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Abstract

Learning interaction potentials from the structure factor is frequently seen as impractical

due to accuracy constraints of neutron and X-ray scattering experiments. This study reexam-

ines this historic inverse problem using Bayesian inference and probabilistic machine learning

on a Mie fluid to elucidate how measurement noise impacts the accuracy of recovered poten-

tials. To perform reliable potential reconstruction, we recommend that scattering data must

have noise smaller than 0.005 up to ⇠ 30 Å�1 at a standard bin width 0.05 Å�1. At uncer-

tainties below this threshold, Mie potentials can be determined within approximately ± 1.3

for the repulsive exponent, ± 0.068 Å for atomic size, and ± 0.024 kcal/mol in well-depth

with 95% confidence. These findings highlight the potential of uniting scattering and machine

learning to overcome a century-old physics problem, infer local atomic forces to serve as a

vital benchmark for model validation, and enhance the accuracy of molecular simulations.
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Reconstructing interatomic potentials from experimental scattering data is a historic inverse

problem in statistical mechanics, motivated by the idea that complete knowledge of the effective

interatomic potential with the atomic correlation functions allows for all thermodynamic properties

of a classical liquid to be calculated.1 While it has become widely accepted that liquid state systems

exhibit significant many-body and quantum mechanical (both electronic and nuclear) interactions2

that influence molecular dynamics, the fact that empirical molecular simulations remain the gold-

standard for efficient and accurate liquid state materials modeling has maintained the significance

and impact of the inverse problem in contemporary physics. However, despite over a century of

research, with seminal works by Ornstein and Zernike,3–5 Yvon, Born, and Green,6 Schommer,7

and Lyubartsev and Laaksonen,8 there is surprisingly little to no evidence that these techniques

can reliably extract force field parameters from experimental scattering data.9 Furthermore, there

is growing evidence that existing force fields provide inaccurate representations of fluid structure

when compared to experimental estimates.10,11 With the advent of state-of-the-art diffractometers

and the rise of machine learning for robust uncertainty quantification (UQ), it is relevant to revisit

and contextualize prior and current work to better understand how to resolve this longstanding

challenge.

Serious attempts at determining the interatomic potential from experimental scattering data

began in the 1950’s. Henshaw (1958)12 and later Clayton and Heaton (1961)13 speculated that

the ratio between the atomic collision radius and first solvation shell radius was related to the

approximate width of the interatomic potential bowl. While this concept cannot directly extract

the interatomic potential from the radial distribution function (RDF), it was used to conclude that

argon and krypton could be reasonably represented by a (12-6) Lennard-Jones potential. Weeks,

Chandler, and Anderson then introduced a separation of the pair potential into repulsive and attrac-

tive parts, in which they concluded that the repulsive part alone produces structure factors nearly

identical to the repulsive and attractive parts taken together.14 Henderson (1974) then proved that

for a pairwise additive and homogeneous system with equal RDFs that the effective interatomic

potential was unique up to an additive constant,15 which was later implemented numerically by
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Schommers (1983)7 to study liquid gallium. Around the same time, Levesque (1985)16 proposed

a modified hypernetted chain closure to the Ornstein-Zernike integral relation to calculate inter-

atomic potentials for liquid aluminum with fast convergence. Both studies were highly influential

in the study of liquid metals, but offered little in resolving the inverse problem in general since

interatomic potentials derived from these methods were only shown to accurately reproduce the

diffusion coefficient and not other thermodynamic properties.

The most recent inverse methods applied to experimental data are Soper’s (1996)17 empirical

potential structure refinement (EPSR) and Lyabartsuv and Laaksonen’s (1995)8,18,19 inverse Monte

Carlo (IMC). EPSR is an iterative potential refinement method that is primarily used to determine

real-space structures consistent with reciprocal space scattering data in fluid and glass systems.

However, Soper’s work on liquid water revealed that EPSR was not reliable at determining pair

interaction potentials for molecular simulation applications.20 On the other hand, IMC methods

have been widely adopted for coarse-graining, in which the number of degrees-of-freedom of a

molecular model are reduced by mapping atomic coordinates to "beads" of atom clusters. While

both methods have attracted significant research interest in recent years, with the creation of an

improved EPSR software package21 and applications of IMC in complex biological systems22 such

as DNA23 and nucleosomes,24 the extraction of reliable and transferable interatomic potentials

from experimental scattering data remains widely under-reported and unresolved, even for simple

fluids such as noble gases.

