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Multi-Agent Reinforcement Learning in
Non-Cooperative Stochastic Games Using
Large Language Models

Shayan Meshkat Alsadat

Abstract—We study the use of large language models
(LLMs) to integrate high-level knowledge in stochastic
games using reinforcement learning with reward machines
to encode non-Markovian and Markovian reward functions.
In non-cooperative games, one challenge is to provide
agents with knowledge about the task efficiently to speed
up the convergence to an optimal policy. We aim to pro-
vide this knowledge in the form of deterministic finite
automata (DFA) generated by LLMs (LLM-generated DFA).
Additionally, we use reward machines (RMs) to encode the
temporal structure of the game and the non-Markovian or
Markovian reward functions. Our proposed algorithm, LLM-
generated DFA for Multi-agent Reinforcement Learning with
Reward Machines for Stochastic Games (StochQ-RM), can
learn an equivalent reward machine to the ground truth
reward machine (specified task) in the environment using
the LLM-generated DFA. Additionally, we propose DFA-
based g-learning with reward machines (DBQRM) to find the
best responses for each agent using Nash equilibrium in
stochastic games. Despite the fact that the LLMs are known
to hallucinate, we show that our method is robust and
guaranteed to converge to an optimal policy. Furthermore,
we study the performance of our proposed method in three
case studies.

Index Terms—Reinforcement learning, large language
models, stochastic games, reward machines.

[. INTRODUCTION

E STUDY multi-agent reinforcement learning (MARL)

for non-cooperative games with reward machines
(RMs) using large language models (LLMs) where agents
learn an optimal policy that maximizes their discounted cumu-
lative reward. Agents’ actions depend on each other since
agents’ strategies (policies) are not mutually exclusive. Hence,
learning the best response, the response that no agent is
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motivated to deviate from unilaterally, i.e., Nash equilibrium,
requires agents to learn the policy of their opponent.

StochQ-RM is a multi-agent reinforcement learning
framework using LLM-generated DFAs (deterministic finite
automata) for g-learning with RMs in stochastic games. This
decentralized algorithm enables agents to learn optimal poli-
cies at Nash equilibrium through g-functions. RMs decompose
tasks into sub-tasks, improving convergence to an optimal
policy [1]. Unlike methods requiring human experts to provide
domain-specific knowledge, StochQ-RM leverages LLMs to
extract task-specific information. LLMs contain vast domain
knowledge, reducing the need for human involvement [2].

In our method, generative language models (GLMs) are
used to extract high-level knowledge for multi-agent reinforce-
ment learning, aiming to learn an optimal policy efficiently.
GLMs help obtain the LLM-generated DFA of each agent,
which aids in generating the required task DFA. This knowl-
edge facilitates learning an equivalent RM that captures the
game’s temporal structure. To minimize inefficiencies, we
utilize prompting techniques such as chain-of-thought [3],
zero-shot [4], and few-shot [5] methods to obtain the LLM-
generated DFA of agents, avoiding the high resource demand
of fine-tuning [6]. This approach minimizes LLM hallucina-
tions [7] and ensures robust convergence to an optimal policy.
Our algorithm employs the Lemke-Howson [8] method to
learn g-functions at Nash equilibrium.

The baselines we compare are Nash-Q [9] (Nash-Q-
learning) that uses Nash equilibrium to learn an optimal
policy, Nash-QAS (Nash-Q-learning in augmented state
space), MADDPG-SG (multi-agent deep deterministic pol-
icy gradient) [10] that is based on the actor-critic method,
MADDPG-AS (extension of MADDPG to augmented state
space), and QRM-SG (Q-learning for RM in stochastic
games) [11]. Our contributions include: (a) Learning high-
level tasks with temporal structures using LLM-generated
DFA. (b) Guaranteeing convergence to the ground truth RM.
(c) Ensuring robustness against LLM hallucinations and guar-
anteeing convergence to an optimal policy.

