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An improved understanding of root vertical distribution is crucial for assessing
plant-soil-atmosphere interactions and their influence on the land carbon sink.
Here, we analyze a continental-scale dataset of fine roots reaching 2 meters
depth, spanning from Alaskan tundra to Puerto Rican forests. Contrary to the
expectation that fine root abundance decays exponentially with depth, we
found root bimodality at ~20% of 44 sites, with secondary biomass peaks often
below 1 m. Root bimodality was more likely in areas with low total fine root
biomass and was more frequent in shrublands than grasslands. Notably, sec-
ondary peaks coincided with high soil nitrogen content at depth. Our analyses
suggest that deep soil nutrients tend to be underexploited, while root
bimodality offers plants a mechanism to tap into deep soil resources. Our
findings add to the growing recognition that deep soil dynamics are system-
atically overlooked, and calls for more research attention to this deep frontier
in the face of global environmental change.

Terrestrial ecosystems face a pressing challenge due to increasing
atmospheric CO, concentration: how can land plants satisfy their
increasing nutrient demand'™ and consequently sustain the terrestrial
carbon sink*’? A central piece to this puzzle is the ecology of plant
roots. Plant roots not only are key to the uptake of growth-limiting soil
resources®, but are also central to soil carbon input through root
turnover® ' and carbon loss through priming>*,

Recent studies have greatly improved our understanding of plant
roots through the study of their “traits”, ranging from morphological
traits such as root diameter™ to root-symbiont relationships such as
mycorrhizal colonization rate'*?°, in part thanks to the rise of publicly
available harmonized root trait data®*. However, these trait data
mostly reflect micro-scale properties of individual root segments (e.g.,
root diameter, root nitrogen concentration). A rooting-system level
understanding of how these roots are distributed throughout the soil

matrix still lags far behind (but see ref. 24), limiting our ability to scale
up local, trait-based measurements to ecosystem-scale properties.

In particular, the ecology of deep fine roots (>1m depth) is per-
haps the least understood component of root ecology due to the dif-
ficulty in sampling them®?. Previous studies have reported the
importance of deep fine roots in aiding plants to take up deep water*°,
tap into deep soil nutrient reservoirs® and convert photosynthetic
carbon into deep soil organic matter with high efficiency®. Yet, despite
the importance of deep fine roots, our decades of understanding of
plant rooting systems has been mostly confined to the top 5-100 cm*
due to the paucity of deeper fine root data***.

The recently established National Ecological Observatory Net-
work (NEON hereafter) uniquely addresses this data gap®. First and
most importantly, the NEON soil megapit data (Methods) reaches an
impressive depth of 2 meters below the surface, allowing us to
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examine fine roots to an unprecedented depth (Supplementary Fig. 2,
Supplementary Table 1). Second, the NEON megapit root data are
coupled with data on soil nutrients, soil physical properties, and soil
moisture, making it possible to link root distributions to various
abiotic factors. Third, the same standardized sampling approach is
repeated across 44 sites ranging from Alaskan tundra to Puerto Rican
neotropical forest®®, enabling us to perform continental scale analysis
across a range of ecosystem types and climate zones.

Leveraging these unique strengths of the NEON dataset, in this
work, we address three central questions regarding the ecology of
deep roots: (1) How does the abundance of fine roots change with
depth? (2) What are the factors that impact the distribution of fine
roots with depth? (3) Are nutrients in deeper soils equally, under-, or
over-exploited by fine roots compared with surface soil? We find
widespread occurrences of fine-root bimodality across ecosystems,
with nearly 20% of sites showing this previously undocumented pat-
tern. This bimodality is linked to lower total fine-root biomass and the
presence of deeper nitrogen-rich soil layers, suggesting that subsoil
nutrients are systematically under-exploited by fine roots.

Results and discussion

Deep sampling reveals unexpectedly widespread root
bimodality

We first examined the distribution of fine-root biomass along soil
profiles up to 2m depth. Unexpectedly, we frequently observed
bimodal distributions of fine-root abundance (i.e., dry root biomass
per volume), which differs from the default expectation of
exponential-decay distribution**%, In Fig. 1, we show the fine-root
distribution at site SCBI (Smith Conservation Biology Institute NEON)
as an example of root bimodality, in contrast to the typical unimodal
exponential-decay at site YELL (Yellowstone National Park NEON). The
bimodal SCBI site’s secondary peak of fine root biomass is found well
beneath the soil surface (-1.3m, Supplementary Table 1), and well
beyond the 30 ¢cm or rarely 1m depth where most sampling efforts
St0p22'34.