We recently proposed structure-optimized potential refinement (SOPR)25 as an alternative ap-

proach to extract pair potentials from scattering data (2022). SOPR is a probabilistic iterative

Boltzmann inversion (IBI) algorithm that uses Gaussian process regression to address challenges

such as numerical instability and over-fitting to uncertain experimental data. In this way, SOPR po-

tentials are an experimental analogue to the widely used Gaussian approximation potential (GAP)

approach.26 SOPR derived potentials have demonstrated remarkable accuracy in the simultaneous

prediction of both structural correlation functions and vapor-liquid equilibria of noble gases. Fur-

thermore, the short-range repulsive decay rate determined with SOPR coincides with predictions
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from an independently optimized (l �6) Mie force field for vapor-liquid equilibria.27 This finding

represents the most complete example of the inverse problem in real systems and highlights the

potential of scattering data in studying both macroscopic thermophysical properties of liquids and

improved accuracy of local structural predictions.

The transferability of SOPR potentials raises intriguing questions regarding what factors are

most important to accurately extract local forces from scattering data. One possible explanation

is that the reliability of structure inversion techniques hinges on data quality.28 Levesque and

Verlet (1968) speculated that experimental scattering error of < 1% was required to determine

the interaction potential within an error of 10%,29 but ultimately concluded that it is not possible

to obtain quantitative information on the potential from scattering data due to systematic errors

in the experiments. However, it is currently unclear to what extent these previous attempts have

been impeded by experimental uncertainty. The reason for this knowledge gap is that rigorous

uncertainty quantification and propagation (UQ/P) is computationally demanding and requires the

use of machine learning surrogate models and advanced sampling methods30–32 that were not

available to liquid state theorists when these questions were first investigated. To test the hypothesis

that neutron instrument accuracy is essential in force field extraction therefore lies at the crossroads

of theoretical statistical physics, machine learning, and high-performance computing.

This study assesses how scattering measurement uncertainty impacts our ability to learn in-

teratomic forces using a dataset of in silico experimental structure factors with varying levels of

noise. Constant Gaussian noise was introduced to a reduced Mie model structure factor to repre-

sent neutron reactor source counting statistics33 at a Q-space bin width of 0.05 Å�1. The noise

had standard deviation, dS, typical of the data quality accepted in the operating periods between

1973 and 2022 (Figure 1). Note that improvements in neutron flux associated with modern in-

struments serve to reduce the acquisition time for a given threshold of precision, and high-quality

data could be generated on older instruments with longer duration experiments. Consequently, the

constructed timeline serves as a general guide to the era’s accepted standards rather than a strict

measure of instrument improvement.
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Figure 1: Static structure factors (colored lines) with introduced uncertainty (dotted black lines)
for uniformly distributed noise. Measurement standard deviations dS are labeled to the left of the
structure factor.

Accelerated Bayesian inference using a local Gaussian process (LGP) surrogate model was

then applied to extract underlying probability distributions on the force field parameters. The

LGP surrogate model, which mimics molecular simulation outputs at a 6 orders-of-magnitude

reduction in computational cost,32 provides a means to rigorously quantify how changes in each of

the Mie parameters affect the structure factor via its analytical derivative with respect to the model
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parameter, ∂S(Q)
∂q . Figure 2(a) shows scaled derivatives, ∂ S̃

∂q = ∂S(Q)
∂q max

✓����
∂S(Q)

∂q

����

◆�1
, of the LGP

structure factor given by the equation with respect to each parameter of the (l �6) Mie force field.

By visualizing these scaled derivatives, we gain insights into how variations in each of the Mie

parameters affect the structure factor.
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Figure 2: (a) Scaled LGP structure factor derivatives with respect to the Mie parameters at a
reference of (l = 12, s = 1.78, e = 0.2). (b) Examples of LGP structure factor derivatives with
respect to the model parameters (l , s , e) at the selected reference conditions. Inset figures show
LGP predictions for the reference structure factor (blue line) and a modified structure factor (orange
line) due to a perturbation in the parameter listed in the inset figure legend. (c) Heat map of the
maximum absolute value of the structure factor derivative with respect to each parameter of the
(l �6) Mie force field for the validated range of the surrogate model and (d) near the vapor-liquid
coexistence line (red line). The grey region represents a metastable fluid that separates into vapor
and liquid phases.

