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We report the design and theoretical analysis of Wannier-Stark ladders of diamond Lamb wave resonators
that feature mechanical compression modes with ultralow damping rates and host spin qubits with excellent
optical and spin properties. The degree of localization in the mechanical Wannier-Stark ladder, which is
determined by the ratio of coupling rate to frequency spacing between adjacent resonators, sets the effective

range of phonon-mediated coupling between spin qubits. Three nearest-neighbor coupling schemes with distinct
geometric configurations and a large range of coupling rates have been developed and analyzed. Additional
analysis on the effects of disorder indicates that the proposed Wannier-Stark ladder can be robust against realistic
experimental imperfections. The development of quantum networks of spin qubits with long-range connectivity

can open the door to the implementation of newly developed quantum low-density parity-check codes in a

solid-state system.

DOI: 10.1103/PhysRevA.110.062603

I. INTRODUCTION

Recent advances in quantum error correction (QEC)
codes, especially the development of quantum low-density
parity-check (qLDPC) codes, indicate that QEC codes with
long-range connectivity can overcome the high overhead of
QEC codes that only have the nearest neighbor connectivity,
pointing to a promising route toward low-overhead fault-
tolerant quantum computers [1-6]. These advances should
prompt the development of quantum hardware that features
long-range connectivity between qubits. For neutral atom ar-
rays, long-range connectivity between trapped atoms has been
demonstrated through dynamic reconfiguration of the atom
arrays [7].

Wannier-Stark ladders, a well-known phenomenon in
semiconductor physics [8—10], can provide a promising ap-
proach to developing on-chip quantum networks of qubits
with relatively long-range connectivity. Wannier-Stark ladders
and the closely related phenomenon of Bloch oscillations have
been experimentally realized in a variety of systems, includ-
ing semiconductor superlattices [11-13], atoms trapped in an
optical lattice [14,15], photonic waveguide arrays [16], and
more recently superconducting circuits [17]. For an electronic
Wannier-Stark ladder, an electron is subject to a periodic po-
tential and a constant electric field, leading to the localization
of the electron wave function as well as the formation of a
ladder of equally spaced energy levels.

A linear chain of mechanical resonators can be employed
for the realization of mechanical Wannier-Stark ladders. In
analogy to one-band nearest neighbor tight binding models
[18-20], a mechanical Wannier-Stark ladder can be charac-
terized by the frequency step or spacing F and the coupling
rate ¥ between adjacent mechanical resonators. The degree
of localization of the mechanical waves, which determines the
effective range of the coupling between individual resonators,
is determined by the ratio, n = k/F. The range of connec-
tivity can thus be controlled through suitable choices of the
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relative values of « and F. Relatively long or short connec-
tivity can also be realized in the same mechanical network.
In addition to one-dimensional (1D) networks, mechanical
Wannier-Stark ladders can in principle be extended to two
dimensional (2D) networks.

In this paper, we report the design and theoretical analy-
sis of mechanical Wannier-Stark ladders of diamond Lamb
wave resonators (LWRs). A LWR is a thin rectangular elastic
plate with free boundaries. Diamond LWRs protected by a
phononic band gap shield can feature fundamental compres-
sion modes with a GHz frequency and a mechanical linewidth
less than 100 Hz at 7~ 7 K [21], and can host spin defects,
such as nitrogen vacancy (NV) and silicon vacancy (SiV) cen-
ters that have excellent optical and spin properties [22-25].
These spin qubits can effectively couple to strain induced by
mechanical vibrations via the orbital degrees of freedom of the
color centers [26-28]. As a spin-mechanical system, diamond
LWRs can serve as an excellent building block for mechanical
quantum networks of spin qubits. Specific schemes for 1D and
2D quantum networks of diamond LWRs have been proposed
[29,30]. More general schemes of mechanical networks of di-
amond spin qubits for applications in quantum computing and
quantum simulations have also been theoretically investigated
[31-33]. For a network of spin-mechanical resonators, long-
range coupling between two given spin qubits is mediated by
mechanical vibrations, or phonons, and can be controlled with
processes, such as phonon-assisted (i.e., sideband) optical or
spin transitions driven by optical fields [34,35].

