the 0th position. That is, ρ(. . . .0n1 . . . ) = n. Define r : Σ2 → R
by

r(x) =

{︄
1 + 1

1+ρ(x) if x ∈ [0]

1 if x ∈ [1]

and note that ρ(0) = 1. The roof function r is continuous and any pair of periodic points
have commensurate orbit lengths (their ratio is rational); however, the set of all period
lengths is not setwise commensurate in the sense of Definition 1.4. The suspension flow
with roof function r is topologically mixing.

Proof. Let u and v be arbitrary words of equal length, |u| = |v|. Without loss of generality,
we may consider U = [u]× (0, ε) and V = [v]× (0, ε) to prove topological mixing by Lemma
5.1. Consider the collection of points

xm,n = . . . u10m1nv∞ ∈ [u].

Note that we have not indicated the center of xm,n using “.” in the usual way. However,
since we are requiring that xm,n ∈ [u], it is understood that the “.” would be placed in
the middle of u. Also note that for any n,m and s ∈ (0, ε) the point (xm,n, s) starts in U ,
eventually makes its way to V , and then periodically returns to V after some uniform time.
We denote this return time as ω(v) and note that ω(v) is independent of n and m since r
is locally constant away from 0 and v has finite length.

In order to show that the flow is topologically mixing, we must show that the time it
takes xm,n × (0, ε) to enter V mod ω(v) for all m,n is dense in [0, ω(v)] by Lemma 5.1.
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Note that
∑︁|u|

j=0 r(σ
jxm,n) is constant for any pair of m,n. We denote this constant by

ω(u1). This means that the time it takes for the line segment xm,n × (0, ε) to be entirely
contained in V is

τ(xm,n) :=

|u|+m+n∑︂
j=0

r(σjxm,n) = ω(u1) +

m∑︂
j=1

(︃
1 +

1

1 + j

)︃
+ n

= ω(u1) +m+ n+
m+1∑︂
j=2

1

j
.

(4)

That is, φτ(xm,n)(xm,n × (0, ε)) ∩ V = φτ(xm,n)(xm,n × (0, ε)). Note that here we are using

the fact that |u| = |v|. If |u| ̸= |v|, then σ|u|+1+m+nxm,n may not be contained in [v].
Additionally, we have that for all N ∈ N

φτ(xm,n)+Nω(v)(xm,n × (0, ε)) ∩ V = φτ(xm,n)+Nω(v)(xm,n × (0, ε)).

This justifies the reasoning that we only need to show that the collection of τ(xm,n) mod
ω(v) is dense in [0, ω(v)].

Let δ > 0 and α ∈ (0, ω(v)). There exists an m such that⃓⃓⃓⃓
⃓⃓ω(u1) + m+1∑︂

j=2

1

j
− α mod ω(v)

⃓⃓⃓⃓
⃓⃓ < δ

since the sum diverges but eventually increases by arbitrarily small increments.
Note that ω(v) is a rational number of the form p/q where p and q are coprime. Hence,

there exists an n (which depends on m) so that

n+m

p/q
∈ N ⇐⇒ n+m ≡ 0 mod ω(v).

Thus by (4) we have

|τ(xm,n)− α mod ω(v)| =

⃓⃓⃓⃓
⃓⃓ω(u1) +m+ n+

m+1∑︂
j=2

1

j
− α mod ω(v)

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓ω(u1) + m+1∑︂

j=2

1

j
− α mod ω(v)

⃓⃓⃓⃓
⃓⃓ < δ.

Since δ is arbitrary it follows that the collection of τ(xm,n) is dense in [0, ω(v)].
Observe that once xm,n × (0, ε) has flowed into V , it returns to V after time ω(v). It

also intersects V for a duration of 2ε time. We can cover the interval [0, ω(v)] with finitely
many intervals of length 2ε whose centers correspond to τ(xm,n) because the collection of
τ(xm,n) is dense. Therefore, the suspension is topologically mixing. □

Remark 4.3. The approach used to prove topological mixing here is a simplified version
of the proof of topologically mixing for more general roof functions that appear in §5 and
§7.
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4.3. A non-mixing flow with incommensurate periodic orbit lengths.

Definition 4.4. Let C be a set of words from an alphabet A. Define

BC = {x ∈ AZ : ∃ a bi-infinite increasing sequence sn s.t. ∀k, x[sn,sn+1) ∈ C},

and let XC = BC . The set XC is the coded subshift associated to C.

Heuristically, a coded subshift is the closure of all arbitrary bi-infinite concatenations of
words from the generating set C. They were first introduced in [BH86] and are a broad
family that includes shift spaces like S-gap shifts and β-shifts.

Example 4.5. Let C = {2n3n : n ∈ N} ∪ {0, 1} and XC ⊂ {0, 1, 2, 3}Z be the coded
subshift associated to C. Let a, b > 0 be a pair of real numbers such that a and b are
incommensurate; that is, a/b /∈ Q. Define

r(x) =

⎧⎪⎨⎪⎩
a+ b if x ∈ [0] ∪ [1]

a if x ∈ [2]

b if x ∈ [3]

The suspension flow with roof r is not topologically mixing, but there does not exist a δ ∈ R
satisfying equation (1) for all periodic points in XC .

Proof. Note that XC is a topologically mixing shift with synchronizing words, but it is not
a subshift of finite type. Observe that 2 and 3 are both elements of XC . If x ̸= 2, 3 and is
a periodic point, then

per(x)−1∑︂
j=0

r(σjx) ∈ (a+ b)Z.

Furthermore, the symbol 0 is a synchronizing word and 2, 3 /∈ [0], so the suspension flow is
not topologically mixing by Theorem 3.1.

However, r(2) and r(3) are incommensurate, so we cannot find a δ that satisfies the
setwise commensurate condition in equation (1) for all the periodic points in XC . □

Theorem 3.4 asserts that if a suspension flow over a subshift of finite type is not topolog-
ically mixing, then there exists a cross-section transverse to the flow such that the return
time to this cross-section is constant, which is evident in Example 4.1. However, there is
no such cross-section for the suspension flow in Example 4.5.

Remark 4.6. Note that Example 4.5 does not contradict Theorem 3.1. Although cylinders
of the form [2n] possess pairs of periodic points with incommensurate orbit lengths, 2n is
not a synchronizing word for any n ∈ N. For instance, 02n and 2n3n+10 are permissible
words, but 02n3n+10 is a forbidden word. Similar for words of the form 3n. This motivates
the following proposition.

Proposition 4.7. Suppose X is a transitive shift space with a synchronizing word v and
r : X → (0,∞) is a roof function satisfying the Walters property. Additionally, suppose
there exists a δ > 0 such that for any periodic point p ∈ [v], we have

per(p)−1∑︂
j=0

r(σjp) ∈ δZ.