Related works: MARL with RM. In MARL, RMs improve
g-learning efficiency to converge to an optimal policy [12].
Existing methods for learning ground truth RM are costly and
fail in complex, non-stationary settings [ 13]. We instead leverage
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LLM-generated DFA for a more efficient solution. Language
models and automata. LLMs can generate instructions
and simplify knowledge [14], and can produce automata
from instructions (e.g., GLM2FSA) to model domain-specific
tasks [15]. Learning reward machines. Researchers in [16]
proposed AdvisoRL, which learns an RM using human expert
advice. Our method provides a more efficient way to learn the
ground truth RM than existing methods.

[1. PRELIMINARIES

This section introduces the necessary background and nota-
tions for reinforcement learning (RL), deterministic finite
automaton (DFA), and reward machines (RMs).

Definition 1 (Stochastic Game): We denote a labeled
two-agent stochastic game similar to [11] by G =
(S,s1,Ae, Az, Re, Ra,p, ¥, Pe, Pa, Le, Ly) where S = S¢ x
S5 is the finite set of states consisting of both agents’ state
s = [Se, Sal, Se € Se and s5 € S, (states of both ego e and
adverserial a agents). Ac and A, are the finite set of actions for
both ego and adversarial agents, p = S x Ae XAy xS — [0, 1]
is the probabilistic transition function, Re = (§ x Ae x Az)T X
S — R (4 denotes the history of visited states and actions)
and R, = (S x Ac x Ay)T x § — R are the reward functions
of ego and adversarial agents, respectively. y € [0, 1] is the
discount factor, P. and P are finite sets of propositions, and
Lo :SxAoxAsxS—2Peand Ly : SxAe x Ay xS — 2Pa
are the labeling functions of both ego and adverserial agents.
We denote the size of a stochastic game as |G| = |S| where
|-|] is the set cardinality. p(a | b) is the conditional probability.

The reward functions R. and R, are non-Markovian. We
assume that each agent observes the trajectory of the other.

A policy (also referred to as strategy in game theory)
is a function mapping from states to actions denoted by
7! (Se ks Sak, aik) (policy of agent i at time k estimated by
agent j) where Sk, Sak €S, aik €A, and i, € {e, a} at time
k € N. It shows the probability of taking action a; ; at time
k in state s;; with probability of yrl/ : S xA; — [0,1] and
moving to state s; x+1, where s; 41 is the next state at time
k + 1. For brevity, we denote s = [se, sa] and s = [s, s,]
such that s; = s; x and s} = s x4+1.

Remark 1: For any quantity with two subscripts, such as
Se k, the first subscript is for the agent, and the second is for
the time. In the case of only one subscript, the subscript refers
to the agent.

A trajectory is a sequence of state-action pairs:
(Se, de, Sa, da, S5, 5,), representing the realization of a
stochastic process under policies 7 and 5. An optimal policy
is denoted by 7. The corresponding label sequence for this
process is I oli,1 . ..lin, obtained from L;. A trace is defined
as the pair of labels and rewards for the trajectory: (A, p;) =
(iolin ... lin, riori1...rin), with the discounted cumulative
reward being >, y*rix. Bach agent aims to maximize its
expected discounted cumulative reward, i.e., 1;(Se, Te, Sa, Ta)
using its learned policy ;.

o
Hi(Se, e, Sa, Ta) = Z ykE(ri,k|7Tev Ta, Se,0 = Se, 53,0 = Sa)

k=0
(1

Definition 2 (Nash Equilibrium of a Stochastic Game): We
define the Nash equilibrium of a stochastic game as the set of
optimal policies that maximize w; such that

te(se. 78, $a, 75) = pe(Sa, e, Se, L) ¥ 7e 2)
Ha(se’ iz, Sa, 77;) = Ma(sas nZ, Se, ﬂa) V 1 (3)

Definition 3 (Deterministic Finite Automaton): A DFA is a
finite state automaton (FSA) whose states are finite sets and
whose transitions are labeled with finite sets. We denote a DFA
by a tuple J# = (H, h;, &, §, F) where H is the set of states,
hy is the initial state, X is the input alphabet, 6 : H x ¥ — H
is the transition function, and F C H is the set of accepting
states. Let the size of the DFA 7 be |H|.

Definition 4 (Reward Machine): We denote a reward
machine by A = (V, vy, 2P M, T, o) where V is a finite set of
states, vy is the initial state, 2P is the input alphabet, M C R is
output alphabet, I" : V x 2P 5 V is the set transition function,
and o : V x 2P — M is the output function. We define the
size of the reward machine as |A| = |V/|.