We have developed and analyzed three different schemes
to couple two adjacent diamond LWRs. The coupling can take
place near the nodes of the two LWRs (NN coupling), between
the antinodes of the two LWRs (AA coupling), or between the
antinode of one LWR and the node of the other LWR (AN cou-
pling). The three schemes can effectively enable a large range
of nearest neighbor coupling rates. Combinations of these
schemes can also enable the development of 2D mechani-
cal networks. We have investigated the strain distribution in
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FIG. 1. (a) Displacement pattern of the fundamental compres-
sion mode of a LWR with a relatively large ratio of length over width.
(b) The resonant frequency of the fundamental compression mode as
a function of the length and width of the LWR. (c) Schematic of a
direct acoustic transition between two spin states and a sideband spin
transition, which can be driven optically through a Raman transition
(not shown).

Wannier-Stark ladders of LWRs and have analyzed the effects
of disorders on the behaviors of the mechanical Wannier-Stark
ladders. These studies indicate that Wannier-Stark ladders of
LWRs with a wide range of connectivity are experimentally
feasible.

II. SPIN-MECHANICAL LAMB WAVE RESONATORS

A LWR features both symmetric and antisymmetric com-
pression modes (with respect to the midplane of the plate).
For the numerical analysis presented in this paper, we focus
on the fundamental compression mode. The maximum dis-
placements, i.e., antinodes of the fundamental compression
mode occur at the two short edges of the rectangular LWR,
while the node occurs at the line that bisects the LWR and is
parallel to the short edges, as illustrated by the displacement
pattern shown in Fig. 1(a). The frequency of the compression
mode is inversely proportional to the LWR length and depends
weakly on the LWR width [see Fig. 1(b)]. The frequency is
essentially independent of the LWR thickness. For the con-
struction of mechanical Wannier-Stark ladders, we can thus
vary the resonance frequency of a LWR by changing its length
for a relatively large F or width for a relatively small F.
Numerical calculations in this paper have been carried out
with a COMSOL Multiphysics software package. The diamond
parameters used are Young’s modulus of 1050 GPa, Poisson

ratio of 0.1, and mass density of 3515kg/m>. A thickness of
0.6 um is assumed for all the LWRs and connecting bridges.

Spin qubits in diamond can effectively couple to me-
chanical vibrations through the orbital degrees of freedom.
Specifically, strain induced by the mechanical vibrations can
result in mixing as well as energy shifts of relevant states.
As illustrated in Fig. 1(c), strain induced mixing of two spin
states can lead to a direct acoustic transition between the two
spin states, which has been used for mechanical quantum
control of spin states [36]. Strain-induced energy shifts can
lead to phonon-assisted transitions, i.e., sideband transitions
[see Fig. 1(c)], including sideband spin transitions driven by
optical fields through a resonant Raman process, as shown in
earlier experimental studies [34,35].

Both types of transitions can be employed for phonon-
mediated coupling between spin qubits in a mechanical
quantum network. For sideband transitions, we can enable
and control the coupling between two given spin qubits within
the mechanical coupling range by turning on and tailoring the
optical driving field for the respective spin qubits. For direct
acoustic transitions, spin qubits within the coupling range can
all couple to the relevant mechanical modes. In this case,
quantum interference techniques can in principle be used for
selective coupling between two given spin qubits [37].

III. COUPLING BETWEEN ADJACENT RESONATORS

To determine the nearest neighbor coupling rate in a me-
chanical Wannier-Stark ladder, we numerically calculate the
rate of coupling (which is half of the normal mode splitting)
between two LWRs with the same resonance frequency. The
top panel of Fig. 2 shows the displacement patterns of the
symmetric and antisymmetric normal modes of the coupled
resonators for three different coupling schemes. For the NN
coupling scheme, two bridges offset from the node of the
compression mode connect the two LWRs. Figure 2(a) shows
the dependence of the normal mode splitting on the bridge
length and width. The coupling rate also depends on the offset
from the node. We define the offset fraction as the distance
between the upper edge of the upper bridge and the lower
edge of the lower bridge over the length of the LWR. A
smaller offset leads to a correspondingly smaller coupling
rate. For relatively short and wide bridges, the coupling rate
increases monotonically with increasing width, as expected.
However, for relatively long and narrow bridges, the coupling
rate can exhibit nonmonotonic variations with the width and
length. Figure 2(a) shows, as an example, a strong increase of
the coupling rate with decreasing bridge width. This unusual
behavior is due to mechanical resonance related to the motion,
including the relative motion, of the two connecting bridges.