Notably, the derivatives for the repulsive exponent and the collision diameter are out of phase

across all values of Q, highlighting that these aspects of the interatomic potential influence the

structure factor in fundamentally distinct ways. As shown in Figure 2(b), the repulsive exponent
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primarily sharpens or broadens the peaks and valleys of the structure factor without shifting their

positions, whereas the collision diameter predominantly shifts peak positions in Q-space. Inter-

estingly, the dispersion energy derivative closely tracks that of the repulsive exponent at the first

peak before diverging to align with the collision diameter derivative, suggesting a non-linear in-

fluence of the potential tail on the structure. Overall, the distinct modifications to the structure

factor by each parameter imply that Bayesian inference should be capable of differentiating their

effects. Furthermore, as seen in the raw derivatives in Figure 2(b), the magnitude of the derivative

for the repulsive exponent is significantly smaller (about 100 times) than those for atomic size

and dispersive attraction, which quantitatively explains the difficulty in determining the repulsive

exponent from structural data. However, the persistence of non-zero derivative values for the re-

pulsive exponent at high Q suggests that high-resolution scattering data extending to high Qmax

could potentially distinguish between different repulsive exponents.

Computation of the LGP derivative can also be performed over the entire validated range of

the surrogate model. To visualize the results, we present a heat map of the maximum of the

absolute value of the derivative, max
✓����

∂S(Q)
∂q

����

◆
with respect to reduced temperature T ⇤ = T/e

and reduced density r⇤ = rs3 in Figure 2 (c). Yellow regions indicate a high sensitivity of the

structure factor relative to the lower sensitivity blue regions. First note that the maximum derivative

estimates vary in magnitude significantly, with a two orders-of-magnitude smaller value for the

repulsive exponent (0.04) compared to the collision diameter (5.0) and dispersion energy (1.35).

The repulsive exponent l exhibits biomodality as a function of r⇤, with higher sensitivity regions

tending towards higher densities. The structural sensitivity at high density could be explained

by the fact that such systems tend to collide more frequently at close range which is where the

repulsive exponent strongly influences the potential energy function. The collision diameter s has

a clear trend with more sensitive regions being higher density and lower temperature.

We can see that there also appears to be asymptotic behavior near specific densities, suggesting

that higher sensitivities correspond to closer proximity of the atoms where excluded volume effects

can dominate the structure. This finding is fully consistent with Weeks, Chandler, and Anderson’s
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conclusion that there is a shift in structural sensitivity near a reduced density of r⇤ = 0.5.14 Finally,

the dispersive forces appear to become more significant to the structure near and above the critical

temperature and at high density and temperatures. An avenue of further investigation on pair

potential sensitivity may show that there is a relationship between the potential and supercritical

transitions, such as the Frenkel,34 Widom,35 or Fisher-Widom lines.36 However, to thoroughly

explore trends and patterns in structural sensitivity to the interaction potential, an LGP surrogate

model would need to be trained across a broader range of the Mie fluid phase diagram.

Armed with a precise and fast surrogate model for the Mie fluid structure factor, we can now

proceed to evaluate the likelihood and, consequently, estimate Bayesian posterior distributions. By

studying these posterior probability distributions as a function of introduced uncertainty, we aimed

to challenge the assertion that structure factors are insensitive to the detailed form of interatomic

interactions.37 Indeed, the Bayesian inference directly quantifies how interatomic interactions such

as short-range repulsion, excluded volume, and dispersion energy affect the structure factor, shed-

ding light on the intricate relationship between pair potentials and structural features. Surprisingly,

we find that the conclusions from prior literature stating that details of the interatomic interaction

could not be extracted from experimental structure factors were likely justified given the data qual-

ity available at the time, but that modern neutron instruments exceed a precision threshold where

this conclusion could be overturned. These findings suggest that experimental inverse techniques

were prematurely abandoned by the molecular modeling community and should be revisited.

Figure 3 illustrates experiment averaged marginal probability distributions of (l ,s ,e) as a

function of noise. The 1D Marginal distributions in Figure 3 are obtained by integrating the joint

posterior probability distribution over all but one model parameter. The mode of the marginal dis-

tribution corresponds to the marginal maximum a posteriori (MAP). Clearly, as the uncertainty in

the structure factor increases the marginal distributions become wider and flatter. This behavior is

expected, as greater uncertainty in the observation leads to increased uncertainty in the parameter

distribution. Notably, in cases where the structure factors exhibit low uncertainty the MAP esti-

mates accurately recover the unknown force field parameters. Deviation between the MAP estimate
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and true parameter value is tabulated as a function of uncertainty and reported in the Supporting

Information.

Figure 3: Average marginal distributions computed from the 16 reference posterior distributions.
(a) Histograms of the average marginal distributions on the (l � 6) Mie force field parameters as
a function of uncertainty in the structure factor (dS). (b) MAP estimates (points) are plotted with
2 std. dev. error bars as a function of noise. Low parameter uncertainty cases (blue) are compared
to high uncertainty cases (red) and the lower limit precision of current neutron instruments (black
dashed line). Low and high uncertainty distributions were separated based on the near doubling of
the standard deviation between dS = 0.005 and dS = 0.01.