By applying the reward machine A’ on a sequence of
labels lioli1...lin, we obtain a sequence of RM states
violi0, rio)vi1 i1, ri) - o Vin(lin, rin) Where vio = v is
the initial state of the RM.

[1l. STOCHASTIC GAMES

We study two-player zero-sum and general-sum stochastic
games. Our methodology can be extended to more than two
agents by using methods that find meta Nash equilibrium
(e.g., [17]) instead of Lemke-Howson. For StochQ-RM, we
propose DFA-based g-learning with RMs, DBQRM, a decen-
tralized algorithm where each agent learns its policy as it
interacts with the adversary.

Our algorithm finds the Nash equilibrium at each time step
(best response to the opponent’s action). This action transitions
the agent to the next augmented state and yields a reward,
which is used to update the policy. Through this interaction
with the environment and adversarial agent, we derive an
optimal policy that maximizes each agent’s discounted cumu-
lative reward (the existence of Nash equilibria for stochastic
games has been studied [18]).

Definition 5 (g-Function at a Nash Equilibrium): We define
the g-function at a Nash equilibrium for each agent as:

qf(s, Ve, Va, le, Ga) = 1i(S, Ve, Va, de, da)

/

7 / / / / / / * *
+y ) p(s' v, Valso Vo, Vi, dey aa ) wi(s', Vi Vi, w5, )

s'eS;V.eVeiv,€Va

4)

The total discounted reward for agent i is given
by wi(s', v, vy, &, w}), based on the augmented state
(s', v, v;). Each agent maintains its own g-function and the
opponent’s estimation, denoted as q‘l-’ (e.g., g5, q5). The Nash
equilibrium at each time step to the stochastic game is com-
puted using the Lemke-Howson algorithm [8], determining
each agent’s equilibrium action, i.e., the best response to the
opponent’s actions. This action transitions the agent to the next
G state 5" and yields a high-level event label I, leading to a
transition to the RM state v; and the corresponding reward r;.
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The agents then update their g-values based on the Nash
equilibrium.

E]{(s’, Vo V) =l (s' vl vh) @ (s v, - qu(s’, Vo, Vs)

' _ @)
4l (s, Ve, Va, ae, az) = (1 — @)q! (s, Ve, Va, de, aa)

+ oz(ri + yE]{(s’, VL, v;)) (6)

where the 7L(s',v.,v,) and 7h(s', v,,V}) denote the Nash
equilibrium solution to the stage game and 72 ®% (® denotes
the Kronecker product) shows the joint probabilities of actions.
E[{ is the best response to the opponent’s action.

IV. EXTRACTION OF DOMAIN-SPECIFIC KNOWLEDGE
FROM LARGE LANGUAGE MODELS

We use a combination of persona adoption, zero-shot, and
few-shot methods that we call MixedR (mixed-reasoning) to
obtain the LLM-generated DFA for each agent.

Example 1: In a variation of a Pac-Man game, agents need
to reach their own powerhouse to recharge, and then they must
reach their adversary’s powerhouse to dominate it. Afterward,
they can conquer their adversary’s base (see Figure 4). We
describe this task as task description to LLM using prompt
engineering to obtain the LLM-generated DFA.

In Example 1, we use the persona of a zero-sum game
expert to guide the LLM in generating coherent outputs by
focusing on a domain and providing a task description for DFA
generation to minimize hallucinations. MixedR in Example 1
yields LLM-generated DFA L%”lj for each agent.

Prompt Example 1: You are an expert in RL for “zero-sum”
games. Provide a strategy for each agent in “task description”
(Example 1). Provide your answer in the form of deterministic
finite automata (DFA). Here are some examples of DFA. The
format is (task desctiption) — (DFA).

« (task description No.1) — (DFA No.1)

Let us think step by step.
Prompt Example 1 shows an example of MixedR.