The AA scheme, for which a bridge connects the short
edges, i.e., the antinodes of the two LWRs, features coupling
rates that are much greater than those of the NN scheme. In
this case, large displacements of the short edges lead to cor-
respondingly large coupling rates between the two LWRs. As
shown in Fig. 2(b), the coupling rate increases monotonically
with increasing width and decreasing length of the bridge.
Note that the coupling rate for the AA scheme can reach a
large fraction of the LWR resonance frequency. In this case,
the overall frequency range of the LWRs in a relatively long
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FIG. 2. Normal mode splitting of two coupled LWRs as a function of the bridge length and width. The dimensions of the LWRs are 4.25 um
x 1.5 um. (a) Node-node coupling scheme, with a bridge offset fraction of 0.15. (b) Antinode-antinode coupling scheme. (c) Antinode-node
coupling scheme. The top panel shows the displacement patterns of the corresponding symmetric and antisymmetric normal modes, for which

the dimensions of the connecting bridges are 0.8 um x 0.2 ym.

Wannier-Stark ladder can approach the resonance frequency
of the LWRs involved.

A more moderate coupling rate between the two LWRs
can be achieved with the AN coupling scheme, for which a
bridge connects the node of a LWR to the antinode (i.e., short
edge) of the other LWR. Again, the coupling rate increases
with increasing width and decreasing length of the bridge
[see Fig. 2(c)]. Because of its orthogonal configuration, the
displacements for the two normal modes occur primarily in
one of the resonators, but not both simultaneously, which has
important implications for the corresponding 1D network, as
will be discussed later. Note that for relatively long connec-
tion bridges, the nearest neighbor coupling rate for the AA
and AN schemes can also depend sensitively on mechanical
resonances of the connection bridge.

The three coupling schemes discussed in this section can
also be used for the construction of 2D mechanical networks.
Because of its orthogonal geometry of connecting the short
edge of a LWR to the long edge of an adjacent LWR, the AN
scheme can play a special role in 2D mechanical networks.
Combinations of the three schemes with distinct geometric
configurations and a large range of coupling rates, spanning
from a few kHz to more than 100 MHz, can enable the devel-
opment of a rich variety of 2D mechanical networks.

IV. MECHANICAL WANNIER-STARK LADDERS

For a linear chain of mechanical resonators with nearest
neighbor coupling rate «, the normal modes of the mechanical
system can be described by

K(Mn,1 +un+1)+wnun = EUy, (1)

where w, and u, are the frequency and displacement ampli-
tude of the nth resonator (n = 0, =1, £2, ...), respectively,
and ¢ is the normal mode frequency. This equation is the same
as that for the 1D tight binding model. For resonators with

equal frequency spacing or step F, the solution is the Wannier-
Stark ladder, with &, = wg + aF (@ =0, £1, £2, ...). The
localized Wannier-Stark states, given in terms of the Bessel
function of the first kind, are [18-20]

U = (=1)""Jy_a(2c/F). 2

The degree of localization, which also sets the range of
connectivity for the mechanical network, is thus determined
by the ration = « /F.

In this section, we present a numerical analysis of mechan-
ical Wannier-Stark ladders of LWRs. Since spin-mechanical
coupling takes place through mechanical strain, our anal-
ysis will thus focus on the behavior of local mechanical
strain, 6V/V, instead of mechanical displacements. Note that
maximum strain occurs near the node of the mechanical
displacement. We will also analyze the effects of disorders,
which are inevitable in experimental implementations, on the
Wannier-Stark states.

