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Abstract. Water quality in lakes is an emergent property of complex biotic and abiotic processes that dif-
fer across spatial and temporal scales. Water quality is also a determinant of ecosystem services that lakes
provide and is thus of great interest to ecologists. Machine learning and other computer science techniques
are increasingly being used to predict water quality dynamics as well as to gain a greater understanding
of water quality patterns and controls. To benefit the sciences of both ecology and computer science, we
have created a benchmark dataset of lake water quality time series and vertical profiles. LakeBeD-US con-
tains over 500 million unique observations of lake water quality collected by multiple long-term monitor-
ing programs across 17 water quality variables from 21 lakes in the United States. There are two published
versions of LakeBeD-US: the “Ecology Edition” published in the Environmental Data Initiative repository
(https://doi.org/10.6073/pasta/c56a204a65483790f6277de4896d7140, McAfee et al., 2024) and the “Computer
Science Edition” published in the Hugging Face repository (https://doi.org/10.57967/hf/3771, Pradhan et al.,
2024). Each edition is formatted in a manner conducive to inquiries and analyses specific to each domain. For
ecologists, LakeBeD-US: Ecology Edition provides an opportunity to study the spatial and temporal dynamics
of several lakes with varying water quality, ecosystem, and landscape characteristics. For computer scientists,
LakeBeD-US: Computer Science Edition acts as a benchmark dataset that enables the advancement of machine
learning for water quality prediction.

1 Introduction

Water quality is a critical determinant of the ecosystem ser-
vices provided by lakes (Keeler et al., 2012; Angradi et al.,
2018). Water quality varies across spatial and temporal scales
(Hanson et al., 2006; Langman et al., 2010; Soranno et al.,
2017) as a result of a variety of interacting physical and bi-
ological processes. For example, hypolimnetic anoxia (low
oxygen) in lakes reduces the available habitat for cold-water
fish species (Arend et al., 2011; Jane et al., 2024). Anoxia can
be fueled by the product of another water quality problem,
the formation of toxic phytoplankton blooms (Jane et al.,
2021). Both of these water quality phenomena emerge at

the ecosystem scale as a consequence of multiple physical–
biological interactions, driven by external nutrient loads and
weather conditions (Paerl and Huisman, 2009; Snortheim
et al., 2017; Ladwig et al., 2021; Jane et al., 2021). While
there is mechanistic understanding of how these water qual-
ity phenomena evolve for well-studied lake systems, predict-
ing their occurrence under scenarios of change or in large
numbers of systems with sparse data remains challenging
(Guo et al., 2021; Miller et al., 2023). To meet this challenge,
we need scalable water quality models that are supported by
observational data of sufficient spatiotemporal resolution to
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reproduce key water quality dynamics (Ejigu, 2024; Varad-
harajan et al., 2022).

Knowledge-guided machine learning (KGML) has
emerged as a powerful technique for incorporating both
ecological knowledge and observational data within a model
(Karpatne et al., 2017, 2024). By fusing machine learning
with physical and ecological principles, KGML has proven
effective for assessing lake surface area change (Wander
et al., 2024), modeling lake temperature (Read et al.,
2019; Daw et al., 2014; Ladwig et al., 2024; Chen et al.,
2024b), phytoplankton (chlorophyll) forecasting (Lin et al.,
2023; Chen et al., 2024a), and predicting lake phosphorus
concentrations (Hanson et al., 2020). Thus, a variety of
modeling techniques within and beyond KGML are required
to advance water quality understanding and prediction
(Wai et al., 2022; Lofton et al., 2023). Creative approaches
will likely spring from interdisciplinary collaborations of
both lake ecologists and computer scientists (Carey et al.,
2019) and will need diverse, high-volume, high-quality
observational data that are easily accessible to researchers
from multiple disciplines.

Predicting the evolution of water quality through time and
space requires treating lakes as dynamical systems that oper-
ate across many scales. The nature of research project design
lends itself to focusing on either the temporal scale or the
spatial scale, making studies that address both scales exten-
sively somewhat rare (but see Wilkinson et al., 2022; Zhao
et al., 2023; Meyer et al., 2024). Datasets that capture spatial
gradients (Soranno et al., 2017; Pollard et al., 2018), tempo-
ral gradients (Magnuson et al., 2006; Goodman et al., 2015),
or both have been curated manually to produce harmonized
derived products (Read et al., 2017). Few examples of lake
water quality data exist that harmonize both manually sam-
pled and autonomously sampled high-frequency data across
key gradients in space and across decadal timescales.

A benchmark dataset for lake water quality that has well-
resolved temporal data spanning multiple variables would
be invaluable to both limnologists and computer scientists
for simultaneously advancing both water quality modeling
and KGML. Benchmark datasets are curated and cleaned
datasets used in computation-heavy fields to test new opera-
tional methods and compare their performances (Peters et al.,
2018). High-quality benchmark datasets require significant
effort to create (Sarkar et al., 2020) but are of fundamental
importance to the field of computer science (Li et al., 2024).
Sarkar et al. (2020) and Weinstein et al. (2021) lay out many
criteria for a quality benchmark dataset, which include the
following.

– Relevance. Data must be well curated so as to be rele-
vant for a specific phenomena. In this case, the dataset
must contain lake water quality data.

– Representativeness. Data should contain examples from
many relevant areas so as to be representative of a global
distribution. In the case of water quality, this means data

from lakes across geographic, trophic, and morphologi-
cal gradients.

– Non-redundancy. The dataset should exclude duplicate
data (i.e., every observation is unique).

– Experimentally verified. Data should be real observa-
tions, rather than generated from simulations. In the
case of lake water quality, this means that all data are
collected in situ.

– Scalability. The design of the dataset should allow the
methods tested to vary in complexity. This requires a set
of reasonable evaluation criteria and transparent scor-
ing.

– Reusability. Data should be open-source, freely avail-
able, and shared in a manner such that the dataset can
be used for other applications.

Benchmark datasets are becoming more prevalent in the
field of ecology (e.g., Weinstein et al., 2021; Schür et al.,
2023). Ecological benchmark datasets are vital as environ-
mental data, including water quality data, exhibit properties
such as prevalent missing values and non-normal distribu-
tions (Helsel, 1987; Lim and Surbeck, 2011) that are not typ-
ically represented in machine learning benchmark datasets.
Benchmark datasets exist within the field of hydrology (e.g.,
Addor et al., 2017; Demir et al., 2022) and some recent
limnology datasets advertise machine learning as a poten-
tial application (e.g., Spaulding et al., 2024), but benchmark
datasets are rare in the field of limnology. This scarcity has
caused some limnological studies to use non-limnological
benchmark datasets to test their machine learning methods
(e.g., Kadkhodazadeh and Farzin, 2021).

This paper introduces LakeBeD-US, a dataset of lake wa-
ter quality time series and vertical profiles intended as a
benchmark for comparative methodological analysis for wa-
ter quality modeling. LakeBeD-US harmonizes water qual-
ity data from long-term water quality monitoring programs,
including the North Temperate Lakes Long-Term Ecologi-
cal Research program (NTL-LTER), the National Ecological
Observatory Network (NEON), the Niwot Ridge Long-Term
Ecological Research program (NWT-LTER), and the Carey
Lab at Virginia Tech as part of the Virginia Reservoirs Long-
Term Research in Environmental Biology (LTREB) site in
collaboration with the Western Virginia Water Authority. To
conform with the principles of FAIR (findable, accessible,
interoperable, and reusable) data (Wilkinson et al., 2016),
the data are accessible via digital object identifiers (DOIs),
the contents are richly described in the metadata, and all
provenance is documented for each data point. Data from
21 lakes are included. The lakes vary in size, geographic
region, trophic status, and temporal coverage. LakeBeD-
US is published in two forms, each with a unique DOI:
LakeBeD-US: Ecology Edition (LakeBeD-US-EE; McAfee
et al., 2024) is published in the Environmental Data Initiative
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Table 1. Characteristics of the different formats of LakeBeD-US.