TOPOLOGICALLY MIXING SUSPENSION FLOWS 13

If u is another synchronizing word, then for any periodic point q ∈ [u]

per(q)−1∑︂
j=0

r(σjq) ∈ δZ.

Proof. Since q ∈ [u] is periodic there exists a word w = uw′ such that q = w (note that
w′ could be the empty word). Since X is transitive, there are words v′ and v′′ such that
vv′u ∈ L and uw′v′′v ∈ L. Since u is synchronizing and wn ∈ L for all n ∈ N, it follows
that vv′wn ∈ L and wnv′′v ∈ L for all n ∈ N. Thus, vv′wnv′′v ∈ L, for all n ∈ N as well.

Let ε > 0 and k be the constant required to use the Walters property. There exist
periodic points x, y ∈ [v] of the form

x = vv′w2k+1v′′ and y = vv′w2kv′′.

Since x and y are periodic points in [v], there exists K1,K2 ∈ N such that

K1δ =

per(x)−1∑︂
j=0

r(σjx) and K2δ =

per(y)−1∑︂
j=0

r(σjy).

Applying the Walters property to different parts of the orbit of x we get⃓⃓⃓⃓
⃓⃓|vv

′wk|−1∑︂
j=0

r(σjx)−
|vv′wk|−1∑︂

j=0

r(σjy)

⃓⃓⃓⃓
⃓⃓ < ε,(5)

⃓⃓⃓⃓
⃓⃓|vv

′wk+1|−1∑︂
j=|vv′wk|

r(σjx)−
|w|−1∑︂
j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓ < ε,(6)

⃓⃓⃓⃓
⃓⃓|vv

′w2k+1v′′|−1∑︂
j=|vv′wk+1|

r(σjx)−
|vv′w2kv′′|−1∑︂
j=|vv′wk|

r(σjy)

⃓⃓⃓⃓
⃓⃓ < ε.(7)

Using equations (5) and (7) we have

(8)

⃓⃓⃓⃓
⃓⃓|vv

′wk|−1∑︂
j=0

r(σjx) +

|vv′w2k+1v′′|−1∑︂
j=|vv′wk+1|

r(σjx)−
per(y)−1∑︂

j=0

r(σjy)

⃓⃓⃓⃓
⃓⃓ < 2ε.

Using equations (6) with (8) we get⃓⃓⃓⃓
⃓⃓(K1 −K2)δ −

per(q)−1∑︂
j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓per(x)−1∑︂

j=0

r(σjx)−
per(y)−1∑︂

j=0

r(σjy)−
per(q)−1∑︂

j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓

<

⃓⃓⃓⃓
⃓⃓|vv

′wk+1|−1∑︂
j=|vv′wk|

r(σjx)−
|w|−1∑︂
j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓+ 2ε

< 3ε.

Since ε was arbitrary, we get that

per(q)−1∑︂
j=0

r(σjq) ∈ δZ.
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□

Proposition 4.7 ensures that a roof function cannot satisfy the setwise commensurate
condition in equation (1) on the cylinder of one synchronizing word, but violate it on the
cylinder of some other synchronizing word.

This implies that one cannot obtain the phenomenon in Example 4.5 for subshifts of
finite type because all sufficiently long words of a subshift of finite type are synchronizing.

Corollary 4.8. If a suspension flow over a subshift of finite type is not topologically mixing,
then the set of all periodic orbit lengths of the flow is setwise commensurate.

5. Proof of Theorem 3.1

It is enough to consider sets of the form [w]× (a, b) to verify that the suspension flow is
topological mixing. These sets are open under the topology of the phase space Mr of the
suspension. Although not all sets are of this form, every open set contains a subset of the
form [w]× (a, b). Thus, it is sufficient to prove topological mixing using sets like these.

We will make an additional simplification to these sets. We will consider sets of the form
[w]× (0, ε), for ε > 0. This is mainly for convenience, as topological mixing on sets like this
implies topological mixing on sets [w]× (a, a+ ε) by simply adjusting the times.

Lemma 5.1. Let u,w ∈ L and 0 < ε < min r. If there exists a T such that for all t ≥ T ,
φt([u]×(0, ε))∩([w]×(0, ε)) ̸= ∅, then for any 0 < a < min r|[u]−ε and 0 < b < min r|[w]−ε,
there exists a T ′ such that for all t ≥ T ′ we have φt([u]× (a, a+ ε)) ∩ [w]× (b, b+ ε) ̸= ∅.

Proof. For convenience, let U = [u] × (0, ε), W = [w] × (0, ε), U ′ = [u] × (a, a + ε), and
W ′ = [w]× (b, b+ ε). For t ≥ T , there exists a point x ∈ U such that φt(x) ∈W . Note that
here x /∈ [u] as it is not in the shift space. Rather, it is a point in the actual phase space of
the flow.

Observe that φa(x) ∈ U ′ and φt+b(x) ∈ W ′. This implies that φt+b−a(φa(x)) ∈ W ′, so
for all s ≥ T + b− a, we have that φs(U ′) ∩W ′ ̸= ∅. □

To prove the sufficient condition of Theorem 3.1 we need the following lemma. Here we
will let gcd(x, y) be the largest real number c such that x/c, y/c ∈ N. If no such number
exists, then we set gcd(x, y) = 0.

Lemma 5.2. Let a, b ∈ R with a, b ≥ 0 and suppose that their gcd(a, b) < δ. If ω > δ and
x ∈ [0, ω), then there are n,m ∈ N such that |na +mb − x mod ω| < δ. Moreover, n,m
can be chosen to be arbitrarily large.

Proof. Without loss of generality, we will assume that a, b < ω. There are two cases: either
a or b is incommensurate with ω, or both a and b are commensurate with ω.

If a is incommensurate with ω, then the set {na mod ω : n ∈ N} is dense in [0, ω) as
this action is equivalent to an irrational rotation of a circle of circumference ω. Thus for
any m ∈ N it follows that {na+mb mod ω : n ∈ N} is dense in [0, ω). Similarly when b is
incommensurate with ω.

Now consider the case when a, b, ω are commensurate, with gcd 0 < δ′ ≤ δ where δ is
still the gcd(a, b). Since a/δ′, b/δ′, and ω/δ′ are all natural numbers, it follows that there
exist n,m ∈ N such that

na

δ′
+
mb

δ′
≡ δ

δ′
mod

ω

δ′
,
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since δ/δ′ is the gcd of a/δ′ and b/δ′. This is equivalent to saying that there exists an N ∈ N
such that

na

δ′
+
mb

δ′
− Nω

δ′
=
δ

δ′
.

Multiplying by δ′, we get

na+mb−Nω = δ.