Figure 3(a) shows the distribution of mechanical strain
in 1D chains of NN-coupled, AA-coupled, and AN-coupled
LWRs at a given normal mode resonance. The LWRs all
have the same dimensions as those used for Fig. 2 and fea-
ture a fundamental compression mode of 2 GHz. For the
NN-coupled as well as AA-coupled 1D chains, the sign of
8V/V alternates across the 1D chain. The AN-coupled 1D
chain, however, shows a characteristically different behavior.
Relatively strong strain occurs in either horizontally oriented
or vertically oriented resonators, but not simultaneously in
both types of resonators. For the AN coupling scheme, me-
chanical displacements in the two directly coupled resonators
are orthogonal to each other. In this case, a vertical res-
onator effectively mediates the coupling between two adjacent
horizontal resonators. Similarly, a horizontal resonator effec-
tively mediates the coupling between two adjacent vertical
resonators.
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FIG. 3. (a) Distribution of mechanical strain for 1D chains (from
top to bottom) of NN-coupled, AA-coupled, and AN-coupled LWRs,
all with the same dimensions of 4.25 um x 1.5 um, at a given nor-
mal mode resonance. The dimensions of the connecting bridges are
0.8 um x 0.2 um, with an offset fraction of 0.5 for the NN coupling
scheme. (b) Distribution of mechanical strain (absolute value) at the
node for a 1D chain of NN-coupled LWRs at a set of normal mode
frequencies, with F'= 10 MHz and « near 2.53 MHz. The dimensions
of the connecting bridges are 1 um x 0.1 pm, with an offset fraction
of 0.25.

Figure 3(b) shows the distribution of mechanical strain at
the node for a 1D chain of NN-coupled LWRs at a set of
normal mode frequencies, for which the LWR at the center
of the chain has the same dimensions as those used for Fig. 2.
The frequency spacing or step between adjacent LWRs is set
to 10 MHz. As the normal mode frequency shifts by one
frequency step, the corresponding position of the maximum
strain shifts by one LWR, which is a clear manifestation of
the Wannier-Stark ladder.

We can achieve the desired range of connectivity for a
1D mechanical network by varying n. Figure 4 shows the
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FIG. 4. Distribution of mechanical strain (absolute value) at the
node for 1D chains of NN-coupled LWRs with the same connection
bridges and with the frequency step F, indicated in the figure. The
dimensions of the connecting bridges are 0.8 um x 0.24 um, with an
offset fraction of 0.5. The nearest neighbor coupling rate « is near
21 MHz.

distribution of mechanical strain at the node for 1D chains
of NN-coupled LWRs with the same connection bridges and
with increasing F. The dimensions of the LWR at the cen-
ter of the 1D chain are the same as those used for Fig. 2.
For relatively small 7, the strain decays quickly away from
the central LWR, with the connectivity limited to a few res-
onators. At relatively large 5, the strain can spread over an
increasing number of LWRs and can exhibit an oscillatory
spatial distribution. These states can enable relatively long-
range connectivity for the mechanical network. Note that the
oscillatory behavior is expected from the Wannier-Stark states
given in Eq. (2).

The localization properties of the mechanical normal
modes can be further characterized by the inverse participa-
tion ratio (IPR), which is defined as [19,38]

> Isa(e)l*
IPR(g) = "—2 3)
(S Isnerr)
where s,(¢) is the maximum strain in the nth resonator for a
normal mode with frequency ¢. For an extended state, the IPR
is of order 1/L, with L being the size (i.e., the total number
of LWRs) of the 1D system. The strongest localization corre-
sponds to the maximum possible IPR value of 1. Figure 5(a)
plots IPR for 1D chains of NN-coupled LWRs as a function of
the frequency step between adjacent resonators and as a func-
tion of the width of the connecting bridges. The dimensions
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FIG. 5. (a) IPR of 1D chains of NN-coupled LWRs as a function
of the frequency step and the bridge width. The bridge length is
0.6 um, with an offset fraction of 0.5. (b) The same as (a) except
that the bridge dimensions are 0.8 um x 0.24 wm and the resonator
length randomly fluctuates with a Gaussian distribution and with a
standard deviation of o.