Ecology Edition Computer Science Edition

– Long format enables querying of the data by lake, vari-
able, or quality flag with dplyr commands; plot time series
of multiple variables in ggplot2 with aesthetics arguments

– Included R script gives a tutorial on the use of Parquet files
in R

– Complete data including sources and quality flags for
manual data cleaning, allowing greater flexibility for users
with limnology expertise

– Wide format enables straightforward machine learning ap-
plication where each variable acts as a feature

– Variables of different dimensionality (static: vary by lake,
1D: vary through time, 2D: vary through time and depth)
are partitioned to allow flexible model design

– Data are organized by lake for transfer learning experi-
ments

– Duplicate observations are removed but all sources and
quality flags are retained

repository, which is a repository of primarily ecological data
(Gries et al., 2023). LakeBeD-US: Computer Science Edi-
tion (LakeBeD-US-CSE; Pradhan et al., 2024) is published
in the Hugging Face repository, which is used heavily by sci-
entists developing and testing machine learning algorithms
(Jain, 2022; Yang et al., 2024). Both versions are published
as Apache Parquet files, a space-efficient and programming-
language-independent file type effective for storing time se-
ries data (Rangaraj et al., 2022). LakeBeD-US-CSE is de-
rived from LakeBeD-US-EE with additional cleaning and re-
formatting as described in Sect. 2 of this paper.

2 Dataset components and assembly

The goal of LakeBeD-US is to feature data from a collection
of well-observed lakes that showcase the varied morphologi-
cal, geographical, anthropological, and biological character-
istics of environments across the United States. To do this, we
leveraged data collected by prominent long-term monitoring
programs. The NTL-LTER sampling strategy focuses on het-
erogeneous lakes within the state of Wisconsin (Magnuson
et al., 2006). NEON samples lakes across the continent, cap-
turing additional climactic and land use gradients (Goodman
et al., 2015). Green Lake 4 from the NWT-LTER was cho-
sen as a representative of alpine lakes in the dataset, as it has
been monitored for many years (Bjarke et al., 2021). Falling
Creek Reservoir and Beaverdam Reservoir represent man-
aged drinking water supply reservoirs (Carey et al., 2024)
which may exhibit unique characteristics as a result of their
human influence. The degree to which the lakes in LakeBeD-
US vary is discussed further in Sect. 3.

The LakeBeD-US dataset is presented in two formats:
the Ecology Edition (LakeBeD-US-EE; McAfee et al.,
2024) and the Computer Science Edition (LakeBeD-US-
CSE; Pradhan et al., 2024). LakeBeD-US-EE is formatted to
support analyses of lake water quality by the limnology com-
munity, while LakeBeD-US-CSE is formatted for use with
machine learning and KGML methods. The Ecology Edition
is presented in a long format, with each water quality vari-
able sharing columns such that variables of interest can be

queried from the dataset using dplyr (Wickham et al., 2023)
commands in R (R Core Team, 2023), and visualizing time
series with common plotting tools like ggplot2 (Wickham,
2016) can be done efficiently. The Computer Science Edi-
tion is presented in a wide format where each water quality
variable is presented in its own column, enabling their use
as separate features in a machine learning model. More in-
formation about the two versions is presented in Table 1 and
discussed further in Sect. 2.2.2.

2.1 LakeBeD-US: Ecology Edition

2.1.1 Source data harmonization

LakeBeD-US-EE was assembled by downloading the source
data to R (version 4.3.3, R Core Team, 2023) using the
“EDIutils” (version 1.0.3, Smith, 2023) and “neonUtilities”
(version 2.4.2, Lunch et al., 2024) packages. The data were
harmonized using the Tidyverse suite of packages (version
2.0.0, Wickham et al., 2019) before being exported to Par-
quet files with the “arrow” package (version 15.0.1, Richard-
son et al., 2024). The code to download and harmonize the
data was written to search the source repository for the most
updated version of the source data prior to harmonization.
The specific version of the source data used is tracked in a
separate table, listed in the code as the provenance ob-
ject, which is manually checked for changes before further
use of LakeBeD-US-EE.

During harmonization into the LakeBeD-US-EE format,
all measurements of the same variable were converted into
common units. The only exception to this is chlorophyll a,
which comes in two types of units that are not directly
comparable without additional analysis: relative fluorescence
units (RFU) and micrograms per liter (µg L−1). Most of the
source data related to nutrients or chemistry were already
reported in either µg L−1 or milligrams per liter (mg L−1),
which were straightforward to convert from one to the other.
Data reported in molar units or microequivalents were con-
verted to mass concentration units. Photosynthetically active
radiation (PAR) data reported in lux units were converted to
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micromoles per square meter per second (µmolm−2 s−1) us-
ing the full sunlight conversion factor of 0.0185 (Thimijan
and Heins, 1983).

2.1.2 Lake information table

The lake information table contains static attributes of the
21 lakes included in LakeBeD-US. These attributes include
the monitoring program, latitude, longitude, elevation above
sea level, lake surface area, mean and maximum depth, es-
timated hydrologic residence time, and any known manipu-
lations of the lake performed by humans. These values were
derived from published literature listing the attributes of each
lake (listed in Sect. S2 in the Supplement). Mean depth val-
ues were calculated based on available bathymetry informa-
tion (Carey et al., 2022) when no values were reported in
the literature. The hydrologic residence times listed are esti-
mates based on the range of times the lake exhibits (Flanagan
et al., 2009; Gerling et al., 2014). An estimated hydrologic
residence time was available for all lakes except for Fish
Lake (Dane County, WI), a closed-basin lake with no surface
water inflows or outflows. Elevations for each lake were ob-
tained using the United States Geological Survey’s (USGS)
National Map Bulk Point Query Service (United States Geo-
logical Survey, 2024). While there is uncertainty associated
with the USGS 3D Elevation Program (Stoker and Miller,
2022), we found that elevation values captured the ecologi-
cally relevant variation and closely matched many published
values for the 21 lakes in LakeBeD-US. Sources for each spe-
cific attribute of a lake are listed as comments in the source
code compiling the attributes and listed collectively in the
provenance metadata of LakeBeD-US-EE.

2.1.3 High- and low-frequency observations tables

Observational data are compiled into two Parquet datasets:
one representing data collected from a buoy-mounted sen-
sor at a relatively high temporal frequency and the other col-
lected by hand at a relatively low temporal frequency. The
high- and low-frequency datasets use an identical format and
can be easily merged if needed. However, there are many an-
alytical considerations that differ between these temporal fre-
quencies, so they are provided separately for LakeBeD-US-
EE. The low-frequency observation table includes a larger
suite of variables at a greater number of discrete depths along
the water column.

Both the high- and low-frequency datasets are comprised
of columns listing the source of a data point, date and time,
the lake, depth, water quality variable, unit, observed value,
and data flag. The data are provided in a long format for ease
of querying the data by filtering with dplyr (Wickham et al.,
2023) commands in R. All unit names were sourced from the
QUDT (Quantities, Units, Dimensions and Types) ontology
(FAIRsharing.org, 2022), with the exception of RFU which
is not included in the ontology. Water quality variable names

are defined in the metadata of both the LakeBeD-US-EE and
LakeBeD-US-CSE datasets.

2.1.4 Data flagging

Each of the original data sources (listed in Sect. S1 in the
Supplement) has data quality flagging systems that have
been maintained for LakeBeD-US-EE (Table A3). We doc-
umented all of the data quality flags in the original data
sources and assigned each unique type of quality flag a num-
ber, aligning common types between each source. These nu-
meric flags for LakeBeD-US are documented in the included
flag guide table (Fig. 3; Table A3). As data go through the
harmonization workflow to be included in LakeBeD-US-
EE, the original flag values are reassigned to align with the
LakeBeD-US flag. There are 51 total unique flags among all
of the data sources that were included in LakeBeD-US. Some
of the data sources contain flags that are not defined in the
metadata for those sources, in which case the data author was
contacted and asked for a definition. Typically, these flags
were errors in data entry and filtered out of LakeBeD-US.
The exact depths at which some of the early buoy-mounted
sensors were positioned were not documented and this insti-
tutional knowledge has been lost to time. Fortunately, doc-
umented protocols state that the sensors were mounted in
the mixed surface layer of the lake. Thus, we have applied
a depth value of 0.5 m to those observations with the flag
52 attached. The design of the flagging system in LakeBeD-
US allows users to apply their own preferred level of uncer-
tainty to their analysis. However, we suggest using the flags
listed in Table 2 as guidance.