So for any x ∈ [0, ω) we can find a k ∈ N such that

|kna+ kmb− x− kNω| < δ,

which completes the proof. □

The primary consequence of Lemma 5.2 is that the set {na + mb mod ω : n,m ∈ N}
is dense in [0, ω), or neighboring points are at most distance δ apart. We will apply this
lemma when the lengths of periodic points under the flow is setwise incommensurate. If a
set is setwise incommensurate, then it generates a dense subset of R by definition; however,
it is important in our setting that the coefficients are positive.

We are now ready to prove Theorem 3.1.

Proof. We begin by proving the necessary condition. That is, if r satisfies the setwise
commensurate condition in equation (1), then the suspension flow is not topologically mix-
ing. Let r be a roof function satisfying the Walters property over a subshift X with a
synchronizing word v. By hypothesis, there exists a δ > 0 such that

(9)

per(x)−1∑︂
j=0

r(σjx) ∈ δZ,

Without loss of generality, we assume that δ ≪ min r. Let 0 < ε < δ/8, and let k be the
length needed to satisfy the Walters property for this value of ε. There is a word u such
that vu ∈ L and |vu| > 2k. Consider the set V = [vu]× (0, ε).

Suppose x ∈ [vu] and σnx ∈ [vu]. Then there exists a w ∈ L such that |vuw| = n and
x = . . . vuwvuw′ . . . . Here w′ is not any special word in particular; it is meant to signify
that after vuwvu, we do not know what the tail of x looks like.

Since vuwv ∈ L and v is synchronizing, it follows that vuw ∈ X. Moreover,

(10)

⃓⃓⃓⃓
⃓⃓n−1∑︂
j=0

r(σjx)− r(σjvuw)

⃓⃓⃓⃓
⃓⃓ < ε

by the Walters property. Since vuw is periodic, its orbit has length mδ for some m ∈ N.
Let

τx =

n−1∑︂
j=0

r(σjx).

Since φt(x × (0, ε)) ∩ V ̸= ∅ for t ∈ (τx − ε, τx + ε), by equation (10), it follows that
mδ ∈ (τx − ε, τx + ε). In other words, (τx − ε, τx + ε) ∩ δZ ̸= ∅.

Since x and the return of x to [vu] was arbitrary, it follows that for any x ∈ [vu], the
return of x× (0, ε) to V under the flow must be during an interval of length 2ε intersecting
δZ. Note that by our choice of ε we know that 2ε < δ/4. Hence, the collection of times
iδ + δ/2 for i ∈ N cannot be included in any of these return intervals. Therefore, there is
no such T such that φt(V ) ∩ V ̸= ∅ for all t > T , and the flow is not topologically mixing.
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We will now prove the sufficient condition of Theorem 3.1 and do this by contraposition.
That is, we will show that if there is no δ that satisfies equation (1), then the suspension
flow must be topologically mixing. The proof is essentially an adaptation of the proof of
topological mixing in Example 4.2.

Let u,w ∈ L be any pair of words and ε > 0 of equal length. Let U = [u] × (0, ε) and
W = [w] × (0, ε). Fix 0 < γ < ε/21. There exists a k such that if x, y ∈ X satisfying

x[−k,n+k] = y[−k,n+k], then |
∑︁n−1

j=0 r(σ
jx)−

∑︁n−1
j=0 r(σ

jy)| < γ by the Walters property.

As before, let v be the synchronizing word of X. By transitivity there are words w′ and
u′ such that ww′v ∈ L and vu′u ∈ L.

For any periodic point p, let ω(p) denote the period of (p, 0) under the suspension flow
φt. Let us assume that condition (1) fails, that is, by hypothesis, there exist periodic
points p, q ∈ [v] such that either ω(p) and ω(q) are incommensurate or gcd(ω(p), ω(q)) ≤ γ.
Consequently, there exists α, β ∈ N such that

0 < |αω(p)− βω(q)| ≤ γ.

Since p, q ∈ [v] are periodic, there exists words v1, v2 ∈ L such that p = v1 = vv′ and
q = v2 = vv′′. Since vv′v, vv′′v ∈ L, it follows that vn1 vm2 ∈ L for any n,m ∈ N. Note that
here we are slightly abusing notation as v1 and v2 are words and do not represent symbols
of v.

Additionally, there is a word u′′ such that vu′uu′′v ∈ L by transitivity. Hence vu′uu′′vu′uu′′ . . . vu′uu′′ ∈
L because v is synchronizing. Let ζ = vu′uu′′, and consider the family of points

xn,m = . . . w∗ww′vn1 v
m
2 ζ

∞ ∈ [w]

for some permissible w∗ ∈ L≥k that may precede ww′v. Note that we are omitting the “.”
designating the center of xn,m for convenience since it is understood that xn,m ∈ [w].

Fix n0 = m0 = 3k and consider x∗ := xn0,m0 . Now let n,m ≥ 3k. By shadowing the
orbit of xn,m with the appropriate points, we can repeatedly apply the Walters property as
follows.

(11)

⃓⃓⃓⃓
⃓⃓|ww′|+k|v1|−1∑︂

j=0

r(σjxn,m)−
|ww′|+k|v1|−1∑︂

j=0

r(σjx∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(1)
n,m = σ|ww′|+k|v1|xn,m.

(12)

⃓⃓⃓⃓
⃓⃓(n−2k)|v1|−1∑︂

j=0

r(σjx(1)n,m)−
(n−2k)|v1|−1∑︂

j=0

r(σjp)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(2)
n,m = σ(n−2k)|v1|x

(1)
n,m.

(13)

⃓⃓⃓⃓
⃓⃓k(|v1|+|v2|)−1∑︂

j=0

r(σjx(2)n,m)−
k(|v1|+|v2|)−1∑︂

j=0

r(σj+|ww′|+2k|v1|x∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(3)
n,m = σk(|v1|+|v2|)x

(2)
n,m.

(14)

⃓⃓⃓⃓
⃓⃓(m−2k)|v2|−1∑︂

j=0

r(σjx(3)n,m)−
(m−2k)|v2|−1∑︂

j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓ < γ
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Let x
(4)
n,m = σ(m−2k)|v2|x

(3)
n,m.

(15)

⃓⃓⃓⃓
⃓⃓k(|v2|+|ζ|)−1∑︂

j=0

r(σjx(4)n,m)−
k(|v2|+|ζ|)−1∑︂

j=0

r(σj+|ww′|+3k|v1|+2k|v2|x∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(5)
n,m = σk(|v2|+|ζ|)x

(4)
n,m and N ∈ N.