What’s more, this surprising phenomenon of bimodal rooting
distribution is widespread across the continental US, displaying no
apparent patterning with regards to spatial clustering (Fig. 1c; bimodal
sites in red, unimodal in blue). We estimate that 9 out of 44 (~20%)
sites in the NEON dataset have bimodal root distributions (see Meth-
ods). It is especially noteworthy that all of these bimodal sites feature a
secondary root peak deeper than 60 cm (with 33% deeper than 1 m;
Supplementary Table 1), meaning these sites would not have been
classified as bimodal using more common, shallower sampling depths.

As a natural phenomenon, bimodality has been widely spotted
across multiple science disciplines: the bimodal body mass of African
weaver ants®, the bimodal mycorrhizal association in tropical
rainforest'’, the distribution of water vapor in Earth’s atmospheric
system*?, all the way to the color and shape distribution of galaxies in
our cosmos*. The observation of bimodality often indicates the
coexistence of two contrasting regimes/processes, of which the
underlying mechanism is so far unaccounted for, raising the question
of what process can give rise to the observed root bimodality.

Intuitively, if there exists a singular mechanism underlying all
these bimodal root distributions (9 out of 44 NEON sites), there is a
good chance we can detect the mechanism using statistical tools. In
reality however, many processes can potentially cause bimodality of
fine roots. For instance, the presence of a buried soil horizon rich in
nutrients, surface drought coupled with presence of water supply in
deeper soil, the presence of certain species that specialize in foraging
for deep soil resources, and ecosystems that have documented binary
niche partitioning*>**, to name a few. The potential multi-cause of
bimodality and the inherent heterogeneity of edaphic conditions
might limit our ability to derive an universal explaining mechanism.
But failure to pin down a singular universal cause would then suggest
that different NEON sites might operate under very different rules and
bimodality might be due to distinct site-specific mechanisms. In the
next two sections, we evaluate how root bimodality is linked to a range
of factors, across and within the NEON sites.
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Fig. 1| Example rooting depth profiles and the widespread bimodal rooting
distribution across the NEON network. a An example depth profile (YELL, Yel-
lowstone National Park NEON) of the classical exponential decay of root abundance
with increasing depth. b An example depth profile (SCBI, Smith Conservation
Biology Institute NEON) of a bimodal rooting distribution shows a secondary peak
of root biomass far beneath the soil surface. Note that the root abundance is
standardized based on the maximum abundance to facilitate visualization and

cross-site comparison. Error bands represent the 95% confidence intervals around
LOESS fits (solid black), with red fill denoting bimodal distribution and blue
denoting the unimodal exponential decay. ¢ The spatial distribution of rooting
profiles across 44 NEON sites (R package “maps v3.4.2”). Detailed site descriptions
can be found in Supplementary Table 1 along with all 44 rooting profiles (Fig. S2).
Source data are provided as a Source Data file.
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Fig. 2 | Root bimodality predicted by site-level factors. a Feature importance
ranking from a random forest classification model (Methods) identify total fine root
biomass (g/m?) as the most important factor in predicting the modality of a site. Of
these 12 factors (see Methods, site-level factors), land cover is the only categorical
variable, the rest are continuous. The features in the orange bars are highlighted in
(b, ¢). b Unimodal sites (=35, 990 g/m?) have nearly 3 times more root biomass
than that of bimodal sites (n=9, 368 g/m2; two-sided Student’s t-test, p = 0.004).
Note that y axis is on logarithmic scale. ¢ Site modality (bimodal vs. unimodal) are
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not independently distributed across vegetation types (forest in green, grassland in
blue, shrubland in purple, cultivated in red). Bimodal sites are more frequently
associated with shrubland but less with grassland (two-sided chi-square test,
p=0.019, X*=9.6). In each box plot, the lower and upper bounds of the whiskers
denote minima and maxima, the center line denotes the median, and the lower and
upper bounds of the boxes represent the 25% and 75% quantiles, respectively.
Source data are provided as a Source Data file.
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Fig. 3 | Root bimodality explained by within-site depth-level factors.

a, b lllustration of a unimodal distribution (a) and a bimodal distribution (b) of
property Y (root biomass in this case). Three depths derived from bimodal dis-
tribution are highlighted with filled dots: primary mode depth (Do), antimode
depth (D,), and secondary mode depth (D,) (Methods). Using a given property
value (Y) at depth D; and D,, we can calculate ¢ as the ratio of Y(D,) and Y(D,).

¢ Comparison of ¢ (root biomass) across unimodal (n = 35) and bimodal (n = 9) sites

(two-sided Welch's t-test, p=2.4e-06). d Comparison of ¢ (soil nitrogen con-
centration) across unimodal (n =27) and bimodal (n = 7) sites (two-sided Welch’s t-
test, p = 0.013). Note that ¢ is unitless. In each box plot, the lower and upper bounds
of the whiskers denote minima and maxima, the center line denotes the median,
and the lower and upper bounds of the boxes represent the 25% and 75% quantiles,
respectively. Source data are provided as a Source Data file.