of the LWR at the center of the chain are the same as those
used for Fig. 2. The total number of resonators in the chain
is 25. The IPR calculations show increasing localization with
increasing frequency step between the adjacent resonators and
with decreasing bridge width (thus decreasing nearest neigh-
bor coupling rate). The congestion area in Fig. 5(a) occurs
near the onset of oscillatory behavior in the spatial distribution
of mechanical strain. The IPR value of the congestion area
corresponds to a localization length of four resonators, mid-
way between three resonators (with no dip in the distribution)
and five resonators (with one dip in the distribution).
Imperfections in the fabrications of the LWRs and the
connection bridges result in fluctuations or errors in both the
frequency steps and the nearest neighbor coupling rates. Fig-
ure 5(b) shows the IPR for 1D chains of NN-coupled LWRs
that include varying degrees of disorders. For the numeri-
cal calculations, we have assumed that the resonator length
randomly fluctuates with a Gaussian distribution and with a
standard deviation of o. The IPR value shown is averaged

over 50 runs. As can be seen from Fig. 5(b), increasing dis-
order gradually increases the localization of the mechanical
normal modes. The overall behavior of the Wannier-Stark
states, however, remains largely intact. For the state-of-the-art
electron beam lithography, feature sizes as accurate as 10 nm
are achievable. In this regard, proposed mechanical Wannier-
Stark ladders of diamond LWRs are feasible with the currently
available technologies.

A mechanical network can contain multiple Wannier-Stark
ladders with a wide range of connectivity. In addition to the
NN coupling scheme discussed above, the AN and AA cou-
pling schemes, which feature relatively large «, can also be
used to further increase the range of connectivity. In the limit
that the overall frequency range of the LWRs in a mechani-
cal network is small compared with the relevant mechanical
resonance frequency, the entire mechanical network can be
embedded in a suitably designed phononic crystal and be
protected by a phononic band gap. Furthermore, we can in
principle reduce or compress the overall frequency range of
the LWRs in the network by extending linear Wannier-Stark
ladders to zigzag or sawtooth ladders, which might be nec-
essary when AN or AA coupling schemes are extensively
employed in a large mechanical network.

As mentioned earlier, combinations of the three coupling
schemes developed in this study can also enable the devel-
opment of 2D mechanical networks. Strain distributions in
1D mechanical networks shown in Fig. 3(a) already pro-
vide valuable information for employing these schemes in a
2D mechanical network. For example, a vertically orientated
LWR can be AN-coupled to four adjacent horizontally orien-
tated LWRs along two orthogonal directions. In this case, the
vertically orientated LWR can mediate the coupling between
any two of the horizontally orientated LWRs. In this regard,
the AN coupling scheme alone can enable a 2D mechanical
network.

Based on the properties of 1D Wannier-Stark ladders dis-
cussed above, we can anticipate a 2D mechanical network,
for which the degree of localization can vary spatially across
the network according to a given design, with certain regions
featuring a relatively short and other regions featuring a rel-
atively long range of connectivity. It will be interesting to
see if QLDPC codes can be efficiently implemented in this
type of 2D mechanical quantum networks. In addition, by
extending linear Wannier-Stark ladders to zigzag or sawtooth
ladders, we can still protect and isolate a large 2D mechanical
network with a phononic crystal band gap shield. Figure 6(a)
shows a 2D network of LWRs embedded in a square lattice
of a phononic crystal. The network drawn is only for illustra-
tion. The phononic band gap of the square lattice features a
large phononic band gap that can protect an entire mechani-
cal network from the surrounding environment, as shown in
Fig. 6(b).

V. SUMMARY AND OUTLOOK

In summary, we have designed Wannier-Stark ladders of
diamond LWRs, in which spin qubits couple to compression
modes via mechanical strain. Three nearest-neighbor coupling
schemes with distinct geometric configurations and a large
range of coupling rates have been developed and analyzed.