(16)

⃓⃓⃓⃓
⃓⃓N−1∑︂
j=0

r(σjx(5)n,m)−
N−1∑︂
j=0

r(σjζ)

⃓⃓⃓⃓
⃓⃓ < γ.

w∗ww′ vk1 vn−2k
1 vk1 vk2 vm−2k

2 vk2 (vu′uu′′)k ζ
· · ·
· · ·

x∗ p
σ|ww′v2k1 |x∗

q
σ|ww′v3k1 v2k2 |x∗ ζ

(11) (12) (13) (14) (15) (16)

Figure 4. Breakdown of how the orbit of xn,m is shadowed by the various
points accompanied by the equation that each orbit segment corresponds to.
The upper line represents the orbit of xn,m, and the lower line represents the
orbit segments of the shadowing points.

Recall, ω(ζ) =
∑︁|ζ|−1

j=0 r(σjζ). By equation (16), for any n,m ≥ 3k we have

(17)

⃓⃓⃓⃓
⃓⃓N |ζ|−1∑︂

j=0

r(σjx(5)n,m)−Nω(ζ)

⃓⃓⃓⃓
⃓⃓ < γ

This implies that all of the subsequent return times of the orbit x
(5)
n,m to U is in the interval

(ω(ζ)− γ, ω(ζ) + γ).
Let

K =

|ww′|+k|v1|−1∑︂
j=0

r(σjx∗) +

k(|v1|+|v2|)−1∑︂
j=0

r(σj+|ww′|+2k|v1|x∗)

+

k(|v2|+|ζ|)−1∑︂
j=0

r(σj+|ww′|+3k|v1|+2k|v2|x∗).

Note that K is independent of n,m as x∗ is fixed. Moreover, K represents the sum of the
orbit lengths of x∗ that are used to shadow xn,m. Note that they appear in equations (11),
(13), and (15).

Let Tn,m = |ww′vn1 v
m
2 ζ

k|. If we use equations (11)-(15) and the triangle inequality, we
have

(18)

⃓⃓⃓⃓
⃓⃓Tn,m−1∑︂

j=0

r(σjxn,m)− (K + (n− 2k)ω(p) + (m− 2k)ω(q))

⃓⃓⃓⃓
⃓⃓ < 5γ

for any pair n,m.
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Let τ ∈ (0, ω(ζ)) be arbitrary. By Lemma 5.2, we know that there exists n,m,C ∈ N
such that ⃓⃓

τ + Cω(ζ)− (K + (n− 2k)ω(p) + (m− 2k)ω(q))
⃓⃓
< γ.

Applying equation (18) we have⃓⃓⃓⃓
⃓⃓τ + Cω(ζ)−

Tn,m−1∑︂
j=0

r(σjxn,m)

⃓⃓⃓⃓
⃓⃓ < 6γ.

and (17) estimates the subsequent returns to U by⃓⃓⃓⃓
⃓⃓τ + (C +N)ω(ζ)−

Tn,m+N |ζ|−1∑︂
j=0

r(σjxn,m)

⃓⃓⃓⃓
⃓⃓ < 7γ.

For all N ∈ N, the time
∑︁Tn,m+N |ζ|−1

j=0 r(σjxn,m) corresponds to the moment that the

image of xn,m × (0, ε) ⊂ W under the flow is contained in U . Note that here we are using
the assumption that |u| = |w|. Because γ < ε/21 we are guaranteed that xn,m × (0, ε) is

passing through U from time τ +(C+N)ω(ζ)−ε/3 to τ +(C+N)ω(ζ)+ε/3 for all N ∈ N.
In other words, if we let T =

∑︁Tn,m−1
j=0 r(σjxn,m), then for all t ∈ (τ + (C + N)ω(ζ) −

ε/3, τ + (C +N)ω(ζ) + ε/3) we are guaranteed that φT+t(W )∩U ̸= ∅ for all N ∈ N. Since
τ was arbitrary it follows that we can cover [0, ω(ζ)) with finitely many of these intervals
of length 2ε/3, which proves that the flow is topologically mixing. □

Remark 5.3. The proofs rely on being able to shadow a point via a synchronizing word
and having a degree of control on Birkhoff sums from the Walters property. Nothing in the
proofs requires that the alphabet A be finite nor does it require compactness. The proof
holds in the setting of transitive shifts with countable alphabets that possess a synchronizing
word with a roof function satisfying the Walters property. Note that a Walters roof function
on a countable state shift can be unbounded. In particular, locally Hölder functions from
[Sar99] can be unbounded, but they satisfy the Walters property.

Remark 5.4. The proof of Theorem 3.11 does require compactness, so we cannot say
anything about countable alphabets in that case.

6. Suspensions flows over subshifts of finite type

Here we present the proof of Theorem 3.4.

Proof. Since the suspension flow φ is not topologically mixing, there exists a 0 < δ < min r/3
satisfying the condition in equation (1) for all periodic points x ∈ X by Theorem 3.1 and
Corollary 4.8.

Since X is transitive, there exists a point x0 that has a dense orbit in X. Consider the
collection of points in the phase space, M of the flow

C =
⋃︂
t∈Z

φtδ(x0, 0).

We will show that C is the union of continuous “curves” in M .
Let ε > 0 be small, and choose k large enough to use the Walters property for this choice

of ε. There exists an ℓ ∈ N such that for any x ∈ X with d(x, σnx) ≤ 2−ℓ, there exists a
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periodic point p = σnp such that d(σjp, σjx) ≤ 2−k for all 0 ≤ j < n by the Closing Lemma
(see Theorem 2.8).

Let y be any point in the orbit of x0, and suppose that d(σny, y) ≤ 2−ℓ for some n ∈ N.
Let z ∈ X be the periodic point satisfying d(σjz, σjy) ≤ 2−k for all 0 ≤ j < n.

Thus, we have

(19)

⃓⃓⃓⃓
⃓⃓n−1∑︂
j=0

r(σjy)− r(σjz)

⃓⃓⃓⃓
⃓⃓ < ε

by the Walters property.
Since z has period n, there is a K ∈ N such that

(20)

⃓⃓⃓⃓
⃓⃓n−1∑︂
j=0

r(σjy)−Kδ

⃓⃓⃓⃓
⃓⃓ < ε,

by Proposition 4.7.
If we let

τ =

n−1∑︂
j=0

r(σjy),

then φτ (y, 0) = (σny, 0). Moreover,

(21) φKδ(y, 0) ∈ φ(τ−ε,τ+ε)(y, 0) = φ(−ε,ε)(σny, 0),

by equation (20). If (y, a) ∈ C for some ε < a < r(σny) − ε, then φKδ(y, a) ∈ C by
construction. Equation (21) implies that

φKδ(y, a) ∈ φ(τ−ε,τ+ε)(y, a) = φ(a−ε,a+ε)(σny, 0) = φ(−ε,ε)(σny, a),

so the real coordinates of φKδ(y, a) and φτ (y, a) are within ε of each other in the flow
direction. Furthermore, because a ∈ (ε, r(σny) − ε) the real coordinate of φKδ(y, a) must
be within ε of a, which is the starting height of (y, a) ∈ C.