First, note the drastic difference in the accuracy of the MAP estimates for the repulsive exponent

and dispersion energy parameters as we transition from an uncertainty level of dS = 0.025 to

dS = 0.05, indicating a significant loss in information between these two noise levels. However,

the s parameter is accurately estimated regardless, demonstrating its reliable prediction even for

low quality scattering data. In the dS = 0.025 case, the l and e parameters are also accurately

predicted. However, for the dS = 0.05 case, learning the l and e parameters becomes unreliable

with MAP deviations of -1.173 and -0.05, respectively.

The data also shows a significant change in the width of the distributions at critical uncertainty

levels. The standard deviation effectively doubles for the Mie parameters between dS = 0.005

and dS = 0.01. This rapid increase in width of the posterior distribution is significant since it
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becomes exceedingly more difficult to estimate the potential parameters using optimization tech-

niques. Based on these shifts in the standard deviations, we recommend that scattering experiments

for liquids not exceed random errors of dS = 0.005 to ⇠ 30 Å�1 at Q-space bin width of 0.05 Å�1

if attempting to extract pair potential information from the structure factor. Fortunately, this level

of precision is already available at modern diffractometers, such as the Nanoscale Ordered MAte-

rials Diffractometer (NOMAD)38 or at other modern instruments for sufficiently long run times.

Method advancements in structure inversion, along with the improvement of neutron facilities and

measurement accuracy, may therefore be the key to unlock a wealth of new opportunities for im-

proving molecular models, characterizing local atomic forces, and understanding the dynamics of

atoms and molecules in relation to complex and emergent physical phenomena.

These observations are critical to contextualize prior studies in which it has been concluded that

the structure factor is insensitive to the interatomic interactions beyond the excluded volume2,37 or

that uncertainty in the structure measurement impeded prediction of transferable potentials.7,8,16

In these studies, structural uncertainty ranged from values of 0.03-0.07, exceeding the precision

threshold identified by our model.

In a nutshell, we have demonstrated that prior attempts at estimating interatomic potentials

from structure factors were likely thwarted by high uncertainty present in experimental scattering

measurements. As we have shown, noise in structure factor data can significantly impact the

broadness of parameter probability distributions, compromising the effectiveness of optimization

methods to accurately estimate the parameter MAP. However, we also contend that modern neutron

diffraction sources have recently crossed a critical precision threshold, enabling reliable inverse

problem solutions to assess a variety of interatomic properties.

So then, how precisely should we expect to recover interatomic force parameters from such

data? An estimation of these credibility intervals can be gleaned from the parameter posterior

distributions for structure factor results consistent with modern diffractometers. To this aim, we

studied the posterior distribution of structure factors with constant standard deviations of dS =

0.005 out to 30 Å�1, which well-represents an uncertainty upper bound for modern spallation
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sources such as NOMAD and NIMROD. Posterior marginals, MCMC samples, and heat maps of

the joint posterior distribution for this case are presented in Figure 4.

Figure 4: Marginal distributions on the (l � 6) Mie force field parameters for dS = 0.005 at 30
Å�1 with variance sampled with MCMC plotted with known parameter values.

The marginal MAP, corresponding to the global maximum of the marginal distribution, accu-

rately predicts the true parameter values (indicated by red dashed lines) with exceptional precision,

exhibiting error rates below 1% for all force parameters. Furthermore, the shape and width of the

marginal distributions offer valuable insights into the influence of each parameter on the ensemble

13



fluid structure. The collision diameter marginal exhibits a narrow and symmetric shape, charac-

terized by a probability density at the MAP that surpasses the repulsive exponent and dispersion

energy by factors of 80 and 3, respectively. This symmetry and high probability density suggest

a remarkable sensitivity of the structure factor to changes in the effective particle size, consis-

tent with the observations of Weeks, Chandler and Anderson.14 However, the seemingly small

difference between the repulsive structure factor alone and the true structure factor clearly con-

tains sufficient information to determine the potential well-depth as well as the repulsive exponent

and collision diameter. Therefore, we contend that the structure factor of liquids contains more

information than previously believed.

Two standard deviations of the posterior distribution can be used as an estimate of our confi-

dence in recovering the force parameter from the structure factor. Using this metric, we find that

the force parameters can be recovered with 95% confidence within ±1.3 for the repulsive expo-

nent, ±0.02 s , and ±0.1 e . Of course, the posterior distributions computed here are in reduced

Lennard-Jones (LJ) units and must be scaled by a known reference to approximate the credibility

intervals in real units. For example, taking the LJ parameters for argon (s = 3.4 Å, e = 0.24

kcal/mol25) would give a real unit estimate of l±1.3, s±0.068 Å, and e±0.024 kcal/mol.