062603-5



PHILIP ANDRANGO AND HAILIN WANG

PHYSICAL REVIEW A 110, 062603 (2024)

=
iy
ghiees
I+I+l+l+l+
I+I+I+I+I+
I+I+I+I+I+
I+I+I+I+I+
I+I+I+I+I+
I+I+I+I+
I+I+I+I+

b
-+.+
-+.+
+
+
s
+
e

+
oL

{SHEHE
B

{HH}
it

e

1
i

{EHEHE
T

{HH}

g

5
5

it
4
l'll

5
2o

"'l-:.-l'
s
5
[ [

_*_I
i
it
{H
ital
I+l
it
otul
it
it

+'tl
+I
+I
+I
+l
+I
o+
o+
5
o+
o+
3
o+
i
3
piy
o+

o+

N,
it
1]
30
i
1]
30

o,

o+
THE
ot
+l+l
+I+l
{H T
4
o+
{H1
i
I
i
o
2
{H1
o+
oG

.;_-t?:

o5

o
2o

{1
I+I
I+I
I+I
I+I
4

i
g

—7  \—

{H1
MO,
Gaaaaaaaas
+I+I+l I+I+I+I+I+I+
G

i

g

a6
l+l+
+I+I

e
i

[
aas
otk
tiity
Frequency (GHz)

I
ey
S

15
e
I+:

X M r

FIG. 6. (a) A schematic of a 2D mechanical network embedded in a square phononic crystal lattice. The network drawn is only for
illustration. (b) Calculated phononic band structure of the square lattice, with a square size of 1.7 um and with bridge dimensions of 0.7 um x
0.125 um, featuring a large and complete band gap centered around 2 GHz.

The degree of Wannier-Stark localization and thus the range
of connectivity can be varied or controlled by choosing suit-
able coupling rates and frequency spacing between adjacent
LWRs. Additional analysis on the effects of disorder also indi-
cates that the overall behaviors of the ladder can remain robust
against realistic experimental imperfections. Combinations of
the three coupling schemes can also enable the development
of a variety of 2D mechanical networks of LWRs.

The mechanical networks of spin qubits discussed this
work can in principle feature both long-range connectivity
and highly parallel quantum control, which can be enabled
by optical spatial multiplexing through optical control of me-
chanical motion [21] as well as optical control of the spin
qubits. Both features are considered to be crucial to the devel-
opment of large-scale fault-tolerant quantum computers. We

hope that our work can stimulate further theoretical efforts
in developing qLDPC codes for spin-mechanical systems and
can prompt further experimental efforts to exploit mechanical
quantum networks of spin qubits for applications in quantum
computing. In addition, although our analysis of mechanical
Wannier-Stark ladders has focused on diamond-based me-
chanical resonators, the coupling schemes developed can also
be applied to other materials systems, such as SiC, which
can also host spin qubits with excellent optical and spin
properties [39].

ACKNOWLEDGMENT

This work was supported by the NSF under Grants No.
2012524 and No. 2003074.

[1] D. Gottesman, Fault-tolerant quantum computation with con-
stant overhead, Quantum Inf. Comput. 14, 1338 (2014).

[2] N. P. Breuckmann and J. N. Eberhardt, Quantum low-density
parity-check codes, PRX Quantum 2, 040101 (2021).

[3] M. A. Tremblay, N. Delfosse, and M. E. Beverland, Constant-
overhead quantum error correction with thin planar connectiv-
ity, Phys. Rev. Lett. 129, 050504 (2022).

[4] L. Z. Cohen, 1. H. Kim, S. D. Bartlett, and B. J. Brown, Low-
overhead fault-tolerant quantum computing using long-range
connectivity, Sci. Adv. 8, eabn1717 (2022).

[5] Q. Xu, J. P. B. Ataides, C. A. Pattison, N. Raveendran, D.
Bluvstein, J. Wurtz, B. Vasic, M. D. Lukin, L. Jiang, and
H. Y. Zhou, Constant-overhead fault-tolerant quantum compu-
tation with reconfigurable atom arrays, Nat. Phys. 20, 1084
(2024).

[6] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall,
and T. J. Yoder, High-threshold and low-overhead fault-tolerant
quantum memory, Nature (London) 627, 778 (2024).

[7] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Y. Zhou, T.
Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J.
P. B. Ataides, N. Maskara, I. R. Cong, X. Gao, P. S. Rodriguez,
T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V.

