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Multi-Agent Reinforcement Learning in
Non-Cooperative Stochastic Games Using

Large Language Models
Shayan Meshkat Alsadat and Zhe Xu , Member, IEEE

Abstract—We study the use of large language models
(LLMs) to integrate high-level knowledge in stochastic
games using reinforcement learning with reward machines
to encode non-Markovian and Markovian reward functions.
In non-cooperative games, one challenge is to provide
agents with knowledge about the task efficiently to speed
up the convergence to an optimal policy. We aim to pro-
vide this knowledge in the form of deterministic finite
automata (DFA) generated by LLMs (LLM-generated DFA).
Additionally, we use reward machines (RMs) to encode the
temporal structure of the game and the non-Markovian or
Markovian reward functions. Our proposed algorithm, LLM-
generated DFA for Multi-agent Reinforcement Learning with
Reward Machines for Stochastic Games (StochQ-RM), can
learn an equivalent reward machine to the ground truth
reward machine (specified task) in the environment using
the LLM-generated DFA. Additionally, we propose DFA-
based q-learning with reward machines (DBQRM) to find the
best responses for each agent using Nash equilibrium in
stochastic games. Despite the fact that the LLMs are known
to hallucinate, we show that our method is robust and
guaranteed to converge to an optimal policy. Furthermore,
we study the performance of our proposed method in three
case studies.

Index Terms—Reinforcement learning, large language
models, stochastic games, reward machines.

I. INTRODUCTION

WE STUDY multi-agent reinforcement learning (MARL)
for non-cooperative games with reward machines

(RMs) using large language models (LLMs) where agents
learn an optimal policy that maximizes their discounted cumu-
lative reward. Agents’ actions depend on each other since
agents’ strategies (policies) are not mutually exclusive. Hence,
learning the best response, the response that no agent is
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motivated to deviate from unilaterally, i.e., Nash equilibrium,
requires agents to learn the policy of their opponent.

StochQ-RM is a multi-agent reinforcement learning
framework using LLM-generated DFAs (deterministic finite
automata) for q-learning with RMs in stochastic games. This
decentralized algorithm enables agents to learn optimal poli-
cies at Nash equilibrium through q-functions. RMs decompose
tasks into sub-tasks, improving convergence to an optimal
policy [1]. Unlike methods requiring human experts to provide
domain-specific knowledge, StochQ-RM leverages LLMs to
extract task-specific information. LLMs contain vast domain
knowledge, reducing the need for human involvement [2].

In our method, generative language models (GLMs) are
used to extract high-level knowledge for multi-agent reinforce-
ment learning, aiming to learn an optimal policy efficiently.
GLMs help obtain the LLM-generated DFA of each agent,
which aids in generating the required task DFA. This knowl-
edge facilitates learning an equivalent RM that captures the
game’s temporal structure. To minimize inefficiencies, we
utilize prompting techniques such as chain-of-thought [3],
zero-shot [4], and few-shot [5] methods to obtain the LLM-
generated DFA of agents, avoiding the high resource demand
of fine-tuning [6]. This approach minimizes LLM hallucina-
tions [7] and ensures robust convergence to an optimal policy.
Our algorithm employs the Lemke-Howson [8] method to
learn q-functions at Nash equilibrium.

The baselines we compare are Nash-Q [9] (Nash-Q-
learning) that uses Nash equilibrium to learn an optimal
policy, Nash-QAS (Nash-Q-learning in augmented state
space), MADDPG-SG (multi-agent deep deterministic pol-
icy gradient) [10] that is based on the actor-critic method,
MADDPG-AS (extension of MADDPG to augmented state
space), and QRM-SG (Q-learning for RM in stochastic
games) [11]. Our contributions include: (a) Learning high-
level tasks with temporal structures using LLM-generated
DFA. (b) Guaranteeing convergence to the ground truth RM.
(c) Ensuring robustness against LLM hallucinations and guar-
anteeing convergence to an optimal policy.

Related works: MARL with RM. In MARL, RMs improve
q-learning efficiency to converge to an optimal policy [12].
Existing methods for learning ground truth RM are costly and
fail in complex, non-stationary settings [13]. We instead leverage
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LLM-generated DFA for a more efficient solution. Language
models and automata. LLMs can generate instructions
and simplify knowledge [14], and can produce automata
from instructions (e.g., GLM2FSA) to model domain-specific
tasks [15]. Learning reward machines. Researchers in [16]
proposed AdvisoRL, which learns an RM using human expert
advice. Our method provides a more efficient way to learn the
ground truth RM than existing methods.