2.2 LakeBeD-US: Computer Science Edition

2.2.1 Transformation from LakeBeD-US-EE

LakeBeD-US-CSE was transformed from the observational
data and lake attribute information of LakeBeD-US-EE.
The original data were loaded with Python (version 3.12.4,
Van Rossum and Drake, 2009) and transformed using pandas
(version 2.2.2, The pandas development team, 2024; McKin-
ney, 2010) and NumPy (version 2.1.1, Harris et al., 2020).
Since the original data files were stored as Parquet files, ad-
ditional dependencies such as fastparquet (version 2024.5.0,
Durant and Augsperger, 2024) and PyArrow (version 17.0.0,
Apache Arrow Developers, 2024) were required for pan-
das. The transformation process consisted of five major com-
ponents: flag imputation, data cleaning, variable renaming,
deduplication, and pivoting. The harmonization workflow is
visualized in Fig. 2 and the steps taken in each component
are outlined below.

1. Flag imputation.. Observations with missing values for
flag were assumed to be accurate observations and
imputed with a flag value of 0.
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Figure 1. Locations and names of the 21 lakes included in LakeBeD-US. Lakes are monitored by the National Ecological Observatory
Network (NEON, blue), the North Temperate Lakes Long-Term Ecological Research program (NTL-LTER, purple), the Niwot Ridge Long-
Term Ecological Research program (NWT-LTER, pink), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term
Research in Environmental Biology (LTREB) site in collaboration with the Western Virginia Water Authority (orange). More information
about each lake is included in Table 3.

Table 2. Acceptable flag codes for selected data used in the LakeBeD-US-CSE benchmark. Not all the flag codes listed are relevant to
the variables used in the benchmark task, but all are flags we would consider acceptable within quality control steps for most tasks using
LakeBeD-US.

Flag Description

0 No flag
5 Average of duplicate analyses
10 Nonstandard methods
19 Value below detection limit; set to zero
23 Negative value set to zero
25 Sensor was off during part of the averaged period
32 Date is accurate but time is inaccurate
43 Sample run using NPOC (non-purgeable organic carbon) method due to high inorganic carbon values
47 Flagged with no explanation
51 Secchi depth hit bottom (calculated for NEON Lakes only)
52 Unknown depth near the surface; labeled as 0.5 m

2. Data cleaning. Some observations of 2D variables were
assigned depth values of −99 to indicate an integrated
(i.e., taken from multiple depths simultaneously) ob-
servation. We omit those observations as they are not
directly comparable to discrete depth observations. It
should be noted that several observations contain neg-
ative values for depth close to zero (on the order of
−10−3 to −10−7 m) but are correct observations. Such
observations come from artificial reservoirs where the
water level fluctuates greatly. As such, the depths for

those observations need to be calculated from the ref-
erence surface level, leading to some error in the depth
measurement. It is permissible to round these values to
zero if needed for simplification.

3. Variable renaming. The units column of the obser-
vational data in LakeBeD-US-EE was omitted in favor
of listing the units in the metadata. However, chloro-
phyll a (chla) is reported in both RFU and µg L−1 in
the Ecology Edition. We separate this single variable
with two units into chla_rfu and chla_ugl to dis-
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Figure 2. Harmonization workflow for LakeBeD-US. Boxes rep-
resent states of data and corner-snipped parallelograms represent
processes. Gray boxes represent published products and sources of
published products.

tinguish between the two possible units of measurement
for chlorophyll a.

4. Deduplication. The spatiotemporal nature of the data
combined with flag values creates a bifurcation struc-
ture in the one-dimensional (1D, i.e., varying over
time) variables and a trifurcation structure in the two-
dimensional (2D, i.e., varying over time and depth) vari-
ables (see Sect. 2.2.2 for more information on variable
types). A 1D observation can be indexed by datetime
and flag, and a 2D observation can be indexed by
datetime, depth, and flag. Multiple observations
could be present at a given index. We combine multi-
ple observations at an index into a single observation by
calculating the median.

5. Pivoting. LakeBeD-US-EE is distributed in a “long”
format where different variables are stored as a single
column. This format was converted into a wide format
with tabular data where each variable has its own col-
umn. For 1D variables, datetime and flag were
used as pivot indices, variable was used to denote
the different resulting columns for the variables, and
observation was used to populate the columns with
values. Pivoting of the 2D data was performed identi-
cally except for the pivot indices where datetime,
depth, and flag were used.

2.2.2 File structure and components

LakeBeD-US-CSE has a nested file structure as shown in
Fig. 3. High- and low-frequency observational data are di-
vided into two folders, each containing sub-folders for dif-
ferent lakes. Each lake’s folder contains two tables: 1D vari-
ables and 2D variables. The lake information table from
LakeBeD-US-EE is carried over to LakeBeD-US-CSE as
a CSV (comma-separated value) file, while the 1D and
2D variable data are stored as Parquet files within the nested
file structure. Static covariates are the lake attributes that gen-
erally remain constant over time, derived from the lake infor-
mation table in LakeBeD-US-EE. 1D variables have a tem-
poral component but no depth information. Secchi depth is
a standard 1D variable as it varies throughout time but is an
attribute of the whole water column and thus cannot be sam-
pled in a depth-discrete way. 2D variables vary by time and
by depth, and each sample is depth-discrete. Quality flags are
retained through the flag column of the 1D and 2D variable
tables.

Ecologists and computer scientists have different analyti-
cal approaches and thus different data structures are preferred
when working with spatiotemporal data. Ecologists benefit
from a long format because this file structure is well suited
for aggregated statistics and complex data visualization. The
long format also does not require the explicit storage of miss-
ing data. Computer scientists, on the other hand, benefit from
a wide format due to its compatibility with machine learning
workflows. At a high level, machine learning algorithms im-
plemented in popular libraries and frameworks (e.g., NumPy,
PyTorch, scikit-learn, and TensorFlow) expect data formatted
in the wide format. At a low level, specialized hardware like
graphical processing units and tensor processing units, on
which these libraries and frameworks are run, are optimized
to operate on vector, matrix, and tensor data structures. The
wide format lends itself nicely to storage in these formats.
Furthermore, wide-format data are often optimized for stor-
age and querying in data systems to enhance computational
performance when working with large datasets. Lastly, hav-
ing all variables in separate columns makes it easier to per-
form feature selection, engineering, and scaling, which are
critical steps in preparing data for machine learning models.
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Figure 3. Structure of LakeBeD-US-EE and LakeBeD-US-CSE. Arrows indicate folder contents (e.g., LakeBeD-US-EE contains high- and
low-frequency folders that each contain an observational data table). Purple connectors indicate common columns by which to link tables.
LakeBeD-US-CSE contains high- and low-frequency folders that each contain separate folders separating data from each lake. Each lake
folder contains its own tables with static covariates, 2D variables, and 1D variables.

2.3 Assessment and usage of data

To better understand the characteristics of LakeBeD-US,
here we showcase the content of LakeBeD-US-EE. Data
were loaded into R using the “arrow” package and then
queried using “dplyr” (version 1.1.4, Wickham et al., 2023).
Visualization made use of the “ggplot2” (version 3.5.1,
Wickham, 2016), “ggrepel” (version 0.9.5, Slowikowski,
2024), “gridExtra” (version 2.3, Auguie, 2017), “cowplot”
(version 1.1.3, Wilke, 2024), “maps” (version 3.4.2, Becker
et al., 2023), and “mapdata” (version 2.3.1, Becker et al.,
2022) libraries.