Additionally, if (σny, b) ∈ C and ε < b < r(y)− ε, then there must be some j ∈ Z and a
point (y, a+ jδ) ∈ C such that φKδ(y, a+ jδ) = (σny, b) and |b− (a+ jδ)| < ε.

Since this is true for any return to the 2−ℓ-neighborhood of y and ε was arbitrary, it
follows that C is a collection of continuous curves on the orbit of x0. Since the orbit of x0
is dense, C is a collection of continuous curves in M , and φδ(C) = C.

Given a word w ∈ L, the intersection ([w] × R) ∩ C is a collection of continuous curves
that are all separated by a distance of δ is the flow direction. We say that a curve γ in
([w] × R) ∩ C sits over all of [w] if γ ∩ ({x} × R) ̸= ∅ for all x ∈ [w]. It is possible for a
curve of ([w] × R) ∩ C to not sit over all of [w] if it is too close to the base or the roof of
the suspension.

Since δ < min r/3, we can fix N sufficiently large so that for all w ∈ LN , we have that
([w]×R)∩C contains at least one continuous curve that sits over all of [w], as sketched in
Figure 5. For all w ∈ LN , let γw be the curve closest to the base that sits over all of [w].

Define g : X → (0,∞) by setting g(x) to be the height of the curve γw over x ∈ [w]. The
function g is well-defined and continuous because, for all w ∈ LN , we chose each γw to be
a continuous curve that sits over all of [w].

Now, consider the function

(22) s(x) = r(x)− g(x) + g(σx).
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We claim that s(x) is locally constant. Removing g(x) from r(x) moves an element of
C ∩ ({x} × R) to the base. By adding g(σx), we force r(x)− g(x) + g(σx) to have a value
in δZ because the time it takes to flow from (x, g(x)) to (σx, g(σx)) must be an integer
multiple of δ, as (x, g(x)) and (σx, g(σx)) are elements of C, see Figure 6.

Since s is continuous and maps into δZ, s must be locally constant. Therefore, r is
cohomologous to a locally constant roof function that only takes values in δZ. □

Elements of C

r

x σx

g(x) g(σx)

Figure 5. Visualizing the transfer function in the phase space of the flow.
The thick curves of C give the value of g.

0 g(x) r(x) g(σx)

Remove

Integer multiple of δ

Add on
δ

Figure 6. Visualizing r(x) − g(x) + g(σx) along the orbit of (x, 0). The
dots represent elements of C in the orbit of (x, 0).

One can easily verify the following lemma as a consequence of Lemma 8.1.

Lemma 6.1. If X is a shift over a finite alphabet, then there are countably many locally
constant roof functions r : X → N.

Let W (X) denote the set of roof functions of X that satisfy the Walters property. Given
r ∈W (X) define

(23) ∥r∥Wal = 2∥r∥∞ + sup
m≥1

max
d(x,y)<2−m

⃓⃓⃓⃓
⃓⃓m−1∑︂
j=0

r(σjx)− r(σjy)

⃓⃓⃓⃓
⃓⃓ .

As the notation suggests, ∥·∥Wal is a norm, andW (X) is a Banach space when it is equipped
with this norm [Bou01].

We now prove Theorem 3.5.

Proof. Let

W ∗ = {r ∈W (X) : r does not produce a topologically mixing flow over X}.
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Suppose r ∈W ∗, and let Wr = {s ∈W (X) : s is cohomologous to r}. Wr is a closed subset
of W (X) because W (X) is a Banach space and by the Livšic theorem (see Theorem 2.9).

Now let W ∗
r = {ks : k ∈ (0,∞) and s ∈ Wr}, which is also closed. There exists a δ > 0

and an s ∈Wr such that s : X → δN by Theorem 3.4. This implies that s/δ ∈W ∗
r .

Since W ∗
r contains a roof function that maps into N and there are only countably many

of these roof functions by Lemma 6.1, W ∗(X) can be written as a countable union of closed
sets. Clearly, (W ∗)C is dense in W (X) and can be expressed as a countable intersection of
open sets. Therefore, (W ∗)C is a dense, Gδ subset of W (X). □

7. Suspension flows over β-shifts

β-shifts arise naturally from codings of interval expanding maps Tβ : [0, 1] → [0, 1] defined
by Tβ(x) = βx mod 1, and they have connections to β-expansions of real numbers. For
x ∈ R, we let ⌊x⌋ denote the integer part of x. If β > 1, then the β-expansion of a number
x ∈ [0, 1] is a sequence {an}∞n=1 such that an ∈ {0, 1, . . . , ⌊β⌋} for all n ∈ N and

an = ⌊βTn−1
β (x)⌋.

Definition 7.1. The closure of the set of all β-expansions of x ∈ [0, 1] is a β-shift.

If X ⊂ {0, . . . , b}N is a β-shift, then there is a point ν(β) ∈ X such that for any x ∈ X,
σjx ⪯ ν(β) for all j ≥ 0 where ⪯ is denotes the lexicographical ordering on {0, . . . , b}N.
ν(β) is the β-expansion of 1 [Par60]. Although β-shifts are typically studied as a one-sided
shift, one can extend a one-sided shift to a two-sided shift in the usual way. In the context of
a suspension flow, it is more natural for the dynamics in the base to be a homeomorphism,
so we will work with the two-sided version of the β-shift.

A one-sided β-shift can be understood by comparing it to walks on a countable state
directed graph with multi-edges. An edge-walk on the graph corresponds to points in the
β-shift. We label the vertices V1, V2, . . . and designate V1 as the initial vertex. There are
two types of edges in the graph. There is a single edge that connects vertex Vn to vertex
Vn+1 for all n ∈ N. There can also be multiple edges from Vn to the initial vertex V1;
however, these edges may only be present for some n ∈ N.

The label for the edge Vn to Vn+1 is ν(β)n. If the label from Vn to Vn+1 is greater than 0,
then there are edges from Vn to the initial vertex V1 for every label less than ν(β)n. That
is, if ν(β)n ≥ 1, then there are ν(β)n−1 edges from Vn to V1 with labels {0, . . . , ν(β)n−1}.
For example, in Figure 7, the label from V4 to V5 is 2, so there are edges label 0 and 1 from
V4 to V1. To obtain the two-sided β-shift, we consider bi-infinite walks on this graph.