V. USING LLMs To GENERATE DFA

In this setup, DFA 7 operates on a sequence of labels
A = Lilp...lI, € ¥* which maps to a sequence of DFA
states hohj . .. hy, with transitions defined as hyy1 = §(h, I).
The formal language accepted by ¢ is defined as L(.77) =
hiy...l, € ¥*|h, € F. An LLM-generated DFA yielding a
positive reward is considered a compatible DFA, where the
label sequence X} € L(#) indicates potential reward. This
approach narrows the search space for learning the ground
truth RM, and StochQ-RM disregards any hallucinated LLM-
generated DFA that is incompatible with the ground truth RM,
A (ie., A® and A?).

Definition 6 (Compatibility of LLM-Generated DFA): We
consider an LLM-generated DFA Jflj to be compatible with
RM A/ if returning a positive reward, i.e., rr > 0 implies
hb...ly e E(z%”{) for all label sequences [l ...l € (273)+
with the corresponding reward sequence of A/ (l1lp...1y) =
riry...ry for k € N.

start —

(_‘Cwy 0)

(T,og
O,

(a) Ground truth RM

(ﬁT’lIMO)

-1 —B1 T
(Tw ) 0) Tl 51
start —

(b) LLM-generated DFA .77

(Cw, 0)
(=Buw, 0)

(Bw,1)

Fig. 1. Compatible LLM-generated DFA .77 is used to learn the ground
truth RM. Note that DFA states are denoted by h and RM states are
denoted by v, and w € {1, 2}.

Algorithm 1: PromptLILMforDFA: Constructing Task
DFA for a Domain-Specific Task Using LLM
Input: prompt f
Parameter: temperature 7, Top p P (OpenAl LLM
parameters)
Output: DFA
1 output <— PromptLLM(f, T, P);
2 H < {ho}, hg < 0, § < {wo}, P < {Py}, K < 0;
3 for instruction € output do
K<~ K+1;
hic < GetStates(instruction);
P < GetProposition(instruction);
wx < ComputeTransition(hix, Px);
H <« HU{hg}, § < §U{ox}, P < PU{Pk);

9 return Z = (H, hy, 2T, 8, {hc}):

®w N S s

Example 2: Consider ground truth RM in Figure 1(a) and
the compatible LLM-generated DFA 7 in Figure 1(b) where
an agent can use J¢ to learn the ground truth RM which may
lead to faster convergence to an optimal policy.

If the LLM-generated DFA is incompatible with the ground
truth RM, i.e., a counterexample, StochQ-RM adjusts the
prompt using the counterexample to obtain a more compat-
ible LLM-generated DFA. Counterexample occurs when a
label sequence and its corresponding reward sequence that is
suggested by the LLM-generated DFA is inconsistent with
the ground truth. We use Algorithm 1 to obtain the LLM-
generated DFA. We create a prompt f using MixedR, providing
instructions to generate the DFA jflj . MixedR ensures the
LLM generates output in a structured format (Line 1). Next,
we define the DFA’s set of states H, transitions &, and
propositions P (Line 2). For each LLM output (the DFA), we
extract the states, transitions, and the propositions triggering
those transitions (Lines 3-7). This process is repeated for all
instructions to construct the domain-specific LLM-generated
DFA for agent i (Line 9).

We apply DBQRM (Algorithm 2) to find the Nash equi-
librium using an extended Lemke-Howson method with a
lexicographic approach [8]. After initializing agent and RM
states (Lines 1-2), we create empty label and reward sequence
sets (Line 3). At each time step ¢t both agents share their
augmented state and action with their adversary, meaning
that the agents have access to the opponent’s trajectory. We
obtain the Nash equilibrium action as the best response by
estimating the opponent’s policy, e.g., the ego agent estimates
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Algorithm 2: DBQRM

Algorithm 3: StochQ-RM

Hyperparameters: episode length ep;ep, learning rate o,
discount factor y, epsilon-greedy ¢
Input: RMs A®, A%, US, US, U, UZ, and Q-functions
(45, 4%. 42, ¢2), temperature T, Top p P, prompt f
1 s < InitialState();
2 Ve < V]e, Va < V[ a, VAe < VI, Ae, V A2 < VI’Aa;
3 e < {hda < {} pe < {} pa < {}
4 for 0 <t <epjen do