3 Ecology Edition: dataset characteristics

3.1 Spatial and temporal extent

While a majority of the lakes included in LakeBeD-US are
northern temperate lakes in the state of Wisconsin (Fig. 1),
geographic variation is well represented in the dataset along-
side other attributes. Toolik Lake is located in the North
Slope Borough, Alaska, and is the furthest northwest of
any lake in the dataset (Fig. 1), representing an arctic sys-
tem. In contrast, Lake Suggs and Lake Barco in Putman
County, Florida, represent the southeastern-most lakes and
are located in a subtropical climate. Suggs and Barco also
represent two of the polymictic lakes in the dataset along-

side Prairie Lake (Stutsman County, ND), Prairie Pothole
(Stutsman County, ND), Lake Wingra (Dane County, WI),
and Green Lake 4 (Boulder County, CO) (Preston et al.,
2016; Thomas et al., 2023; Lottig and Dugan, 2024). All
other lakes in the dataset are dimictic (Gerling et al., 2014;
Thomas et al., 2023; Lottig and Dugan, 2024). Green Lake 4
represents the highest-altitude lake in LakeBeD-US, with an
elevation of over 3500 m above sea level, a stark contrast
to Lakes Suggs and Barco at approximately 27m (United
States Geological Survey, 2024). Falling Creek Reservoir
and Beaverdam Reservoir are drinking water reservoirs and
thus experience a unique set of human manipulations and im-
pacts despite being in a relatively undisturbed forested water-
shed (Gerling et al., 2014). This provides a potential compar-
ison to the lakes of the NTL-LTER in Wisconsin which have
urban and agricultural catchments in the Madison area (Dane
County) and relatively undisturbed forested catchments in
Vilas County (Magnuson et al., 1997).

An overview of the temporal characteristics of observa-
tional data in LakeBeD-US is given in Table 4 and Fig. 4. The
minimum time range of observed values for any lake in the
dataset is 5 years, while seven NTL-LTER lakes have over
40 years of data. High-frequency data collection began be-
tween 2003 and 2006 for select NTL-LTER lakes, while the
majority of high-frequency data collected come from NEON
starting in 2017. The Virginia Reservoirs LTREB and NWT-
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Table 3. Characteristics of lakes included in LakeBeD-US. Location information is presented in Fig. 1.

Lake ID Lake name Monitoring program Elevation Area Mean depth Maximum depth
(m) (ha) (m) (m)

AL Allequash Lake NTL-LTER 494.0 164.2 2.9 8
BARC Lake Barco NEON 27.0 12 2.1 6
BM Big Muskellunge Lake NTL-LTER 499.3 375.7 7.5 21.3
BVR Beaverdam Reservoir Virginia Reservoirs LTREB 584.3 39.4 3.4 14
CB Crystal Bog NTL-LTER 501.5 0.6 1.7 2.5
CR Crystal Lake NTL-LTER 500.5 37.5 11.4 20.4
CRAM Crampton Lake NEON 510.6 26 3.4 19
FCR Falling Creek Reservoir Virginia Reservoirs LTREB 507.6 12.1 2.5 9.3
FI Fish Lake NTL-LTER 262.1 80.4 6.6 18.9
GL4 Green Lake 4 NWT-LTER 3560.8 5.3 4.1 13
LIRO Little Rock Lake NEON 495.2 19 2.5 10
ME Lake Mendota NTL-LTER 259.0 3961.2 12.8 25.3
MO Lake Monona NTL-LTER 257.4 1372.5 8.2 22.5
PRLA Prairie Lake NEON 562.8 23 1.7 4
PRPO Prairie Pothole NEON 586.9 11 1.4 4
SP Sparkling Lake NTL-LTER 494.2 63.7 10.9 20
SUGG Lake Suggs NEON 28.7 31 1.3 3
TB Trout Bog NTL-LTER 493.5 1 5.6 7.9
TOOK Toolik Lake NEON 715.3 148 8.5 25
TR Trout Lake NTL-LTER 491.7 1583 14.6 35.7
WI Lake Wingra NTL-LTER 258.4 138.5 2.7 4

Table 4. Availability of observations by lake in LakeBeD-US-EE. Counts for the number of observations include all depths.

Lake ID Lake name Low- Low- Low- High- High- High-
frequency frequency frequency frequency frequency frequency
variables observations time series variables observations time series

AL Allequash Lake 12 31 546 1981–2022
BARC Lake Barco 11 2991 2014–2022 6 31 836 265 2017–2023
BM Big Muskellunge Lake 12 56 262 1981–2022
BVR Beaverdam Reservoir 11 11 477 2013–2023 5 5 186 155 2013–2024
CB Crystal Bog 12 16 471 1981–2022 3 41 784 342 2005–2022
CR Crystal Lake 12 59 176 1981–2022
CRAM Crampton Lake 11 5877 2015–2022 6 16 938 998 2017–2023
FCR Falling Creek Reservoir 11 23 963 2013–2023 7 6 641 501 2013–2024
FI Fish Lake 12 27 045 1996–2022
GL4 Green Lake 4 12 5331 1998–2023 4 1 013 065 2018–2023
LIRO Little Rock Lake 11 2856 2017–2022 6 18 890 971 2017–2023
ME Lake Mendota 13 37 756 1995–2022 6 122 268 124 2006–2023
MO Lake Monona 12 31 294 1995–2022
PRLA Prairie Lake 11 2043 2014–2022 6 13 331 185 2017–2023
PRPO Prairie Pothole 11 1586 2014–2022 6 12 717 778 2017–2023
SP Sparkling Lake 12 55 010 1981–2022 3 68 603 864 2004–2022
SUGG Lake Suggs 11 1317 2014–2022 6 23 744 154 2017–2023
TB Trout Bog 12 29 337 1981–2022 3 77 620 538 2003–2022
TOOK Toolik Lake 11 4365 2016–2022 6 6 267 990 2017–2023
TR Trout Lake 12 77 402 1981–2022 3 62 471 497 2004–2023
WI Lake Wingra 12 8293 1996–2022
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Figure 4. Temporal distribution of observations in LakeBeD-US-EE. Colors represent categories of variables.

Table 5. Number of depths, rounded to 0.5 m, with more than 200 observations measured at a high frequency for each variable in each lake.

Lake name Chl a DO fDOM Inflow NO3 PAR Phycocyanin Temp

BARC 9 9 9 1 2 7
BVR 3 25 3 1 25
CB 3 4 7
CRAM 12 12 12 1 2 10
FCR 1 21 1 1 1 1 21
GL4 2 7 2 19
LIRO 12 12 12 1 2 10
ME 1 1 1 2 1 29
PRLA 4 4 4 1 2 5
PRPO 3 3 3 1 2 3
SP 1 1 31
SUGG 5 5 5 1 2 3
TB 3 2 17
TOOK 17 17 17 1 2 10
TR 1 1 42

LTER high-frequency sensors were launched in 2013 and
2018, respectively. The longer-running high-frequency pro-
grams measure fewer water quality variables (typically tem-
perature, dissolved oxygen, and PAR) relative to the newer
programs that have many additional variables including NO3,
fluorescent dissolved organic matter (fDOM), and chloro-
phyll a. Observations are also not distributed evenly through-
out the year. Observations from May through October, half
the year during the ice-free season in temperate regions,
make up 76.4 % of the total number of observations in the
dataset. However, there are observations present during win-
ter months from lakes that do not freeze and from limited
under-ice observations (e.g., Lottig, 2022).

The numbers of depths available for each variable in each
lake at low and high frequencies are given by Tables 5 and 6.
The number of depths sampled and at what intervals they

are sampled are highly dependent on the water quality pa-
rameter being measured. Among the manually sampled data,
variables that can be measured via a sonde cast (e.g., water
temperature and dissolved oxygen) are generally captured at
a high spatial resolution with intervals of every 0.5 or 1 m
depending on the depth of the lake. Variables that are much
more expensive or difficult to measure, such as dissolved nu-
trients, are generally measured at a much lower spatial reso-
lution, sometimes only capturing the surface waters. The spa-
tial resolution of high-frequency measurements varies by the
monitoring institution, with some lakes focusing primarily
on the surface waters while others capture a greater number
of depths.
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Table 6. Number of depths, rounded to 0.5 m, with more than two observations manually sampled for each variable in each lake. Secchi
depth is a 1D variable measured in all lakes that is not shown in this table.