UQ on the potential parameters in relation to the structure factor holds the key to unlocking

several novel capabilities of neutron scattering, including force field design, elucidation of many-

body interactions, and improved understanding of structural properties in fluid systems.39 While

these aims have motivated research on the inverse problem for over a century, we are only now

seeing evidence that accurate structure inversion on experimental data is possible. We argue that

our results warrant the re-visitation of structural inverse methods for liquid state modeling.

However, many questions regarding UQ/P for experimental scattering data remain unresolved.

For example, the noise in the structure factor is directly influenced by the number of neutron

counts per bin, which is highly sensitive to the experimentalist’s choice of Q-space bin width.

In this study, we fixed the bin width at a typical value of 0.05 Å�1, so that the structure factor

noise represents the uncertainty in neutron counts / 0.05 Å�1. Due to the computational burden
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of retraining the LGP surrogate model and re-computing the posterior distributions, we did not in-

vestigate how varying the bin width affects the results. We hypothesize that the trade-offs inherent

in the Bayesian posterior equation would likely mitigate the impact of varying the bin width on

the results given a fixed number of neutron events. Specifically, increasing the bin width reduces

noise by aggregating more counts per bin but simultaneously decreases the number of observations

available to inform the likelihood. This balance should, in principle, lead to posterior distributions

that are relatively insensitive to bin width changes. Ideally, the binning should align with the pre-

cise resolution of the instrument to fully exploit UQ on the collected data. Nevertheless, it remains

an open question whether artificially increasing the Q-space bin width for data with fewer neutron

counts (i.e., shorter instrument run times) could achieve sufficient statistical precision for learning

potentials.

Another unresolved question is how noise in the structure factor propagates to its r-space coun-

terpart, the RDF. Since the RDF is not directly observed, uncertainties in the neutron counts must

be propagated into r-space through the radial Fourier transform. This Fourier dual relationship

between the structure factor and RDF means that the uncertainty in the real space representation is

non-trivially dependent on the uncertainty in the momentum space. A rigorous approach to address

this problem could involve applying non-stationary Gaussian process regression (NS-GPR) to the

experimental scattering data. Non-stationary refers to functions in which the mean and covariances

change as a function of input, as is the case for an RDF which has known limiting behaviors (i.e.,

limr!0 g(r) = 0 and limr!• g(r) = 1). Using this expert knowledge, it is possible to construct a

non-stationary mean and covariance function in real space for the RDF and inverse Fourier trans-

form them to obtain a Fourier dual mean and covariance in momentum space. Then, by performing

regression over the observed momentum space data and radial Fourier transforming the resulting

NS-GPR posterior, an r-space GP posterior is obtained that estimates the likely distribution of

RDFs given the experimental observations. While this approach is outside the scope of the current

study, it presents an intriguing direction for future research.

An exciting application for the structural inverse problem in general is using structure-derived
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interaction potentials as an external validation to computationally expensive bottom-up atomistic

models. One example is electron structure calculations, in which a highly accurate quantum me-

chanical treatment of the electron structure can reveal insights into potential energy surfaces and

reaction mechanisms. Electron structure methods have become faster and more robust due to

quantum computing,40 clever basis set selection,41 and machine learning.42,43 However, as these

more fundamental theories of atomic structure and motion become commonplace, experimental

neutron scattering data will become increasingly crucial to validate their predictions. Indeed, we

have already shown that many-body interactions in noble gases are consistent with electron struc-

ture calculations in trimeric systems.25,44 Further advancement of inverse methods can provide

quantifiable validation of many-body interactions in progressively complex systems.

In addition to experimental data analysis, structure inversion methods have been widely used in

contemporary chemical physics for for coarse-graining,45–49 in which all atom systems are mapped

onto a reduced coordinate space of "beads" to improve computational speed. In coarse-graining,

structure factors (or more commonly the partial RDFs) are generated from a known model where

structural uncertainty fluctuations are significantly smaller than that of experimental data. In such

cases, our results suggest the presence of global maxima within narrow posterior distributions,

which may explain the success of traditional optimization techniques in recovering coarse-grained

force field parameters from all-atom simulations. Moreover, since a well-behaved parameter space

is also evident in highly precise, state-of-the-art experiments, there is a promising opportunity to

leverage existing coarse-graining methods for experimental scattering analysis. As a result, we

believe the connection between experimental and simulation-based structure inversion techniques

is becoming clearer and could lead to significant breakthroughs in the near future.