Bimodality linked to site-level factors

We first analyzed whether the presence of root bimodality is linked to
site-level features across all NEON sites. We built a classification model
that takes into account 12 site-level features (Methods, Fig. 2a, S3) to
examine the predictive power of each feature for bimodality. We chose
arandom forest algorithm for our classification model because (1) it is
robust to the presence of outliers and nonlinear relationships and (2) it
has a built-in validation mechanism that is particularly valuable for our
small sample size (44 NEON sites). The resulting best performing
classification model achieved an overall accuracy of 64% (correctly
predicting the modality of 28 out of 44 sites), with a 66.7% accuracy for
predicting bimodal and 63% accuracy for predicting unimodal sites.
The importance ranking of features (Fig. 2a) from this classification
model identifies total fine root biomass (g/m? per square meter sur-
face to maximal pit depth) as the most important predictor of
bimodality, followed by gross primary production (GPP), and a range
of other features.

Out of the 12 factors analyzed, we selected two (one continuous
and one categorical) to visualize differences among sites associated
with bimodality in more detail (see Supplementary Fig. 4 for the other
10 factors). Figure 2b reveals that unimodal sites have nearly 3 times
total fine root biomass compared to that of bimodal sites (990 vs.
368 g/m?). This pattern is rather unexpected yet significant despite the
small sample size (p=0.004, student’s t-test). We also show that site
vegetation cover is associated with site modality (Fig. 3c; p=0.019,
x>=9.6; Methods). While the majority of bimodal sites are forested,
bimodality is more frequently associated with shrublands than with
grasslands. We also explored whether classifying sites based on growth
forms (woody vs. herbaceous) would help explain the occurrence of
bimodality. Due to the small sample size (V=44), we did not find
significant evidence to support an association between bimodality and
growth form (p=0.43, x*=0.98). However, that doesn’t rule out the
possibility of growth-form playing an important role. Our analysis thus
calls for more extensive sampling efforts.
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When we removed total fine root biomass from our predictive
model, the resulting model had little predictive power, suggesting that
no environmental factor is a universal cause for root bimodality across
all sites. This result, however, does not rule out the possibility that
these factors might be important at each individual site. In fact, the
finding that bimodality is strongly linked to root biomass suggests that
factors that can induce low root biomass might be important for
inducing root bimodality (e.g., high aridity, low GPP, low soil pH,
inherent species differences), but the specific cause of low root bio-
mass at each site can be different.

Water- or nitrogen- driven: a depth-level analysis of bimodality
We next zoom into within-site factors along the soil depth profile (i.e.,
depth-level) to examine whether soil nutrient concentrations and/or
soil moisture may play a role in the emergence of root bimodality. To
quantify the degree of bimodality in root biomass and its associated
predictors, we devised a signature metric ¢ defined as the ratio of
Y(D,) and Y(D;) where D, is the depth of secondary root biomass
mode, D; the antimode (Do for primary mode, see Fig. 3b), and Y
denotes properties such as root biomass density, soil moisture, soil
nutrient content, etc. (Fig. 3a, b).

By the definition of bimodality, when we calculate ¢ for root
biomass across 44 sites, bimodal sites have significantly higher ¢ value
than unimodal sites (Fig. 3c; p=2.4e-6, Student’s t-test). When we
extend this analysis to a range of soil conditions (nutrient content, soil
texture, soil moisture, etc.), our results only identify an analogous
pattern in soil nitrogen concentration: bimodal sites contain sig-
nificantly more nitrogen at depth D, compared with the default
expectation (Fig. 3d).

Two alternative mechanisms might explain the presence of a
nitrogen rich layer that coincides with the secondary peak of root
biomass: the “nitrogen-driven hypothesis” and the “water-driven
hypothesis”.

For the “nitrogen-driven hypothesis”, we speculate that the pre-
sence of nitrogen in the soil can induce fine root growth. It is not
uncommon that nutrient concentrations can feature a secondary peak
in deep soil due to a number of factors, such as weathering of primary
rock (albeit low concentrations***%), accumulation of nutrients beyond
the typical root uptake zone*®, and the presence of buried soil horizons
rich in nutrients*’. In turn, these deep nutrient anomalies can trigger
the growth of fine roots which are responsible for foraging for limiting
nutrients. This ability of roots to respond to nutrient cues has been
extensively demonstrated by physiology literature looking at root
production in response to localized chemical cues*®, or in response to
heterogenous nutrient patches in the soil matrix*.