V1 V2 V3 V4 V5
2 0 1 2

01

0

1

0

Figure 7. Representation of β shift as a countable state shift

A β-shift is sofic if and only if ν(β) is eventually periodic. In this case, the β-shift is an
irreducible sofic shift because it can be presented by a strongly connected directed graph
on finitely many vertices [Fis75].
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A β-shift has specification if and only if ν(β) does not possess arbitrarily long blocks of
0s [CT12]. Both irreducible sofic shifts and shifts with specification possess synchronizing
words [Ber05, Jon96], so Theorem 3.1 applies to these shifts. However, there are β-shifts
that do not possess synchronizing words; these shifts possess points with arbitrarily long
strings of 0s. Additionally, the β ∈ R that produce sofic shifts or shifts with specification
is a set with zero Lebesgue measure [Sch97]. We prove Theorem 3.6 in the case when ν(β)
can have arbitrarily long strings of 0s, so the shift does not possess a synchronizing word.
More information about β-shifts can be found in [CT12, Par60, Rén57, Tho05]

The proofs of Theorem 3.6 for β-shifts are similar to those of Theorem 3.1.

Proof. We begin by proving the necessary condition of Theorem 3.6. Fix 0 < ε < δ/16,
and let k ∈ N be the constant needed to leverage the Walters property for this choice of
ε. Consider the cylinder [02k+1], and suppose y ∈ [02k+1] such that σny ∈ [02k+1] for any
n≫ k. Then

y = . . . 0k.0k+1w02k+1 . . .

for some w ∈ Ln−2k−1. The word 02k+1w02k+1 corresponds to some walk on the countable
state graph. Thus, there is some word v such that v02k+1w02k+1 codes a walk that starts

at the initial vertex. Hence, there is a periodic point p = 0k.0k+1w02k+10ℓv, where the
“.” indicates the center position of p so that p ∈ [02k+1]. We choose ℓ sufficiently large so
that 02k+1w02k+10ℓ corresponds to a walk that returns to the initial vertex and v02k+10ℓ

contains a subword that corresponds to a walk that starts and ends at the initial vertex V1.
That is, let y∗ be the one-sided tail of y so that we may write

y = . . . 0k.0k+1w02k+1y∗.

If y∗ contains a nonzero symbol, then there is an ℓ′ so that y∗ = 0ℓ
′−1 . . . where ℓ′ is the

maximal number of 0s before y∗ has a nonzero symbol. Thus for ℓ ≥ ℓ′, 02k+1w02k+1+ℓ

corresponds to a return to the initial vertex (or contains such a subword). If y∗ is all 0
symbols, then 02k+1w02k+1 already corresponds to a return to the initial vertex (or contains
such a subword), and we may choose ℓ ≥ 0.

Likewise, v02k+1 is a walk that begins at the initial vertex by the choice of v. There
must be an ℓ′′ such that v02k+1+ℓ′′ is a walk that begins and ends at the initial vertex. We
may choose ℓ > ℓ′, ℓ′′, as we may add on arbitrarily many 0s since the walk is at the initial

vertex after ℓ′ or ℓ′′ steps. This implies that there exists a periodic point q = 0k.0k+1+ℓv.
Note that n = 2k + 1 + |w| we have that

(24) ω(p) =

n+2k+ℓ+|v|∑︂
j=0

r(σjp) = C1δ

for some C1 ∈ N because p is a periodic point in [0]. Moreover, p[−k,n+k] = y[−k,n+k], so

(25)

⃓⃓⃓⃓
⃓⃓n−1∑︂
j=0

r(σjy)− r(σjp)

⃓⃓⃓⃓
⃓⃓ < ε

by the Walters property.
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Likewise, since q ∈ [0] and is periodic, it follows from the hypothesis that there is a
C2 ∈ N such that

(26) ω(q) =

2k+ℓ+|v|∑︂
j=0

r(σjq) = C2δ.

Additionally, observe that q[−k,3k+l+|v|+2] = σnp[−k,3k+l+|v|+2], so

(27)

⃓⃓⃓⃓
⃓⃓2k+ℓ+|v|∑︂

j=0

r(σjq)− r(σj+np)

⃓⃓⃓⃓
⃓⃓ < ε

by the Walters property.
Using equations (24) and (26) followed by the triangle inequality and (25) and (27), we

get ⃓⃓⃓⃓
⃓(C1 − C2)δ −

n−1∑︂
j=0

r(σjy)

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓ω(p)− ω(q)−

n−1∑︂
j=0

r(σjy)

⃓⃓⃓⃓
⃓

≤

⃓⃓⃓⃓
⃓
n−1∑︂
j=0

r(σjp)− r(σjy)

⃓⃓⃓⃓
⃓+

⃓⃓⃓⃓
⃓
2k+ℓ+|v|−1∑︂

j=0

r(σjq)− r(σj+np)

⃓⃓⃓⃓
⃓

< 2ε

By the same reasoning as in the proof of Theorem 3.1, the flow is not topologically mixing.
We now prove the sufficient condition by way of contraposition. The proof is very similar

to that of Theorem 3.1 in §5.
Let u,w ∈ L be any words with |u| = |w|. Let U = [u]× (0, ε) and W = [w]× (0, ε). Fix

0 < γ < ε/21. There exists a k such that if x, y ∈ X satisfying x[−k,n+k] = y[−k,n+k], then

|
∑︁n−1

j=0 r(σ
jx)−

∑︁n−1
j=0 r(σ

jy)| < γ by the Walters property.

As before, for any periodic point p ∈ X, let ω(p) denote the period of (p, 0) under the
flow. By hypothesis, there exists periodic points p, q ∈ [0] such that either ω(p) and ω(q)
are incommensurate or gcd(ω(p), ω(q)) ≤ γ. Consequently, there exists α, β ∈ N such that

0 < |αω(p)− βω(q)| ≤ γ.

Since p, q ∈ [0] are periodic points there exists word v1, v2 ∈ L such that p = v1 = 0v′ and
q = v2 = 0v′′. Note that here we are slightly abusing notation as v1 and v2 are words and do
not represent symbols of some word v. Since p and q are periodic points and ν(β) is neither
periodic nor eventually periodic, we know that 0v′ and 0v′′ are words that correspond to
cycles on the countable state shift associated to X. This means that the walks associated
to these periodic points must visit the initial vertex V1 of the graph since all cycles of the
graph must go through V1.

Without loss of generality, we may assume that the first symbol in v1 and v2 is 0 and
corresponds to an edge in the graph that ends at the initial vertex. Hence, vn1 v

m
2 ∈ L.

Additionally, there is a word wf such that wwf ∈ L and wf corresponds to a position on
the graph that can be followed by a “fall” to the initial vertex. In other words, there is a
symbol a such that a > 0 and wwfa ∈ L. Similarly, there are words uc and uf such that
ucuuf ∈ L and uc is the climb from the initial vertex to u and uf is the word after u that
corresponds to a return back to the initial vertex. Unlike wf , we will allow the last symbol
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of uf to correspond to the edge back to the initial vertex. Note that it is possible that wf ,

uc, or uf is the empty word. Now define ζ = ucuuf , and observe that ζ ∈ X.
Let

xn,m = . . . w∗wwfv
n
1 v

m
2 ζ

∞ ∈ [w]

for some permissible w∗ ∈ L≥k.
Fix n0 = m0 = 3k and consider x∗ := xn0,m0 . Now let n,m ≥ 3k. By shadowing the

orbit of xn,m with the appropriate points, we can repeatedly apply the Walters property
just like in the proof of Theorem 3.1.