Finally, it is important to acknowledge the limitations of generalizing these results to broader

systems. First, the sensitivity of complex systems to variations in the potential may differ from

those observed in the Mie fluid model, so our findings should be viewed as a conceptual explo-

ration of how classical two-body interactions shape atomic organization in fluids. Hence, we stress

that the specific response of complex systems to variations in interatomic forces should be studied
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individually. Second, if a fluid is not well-described by the (l -6) Mie model, reliable recovery of

force parameters cannot be guaranteed, and a more accurate model may be necessary. Third, we

did not account for systematic errors arising from inelastic or multiple scattering subtraction, nor

from variations in Q-space binning. These considerations are particularly important for extending

our conclusions to X-ray scattering data, where the treatment of scattering corrections and binning

methodologies can differ significantly. Nonetheless, the accuracy threshold established in this

study remains directly applicable to X-ray scattering data, provided that appropriate form factors

and scattering corrections are incorporated to mitigate the introduction of additional errors. Ad-

dressing systematic errors and rigorously quantifying their associated uncertainties are therefore

essential to achieving the level of precision required for reliably extracting interaction potentials

from scattering data.

Conclusions

Rigorous uncertainty quantification and propagation analysis has shown that modern neutron diffrac-

tometers have attained the necessary accuracy for reliable force field reconstruction. It has also

been shown that measurements within  0.005 at ⇠30 Å�1 are likely sufficient for force parame-

ter recovery in Mie-type fluids. We emphasize that the structure factor (1) encapsulates information

on both the attractive and repulsive components of the interatomic potential, and (2) that the com-

monly held opposing view likely emerged due to the poor quality of scattering data available during

the early, pivotal stages of liquid modeling research. This study highlights the exciting possibility

of using neutron scattering to predict the potential energy function, emphasizes the critical role of

experimental precision in extracting potentials from scattering data, and offers valuable insights

into the nature of interatomic forces in liquids.

Finally, the significance of this work extends beyond the field of neutron scattering. The results

indicate significant potential for advancing force field design and optimization, enabling the devel-

opment of more effective coarse-graining techniques, and facilitating the exploration of many-body
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effects in fluid ensembles. In summary, this research highlights the transformative potential of ma-

chine learning in extracting interatomic forces from experimental structure measurements within a

rigorous UQ framework.

Theory and Computational Methods

In this study, we modeled how uncertainty propagates from neutron scattering data to the esti-

mation of force field parameters. The impact of measurement uncertainty was isolated by con-

straining the Bayesian analysis to a classical model fluid. While real physical systems behave

quantum mechanically and are inherently many-body in nature, classical pairwise additive model

fluids continue to be studied due their low computational cost and accurate predictions of complex

thermodynamic properties. Furthermore, our prior work has shown that SOPR potentials exhibit

potential corrections consistent with quantum mechanical calculations,25 suggesting that effective

pair interactions could be found that capture many-body and quantum mechanical contributions.

The (l -6) Mie fluid model was selected since it is a flexible and widely successful classical

model with numerous existing and developing applications for materials modeling.27,50 The pair-

wise, non-bonded potential energy term of the (l -6) Mie fluid is,

vMie
2 (r) =

l
l �6

✓
l
6

◆ 6
l�6

e
✓

s
r

◆l
�
✓

s
r

◆6�
(1)

where l is the short-range repulsion exponent, s is the collision diameter (distance), and e is the

dispersion energy (energy).51

Modeling Neutron Measurement Uncertainty in a Mie Fluid Model

To model experimental uncertainty, a set of Mie fluids was simulated with sufficient sampling

statistics to calculate a highly-accurate static structure factor (dS(Q)< 0.001) to Qmax =⇠ 30 Å�1)

with Q-space bin width of 0.05 Å�1. Computer generated atomic trajectories were calculated in

HOOMD-Blue.52 MD simulations were initiated with a random configuration of 500 particles at
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reduced density r⇤ = 0.1 and reduced temperature T ⇤ = 1 and equilibrated with Langevin dynam-

ics for 1⇥105 timesteps (dt = 10 femtoseconds). Potentials were truncated at 3s with an analytical

tail correction, and RDFs were calculated with Freud.53 Static structure factors are calculated via

radial Fourier transform of the RDF.