Lake ID NH4 Chl a DIC DOC DO DRP Inflow NO3 NO2 NO2+NO3 POC PAR TN TP Temp

AL 10 11 6 6 9 8 10 17 6 9 11
BARC 1 1 1 1 13 1 1 1 1 13
BM 18 17 14 14 21 16 19 22 14 15 22
BVR 10 10 12 26 12 12 1 12 12 26
CB 5 4 2 2 6 5 5 7 2 3 6
CR 18 15 14 14 21 17 19 22 13 16 21
CRAM 1 1 1 1 36 1 1 1 1 36
FCR 6 10 13 22 13 13 1 13 13 22
FI 10 13 10 10 44 5 10 23 10 10 44
GL4 5 5 5 20 16 3 12 3 3 16
LIRO 1 1 1 1 18 1 1 1 1 18
ME 14 8 13 15 49 12 14 5 25 14 15 49
MO 11 8 12 12 45 11 11 21 11 12 45
PRLA 1 2 1 1 7 1 1 1 1 7
PRPO 1 1 1 1 5 1 1 1 1 6
SP 18 16 14 14 20 18 20 21 14 15 21
SUGG 1 2 1 1 4 1 1 1 1 4
TB 10 9 8 8 9 8 10 15 8 8 10
TOOK 1 1 1 1 43 1 1 1 1 1 43
TR 24 32 18 18 37 17 28 30 18 20 37
WI 2 4 2 2 9 2 2 5 2 2 9

Figure 5. Lakes plotted within gradients of (a) surface area in hectares compared to the maximum depth of the lake in meters. Points
and labels are colored according to the mean summertime Secchi depth in meters. (b) Mean summertime surface total phosphorus (TP)
concentration in µg L−1 compared to the mean summertime surface dissolved organic carbon (DOC) concentration in mgL−1. Points and
labels are colored according to the mean summertime surface concentration of dissolved inorganic carbon (DIC) in mgL−1. Green Lake 4
(GL4) has no observational data for DIC. The surface is defined as the minimum depth sampled for the given time period, which was always
within the surface mixed layer of the lake. Summer is defined as the months of June, July, and August.
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Figure 6. Distributions of observed values for dissolved inorganic carbon (DIC), dissolved oxygen concentration (DO), dissolved organic
carbon (DOC), Secchi depth, temperature, total nitrogen concentration (TN), and total phosphorus concentration (TP) across all observations,
after quality control, of all lakes in LakeBeD-US-EE.

3.2 Water quality characteristics

The distributions of select lake attributes and water quality
variables are given in Figs. 5 and 6. A wide range of lakes
are present in LakeBeD-US in terms of surface area, depth,
and indicators of trophic status. It is of note that water qual-
ity variables often follow a non-normal distribution (Helsel,
1987; Lim and Surbeck, 2011), and LakeBeD-US is no ex-
ception (Fig. 6). This skewness is characteristic of environ-
mental data and should be considered by users of the dataset.

4 Benchmark task

4.1 Computer Science Edition benchmark

In this section, we develop a machine learning model to pre-
dict the daily median dissolved oxygen concentration (do)
and water temperature (temp) in Lake Mendota to showcase
the utility and applicability of LakeBeD-US-CSE for the ma-
chine learning task of multivariate time series prediction.

4.1.1 Data selection

LakeBeD-US-CSE provides two datasets for Lake Mendota:
low-frequency and high-frequency datasets. Both temporal
frequencies were considered in this benchmark. Observa-
tions from the low- and high-frequency datasets with the flag
codes indicated in Table 2 were selected for use in the bench-
marking task.

While LakeBeD-US features data from across many dis-
crete depths through time, we considered data across a single
depth of Lake Mendota to simplify the benchmark. This re-
quired considering the percentage of missing values at each
depth that the low- and high-frequency datasets reported.

With the exception of water temperature, all high-frequency
variables were measured only at a depth of 1 m. Similarly,
the low-frequency data reported large percentages (> 85 %–
90 %) of missing values for all variables across all depths.
Among all variables reported in the datasets, we selected
chlorophyll a (chla_rfu), photosynthetic active radiation
(par), and phycocyanin (phyco) from the datasets to be
used as covariates due to the high number of observations
present for these variables in the high-frequency data.

4.1.2 Data wrangling

The following steps were taken to prepare the data for mod-
eling.

1. Timescale standardization. The timescales of the low-
and high-frequency datasets were discontinuous, con-
taining large multi-day gaps in the time series. We cre-
ated two uniform time series with no discontinuities at
the resolution that was permitted by each dataset: daily
resolution for the low-frequency data and minutely res-
olution for the high-frequency data from the earliest
to the most recent dates and times in both datasets.
The new low-frequency dataset’s timescale spanned
9 May 1995 to 1 November 2022, while the new high-
frequency dataset’s timescale spanned 28 June 2006 at
02:31:00 LT to 19 November 2023 at 15:26:00 LT. This
step was critical to providing a more accurate value for
the percentage of missing data.

2. Data harmonization. To mitigate the issue of high per-
centages of missing observations, the low- and high-
frequency datasets were merged into a single dataset.
Since the low-frequency dataset begins in 1995, as op-
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Table 7. Start and end dates of each look-back and horizon window
for the first and last samples in each split.

Split Sample Window Start date End date

Training First Look-back 28 Jun 2006 18 Jul 2006
Horizon 19 Jul 2006 1 Aug 2006

Last Look-back 23 Apr 2020 13 May 2020
Horizon 14 May 2020 27 May 2020

Validation First Look-back 28 May 2020 17 Jun 2020
Horizon 18 Jun 2020 1 Jul 2020

Last Look-back 18 Jan 2022 7 Feb 2022
Horizon 8 Feb 2022 21 Feb 2022

Testing First Look-back 22 Feb 2022 14 Mar 2022
Horizon 15 Mar 2022 28 Mar 2022

Last Look-back 16 Oct 2023 5 Nov 2023
Horizon 6 Nov 2023 19 Nov 2023

posed to the high-frequency dataset which begins in
2006, the resulting harmonized dataset had an even
larger percentage of missing values. From this merged
dataset, we selected only the observations recorded
since the start of the high-frequency dataset to minimize
the amount of imputation that would be required.

3. Downsampling and aggregation. The harmonized
dataset was downsampled to a daily resolution by cal-
culating the median value within each day.

4. Splitting and sliding window sampling. The data were
split 80 %–10 %–10 % chronologically into a training–
validation–testing split. The training split was stan-
dardized (Z-score-normalized) and the standardization
parameters were applied to the validation and testing
splits. After standardization, windowed samples were
generated for each split. A windowed sample consists of
21 d of observations of all features (chla_rfu, par,
phyco, do, temp) as inputs, referred to as a “look-
back window”, and the subsequent 14 d of do and temp
as targets, referred to as a “horizon window”. For ex-
ample, if we considered the observations of all features
from 1 to 21 January to be the look-back window, the do
and temp observations from 22 January to 4 February
would be the horizon window. The subsequent sample
would be formed by “sliding the (look-back and hori-
zon) window” by 1 d into the future (i.e., the second
sample’s look-back window would span 2 to 22 Jan-
uary and the horizon window would span 23 January to
5 February). The sampling was carried out such that the
horizon window of the last sample would not extend far-
ther than the end of each respective split to avoid data
leakage between splits. The start and end dates of the
look-back and horizon window of the first and last sam-
ple in each split are given in Table 7.

Table 8. Percentage of missing values per variable in each split.

Split Percentage of missing values
chla_rfu par phyco do temp

Training 49.636 81.527 51.977 54.131 43.97
Validation 39.055 35.433 3.850 38.898 34.646
Testing 32.390 42.610 32.390 30.818 32.075

5. Imputation. Prior to windowed sampling, the percent-
ages of missing values for each split were calculated.
These values are listed in Table 8.

The missing values in the input look-back windows for
each split were imputed using the self-attention-based
imputation for time series (SAITS) method (Du et al.,
2023). Traditional imputation techniques, such as spline
interpolation and k-nearest neighbors, often rely on as-
sumptions about simple relationships between adjacent
data points. In contrast, SAITS leverages a self-attention
mechanism to identify and emphasize relevant infor-
mation across the entire dataset, even when pertinent
data points are temporally distant. This approach allows
SAITS to effectively capture complex temporal patterns
and inter-variable relationships. During training, SAITS
introduces artificial missing values into the dataset and
attempts to impute them. By minimizing the discrep-
ancy between its imputations and the original values,
SAITS learns to accurately reconstruct missing data, re-
sulting in more reliable and comprehensive datasets for
analysis.

A SAITS model was trained on the windowed samples
from the training split using the hyperparameters speci-
fied in Table 9 and applied on the input look-back win-
dows of the training, validation, and testing splits. Since
no ground truth for the dataset was present, the qual-
ity of the imputation could not be empirically measured
and instead was inferred through the predictive skill of
the model. The target horizon windows were not im-
puted because it would have been difficult to identify if
strong performance of the model was a result of a good
model or an overly simplistic imputation (e.g., a simple
horizontal line).