Vuletic, and M. D. Lukin, Logical quantum processor based on
reconfigurable atom arrays, Nature (London) 626, 58 (2024).
[8] G. H. Wannier, Elements of Solid State Theory (Cambridge
University Press, Cambridge, England, 1959).
[9] G. H. Wannier, Dynamics of band electrons in electric and
magnetic fields, Rev. Mod. Phys. 34, 645 (1962).

[10] E. E. Mendez and G. Bastard, Wannier-Stark ladders and Bloch
oscillations in superlattices, Phys. Today 46, 34 (1993).

[11] E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Stark localiza-
tion in GaAs-GaAlAs superlattices under an electric-field, Phys.
Rev. Lett. 60, 2426 (1988).

[12] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E.
Cunningham, T. Meier, G. Von Plessen, A. Schulze, P. Thomas,
and S. Schmitt-Rink, Optical investigation of Bloch oscillations
in a semiconductor superlattice, Phys. Rev. B 46, 7252 (1992).

[13] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and
K. Kohler, Coherent submillimeter-wave emission from Bloch
oscillations in a semiconductor superlattice, Phys. Rev. Lett. 70,
3319 (1993).

[14] S.R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M.
G. Raizen, Observation of atomic Wannier-Stark ladders in an
accelerating optical potential, Phys. Rev. Lett. 76, 4512 (1996).

062603-6


https://doi.org/10.48550/arXiv.1310.2984
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.1126/sciadv.abn1717
https://doi.org/10.1038/s41567-024-02479-z
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1063/1.881353
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevB.46.7252
https://doi.org/10.1103/PhysRevLett.70.3319
https://doi.org/10.1103/PhysRevLett.76.4512

MECHANICAL WANNIER-STARK LADDER OF DIAMOND ...

PHYSICAL REVIEW A 110, 062603 (2024)

[15] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Bloch oscillations of atoms in an optical potential, Phys. Rev.
Lett. 76, 4508 (1996).

[16] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and
K. Silberberg, Experimental observation of linear and nonlinear
optical Bloch oscillations, Phys. Rev. Lett. 83, 4756 (1999).

[17] X. Y. Guo, Z. Y. Ge, H. K. Li, Z. Wang, Y. R. Zhang, P.
T. Song, Z. C. Xiang, X. H. Song, Y. R. Jin, L. Lu, K. Xu,
D. N. Zheng, and H. Fan, Observation of Bloch oscillations
and Wannier-Stark localization on a superconducting quantum
processor, npj Quantum Inform 7, 51 (2021).

[18] H. Fukuyama and R. A. Bari, Tightly bound electrons in a
uniform electric-field, Phys. Rev. B 8, 5579 (1973).

[19] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest neighbor
tight binding models with an exact mobility edge in one dimen-
sion, Phys. Rev. Lett. 114, 146601 (2015).

[20] S. Longhi, Absence of mobility edges in mosaic Wannier-Stark
lattices, Phys. Rev. B 108, 064206 (2023).

[21] X. Z. Li, I. Lekavicius, J. Noeckel, and H. L. Wang, Ultracoher-
ent gigahertz diamond spin-mechanical lamb wave resonators,
Nano Lett. 24, 10995 (2024).

[22] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy
colour centre in diamond, Phys. Rep. 528, 1 (2013).

[23] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J.
R. Petta, Quantum spintronics: Engineering and manipulating
atom-like spins in semiconductors, Science 339, 1174 (2013).

[24] L. Childress, R. Walsworth, and M. Lukin, Atom-like crystal
defects: From quantum computers to biological sensors, Phys.
Today 67, 38 (2014).

[25] C. Bradac, W. B. Gao, J. Forneris, M. E. Trusheim, and 1.
Aharonovich, Quantum nanophotonics with group IV defects
in diamond, Nat. Commun. 10, 5625 (2019).

[26] D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C.
B. Jayich, Topical review: Spins and mechanics in diamond,
J. Opt. UK 19, 033001 (2017).

[27] H. L. Wang and I. Lekavicius, Coupling spins to nanomechan-
ical resonators: Toward quantum spin-mechanics, Appl. Phys.
Lett. 117, 230501 (2020).