Experimental measurements of structure factors are subject to uncertainty arising from vari-

ous factors, including experimental, model, and numerical sources. Uncertainties in neutron flux,

energy, time-of-flight, minimum and maximum momentum transfer (Qmin, Qmax), and data col-

lection time contribute to uncertainty in neutron counting statistics and the effective resolution of

the instrument. Post-processing corrections for inelastic, incoherent, multiple, and low momentum

transfer scattering further contribute to uncertainty in the structure factor form.54 These effects re-

sult in variations in the neutron intensity that are not necessarily normally distributed;55 however,

errors from neutron detection are normal due to the limiting behavior of the Poisson distribution for

large number of counts.56 For reactor source instruments, the variance due to these random errors

remains approximately constant to a limited Q-max (10-20 Å�1), while for spallation sources, the

variance increases proportionally to the square of the momentum transfer to a higher Q-max of 50-

125 Å�1.38 Currently, the extent to which this uncertainty influences the accuracy and reliability

of force field reconstructions remains unknown.

UQ was performed for reactor type neutron instruments by adding Gaussian noise with stan-

dard deviations equal to twice the values of those indicated in Figure 1 to four replicates of the

simulated structure factor. Using multiple replicates of the noisy structure factor as a data target

reduces the chance of over fitting to a single, randomly generated structure factor. Of course, this

modeling approach is not directly consistent with an actual scattering measurement which is typ-

ically reported as a single measurement over a fixed length of time. However, it is well-known

that the standard deviation in neutron counting statistics is proportional to the square-root of the

number of counts.56 Assuming that neutron counts are equally distributed over the course of a

measurement, we then expect that four structure factor replicates with twice the standard deviation

of the target structure factor is approximately equivalent to the single target scattering pattern.
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Bayesian analysis was then performed over 16 in silico experimental conditions on a 4 ⇥

4 equal spaced grid in the reduced Mie diagram (s ,e) where s = [1.85,1.89,1.93,1.97], e =

[0.86,0.80,0.74,0.70] and fixed l = 12. Since spallation type neutron instruments have a Q2-

dependent random error, UQ on the constant error can be interpreted as an uncertainty upper bound

for spallation type instruments up to a given Q. For instance, if statistical noise of a spallation

source measurement is 0.025 at 30 Å�1, then we would expect the noise to be smaller down to an

appropriately selected Qmin < Q < 30 Å�1. Uncertainty levels were selected based on published

data of structure factors measured on neutron instruments from the early 1970’s to 2022. Notably,

a classic argon data set collected at the Omega West reactor (1973)57 is well approximated by

constant noise with variations in S(Q) of approximately dS = 0.05, as noted in Figure 1. Similarly,

krypton data collected on D4B (1993)58 is approximated by the constant dS = 0.025 case, while

modern instruments such as NOMAD and NIMROD (>2010) regularly achieve uncertainty distri-

butions similar to the dS = 0.005�0.01 cases depending on the data collection time.38,59 Two low

uncertainty extremes were chosen beyond these reported values to identify measurement precision

thresholds and model trends in the predictability of force parameters.

Bayesian Uncertainty Quantification for Force Field Reconstruction

According to the Henderson inverse theorem, it is theoretically possible to uniquely recover the

underlying potential in a pairwise additive, homogeneous fluid.15 In the context of Bayesian op-

timization, Henderson’s theorem requires that there should be a global maximum in the posterior

probability distribution at the unique force parameters. However, as the uncertainty in the structure

factor signal increases, deviations from this unique potential are expected, causing the probability

distributions to broaden. This broadening indicates a decrease in confidence in the estimation of

the model parameters. In other words, as structural uncertainty increases, our ability to accurately

predict the potential energy decreases, leading to a wider range of possible parameter values to

explain the data.

Bayesian inference was implemented to calculate parameter probability distributions as a func-
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tion of structure factor uncertainty. For simplicity of notation, let ✓ = {l ,s ,e,sn} represent the

model parameters and Y = Sd(Q) be the structure factor observations. The nuisance parameter,

sn, represents the width of the Gaussian likelihood and captures uncertainty from the experimental

data and Gaussian process model, which is not known a priori. Calculating the posterior proba-

bility distribution with Bayesian inference then requires two components: (1) prescription of prior

distributions on the model parameters, p(q), and (2) evaluation of the structure factor likelihood,

p(Y |✓). The prior distribution over the (l � 6) Mie parameters is assumed to be a multivariate

log-normal distribution,

q � gq ⇠ logN (µ✓+ gq ,s2
✓) (2)

where µ✓ and s2
q are the prior mean and variance of each parameter in ✓ and gq 2R is a real-valued

parameter shift that enforces a lower bound. A wide, shifted multivariate log-normal distribution

was selected because it is non-informative and imposes non-negativity constraints on the model

parameters. Specifically, l �6 (defined by the Mie type fluid), s , e , and sn must be positive. For

reference, the prior parameters used in this study are provided in the Supporting Information.