However, the presence of deep nitrogen-rich layers could also be
the result —instead of the cause— of the abundant fine roots, which
might be produced to forage for other limiting resources such as water
(“water-driven hypothesis”) or phosphorus. It is well known that the
presence and turnover of fine roots can build up soil organic matter
and consequently soil nitrogen®*. It is thus possible that the nitrogen
layer can be caused by the decay of water-seeking or phosphorus-
seeking fine roots.

Potentially due to the limited depth-resolution of soil moisture
sensors (Methods), we didn’t find definitive evidence that supports the
presence of a soil moisture peak coinciding with the presence of a
secondary root peak. Specifically, when we analyzed long-term
dynamics of soil moisture (¢pseii moisture) between unimodal vs. bimo-
dal sites, we found no meaningful difference (Supplementary Fig. 5;
Methods). In evaluating whether surface drought might induce
bimodality, an in-depth look at surface soil moisture (at Do) did not
render a consistent difference between bimodal vs. unimodal sites
(Supplementary Fig. 6). However, in natural ecosystems, fine roots are
very plastic and responsive to localized and temporally brief supply of
water”, It is thus entirely possible that the lack of support for the

“water-driven hypothesis” was simply due to low spatial resolution of
soil moisture data.

The “nitrogen-driven hypothesis” and the “water-driven hypoth-
esis” do not have to be mutually exclusive. After all, the process of
nitrogen mineralization — microbial release of available nitrogen from
soil organic matter—is often limited by water availability*>. Moreover, it
is very likely that different mechanisms (water, or different types of
nutrients) might be causing bimodality at different sites. For instance,
we didn’t find statistical support for phosphorus driving root bimod-
ality, yet we cannot rule out the possibility of foraging for phosphorus
being the cause of root bimodality at certain NEON sites, especially
because only total rather than available phosphorus was measured at
the 44 sites. Future studies with higher spatial resolution, especially
controlled experiments, might help us address these unresolved
questions.

Implications of root bimodality for subsoil nutrients and carbon
To evaluate the potential impact of root bimodality on plant resource
uptake, we next analyzed the spatial distribution of soil nutrients in
relation to the vertical distribution of roots. We choose to use root
biomass as a surrogate for root uptake as some biomass proliferation
represents a direct plant investment for resource acquisition. In nat-
ural settings, however, the realized uptake rate often depends on
nutrient availability in the soil solution®. But the use of root biomass
provides a good estimate of resource uptake potential, as one would
expect strong correlation between root biomass and realized nutrient
uptake when averaged over time and space. Alternative metrics for
root uptake also include root surface area and root length (not avail-
able in our dataset); both correlate with root biomass.

When expressed relative to the abundance of fine root biomass
(see Methods), relative soil nutrients appear to increase in abundance
with increasing depth. For example, the relative phosphorus (P)
abundance from site “YELL” (Yellowstone National Park NEON)
increases with depth (Fig. 4a; =0.85), indicating that subsoil phos-
phorus is becoming relatively more abundant from the perspective of
the roots.

We can expand the example analysis in Fig. 4a to all 44 NEON sites
and across four major soil nutrients: nitrogen (N), phosphorus (P),
potassium (K), and calcium (Ca) (Supplementary Figs. 7-10). We can
summarize the exponents across all sites for each individual nutrient,
with each datapoint in Supplementary Fig. 11 corresponding to the
slope value of a given NEON site (for example, 0.013 in Fig. 4a for P at
YELL). Despite considerable variation across sites, our results clearly
identify a general trend across the unimodal sites similar to what is
shown in Fig. 4a: root abundance decays relatively faster than nutrients
with increasing depth, leading to increasing relative nutrient abun-
dance (i.e., positive exponent).

However, the presence of bimodal root distribution seems to
disrupt the aforementioned general trend: the subsoil relative nutrient
concentration in bimodal site (red area in Fig. 4b, site SCBI) is dra-
matically lower compared to the expectation set up by the unimodal
site (red area in Fig. 44, site YELL). And consequently, the goodness of
regression fit is much poorer for bimodal sites across all nutrient types
(Supplementary Fig. 12).