(28)

⃓⃓⃓⃓
⃓⃓|wwf |+k|v1|−1∑︂

j=0

r(σjxn,m)−
|wwf |+k|v1|−1∑︂

j=0

r(σjx∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(1)
n,m = σ|wwf |+k|v1|xn,m.

(29)

⃓⃓⃓⃓
⃓⃓(n−2k)|v1|−1∑︂

j=0

r(σjx(1)n,m)−
(n−2k)|v1|−1∑︂

j=0

r(σjp)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(2)
n,m = σ(n−2k)|v1|x

(1)
n,m.

(30)

⃓⃓⃓⃓
⃓⃓k(|v1|+|v2|)−1∑︂

j=0

r(σjx(2)n,m)−
k(|v1|+|v2|)−1∑︂

j=0

r(σj+|wwf |+2k|v1|x∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(3)
n,m = σk(|v1|+|v2|)x

(2)
n,m.

(31)

⃓⃓⃓⃓
⃓⃓(m−2k)|v2|−1∑︂

j=0

r(σjx(3)n,m)−
(m−2k)|v2|−1∑︂

j=0

r(σjq)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(4)
n,m = σ(m−2k)|v2|x

(3)
n,m.

(32)

⃓⃓⃓⃓
⃓⃓k(|v2|+|ζ|)−1∑︂

j=0

r(σjx(4)n,m)−
k(|v2|+|ζ|)−1∑︂

j=0

r(σj+|wwf |+3k|v1|+2k|v2|x∗)

⃓⃓⃓⃓
⃓⃓ < γ

Let x
(5)
n,m = σk(|v2|+|ζ|)x

(4)
n,m and N ∈ N.

(33)

⃓⃓⃓⃓
⃓⃓N−1∑︂
j=0

r(σjx(5)n,m)−
N−1∑︂
j=0

r(σjζ)

⃓⃓⃓⃓
⃓⃓ < γ.

Recall, ω(ζ) =
∑︁|ζ|−1

j=0 r(σjζ). By equation (33), for any n,m ≥ 3k we have⃓⃓⃓⃓
⃓⃓N |ζ|−1∑︂

j=0

r(σjx(5)n,m)−Nω(ζ)

⃓⃓⃓⃓
⃓⃓ < γ

This implies that the return time of x
(5)
n,m to U is in (ω(ζ)− γ, ω(ζ) + γ).
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Let

K =

|wwf |+k|v1|−1∑︂
j=0

r(σjx∗) +

k(|v1|+|v2|)−1∑︂
j=0

r(σj+|wwf |+2k|v1|x∗)

+

k(|v2|+|ζ|)−1∑︂
j=0

r(σj+|wwf |+3k|v1|+2k|v2|x∗)

Let Tn,m = |wwfv
n
1 v

m
2 ζ

k|. If we use equations (28)-(32) and apply the triangle inequality,
we have

(34)

⃓⃓⃓⃓
⃓⃓Tn,m−1∑︂

j=0

r(σjxn,m)− (K + (n− 2k)ω(p) + (m− 2k)ω(q))

⃓⃓⃓⃓
⃓⃓ < 5γ

for any pair n,m.
Let τ ∈ (0, ω(ζ)) be arbitrary. By Lemma 5.2 we know that there exists n,m,C ∈ N

such that ⃓⃓
τ + Cω(ζ)− (K + (n− 2k)ω(p) + (m− 2k)ω(q))

⃓⃓
< γ.

Applying equation (34) we have⃓⃓⃓⃓
⃓⃓τ + Cω(ζ)−

Tn,m−1∑︂
j=0

r(σjxn,m)

⃓⃓⃓⃓
⃓⃓ < 6γ

and (33) estimates the subsequent returns to U by⃓⃓⃓⃓
⃓⃓τ(C +N)ω(ζ)−

Tn,m+N |ζ|−1∑︂
j=0

r(σjxn,m)

⃓⃓⃓⃓
⃓⃓ < 7γ.

For N ∈ N, the time
∑︁Tn,m+N |ζ|−1

j=0 r(σjxn,m) corresponds to the moment that the image

of xn,m× (0, ε) ⊂W under the flow is contained in U . Because γ < ε/21 we are guaranteed

that xn,m× (0, ε) is passing through U from τ +(C+N)ω(ζ)−ε/3 to τ +(C+N)ω(ζ)+ε/3
for all N ∈ N.

In other words, if we let T =
∑︁Tn,m−1

j=0 r(σjxn,m), then for all t ∈ (τ + (C + N)ω(ζ) −
ε/3, τ + (C +N)ω(ζ) + ε/3) we are guaranteed that φT+t(W )∩U ̸= ∅ for all N ∈ N. Since
τ was arbitrary it follows that we can cover [0, ω(ζ)) with finitely many of these ε-intervals,
which proves that the flow is topologically mixing. □

8. Proof of Theorems 3.7 and 3.11

Lemma 8.1. If X is a compact metric space and r is a locally constant roof function, then
the range of r is finite.

Proof. Let x ∈ X. There exists an open neighborhood Ux of x such that r is constant on
Ux by definition. The collection of {Ux} is an open cover of X. Therefore, there is a finite
subcover since X is compact. Since r is constant on each subset of this subcover, we get
that the range of r must be finite. □

The following is the proof of Theorem 3.7.
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Proof. Let φt be the suspension flow over X by the roof function r. If r is locally constant,
then the range is finite by Lemma 8.1. Let {r1, . . . , rn} be the range of r with r1 ≤ · · · ≤ rn.
Since these values are all mutually commensurate, there exists a δ such that ri/δ ∈ N for
all 1 ≤ i ≤ n. Without loss of generality, we can choose δ < r1.

For 1 ≤ i ≤ n, let Xi = r−1({ri}). Note that Xi is open because r is locally constant,
and Xi is closed because it is the continuous preimage of a closed set. Now define

C =
n⋃︂

i=1

ri
δ
−1⋃︂

j=0

Xi × {jδ}.

We let C be a transverse cross-section of the flow φt to obtain a new suspension flow which
we will call ψt. For all 1 ≤ i ≤ n we have that ri is an integer multiple of δ, so we get
that the return time to C under the flow is always δ. Thus ψt is a suspension flow with a
constant roof function of δ. Therefore, ψt and φt are not topologically mixing. □

We now provide a formal proof of Theorem 3.11.

Proof. Let ϵ > 0. Since X is compact and r is continuous, it follows that r is uniformly
continuous. Hence, there exists a δ > 0 such that for any x, y ∈ X where d(x, y) < δ, we
get that |r(x)− r(y)| < ϵ. There exists an n such that 2−n < δ.