4.1.3 Modeling

The components of the modeling process used for our bench-
mark are outlined below. All modeling was conducted using
PyTorch (Paszke et al., 2019).

– Model architecture. A sequence-to-sequence (seq2seq)
long short-term memory recurrent neural network
(LSTM-RNN) was constructed to predict dissolved
oxygen concentration and water temperature. Seq2seq
modeling arose from the field of natural language pro-
cessing, specifically neural machine translation (NMT;
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Table 9. SAITS imputation model hyperparameters. Diagonally
masked self-attention (DMSA) is a component of SAITS.

Hyperparameter Value

Sequence length 21
Number of features 5
Number of layers in the 1st and 2nd DMSA blocks 2
Model embedding dimensionality 256
Multi-head DMSA mechanism head count 4
DMSA mechanism key and query dimensionality 64
DMSA mechanism value dimensionality 64
Feed-forward layer dimensionality 128
Fully connected layer dropout rate 0.1
Epochs 50
Batch size 32

Cho et al., 2014; Sutskever et al., 2014). In NMT, given
an input sentence in one language, we wish to trans-
late the sentence to another language using a neural net-
work such that the translation has semantic meaning and
obeys the syntax of the target language. Observations
in a time series, like words in a sentence, have an in-
herent temporal ordering. Thus, the problem of time se-
ries prediction conveniently lends itself to this modeling
paradigm.

A seq2seq model follows an autoencoder architecture,
comprising two main components: an encoder and a de-
coder. The encoder is built on an LSTM-RNN. It pro-
cesses the input data in a sequential manner, mapping
the input to a high-dimensional vector, called a “hid-
den state”, at each time step of the input. This hidden
state exists in a latent feature space (also referred to as
embedding space), which can abstractly be thought of
as a summary of the input sequence up to that moment
in time. When the encoder has encoded the final time
step of the input sequence into a hidden state, the fi-
nal hidden state vector contains a summary of the entire
input time series. This final hidden state is referred to
as a “context vector” that encapsulates the critical in-
formation of the sequence in a compressed form. The
decoder, another LSTM-RNN, uses this context vector
as a foundation to generate the desired target sequence.
Operating in an autoregressive manner, the decoder pre-
dicts each time step in the future sequence, feeding each
prediction back as input to inform the next. This autore-
gressive process continues until the full sequence in the
prediction window is generated.

– Training strategy

– Cost function. The parameters of the model were
trained by minimizing the root mean square er-
ror (RMSE) between the predicted target horizon
window and the observed horizon window. Since

the target horizon windows in each sample were
not imputed, a masked loss computation was em-
ployed. In situations where the observed horizon
window contained missing observations, the error
was only computed between observations that were
jointly present in the prediction and the observed
horizon window. If the horizon window contained
no observations, then the sample was omitted from
the error computation. The RMSE cost function
was minimized using the adaptive moment estima-
tion (AdaM) optimizer and a “reduce learning rate
on plateau” learning rate scheduler. Learning rate
scheduling is a technique to adaptively adjust the
learning rate during training based on the model’s
performance on the validation split. The core idea
is to reduce the learning rate when progress stalls,
helping the model to escape saddle points or local
minima in the cost landscape, thereby potentially
achieving a better final result.

– Regularization. We leveraged early stopping and
weight decay regularization. Early stopping is a
regularization technique that mitigates overfitting
of the model by monitoring the performance on the
validation split. If the validation cost starts to in-
crease over time, the model halts the training pro-
cess. Weight decay is a regularization technique
that operates by subtracting a fraction of the pre-
vious weights when updating the weights during
training, effectively making the weights smaller
over time. This subtraction of a portion of the ex-
isting weights ensures that during each iteration
of training, the model’s parameters are nudged to-
wards smaller values.

– Hyperparameter selection. Model architecture and
learning hyperparameters were optimally chosen using
the “tree-structured Parzen estimator” algorithm in the
Optuna library by minimizing the validation cost over
50 trials (Akiba et al., 2019). The final hyperparameters
are given in Table 10.

4.1.4 Results

The learning curve shown in Fig. 7a shows the performance
of the model on the training and validation splits at each
epoch in the training process, while the learning rate sched-
ule in Fig. 7b shows the reduction in the learning rate of the
model until convergence. The final standardized RMSE of
the model on each data split is presented in Table 11.

The predictions for dissolved oxygen concentration and
water temperature for the training, validation, and testing
splits are shown in Fig. 8. For a given split, after the 21st day
in the window, a 14 d ahead series of predictions is generated
on each day. This results in multiple, potentially up to 14,
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Figure 7. Training cost, validation cost, and learning rate of the machine learning benchmark. The cost, a measure of model error, for the
training (a) and validation (b) splits is shown as a function of the number of epochs. The learning rate, or amount of change between iterations
of the model in response to error, is shown (c). Five trials are shown in different colors.

Figure 8. Machine learning model predictions of surface water dissolved oxygen and temperature. Observed (red) and predicted (blue)
dissolved oxygen (a, c, e) and temperature (b, d, f) are shown. Training (a, b), validation (c, d), and testing (e, f) splits are shown. The gray-
shaded areas represent the confidence intervals.
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Table 10. Final model architecture and learning hyperparameters.

Hyperparameter Value

Hidden state dimensionality 8
Encoder recurrent layers 1
Decoder recurrent layers 1
Batch size 32
Epochs 100
Initial learning rate 8.799× 10−4

Learning rate decay factor 0.1
Learning rate scheduler patience 3 epochs
Learning rate scheduler threshold 1× 10−4

Weight decay 3.0187× 10−4

Early stopping patience 5 epochs

Table 11. Model performance on each data split as measured with
standardized RMSE across five trials.

Split RMSE

Training 0.44± 0.02
Validation 0.42± 0.02
Testing 0.36± 0.01

overlapping predictions for a single day. We consolidated
these overlapping predictions by calculating the median pre-
dicted value for each day across all predictions. This yields
a single, continuous series of predictions for an entire split’s
timeline. The predictions shown in Fig. 8 were obtained by
continuous predictions from each trial in each split. The con-
fidence interval was generated by taking the minimum and
maximum values for each date and time across each continu-
ous series of predictions. Table 12 shows the unstandardized
RMSE between the continuous predictions from each trial
and the observed dissolved oxygen concentration and water
temperature across the entire time series within each split.

4.1.5 Benchmark task discussion

With our benchmark task, we showcase the applicability of
LakeBeD-US to multivariate time series prediction of two
water quality variables. Our machine learning model per-
formed comparably to existing process-based models for the
purpose of predicting the dissolved oxygen concentration.
In predicting the dissolved oxygen concentration of the sur-
face of Lake Mendota, an iteration of the GLM-AED2 model
(Hipsey et al., 2019) calibrated by Ladwig et al. (2021) re-
ported an RMSE of 2.77 mgL−1 and a model constructed by
Hanson et al. (2023) reported an RMSE of 1.45 mgL−1. Our
model predicted dissolved oxygen in the testing dataset with
an RMSE of 1.40 mgL−1 (Table 12), which is comparable
to the aforementioned process-based water quality models.
When predicting temperature our model did not perform as
well as the process-based models that reported RMSE val-

Table 12. Mean masked unstandardized RMSE and standard devi-
ation between the continuous time series predictions and observed
values for each split across all trials. Dissolved oxygen (do) is re-
ported in mgL−1 and water temperature (temp) is reported in de-
grees Celsius.

Variable RMSE

Training Validation Testing

do 1.59± 0.05 1.61± 0.19 1.40± 0.09
temp 3.44± 0.08 3.65± 0.22 3.78± 0.12

ues of around 1.30 °C, which is less than half of our machine
learning model’s error (Table 12). While the predictions gen-
erated by our model have room for improvement, they show
that LakeBeD-US-CSE can be used to create water quality
models with machine learning. Water temperature in partic-
ular is a variable that has been shown to be a useful tool for
comparison of model performance in ecological tasks (Read
et al., 2019).

5 Discussion

In this paper, we introduce LakeBeD-US: a dataset designed
to foster the advancement of machine learning technologies
in ecological applications. By combining spatially and tem-
porally extensive datasets, we offer a dataset that can be used
in benchmarking tasks that address the scales of variability
in the drivers of lake water quality. LakeBeD-US is compati-
ble with ecological analysis, novel computer science method-
ologies, or both through the interdisciplinary paradigm of
KGML.