Our finding that soil nutrients become relatively more abundant
relative to root biomass with increasing soil depth suggests that sub-
soil resources might be systematically under-exploited by plant roots
(Fig. 4a, Supplementary Fig. 11). This finding is puzzling given how
frequently nitrogen®*, phosphorus®, potassium®, and calcium”** can
limit the productivity of terrestrial ecosystems, pointing to some
fundamental constraints that limit plant roots to exploit subsoil. For
example, many studies have argued that plants preferentially use
resources from shallower depths due to: 1) the high carbon cost
associated with growing deeper root systems, 2) morphologically-
induced hydraulic limitations, 3) the evaporative demand of acquiring
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Fig. 4 | Relative nutrient concentration changes with soil depth in an unim-
odal and a bimodal site. a We calculated relative nutrient concentration by
dividing absolute nutrient concentration by the root biomass. For ease of com-
parison across sites, we rescaled relative root biomass by dividing relative biomass
using topsoil value such that topsoil (Depth=0 cm) relative nutrient concentration
is 1(i.e., dimensionless, see Methods). Using YELL (Yellowstone National Park
NEON) as an example, both soil P content and root abundance decrease expo-
nentially with increasing soil depth, but root abundance decays at a faster pace with
depth. The resulting relative P concentration (black circle) increases exponentially
with increasing soil depth (exponent = 0.013). This pattern suggests that as soil

depth increases, nutrients become comparatively more abundant or under-
exploited in the subsoil (red area 1). Note that the Y axis is in logarithmic scale and
the goodness of fit () applies to the corresponding linear regression (log;o(y)
instead of y). Gray ribbon represents the 95% confidence intervals around linear
regression. b Using SCBI (Smith Conservation Biology Institute NEON) as an
example, the presence of bimodal root distribution generates a region of low
relative nutrient concentration in the subsoil (red area 2). Given the presence of
root bimodality rendering a linear regression (on log scale) unfit for this analysis,
we used loess fit (span=0.5) to capture the nonlinearity. Gray ribbon represents the
95% confidence interval for loess fit. Source data are provided as a Source Data file.

resources from deeper depths, and 4) declining oxygen concentra-
tions impeding root growth at depth*®*°-,

However, the discovery of bimodal root distribution across a
range of sites suggests otherwise (Fig. 1, Fig. 4b). In fact, the presence
of root bimodality indicates that root depth distribution can be flexible
and opportunistic: given the right condition, plants can send abundant
roots to deep soil. Numerous previous studies corroborate this argu-
ment. For example, Iversen et al. (2010) reviewed the change of root
distribution in response to elevated CO, treatment®, and discovered
that roots can “dig deeper” with increased carbon supply (and conse-
quently higher nutrient demand). Dry sites or sites with high season-
ality in precipitation have also shown evidence of flexible bimodal
distributions wherein the depth of water uptake becomes deep in the
dry season and shallow in the wet season® %,

The carbon consequence of enhanced root growth in deep soil
can be far-reaching™. On the one hand, we would expect enhanced
input of new carbon due to root turnover. Deep soil carbon relies much
more on root carbon input than aboveground litter input®°, And
once root carbon is deposited, the carbon decomposition rate can be
60% slower compared with the rate derived from the surface soil™®, in
part due to the combined effect of lower microbial community density
and increased mineral protection” 7, Alternatively, we might also
expect enhanced decomposition of old carbon induced by root pro-
duction at deeper depths: physical disturbance of carbon-mineral
complex™, impacts on the soil food web”, and enhanced microbial
activities through priming effects’®’® can lead to potential destabili-
zation of subsaoil.

The implications of our finding can be profound especially against
the backdrop of rapid global change. An extensive literature examines
the role of increasing CO, in driving an increasing degree of plant/
ecosystem scale nutrient limitation**’*: plants are getting increased
supply of carbon but increasingly less nutrients as more and more
nutrients are locked up in plant biomass. The resulting progressive
nutrient limitation has fueled the fear of a saturating land carbon sink*
due to the inability of the ecosystem to fix additional carbon®*’. Our
analyses thus suggest plants can potentially invest an increasing
amount of their photosynthates to tap into the previously under-
exploited soil nutrient pool as the plant cost-benefit equation is being
shifted by global warming and rising CO,.

Taken together, these findings emphasize the need for an
improved understanding of the spatial distribution of plant roots,
which is critical for understanding the nutritional life of land plants,
and may help to predict the future trajectory of the land carbon sink.
We report a surprisingly widespread occurrence of root bimodality
across a broad range of ecosystems. This new understanding of the
vertical distribution of plant roots could help us to better scale up
point measurements to the entire soil profile, a knowledge gap espe-
cially relevant to the study of ecosystem nutrient cycles and the land
carbon sink. In addition, our observation can inform the development
of the next-generation mechanistic vegetation models, which for
decades have relied on relatively simplistic representation of roots (if
any). But perhaps more broadly, our findings add to the growing
recognition that the field of soil ecology and ecosystem ecology might
have systematically overlooked dynamics and phenomena taking
place in the deep soil; our results call for more research attention to
this deep frontier in the face of rapid environmental change.