5 for i € {e,a} do

6 ﬂé('|s’ Ve, Va), ﬂ;('lsa Ve, Va) <
FindNasth(qie, qé); ‘

7 | ai < SelectAction(ni’(a|s, Ve, Va), e);

8 s’ < ExecuteAction(s, de, aa);

9 for i € {e,a} do

10 lis < Li(s, ae, aa, s');

1 V:4,- <~ T A i, lie), rip < 84V ai, li);

12 vi < Ti(vi, li.0)s

13 for i € {e,a} do

14 né(~|s, Ve, Va), né(-ls, Ve, Va) <
Fi1'1(:'1.1\]::1sth(qfe (s, Ve, Va), qg(s, Ve, va));

15 q5(s, Ve, va), g5 (S, ve, va) < Equation (6);

16 § <8, Ve < VL, Ve < Vo, Aj < A U {li4),

pi < pi U{ris);

return (¢%, ¢S, 42, G2, pe, Pa. he, Aa)

—
2

the adversary’s policy 5. By estimating the adversary’s policy
we obtain the actions a. and a, (Lines 5 - 7) for each
agent. By executing the action we obtain the next state s’
and for each transition from state s to s’ we obtain the label
lis, reward r;; (given by the ground truth RM, Line 11),
and the next RM state v (Lines 8-12). We then use the
Lemke-Howson method to calculate the Nash equilibrium
policy solution to the stage game (Line 14). DBQRM updates
the g-values, G states, RM states and obtains the label
sequences Ae, A, and reward sequences pe, p, for each agent
which later on will be used to find the ground truth RM
(Lines 15-17).

StochQ-RM  (Algorithm 3) learns RMs equivalent to
the ground truth for the ego agent (US, US) and the
adversary (UZ, UZ) by utilizing the LLM-generated DFA
obtained by Algorithm 1 and updates optimal policies m%
and s} using Algorithm 2. Initially, g-values gg, ¢S, ¢2, 3
and counterexample sets Xg, X3, XS, XS are initialized
(Lines 1 - 2).

Prompts f. and f; are stored and their DFA sets initialized
(Lines 3—4). The LLM is then prompted to generate the LLM-
generated DFA (Lines 5, 8). Next, StochQ-RM uses DBQRM
to find best-response policies (Line 11), and checks if the
learned RM U/ matches the ground truth RM (Line 14). If
the reward sequence is inconsistent with G (ground truth), the
counterexample (X;, p;) is added to the counterexample set
(Line 15). The algorithm verifies whether the counterexample

Hyperparameters: epicn, @, ¥, €
Input: Ground truth RMs A®, A2, temperature 7, Top p
P, prompt f, query budgets J5, IS, J5, J2
145,495,495, 95 < InitializeQfunction();
2 XS, XS, X2,X2 < 0
3 f < {fe. fa)s
8 A ) USUS U UE < )
5 for j € {e,a} do
6 for i € {e,a} do
7 L M« PromptLLMforDFA(f;, T, P);

8 L{{ <« InitializeRewardMachine(Jf{);
9 for episode n=1,2,... do

e a e a e a e a.
101 X inie Xa iniv Xainie Xa,init < Xe» Xe» X5, X3

11 (QS Clg, ‘127 ‘12, pe’ loa,)\e,)\a) <~
DBQRM(A®, A%, US, UG, US, UZ, q¢. 45, 42, 92);
12 for j € {e,a} do

13 for i € {e,a} do
14 if U{()»,-) # pi then
15 | X < X[ U (i i)
o v i
16 if X; # X;. init then '
17 if 7/ > 0 and 30.;, pi) € X}, p; = 0 and
Li ¢ L() then
18 fi <
UpdatePromptCntExmp A
19 A
PromptLIMforDFA(f;, T, P);
20 J < J -1
21 Z/{{ <«
LearnRewardMachine (Jflj, X{);
22 B qu <« InitializeQfunction();