II. PRELIMINARIES

This section introduces the necessary background and nota-
tions for reinforcement learning (RL), deterministic finite
automaton (DFA), and reward machines (RMs).

Definition 1 (Stochastic Game): We denote a labeled
two-agent stochastic game similar to [11] by G =
〈S, sI, Ae, Aa,Re,Ra, p, γ ,Pe,Pa, Le, La〉 where S = Se ×
Sa is the finite set of states consisting of both agents’ state
s = [se, sa], se ∈ Se and sa ∈ Sa (states of both ego e and
adverserial a agents). Ae and Aa are the finite set of actions for
both ego and adversarial agents, p = S×Ae×Aa×S→ [0, 1]
is the probabilistic transition function, Re = (S×Ae×Aa)+×
S → R (+ denotes the history of visited states and actions)
and Ra = (S× Ae × Aa)+ × S→ R are the reward functions
of ego and adversarial agents, respectively. γ ∈ [0, 1] is the
discount factor, Pe and Pa are finite sets of propositions, and
Le : S×Ae×Aa×S→ 2Pe and La : S×Ae×Aa×S→ 2Pa

are the labeling functions of both ego and adverserial agents.
We denote the size of a stochastic game as |G| = |S| where
|·| is the set cardinality. p(a | b) is the conditional probability.

The reward functions Re and Ra are non-Markovian. We
assume that each agent observes the trajectory of the other.

A policy (also referred to as strategy in game theory)
is a function mapping from states to actions denoted by
π

j
i (se,k, sa,k, ai,k) (policy of agent i at time k estimated by

agent j) where se,k, sa,k ∈ S, ai,k ∈ A, and i, j ∈ {e,a} at time
k ∈ N. It shows the probability of taking action ai,k at time
k in state si,k with probability of π

j
i : S × Ai → [0, 1] and

moving to state si,k+1, where si,k+1 is the next state at time
k + 1. For brevity, we denote s = [se, sa] and s′ = [s′e, s′a]
such that si = si,k and s′i = si,k+1.

Remark 1: For any quantity with two subscripts, such as
se,k, the first subscript is for the agent, and the second is for
the time. In the case of only one subscript, the subscript refers
to the agent.

A trajectory is a sequence of state-action pairs:
(se, ae, sa, aa, s′e, s′a), representing the realization of a
stochastic process under policies πe and πa. An optimal policy
is denoted by π#

i . The corresponding label sequence for this
process is li,0li,1 . . . li,n, obtained from Li. A trace is defined
as the pair of labels and rewards for the trajectory: (λi, ρi) =
(li,0li,1 . . . li,n, ri,0ri,1 . . . ri,n), with the discounted cumulative
reward being

∑
k γ kri,k. Each agent aims to maximize its

expected discounted cumulative reward, i.e., µi(se,πe, sa,πa)
using its learned policy πi.

µi(se, πe, sa, πa) =
∞∑

k=0

γ kE
(
ri,k|πe, πa, se,0 = se, sa,0 = sa

)

(1)

Definition 2 (Nash Equilibrium of a Stochastic Game): We
define the Nash equilibrium of a stochastic game as the set of
optimal policies that maximize µi such that

µe
(
se,π#

e, sa,π#
a

)
≥ µe

(
sa,πe, se,π#

a

)
∀ πe (2)

µa
(
se,π#

e, sa,π#
a

)
≥ µa

(
sa,π#

e, se,πa
)
∀ πa (3)

Definition 3 (Deterministic Finite Automaton): A DFA is a
finite state automaton (FSA) whose states are finite sets and
whose transitions are labeled with finite sets. We denote a DFA
by a tuple H = 〈H, hI,&, δ, F〉 where H is the set of states,
hI is the initial state, & is the input alphabet, δ : H×&→ H
is the transition function, and F ⊆ H is the set of accepting
states. Let the size of the DFA H be |H|.

Definition 4 (Reward Machine): We denote a reward
machine by A = 〈V, vI, 2P , M,(, σ 〉 where V is a finite set of
states, vI is the initial state, 2P is the input alphabet, M ⊆ R is
output alphabet, ( : V×2P → V is the set transition function,
and σ : V × 2P → M is the output function. We define the
size of the reward machine as |A| = |V|.