Methods

NEON mega-pit and associated soil dataset

At each terrestrial field site, NEON collected soil at a single, temporary
soil pit (i.e., the megapit). The pit was selected to be in the locally
dominant soil type and within a few hundred meters of the instru-
mented NEON tower and soil sensors. At non-permafrost sites the soil
pit was 2m deep or extended to bedrock or other restrictive feature,
whichever was shallower. Since soil sensors were placed up to 3 m deep
to monitor changes in permafrost at some Alaskan sites, these soil pits
were up to 3 m deep (yet note that root sampling only extends to 2 m
regardless of pit depth, Supplementary Fig. 2). For each soil pit, 5 classes
of measurements and samples were collected: (1) Soil profile descrip-
tion, (2) Photos showing entire soil profile, as well as close-ups of each
horizon, (3) Terrestrial-Instrument-System (TIS) soil archive and bio-
geochemistry samples collection from each horizon, (4) Bulk density
sample collection from each horizon, (5) Intact soil block sample col-
lection (< 6 per soil pit). The resulting soil physical and chemical prop-
erties from these samples (DP1.00096.001), includes data on the soil
taxonomy, horizon names, horizon depths, soil bulk density, coarse
fragment content, texture (sand, silt, and clay content), pH, electrical
conductivity, and total content of a range of chemical elements in the
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<2 mm soil fraction for each soil horizon. More detailed methods can be
accessed from the official user guide and protocols (https://data.
neonscience.org/data-products/DP1.00096.001).

NEON mega-pit root dataset

The megapit described above is sampled once during construction
and represents a point in time. Each pit has three vertically oriented
sampling profiles up to 2 meters. From the surface to 1 m, a sample of
soil is removed for each 10 cm depth increment. From 1m to 2m
depth, each profile is divided into 20 cm depth increments. Roots are
then sorted into two root statuses (alive or dead) and two size classes
(coarse roots and fine roots diameter). Root biomass, carbon and
nitrogen content, and 13C and 15N ratios of roots sampled were
analyzed. This root data was available for the majority but not all of the
terrestrial NEON sites (44/47). More detailed methods can be accessed
from the official user guide and protocols (https://data.neonscience.
org/data-products/DP1.10066.001).

Throughout our analyses, we have focused on the most metabo-
lically active component of the rooting system, the fine roots, due to
their central role in water and nutrient uptake®, their fast turnover and
thus central role in soil carbon dynamics*>*°%', However, we do need to
mention that the NEON terrestrial sites (mega-pit project in particular)
used two operational definitions of fine roots: <2 mm and <4 mm. This
discrepancy was caused by an accident in how different NEON tech-
nicians were using the tools to classify root diameters in the early days
of the observatory. According to Supplementary Table 1, there are
30 sites that define fine roots as <2 mm while the other 14 sites use
<4 mm as the cutoff. To address this issue, we conducted two side
analyses that suggest that our main findings are not sensitive to the
discrepancy of fine root definition. Our side analyses are as follows:

First, we analyzed literature data on the correlation between 2 mm
and 4 mm root classes. Our analysis (Supplementary Note 1) reveals
that biomass calculations based on different cutoffs are in fact highly
correlated (R? > 0.99) such that root biomass based on 2 mm definition
(Bomm) can be linearly rescaled to root biomass based on 4 mm defi-
nition (B4mm), Or vice versa. On average, for each 1 gram of fine root
observed using the <2 mm standard, one would observe ~1.3 gram of
fine roots if they were to use the <4 mm standard (Supplementary Note
1). And given our main results are based on rescaled relative root
biomass, the arbitrary choice of size cutoff should have little to no
effect on the results. In fact, our analyses (Supplementary Note S1)
suggest the possibility that findings of bimodality in fine roots (<2 mm
or <4 mm cutoff) might be extended to other root classes that are
harder to sample given their high degree of correlation. Second, we
found that our main findings remain unaltered even if we limit our
analysis to only include sites with the <2 mm standard (detailed in
Supplementary Note 1, Supplementary Fig. 1).