is due to an incompatible LLM-generated DFA or the learned
RM (Line 16). If the counterexample is due to the LLM-
generated DFA (Line 17), the DFA is updated with the
counterexample, and a new LLM-generated DFA is generated
using Algorithm 1 (Lines 18 - 20). To manage LLM hallu-
cinations, each agent is assigned a query budget jij . Based
on our experiments, we have seen that for RMs with 5 to
7 states, LLM hallucinations frequency is once every 7 to
8 queries (on GPT4o0) thus, we have chosen ji/ = 20 to
be conservative. We have also observed that a low value of
Jij = 3 might be depleted in rare cases. The budget depends
on the prompt; without a suitable prompt, we may not obtain
the LLM-generated DFA, regardless of jij . If the budget is
depleted without a correct LLM-generated DFA, we switch
to learning from traces only (Line 20). We then refine Z/{{
using the learned LLM-generated DFA and counterexamples
(Line 21), and re-initialize g-values (Line 22).
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VI. LEARNING RM IN STOCHASTIC GAMES USING
LLM-GENERATED DFA

Agents learn an equivalent RM to the ground truth RM
by interacting with the environment. Each agent shares its
observations with its adversary, ensuring the derived RM by
the ego agent (US) matches that of the adversary (U42), and
vice versa. This equivalence holds since the counterexample
Xs € @PHT x RS for i € {e,a} is the same for both
agents. Throughout learning, each agent’s opponent estimation
remains consistent with the ground truth through shared
observations. The learned RM U’ is consistent with the
counterexample Xj , meaning I/{’ (Aj) = p; for all (A, p;) € X
Using these counterexamples and label sequences, we learn an
equivalent RM [13]. This learnmg iteratively generates propo-

sitional logic formulas q’)K , where k € N, from the proposition
set P = {x,y,...} using Boolean connectives {—, V, A, —}.
The mappmg T : P~ {0,1} assigns Boolean values, with

7T E= ¢/< indicating formula satisfaction. We increase the
formula size until finding a satisfiable formula, representing
an RM with « states consistent with the counterexamples.

VII. CONVERGENCE TO OPTIMAL PoLICY

The learned RM Z/{l’ is considered equivalent to the ground
truth RM A/ if it correctly recognizes any label sequence
that is admissible within the underlying system G [16]. Given
that LLMs may hallucinate, we must account for potential
incompatibility in .7Z. To ensure that StochQ-RM converges
correctly, we treat LLMs as potentially adversarial, meaning
the worst-case scenario.

Lemma 1: Let G be a labeled stochastic game, A the
ground truth RM encoding the rewards of G, and 9’ =
%% ”, . %f ) the set of all LLM-generated DFAs (|_@f| =
m € N) that are added to during the run of StochQ-RM
for each agent. Additionally, let

Mmax = max {|%{Z|} 7)
Ji”]egj zefl,...,m}
n= max DIGI- (141 +1)  na, 19141+ 1)) ®)
i,jele,a}

Then, StochQ-RM with ep1en > n almost surely (meaning
with probability 1) learns RM UZJ- that is equivalent to Al

Proof: By showing that the set @Ji stabilizes within a
certain time interval, meaning no additional LLM-generated
DFAs are introduced or removed, given the assumption that
the agent encounters all possible (s, a, /) infinitely often we
can complete the proof. Here is the reasoning: if an LLM-
generated DFA added to 9’1. is compatible, it remains in
the set indefinitely. This is because no counterexample will
invalidate it, preventing the condition in Line 16 from being
met. Conversely, if an LLM-generated DFA is incompatible,
the algorithm will eventually detect a trajectory that demon-
strates this inconsistency, leading to its.removal from @ji.
Additionally, the algorithm decreases Ji’ by one each time
it adds a new LLM-generated DFA to @f, and this process
continues only while .71-1 > (. Thus, the total number of LLM-
generated DFAs created throughout the algorithm’s execution

is limited by jf . As a result, after a certain time interval, the
set @]i stops changing since the algorithm either converges
on the correct RM A4/ or all incompatible DFAs have been
removed, and LLM cannot be prompted (\7{ =0).

Once @]i becomes fixed, it can be shown, similarly to
Neider et al.’s proof [16], that the algorithm will eventually
learn the true RM, ie., 4. Also if the learned RM A s
not equivalent to the ground truth RM L{{ , then the algorithm
will collect a counterexample through its encounter with a
trajectory that is incompatible with Z/{{ . Additionally, in the
worst-case scenario, all trajectories of length epien will be
incorporated into Xf, guaranteeing that the StochQ-RM will
learn the correct RM. |

StochQ-RM provides an upper bound for the episode length
that needs to be explored. Its correctness follows the Lemma 1
and the correctness of the QRM algorithm [1].