By applying the reward machine Ai on a sequence of
labels li,0li,1 . . . li,n, we obtain a sequence of RM states
vi,0(li,0, ri,0)vi,1(li,1, ri,1) . . . vi,n(li,n, ri,n) where vi,0 = vi,I is
the initial state of the RM.

III. STOCHASTIC GAMES

We study two-player zero-sum and general-sum stochastic
games. Our methodology can be extended to more than two
agents by using methods that find meta Nash equilibrium
(e.g., [17]) instead of Lemke-Howson. For StochQ-RM, we
propose DFA-based q-learning with RMs, DBQRM, a decen-
tralized algorithm where each agent learns its policy as it
interacts with the adversary.

Our algorithm finds the Nash equilibrium at each time step
(best response to the opponent’s action). This action transitions
the agent to the next augmented state and yields a reward,
which is used to update the policy. Through this interaction
with the environment and adversarial agent, we derive an
optimal policy that maximizes each agent’s discounted cumu-
lative reward (the existence of Nash equilibria for stochastic
games has been studied [18]).

Definition 5 (q-Function at a Nash Equilibrium): We define
the q-function at a Nash equilibrium for each agent as:

q j
i (s, ve, va, ae, aa) = ri(s, ve, va, ae, aa)

+γ
∑

s′∈S;v′e∈Ve;v′a∈Va

p
(
s′, v′e, v′a|s, v′e, v′a, ae, aa

)
µi

(
s′, v′e, v′a, π

#
e, π

#
a

)

(4)

The total discounted reward for agent i is given
by µi(s′, v′e, v′a,π

#
e,π

#
a), based on the augmented state

(s′, v′e, v′a). Each agent maintains its own q-function and the
opponent’s estimation, denoted as q j

i (e.g., qee, qea). The Nash
equilibrium at each time step to the stochastic game is com-
puted using the Lemke-Howson algorithm [8], determining
each agent’s equilibrium action, i.e., the best response to the
opponent’s actions. This action transitions the agent to the next
G state s′ and yields a high-level event label lk, leading to a
transition to the RM state v′i and the corresponding reward ri.
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The agents then update their q-values based on the Nash
equilibrium.

q̄ j
i

(
s′, v′e, v′a

)
= π j

e

(
s′, v′e, v′a

)
⊗ π j

a

(
s′, v′e, v′a

)
· q j

i

(
s′, v′e, v′a

)

(5)

q j
i (s, ve, va, ae, aa) = (1− α)q j

i (s, ve, va, ae, aa)

+ α
(

ri + γ q̄ j
i

(
s′, v′e, v′a

))
(6)

where the π
j
e(s′, v′e, v′a) and π

j
a(s′, v′e, v′a) denote the Nash

equilibrium solution to the stage game and π
j
e⊗π

j
a (⊗ denotes

the Kronecker product) shows the joint probabilities of actions.
q̄ j

i is the best response to the opponent’s action.

IV. EXTRACTION OF DOMAIN-SPECIFIC KNOWLEDGE
FROM LARGE LANGUAGE MODELS

We use a combination of persona adoption, zero-shot, and
few-shot methods that we call MixedR (mixed-reasoning) to
obtain the LLM-generated DFA for each agent.

Example 1: In a variation of a Pac-Man game, agents need
to reach their own powerhouse to recharge, and then they must
reach their adversary’s powerhouse to dominate it. Afterward,
they can conquer their adversary’s base (see Figure 4). We
describe this task as task description to LLM using prompt
engineering to obtain the LLM-generated DFA.

In Example 1, we use the persona of a zero-sum game
expert to guide the LLM in generating coherent outputs by
focusing on a domain and providing a task description for DFA
generation to minimize hallucinations. MixedR in Example 1
yields LLM-generated DFA H j

i for each agent.
Prompt Example 1: You are an expert in RL for “zero-sum”

games. Provide a strategy for each agent in “task description”
(Example 1). Provide your answer in the form of deterministic
finite automata (DFA). Here are some examples of DFA. The
format is 〈task desctiption〉 − 〈DFA〉.

• 〈task description No.1〉 − 〈DFA No.1〉
• . . .

Let us think step by step.
Prompt Example 1 shows an example of MixedR.