The likelihood function is known to be a Poisson distribution of neutron counts, but in the

high count limit (which is effectively achieved in a neutron experiment) it approaches a Gaussian

distribution,

p(Y |✓) =
✓

1p
2psn

◆h
exp


� 1

2s2
n

Â
j
[S✓i(Q j)�Sd(Q j)]

2
�

(3)

where S✓(Qi) is the molecular simulation predicted structure factor, h is the number of observed

points in the structure factor, and j indexes over these points along the momentum vector. Bayes’

theorem is then expressed as,

p(✓|Y ) µ p(Y |✓)p(✓) (4)

where equivalence holds up to proportionality. This construction is acceptable since the resulting
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posterior distribution can be normalized post hoc to find a valid probability distribution. For further

details see the following excellent reviews of Bayesian inference.60,61

The Bayesian likelihood distribution is estimated using Markov Chain Monte Carlo (MCMC)

samples over the model parameters q = {l ,s ,e,sn}. Computationally, a sample of the model

parameters is drawn from a Metropolis-Hastings type algorithm, passed to the surrogate model,

evaluated, and compared to the in silico structure factor. MCMC samples were calculated us-

ing the emcee package62 from 160 walkers with dynamic burn-in and sample time based on the

autocorrelation convergence criterion used in the emcee package and default stretch move with

dynamic tuning.

After the posterior distributions were computed for all experimental conditions and uncertainty

levels, the marginal posterior histograms were averaged over all experimental conditions. His-

togram averaging was performed by defining a fixed range and bin count for all posterior marginals

and weighting the distribution counts by the ratio of the number of counts for a given experiment

with the total number of counts over all experiments. In other words, if pa,b(q) is the marginal

posterior probability distribution for experiment condition a, uncertainty b, on model parameter q ,

then the average marginal posterior Pb(q) for uncertainty level b is given by,

Pb(q)⇡ Â
a

na,b

Âa na,b
pa,b(q) (5)

where na,b is the number of independent MCMC samples for experiment a and uncertainty b.

Conceptually, these average marginal posteriors are an approximation to the marginal parameter

posterior distributions over the joint probability density containing the model parameters, structure

factor, and thermodynamic state, p(l ,s ,e,S(Q),T ⇤,r⇤), where T ⇤ = kbT/e and r⇤ = rs3 are

the reduced temperature and density, respectively. More rigorous approximations derived from

methods such as Gibbs sampling were not implemented due to the extremely high computational

cost per experiment.
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Local Gaussian Process Surrogate Models for Structure Factors

The process of populating the posterior distribution function necessitates the evaluation of like-

lihood for each condition of interest within the model parameter space, which, in turn, requires

conducting an infeasible number of molecular dynamics simulations. The computational burden

associated with this procedure renders the Bayesian framework impractical even for a relatively

small number of samples. To illustrate this, consider the task of obtaining a collision diameter

posterior distribution with a grid resolution of approximately 2% across a wide prior range of ms

(ranging from 0.5 to 1.5). Achieving such resolution for just the ms parameter alone would de-

mand a minimum of 50 samples. If the same level of resolution is desired for the remaining two

parameters, a staggering 125,000 molecular simulations are required to comprehensively quantify

the posterior distribution space. Clearly, there is a substantial computational challenge involved in

obtaining accurate and comprehensive posterior distributions within the Bayesian framework.

To expedite the evaluation of the Bayesian likelihood, a local Gaussian process (LGP) surrogate

model32 was trained to generate structure factors based on a training set of 960 randomly sampled

(l -6) Mie parameters in a prior range specified in the Supporting Information. This range of

parameters was selected to correspond with the liquid phase region of the Mie phase diagram

and avoid pathological simulations that can occur near phase transitions. Note that this range

will change based on the arbitrary choice of temperature and density for the Mie fluid simulation;

but, since the reduced phase diagram is simply scaled from these values, the molecular dynamics

simulation will have the same dynamics, average thermodynamic properties and structure.

LGP surrogate models reduce the computational time complexity of standard GP regression

without compromising predictive accuracy.63–65 Hyperparameter selection was performed using

Bayesian optimization with Markov chain Monte Carlo and surrogate model accuracy was deter-

mined to have a root-mean-square error (RMSE) of 0.0036 for a 160 randomly sampled test set

within the surrogate parameter range. Surrogate model validation and hyperparameter training is

discussed further in the Supporting Information.

23



Data Availability

The datasets generated during and/or analysed during the current study are available from the

corresponding author on reasonable request. Python codes for data generation and analysis are

provided on GitHub at https://github.com/hoepfnergroup/Bayesian-Neutron-Potentials.
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