Harmonization of depth-based root data and horizon-based soil
properties

The mega-pit root biomass dataset included measurements of root
biomass and associated root chemical properties at specific depth
increments across various sites (1 data point per 10 cm of soil depth for
the first meter and per 20 cm in the second meter of soil, in total 15
data points). However, characterization of soil horizons differ across
sites. The horizon-based soil property database is about half the spatial
resolution of the root biomass database. For example, the site YELL
(Yellowstone National Park NEON) has a total of 8 horizons char-
acterized (i.e., 8 data points): A (center depth 2 cm), Btl (16.5 cm), Bw
(37 cm), Bt2 (56 cm), Btkl (82.5cm), Btk2 (112 cm), Btk3 (143.5cm),
Btk4 (180.5 cm), compared to the 15 root samples. In order to more
robustly compare these two datasets, we “standardized” the horizon-
based soil property database to a depth-based format®. For instance,
for a given site, if the depth interval [20-30 cm] falls completely within
a single horizon (for example B horizon), then we simply populate the

depth interval [20-30 cm] with soil property data from that horizon.
However, if the depth interval [20-30 cm] contains a mixture of hor-
izons (for example, 3 cm of A, 5cm of B, 2 cm of C), we will populate
that depth interval with depth-weighted average soil properties based
on the specific horizon composition.

Soil moisture sensor data

We downloaded soil moisture time series from all sites with data ran-
ging between 2018-Sep and 2021-Aug (3 year span). Soil sensor mea-
sures soil water content/ion content across a 10cm vertical
measurement zone (5 cm above and below). Sensor depth represents
the center of the measurement zone, at 6 cm, 16 cm, 26 cm, 56 cm,
86 cm, 116 cm, 146 cm, 176 cm (exact depth varies across sites, exact
depths can be found in our data deposit). To ensure data coverage,
multiple soil moisture sensors were installed at each depth across
different profiles within each site. Two temporal resolutions were
provided from the soil moisture data product: 1 min resolution vs.
30 min. Given plant rooting systems are unlikely to be sensitive to
1min-level soil moisture variation, we used soil moisture sensor data
that was averaged at 30 mins (DP1.00094.001)%.

Determining site modality

We first selected live fine roots from all profiles across all sites (3
profiles per site) and merged profile level data into a site level mean
root biomass density (biomass per volume of soil, hereafter “root
biomass”) at each depth. We then translated biomass data (double
precision) into frequency of counts (integer) in order to process the
modality of biomass depth distribution. Using R package “multimode”,
we can derive the number, magnitude, and location of mode/modes in
a distribution®*®, Given the root sampling depth is not continuous
according to NEON sampling procedure, we used a bandwidth of 15 cm
for kernel density estimation such that the algorithm would not pick
up each sampling depth as a distinct mode. We also defined a
threshold for classifying bimodal distribution: the secondary peak has
to be equal or larger to 10% of the magnitude of the primary peak.
Increasing this cutoff value will select for sites with more prominent
secondary peaks but leaves few sites qualifying. In theory, our
approach allows for detection of more than 2 modes, but in practice, a
maximum of 2 modes was detected (especially after applying the
threshold for mode magnitude). For bimodal distribution, depth
locations of each mode and antimode are recorded as (Do, D, D) for
primary mode, antimode, secondary mode respectively.

Site-level factors

We downloaded the NEON field site information table from the official
NEON website (https://www.neonscience.org/field-sites/explore-field-
sites). From this information table, we extracted the following site-
level factors for our classification model (detailed in Statistics): (1)
ecosystem type, (2) ecoregion, (3) land cover type, (4) elevation, (5)
root biomass per profile, (6) mean annual temperature (MAT_C), (7)
mean annual precipitation (MAP_mm). We further expanded the site-
level climatic features by adding (8) annual temperature range (Tem-
pRange), (9) dry season precipitation (PrecipDry), and (10) precipita-
tion seasonality (PrecipSeas) from WorldClim (http://worldclim.org/
version2®®)); (11) aridity index and (12) potential evapotranspiration
(PET) from the Global-Aridity/PET geospatial database®. To comple-
ment the climatic factors, we compiled a range of site-level edaphic
features: (13) sand percentage (PercSand), (14) clay percentage (Perc-
Clay), (15) soil taxonomy (SoilTaxo), (16) soil acidity (SoilpH), (17)
average cation exchange capacity (SoilCEC), (18) soil carbon content
(SoilC) from the Soil Grids (https://soilgrids.org), and (19) soil organic
carbon of the top 30 cm (SOC30cm) from the Global Soil Organic
Carbon map (GSOCmapl.5, FAO). To approximate the site-level pro-
ductivity, we used site-level gross primary production to derive (20)
the long-term average GPP (GPP, 2000-2016)%. Our random-forest
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classification model (Statistics section) allowed us to evaluate the
feature importance score (Fig. 2) of each site-level factors and their
combined predictive power. We sequentially dropped the factors with
the smallest importance score until the combined predictive power
was maximized. The resulting 12 factors were visualized in Fig. 2 (2
factors) and Supplementary Fig. 4 (the remaining 10 factors).