Theorem 1: Let G, A/, @'i-, n, and m be as in Lemma 1.
Then, StochQ-RM will converge to an optimal policy almost
surely (meaning with probability 1) if epien > 7.

Proof: Theorem 1 follows from Lemma 1 and correctness
of QRM algorithm [1]. [ ]

Theorem 1 guarantees the convergence of the StochQ-RM
to an optimal policy if sufficient episode length is given for
exploration. It also provides an upper bound for convergence,
as illustrated in Lemma 1.

VIIl. RESULTS

We study two scenarios: a zero-sum game (Pacman) and
a general-sum game (Factory), investigating the performance
of the StochQ-RM for each. We use GPT4o0 to obtain the
LLM-generated DFA. In our case studies, tasks are encoded
using RMs, and the task description is used to derive the
LLM-generated DFA. We compare our method with Nash-Q,
Nash-QAS, MADDPG, MADDPG-AS, and QRM-SG.

Case Study 1. In the general-sum factory game, each agent
must complete a series of sub-tasks shown in Figure 2(b)
within the environment (Figure 2(a)). We obtain the LLM-
generated DFA, {¢,, 75y} for agent e (Agent 1 in Figure 3)
and agent a (Agent 2 in Figure 3), meaning that DFA reaches
its accepting state when labels ¢, and 7, are encountered.
Figure 3 shows that the StochQ-RM converges to an optimal
policy faster by using LLM-generated DFA .77, NashQAS can
only converge to an optimal policy faster for Agent 1, and it
is not as stable as StochQ-RM (see shaded area). Simulation
results are for four independent runs averaged over each 200
episodes.

Case Study 2. We study StochQ-RM performance in zero-
sum games. We consider the Pacman game similar to [11].
The obtained LLM-generated DFAs are {(e, P.), (e, P5)} and
{{(a, Pa), (a, Pe)} for agents e and a, i.e., Agent 1 and 2 in
Figure 5, respectively. Figure 5 shows that the StochQ-RM
converges to an optimal policy faster by using LLM-generated
DFA J7, simulation results are for five independent runs
averaged over each 200 episodes.

Case Study 3. We test StochQ-RM in a different scenario
of the factory game with grid dimension increased to 12 x 12,
where the agents must visit a remote station located at
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Fig. 6. StochQ-RM converges to an optimal policy faster by using LLM-
Fig. 2. (a) Environment of general-sum game. (b) Ground truth RM of ~ generated DFA.

the general-sum game. By, Yw and ¢y where w € {1, 2} are the tool
stations, component locations, and assembly points, respectively, and
triangles are the agents.

Case Study 1 - General-Sum Game
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Fig. 3.  StochQ-RM uses the LLM-generated DFA .77 to learn an
equivalent to the ground truth RM.
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Fig. 4. (a) Environment of zero-sum game (b) RM of the general-sum

game. P, and P, are the powerhouses of agents e and a, respectively.
be and b, are the bases. ¢1 and ¢5 are neutral bases used to make the
learning of the RM more challenging.

Case Study 2 - Zero-sum Game.
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Fig. 5. StochQ-RM converges to an optimal policy faster compared to
the baselines by using the LLM-generated DFA.

(x = 0,y = 3) in the grid (origin is at the left bottom
corner similar to Figure 2(a)). The LLM-generated DFA for
agents e and a is {¢w, 1w} where w € {1, 2}, and {8, By},
with E,, representing the added sub-task. Figure 6 shows
StochQ-RM converging to an optimal policy faster by using
LLM-generated DFA for both agents, while the baselines fail
since the sparsity of the events is higher in this case.

IX. CONCLUSION

We showed that our proposed algorithm StochQ-RM outper-
forms the baselines for both general-sum and zero-sum games.

Moreover, we showed that the StochQ-RM converges to an
optimal policy by using LLM-generated DFA 7.
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