5.1 Limitations and considerations for use of
LakeBeD-US

LakeBeD-US is not a representative sample of the water
quality gradients found in lakes of the world (Verpoorter
et al., 2014; Messager et al., 2016), but it is representative
of water quality data that are available. Limnological sam-
pling efforts tend to favor large, easily accessible lakes that
are used more frequently for their natural resources, and most
samples are taken during the ice-free season (Stanley et al.,
2019). A majority of the observations in LakeBeD-US rep-
resent the ice-free season (Fig. 4), and 13 of the 21 lakes in-
cluded in the dataset are located within the state of Wisconsin
(Fig. 1), with the most well-observed lake being the large, eu-
trophic, and heavily utilized Lake Mendota (Table 4). Despite
this, LakeBeD-US still captures a variety of lake character-
istics and geographic locations that enable users to investi-
gate those attributes’ relationship with water quality dynam-
ics (Fig. 5).

LakeBeD-US does not account for methodological or
equipment differences among its datasets. Sensors and labo-
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ratory procedures change over time and between monitoring
institutions, which is information not present in LakeBeD-
US but present in the source datasets (listed in Sect. S1 in the
Supplement). The harmonization procedure of LakeBeD-US
assumes the accuracy and precision of the observed value of
the source data, excepting any quality flags that have been ap-
plied to the data. Potential methodological differences should
be investigated when encountering any unexplained changes
in water quality trends present in LakeBeD-US, particularly
with data that use RFU.

The observed water quality variables exhibit a heavy
skewness that is common among of data of this kind
(Fig. 6; Helsel, 1987; Lim and Surbeck, 2011). Considera-
tions should be taken when analyzing or using these data to
limit the effect of this skewness, as omitting flagged values
or outliers may not be enough (Virro et al., 2021). Transfor-
mations may need to be applied to the data before use, such
as the standardization applied in the benchmark task of this
paper.

Unlike many benchmark datasets, LakeBeD-US contains
numerous missing values. This is a problem typical of en-
vironmental data. Fortunately, the handling of missing val-
ues in environmental data by machine learning algorithms
is an active area of research (Rodríguez et al., 2021), and
LakeBeD-US can act as a testing ground for developing
novel methods.

5.2 LakeBeD-US for ecological applications

The LakeBeD-US dataset has numerous applications for
studying lake water quality. Previous studies using its source
data have provided insights into many of the drivers and dy-
namics of water quality (e.g., Hanson et al., 2006; Ladwig
et al., 2021; Thomas et al., 2023). The cross-region synthe-
sis of LakeBeD-US offers new opportunities to further ad-
vance our understanding of these dynamics. For instance,
high-frequency data can be used to assess the impact of pulse
disturbances, such as heatwaves or storms, on water qual-
ity across geographic or trophic gradients. Similarly, high-
frequency chlorophyll data can offer insights into the preva-
lence of algal blooms in different regions. The long-term
monitoring data within LakeBeD-US are essential for exam-
ining changes in trophic state across decades. These insights
can emerge from both direct data analysis and the develop-
ment of lake water quality models.

5.3 LakeBeD-US as a machine learning benchmark

The benchmarking task in Sect. 4 is a straightforward ex-
ample of how machine learning can be applied to lake wa-
ter quality prediction using LakeBeD-US-CSE. The ma-
chine learning model performed comparably to many exist-
ing process-based models when predicting dissolved oxy-
gen concentration and temperature in Lake Mendota’s sur-
face waters (Sect. 4.1.5; Hanson et al., 2023; Ladwig et al.,

2021). This showcases the applicability of machine learning
to ecological problems, and the error in the model showcases
the utility of LakeBeD-US as a benchmark dataset. Machine
learning algorithms other than the LSTM-RNN used here
may have a different performance for this task, an under-
standing of which is a vital part of the model selection pro-
cess in ecological studies. The variety of lakes in LakeBeD-
US enables future studies to investigate the performance
of machine learning, mechanistic, and hybrid knowledge-
guided machine learning models when making predictions
across multiple lakes, trophic statuses, or temporal frequen-
cies.

LakeBeD-US was assembled as part of an effort to ad-
vance the science of knowledge-guided machine learning
(KGML) in ecological applications. There are many poten-
tial uses of the dataset for investigating water quality dy-
namics using these techniques. Transfer learning is the use
of a machine learning model trained on a number of source
tasks applied to a new target task with limited data (Karpatne
et al., 2024), which is a method that has been applied to lakes
(Willard et al., 2021). LakeBeD-US features a varied selec-
tion of lakes, making it suitable for the application of transfer
learning methods for lake systems. Building upon this idea
of transfer learning, there has been recent advancement in
the application of foundation models to environmental data,
which can be pre-trained on a broad, heterogeneous dataset
and then fine-tuned on a more specific dataset to a given task
(Lacoste et al., 2023; Nguyen et al., 2023; Karpatne et al.,
2024). LakeBeD-US may prove useful in the application of
foundation models or other KGML methods (e.g., modular
compositional learning; Ladwig et al., 2024) to water qual-
ity.

5.4 Potential for the expansion of LakeBeD-US

While the number of lakes in LakeBeD-US is modest relative
to national- or global-scale studies (e.g., Soranno et al., 2017;
Solomon et al., 2013), the frequency and duration of its data
provide unique opportunities for expanding scientific under-
standing of aquatic ecosystem dynamics. Ensuring that long-
term water quality datasets meet the rigorous requirements
for LakeBeD-US requires working with the scientists and or-
ganizations who collect the data. This will have the added
benefit of involving more lake ecologists in water quality
modeling endeavors (Hanson et al., 2016). The Global Lake
Ecological Observatory Network (GLEON) is an example of
this type of community involvement in data collection, har-
monization, and analysis (Weathers et al., 2013; Hamilton
et al., 2015).

Updates to include more data, more lakes, and more wa-
ter quality variables are possible and collaboration in the
creation of new additions to LakeBeD-US is encouraged.
The data provenance and versioning tools of the Environ-
mental Data Initiative and Hugging Face repositories make
it possible for specific versions of both LakeBeD-US-EE
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and LakeBeD-US-CSE to be referenced in future studies.
The source code to harmonize LakeBeD-US-EE searches the
source repository for the latest release of the source data, en-
abling new updates to the existing sources to be integrated
seamlessly, as long as major format changes in the source
data do not occur. Adding new data sources to LakeBeD-
US-EE is possible, requiring that a new R script to down-
load and harmonize the observational data be written and the
Data_Controller.R and Lake_Info.R files in the source code
updated accordingly. LakeBeD-US-EE’s use of the Parquet
format allows for additions to the dataset without having to
rewrite the entirety of the dataset’s files. LakeBeD-US-CSE
is created dynamically based on the content of LakeBeD-US-
EE, allowing for parity between the two versions. Stewards
of long-term water quality monitoring data are encouraged
to become contributors to LakeBeD-US through the creation
of modular additions to the Parquet dataset. These modules
would emulate the design of LakeBeD-US-EE, namely the
R scripts to format the data and write them to Parquet files,
meaning that users of the data could seamlessly add the con-
tents of any community-made module to the base LakeBeD-
US-EE data. There would then be potential for integration of
the data modules into the base LakeBeD-US in future revi-
sions if that collaboration is desired.

6 Data availability

LakeBeD-US: Ecology Edition is available in the En-
vironmental Data Initiative repository (https://doi.org/
10.6073/pasta/c56a204a65483790f6277de4896d7140;
McAfee et al., 2024). LakeBeD-US: Computer Science
Edition is available in the Hugging Face repository
(https://doi.org/10.57967/hf/3771; Pradhan et al., 2024).

7 Conclusions

LakeBeD-US is a dataset of lake water quality observa-
tions combining high- and low-frequency observations from
21 lakes across the United States collected by different moni-
toring institutions for the intention of AI benchmarking. This
dataset is one of the first of its kind to capture water qual-
ity at a high spatial and temporal resolution in the selected
lakes and be available in formats conducive to both eco-
logical analyses and novel computer and data science ap-
proaches. As a benchmark dataset, LakeBeD-US was de-
signed to be used to advance the science of knowledge-
guided machine learning and foster collaboration between
ecologists and computer scientists.