Calculating ¢

We devised a profile-level metric ¢ that describes the ratio of property
Y(D,) and Y(D,) where D, identify the depth of secondary root biomass
mode, D, the antimode (D, for primary mode), and Y denote proper-
ties such as root biomass density, soil nutrient content, soil moisture,
etc (Fig. 3A, B). For unimodal sites (n =35) where antimode depth D,
and secondary model depth D, is not available, we prescribe
D; =70 cm, D2=100 cm that is consistent with the mean value from
across all bimodal sites (n=9).

For root biomass and soil nutrient content that is only sampled
once, we derive a single ¢ value per site. For soil moisture data how-
ever, we derive a time series of ¢ for soil moisture at each profile within
each site. The use of time series (instead one time point) would allow
us to examine the entire dynamics of soil moisture instead of just the
mean or median, as the root status we observe (at a single time point)
might be a response to a past short-period of soil moisture stress or
incentive. For each time series, we visualize the full frequency dis-
tribution of soil moisture and subsequently calculate a list of dis-
tribution metrics: mean, median, max, min, standard deviation,
coefficient of variance, 75th  quantile, 25th  quantile,
interquartile range.

The depth resolution of our soil moisture data resolution
(roughly, 6 cm, 16 cm, 26 cm, 56 cm, 86 ¢cm, 116 cm, 146 cm, 176 cm)
might not be ideal to distinguish D; and D, for certain sites. To com-
pensate for this low depth resolution of soil moisture, we additionally
examined the soil moisture dynamics of the surface sensor (6 cm) to
evaluate whether the presence of bimodality is a result of surface
drought.

Relative nutrient concentration

To calculate relative nutrient concentration in Fig. 4, we first trans-
formed the original nutrient concentration (N, P, K, or Ca) by dividing
them using the root biomass density (mg/cm?®) across all profiles of all
44 sites. For ease of cross-site comparison, we then rescaled the
resulting relative nutrient concentration using relative nutrient con-
centration at surface depth. The rescaled relative nutrient concentra-
tion is thus dimensionless, and the surface soil has an average value 1.

Statistics
We used the neonUtilities R package® to access the following NEON
data products: Root biomass and chemistry, Megapit

(DP1.10066.001)°° and Soil physical and chemical properties, Megapit
(DP1.00096.001)”". All NEON datasets used in our analyses are sum-
marized in Supplementary Table 2. We developed a classification
model based random forest algorithm (Fig. 2a; R package random-
Forest). Given the unbalanced nature of our dataset (9 bimodal vs. 35
unimodal sites), we need to make sure that we predict the minority
class (bimodal sites) equally well as the majority class (unimodal sites).
The default behavior of random forest algorithms will prioritize the
prediction accuracy of the majority class (thus maximizing overall
accuracy). As a result, we modified the default voting rule such that the
algorithm weighs more on the prediction accuracy of the minority
class. We next searched the best performing model (highest bimod-
ality prediction accuracy) by finding the best parameter combination
across a grid of conditions (num.trees = 500, mtry = 6, min.node.size =
3, sample.fraction = 0.3, seed = 123). The best performing model after
removing profile root biomass has the following parameter combina-
tion: num.trees = 500, mtry = 6, min.node.size = 3,sample.fraction =

0.3, seed = 123. The feature importance score shown in Fig. 2a is based
on mean decrease in Gini coefficient, a measure of out-of-bag cross
validated predictions. We sequentially dropped factors with the lowest
Gini coefficient (such as temperature range, dry season precipitation,
precipitation seasonality, etc.), when trimming the model would
enhance the overall performance of the model. We used t-test to
examine the feature differences between bimodal and unimodal sites
(Fig. 2b, Supplementary Fig. 4). We first visualize the distribution of
each feature splitted by modality and log;o transforms the data to
conform with normality. Then we used the F test to test equal variance
between the unimodal and bimodal group to determine the use of
Student’s (equal variance) or Welch’s t-test (unequal variance). We
used the ¥? test of independence to test the association between site
modality and site vegetation cover (Fig. 2c). Due to the small sample
size (N=44), we used the Pearson’s Chi-squared test with simulated p-
value (R base function chisq.test, simulate.p-value = true, 2000 repli-
cates). We used linear regression to fit the relationship between
rescaled relative nutrient abundance and depth (Fig. 4a, b). Rescaled
relative nutrient abundance is log;o transformed in all regression
analyses, consistent with our visualization. All statistical analyses were
performed using the R platform (R version 4.0.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is deposited at figshare (https://doi.org/10.6084/m9.figshare.
19525303). Source data are provided with this paper.

Code availability

R scripts are deposited together with associated data on figshare
(https://doi.org/10.6084/m9.figshare.19525303) and also available
from the corresponding author upon request (mingzhen.lu@nyu.edu).
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