[28] S. Meesala, Y.-I. Sohn, B. Pingault, L. Shao, H. A. Atikian, J.
Holzgrafe, M. Gundogan, C. Stavrakas, A. Sipahigil, C. Chia,

R. Evans, M. J. Burek, M. Zhang, L. Wu, J. L. Pacheco, J.
Abraham, E. Bielejec, M. D. Lukin, M. Atature, and M. Loncar,
Strain engineering of the silicon-vacancy center in diamond,
Phys. Rev. B 97, 205444 (2018).

[29] M. C. Kuzyk and H. Wang, Scaling phononic quantum networks
of solid-state spins with closed mechanical subsystems, Phys.
Rev. X 8, 041027 (2018).

[30] X. Li, M. C. Kuzyk, and H. Wang, Honeycomblike phononic
networks with closed mechanical subsystems, Phys. Rev. Appl.
11, 064037 (2019).

[31] M. A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz,
M. D. Lukin, M. Loncar, and P. Rabl, Phonon networks with
silicon-vacancy centers in diamond waveguides, Phys. Rev.
Lett. 120, 213603 (2018).

[32] 1. Arrazola, Y. Minoguchi, M.-A. Lemonde, A. Sipahigil, and P.
Rabl, Toward high-fidelity quantum information processing and
quantum simulation with spin qubits and phonons, Phys. Rev. B
110, 045419 (2024).

[33] F. Fung, E. Rosenfeld, J. D. Schaefer, A. Kabcenell, J. Gieseler,
T. X. Zhou, T. Madhavan, N. Aslam, A. Yacoby, and M. D.
Lukin, Toward programmable quantum processors based on
spin qubits with mechanically mediated interactions and trans-
port, Phys. Rev. Lett. 132, 263602 (2024).

[34] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang,
Optomechanical quantum control of a nitrogen-vacancy center
in diamond, Phys. Rev. Lett. 116, 143602 (2016).

[35] D. A. Golter, T. Oo, M. Amezcua, 1. Lekavicius, K. A. Stewart,
and H. Wang, Coupling a surface acoustic wave to an electron
spin in diamond via a dark state, Phys. Rev. X 6, 041060 (2016).

[36] S. Maity, L. Shao, S. Bogdanovié, S. Meesala, Y.-I. Sohn, N.
Sinclair, B. Pingault, M. Chalupnik, C. Chia, L. Zheng, K. Lai,
and M. Loncar, Coherent acoustic control of a single silicon
vacancy spin in diamond, Nat. Commun. 11, 193 (2020).

[37] L. M. Duan, Scaling ion trap quantum computation through fast
quantum gates, Phys. Rev. Lett. 93, 100502 (2004).

[38] D. J. Thouless, Electrons in disordered systems and the theory
of localization, Phys. Rep. 13, 93 (1974).

[39] D.J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan,
N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom,
Isolated electron spins in silicon carbide with millisecond co-
herence times, Nat. Mater. 14, 160 (2015).

062603-7


https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1038/s41534-021-00385-3
https://doi.org/10.1103/PhysRevB.8.5579
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevB.108.064206
https://doi.org/10.1021/acs.nanolett.4c03071
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1126/science.1231364
https://doi.org/10.1063/PT.3.2549
https://doi.org/10.1038/s41467-019-13332-w
https://doi.org/10.1088/2040-8986/aa52cd
https://doi.org/10.1063/5.0024001
https://doi.org/10.1103/PhysRevB.97.205444
https://doi.org/10.1103/PhysRevX.8.041027
https://doi.org/10.1103/PhysRevApplied.11.064037
https://doi.org/10.1103/PhysRevLett.120.213603
https://doi.org/10.1103/PhysRevB.110.045419
https://doi.org/10.1103/PhysRevLett.132.263602
https://doi.org/10.1103/PhysRevLett.116.143602
https://doi.org/10.1103/PhysRevX.6.041060
https://doi.org/10.1038/s41467-019-13822-x
https://doi.org/10.1103/PhysRevLett.93.100502
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1038/nmat4144