There are many planned and potential uses for LakeBeD-
US. As a benchmark dataset designed with machine learn-
ing in mind, LakeBeD-US offers an opportunity to test and
compare new machine learning methodologies in an ecolog-
ical context. Aspects of LakeBeD-US such as data skewness
and missing values are prevalent in environmental data and
this dataset offers opportunities for the scientific community
to investigate methods for mitigating these issues for ma-
chine learning models. This collection of data is also valuable
for the investigation of water quality dynamics using statisti-
cal or mechanistic models. These advances in water quality
modeling, prediction, and forecasting are vital in creating a
greater understanding of aquatic systems and informing more
thoughtful utilization of aquatic resources.
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Appendix A: Table and variable metadata

Table A1. LakeBeD-US: Ecology Edition lake information table metadata.

Column Description Data type

lake_id Identifier for a lake, common with the observational data String
lake_name Common name for a lake String
institution Monitoring institution responsible for collecting data on a lake String
latitude Latitude of the deep hole of a lake in decimal degrees Double
longitude Longitude of the deep hole of a lake in decimal degrees Double
elevation_m Elevation of the lake in meters, determined by the USGS National Map Bulk Point Query Service Double
area_ha Surface area of the lake in hectares Double
mean_depth_m Mean depth of the lake in meters, calculated as surface area divided by volume Double
max_depth_m Maximum depth at the deep hole in meters Double
residence_time_yr Hydrologic residence time of a lake in years; values are general as residence time varies temporally Double
known_manipulations List of known manipulations of the lake enacted by humans String

Table A2. LakeBeD-US: Ecology Edition high- and low-frequency observation table metadata.

Column Description Data type

source Source of a specific data point, in the form [repository, either EDI or NEON] [identifier in repository] String

date/time Date and time of observation Timestamp

lake_id Code identifying a lake, matching with the lake information table String

depth Depth of observation in meters Double

variable Variable observed – one of the following: chla (chlorophyll a), do (dissolved oxygen), fdom (fluo-
rescent dissolved organic matter), temp (temperature), phyco (phycocyanin), tp (total phosphorus),
drp (dissolved reactive phosphorus), tn (total nitrogen), no2 (nitirite), no3 (nitrate), no3no2 (com-
bined nitrite and nitrate), nh4 (ammonium), dic (dissolved inorganic carbon), doc (dissolved organic
carbon), poc (particulate organic carbon), par (photosynthetically active radiation), secchi (Secchi
depth), or inflow (discharge rate into lake)

String

unit Unit of observation – one of the following: RFU (relative fluorescence units), MicroGM-PER-L
(micrograms per liter), MilliGM-PER-L ( mgL−1), DEG_C (°C), MicroMOL-PER-M2-SEC
(mumolm−2 s−1), M (meters), or M3-PER-SEC (m3 s−1)

String

observation value of observation Double

flag Quality code of observation; see the flag guide for details Integer
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Table A3. LakeBeD-US: Ecology Edition flag guide table metadata. Citations for source datasets can be found in Sect. S1 in the Supplement.
Each row of the flag guide table corresponds to a definition, where common definitions between flags of data sources are aligned.

Column Description Source datasets

LakeBeD-US flag Quality flag used in LakeBeD-US

LakeBeD-US definition Definition for quality flag used in LakeBeD-US

NTL HF flag Quality flag used in high-frequency datasets from NTL-LTER Magnuson et al. (2023c–h,
2024b–e)

NTL HF definition Definition for quality flag used in high-frequency datasets from
NTL-LTER

NTL LF flag Quality flag used in manually sampled datasets from NTL-LTER Magnuson et al. (2023a, b,
2023i, j, 2024a)

NTL LF definition Definition for quality flag used in manually sampled datasets
from NTL-LTER

VR-LTREB HF flag Quality flag used in the high-frequency conductivity,
temperature, and depth (CTD) dataset from Virginia Reservoirs
LTREB

Carey et al. (2024d)

VR-LTREB HF definition Definition for quality flag used in the high-frequency
conductivity, temperature, and depth (CTD) dataset from Virginia
Reservoirs LTREB

VR-LTREB inflow flag Quality flag used in the inflow dataset from Virginia Reservoirs
LTREB

Carey et al. (2024b)

VR-LTREB inflow definition Definition for quality flag used in the inflow dataset from Virginia
Reservoirs LTREB

VR-LTREB catwalk flag Quality flag used in the high-frequency Falling Creek Reservoir
water quality dataset from Virginia Reservoirs LTREB

Carey et al. (2024e, f)

VR-LTREB catwalk definition Definition for quality flag used in the high-frequency Falling
Creek Reservoir water quality dataset from Virginia Reservoirs
LTREB

VR-LTREB water chem flag Quality flag used in water chemistry dataset from Virginia
Reservoirs LTREB

Carey et al. (2024g)

VR-LTREB water chem definition Definition for quality flag used in water chemistry dataset from
Virginia Reservoirs LTREB

VR-LTREB Secchi time flag Quality flag used for Secchi data from Virginia Reservoirs
LTREB

Carey et al. (2024a)

VR-LTREB Secchi time definition Definition for quality flag used in Secchi data from Virginia
Reservoirs LTREB

VR-LTREB Secchi/YSI flag Quality flag used in the sonde-cast dataset from Virginia
Reservoirs LTREB

Carey et al. (2024a)

VR-LTREB Secchi/YSI definition Definition for quality flag used in sonde-cast dataset from Vir-
ginia Reservoirs LTREB

VR-LTREB Chl a flag Quality flag used in the filtered chlorophyll a dataset from
Virginia Reservoirs LTREB

Carey et al. (2024c)

VR-LTREB Chl a definition Definition for quality flag used in the filtered chlorophyll a

dataset from Virginia Reservoirs LTREB

NWT WQ flag Quality flag used in water quality datasets from NWT-LTER McKnight et al. (2021, 2023)

NWT WQ definition Definition for quality flag used in water quality datasets from
NWT-LTER

NWT HF flag Quality flag used in high-frequency datasets from NWT-LTER Johnson et al. (2024a–d)

NWT HF definition Definition for quality flag used in high-frequency datasets from
NWT-LTER

NEON flag Quality flag used in NEON datasets NEON (2024a∗–f, 2024h, i)

NEON definition Definition for quality flag used in NEON datasets
∗ LakeBeD-US lists the maximum depth of a lake for Secchi depth when the Secchi depth hits the bottom. Secchi data from NEON (2024a) list when the disk hits the lake bottom
and the maximum depth measured but reports a missing value for Secchi when this happens. In these cases, LakeBeD-US lists the maximum depth as the Secchi depth and applies
a flag indicating this substitution was made. This flag does not originate from NEON (2024a).
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Table A4. Metadata for LakeBeD-US: Computer Science Edition. All possible columns from the high- and low-frequency datasets and
1D and 2D variables are listed.

Column name Description/water quality variable Units Dimensionality

datetime Time of the observation in the lake’s local time
flag Quality flag for the observed value
depth Depth of the observed value m
chla_rfu Chlorophyll a RFU 2D
chla_ugl Chlorophyll a µgL−1 2D
do Dissolved oxygen mgL−1 2D
fdom Fluorescent dissolved organic matter RFU 2D
temp Temperature °C 2D
phyco Phycocyanin RFU 2D
tp Total phosphorus µgL−1 2D
drp Dissolved reactive phosphorus µgL−1 2D
tn Total nitrogen µgL−1 2D
no2 Nitrite as nitrogen (NO2-N) µgL−1 2D
no3 Nitrate as nitrogen (NO3-N) µgL−1 2D
no3no2 Combined nitrite and nitrate as nitrogen (NO2++NO3-N) µgL−1 2D
nh4 Ammonium as nitrogen (NH4-N) µgL−1 2D
dic Dissolved inorganic carbon mgL−1 2D
doc Dissolved organic carbon mgL−1 2D
poc Particulate organic carbon mgL−1 2D
par Photosynthetically active radiation (light) µmolm−2 s−1 2D
secchi Secchi depth m 1D
inflow Surface water inflow into the lake ms−1 1D

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-3141-2025-supplement.
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