Suppose w ∈ L2n+1 and x, y ∈ [w]. Since |w| = 2n+1, it follows that d(x, y) ≤ 2−n−1 < δ,
and |r(x) − r(y)| < ϵ. Since L2n+1 is a finite set, enumerate the words from 1 to N . The
collection of cylinders {[wi]}Ni=1 is a cover of X, and these cylinders are all mutually disjoint.

For each wi we may pick xi where xi ∈ [wi] and let ki = r(xi). Define a roof function
s : X → R by s|[wi] = ki. Clearly, s is locally constant.

For any x ∈ X, we have that x ∈ [wi] for some wi. This means that d(x, xi) < δ and
|r(x) − ki| = |r(x) − r(xi)| < ϵ. Since x is arbitrary, this shows that the set of locally
constant roof functions is dense in the set of all continuous roof functions.

Since the collection of locally constant roof functions with rational range is dense in the
set of all locally constant roof functions, we are finished. □

9. Topologically mixing shift with finitely many periodic points

Here we present the construction of a topologically mixing shift space with only one fixed
point and a period two orbit. This construction is inspired by the structure of a weakly
topologically mixing shift from a construction in [FKKL15] but echoes many of the ideas
in [Pet70].

We will begin by constructing a one-sided subshift of {0, 1}N. However, we first require
an element a in {0, . . . , N}N with the following properties.

(1) a is almost periodic, but not periodic.
(2) an ∈ {3, 4, . . . N} for all n ∈ N
(3) For any i, k ∈ N the word ai . . . ai+k must appear an infinite number of times in a.

For reference, a point x is an almost periodic point, if for any neighborhood U of x, there
exists an N ∈ N such that {σn+i(x) : i = 0, 1, . . . , N} ∩ U ̸= ∅ for all n ∈ N.

The first two items are important to ensure that the shift space we construct has the
desired periodic structure. The third item is true for the orbit of any almost periodic point
by definition, but we highlight it here as it is needed to obtain topological mixing. We
know that such sequences exist as the Morse-Thue sequence satisfies all of these properties



TOPOLOGICALLY MIXING SUSPENSION FLOWS 27

if we increase the terms in the sequence by 3. Indeed, if a were to satisfy all three of these
conditions, then the closure of its orbit would be a minimal shift [ML95].

Let u1 = 101, u2 = 10101, u3 = 1010101, and so on (once again, we are abusing
notation here as ui represents a word, not a symbol of a word). For i ≥ 1, define
Ei = {u1, u2, . . . , ui} ∪

⋃︁
j≥2 1

j where j ∈ N. For the almost periodic sequence a satis-
fying the previously mentioned properties, define

Bi = {x ∈ {0, 1}N : x = v10
a1v20

a2v30
a3 . . . where vj ∈ Ei}.

Let

Ji =
∞⋃︂
k=0

σk(Bi).

Clearly Ji ⊆ Ji+1 for all i ∈ N. Let S =
⋃︁∞

i=1 Ji, which is clearly closed. We must show that
σ(S) = S. By construction we have that σ (

⋃︁∞
i=1 Ji) ⊂

⋃︁∞
i=1 Ji, so σ(S) ⊂ S by continuity

of σ. We must show the opposite inclusion.
For any x ∈

⋃︁∞
i=1 Ji, we know that x = σjy for some j ∈ N and y ∈ Bk for some k. If

j ≥ 1, then we know that x = σ(σj−1y) ∈ Jk and σj−1y ∈ Jk.
If j = 0, then we know that x ∈ Bk for some k and begins with a word v ∈ Ek.

If v = 10 . . . 101, then we can find a point y ∈ Bk+1 such that y = 10x, so x = σ2y.
Similarly, if v = 11, then we can find y ∈ Bk where y = 1x. Hence σy = x. Therefore,⋃︁∞

i=1 Ji ⊂ σ(
⋃︁∞

i=1 Ji).
Because

⋃︁∞
i=1 Ji is dense in S, by continuity of σ we obtain that S ⊂ σ(S). That is, for

all x ∈ S, there exists x′ ∈ S such that σ(x′) = x. Hence σ(S) = S, so S is invariant and S
is a subshift of {0, 1}N.

Proposition 9.1. S contains only two periodic orbits.

Proof. Clearly, 1∞ and (01)∞ are periodic points in S, since
⋃︁∞

i=1 Ji contains points with
arbitrarily long strings of 1s and 01 blocks. We must show that S contains no other periodic
orbits.

Suppose x ∈ S is a periodic point. Then there must be a word w ∈ L such that x = w∞.
Without loss of generality we may assume that w = u00

aiu1 . . . uk0
ai+k for some i, k ∈ N

and where uj are words of repeated 1s or 10s.
Since the blocks of 0s in w are always preceded and followed by a 1, the lengths of these

blocks of 0s cannot be altered by the uj words. Because wn ∈ L this would mean that the
sequence a has a block (ai . . . ai+k)

n contained in it. Since we can find such a block for

every n ∈ N, it would follow that
⋃︁∞

j=1 σ
ja has at least one periodic orbit. However, the

sequence a was chosen to be an almost periodic point that was not periodic, so
⋃︁∞

j=1 σ
ja is

minimal [ML95, p. 457]. Since a minimal shift cannot possess any periodic points, this is a
contradiction. Therefore, S cannot contain any other periodic points. □

Proposition 9.2. σ is topologically mixing on S.

Proof. To prove S is topologically mixing, it is enough to show it using the language by
Definition 2.2. Suppose u, v ∈ L such that u = w00

ai . . . wk0
ai+k and v = w′

00
aj . . . w′

ℓ0
aj+ℓ .

The case when i+ k < j is trivial.
Suppose i + k > j, and note that by assumption (3) on the sequence a, we know that

there exists an m such that i+ k < j +m and the word a[j,j+ℓ] = a[j+m,j+ℓ+m]. Let

w∗
n = 1n0ai+k+1110ai+k+211 . . . 110aj+m−2110aj+m−1
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and observe the dependence on n. Thus, we have that for all n ≥ 2

uw∗
nv = u1n0ai+k+1110ai+k+211 . . . 0aj+m−2110aj+m−1w′

00
aj+m . . . 0aj+m+ℓ ∈ L.

Since m is fixed and only depends on u and v, it follows that S is topologically mixing. □

From here we may use an inverse limit to construct a two-sided shift X in the usual way.
IfX contained any periodic orbit other than those of 1 and 01, then S would also contain the
one-sided versions of them. Thus, X only contains these two periodic orbits. Additionally,
the same argument in Proposition 9.2 shows that (X,σ) is topologically mixing. This shows
that there exists a topologically mixing homeomorphism with exactly two periodic orbits.
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