V. USING LLMS TO GENERATE DFA
In this setup, DFA H operates on a sequence of labels

λ = l1l2 . . . ln ∈ &#, which maps to a sequence of DFA
states h0h1 . . . hn, with transitions defined as hk+1 = δ(hk, lk).
The formal language accepted by H is defined as L(H ) =
l1l2 . . . ln ∈ &#|hn ∈ F. An LLM-generated DFA yielding a
positive reward is considered a compatible DFA, where the
label sequence λ

j
i ∈ L(H j

i ) indicates potential reward. This
approach narrows the search space for learning the ground
truth RM, and StochQ-RM disregards any hallucinated LLM-
generated DFA that is incompatible with the ground truth RM,
Aj (i.e., Ae and Aa).

Definition 6 (Compatibility of LLM-Generated DFA): We
consider an LLM-generated DFA H j

i to be compatible with
RM Aj if returning a positive reward, i.e., rk > 0 implies
l1l2 . . . lk ∈ L(H j

i ) for all label sequences l1l2 . . . lk ∈ (2P )+

with the corresponding reward sequence of Aj(l1l2 . . . lk) =
r1r2 . . . rk for k ∈ N.

Fig. 1. Compatible LLM-generated DFA H is used to learn the ground
truth RM. Note that DFA states are denoted by h and RM states are
denoted by v, and w ∈ {1, 2}.

Algorithm 1: PromptLLMforDFA: Constructing Task
DFA for a Domain-Specific Task Using LLM

Input: prompt f
Parameter: temperature T , Top p P (OpenAI LLM

parameters)
Output: DFA

1 output← PromptLLM(f , T, P);
2 H← {h0}, h0 ← 0, δ← {+0}, P ← {P 0}, K← 0;
3 for instruction ∈ output do
4 K← K + 1;
5 hK ← GetStates(instruction);
6 PK ← GetProposition(instruction);
7 +K ← ComputeTransition(hK,PK);
8 H← H ∪ {hK}, δ← δ ∪ {+K}, P ← P ∪ {PK};
9 return H = 〈H, h0, 2P , δ, {hK}〉;

Example 2: Consider ground truth RM in Figure 1(a) and
the compatible LLM-generated DFA H in Figure 1(b) where
an agent can use H to learn the ground truth RM which may
lead to faster convergence to an optimal policy.

If the LLM-generated DFA is incompatible with the ground
truth RM, i.e., a counterexample, StochQ-RM adjusts the
prompt using the counterexample to obtain a more compat-
ible LLM-generated DFA. Counterexample occurs when a
label sequence and its corresponding reward sequence that is
suggested by the LLM-generated DFA is inconsistent with
the ground truth. We use Algorithm 1 to obtain the LLM-
generated DFA. We create a prompt f using MixedR, providing
instructions to generate the DFA H j

i . MixedR ensures the
LLM generates output in a structured format (Line 1). Next,
we define the DFA’s set of states H, transitions δ, and
propositions P (Line 2). For each LLM output (the DFA), we
extract the states, transitions, and the propositions triggering
those transitions (Lines 3-7). This process is repeated for all
instructions to construct the domain-specific LLM-generated
DFA for agent i (Line 9).

We apply DBQRM (Algorithm 2) to find the Nash equi-
librium using an extended Lemke-Howson method with a
lexicographic approach [8]. After initializing agent and RM
states (Lines 1–2), we create empty label and reward sequence
sets (Line 3). At each time step t both agents share their
augmented state and action with their adversary, meaning
that the agents have access to the opponent’s trajectory. We
obtain the Nash equilibrium action as the best response by
estimating the opponent’s policy, e.g., the ego agent estimates
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Algorithm 2: DBQRM
Hyperparameters: episode length eplen, learning rate α,

discount factor γ , epsilon-greedy ε

Input: RMs Ae,Aa, Ue
e ,Ue

a ,Ua
e ,Ua

a , and Q-functions(
qee, qea, qae, qaa

)
, temperature T , Top p P, prompt f

1 s← InitialState();
2 ve← vI,e, va← vI,a, vAe ← vI,Ae , vAa ← vI,Aa ;
3 λe← {}, λa← {}, ρe← {}, ρa← {};
4 for 0 ≤ t < eplen do
5 for i ∈ {e,a} do
6 π i

e(·|s, ve, va),π i
a(·|s, ve, va)←

FindNashEq
(
qi
e, qi

a

)
;

7 ai ← SelectAction
(
π i

i (a|s, ve, va), ε
)
;

8 s′ ← ExecuteAction(s, ae, aa);
9 for i ∈ {e,a} do

10 li,t ← Li(s, ae, aa, s′);
11 v′Ai ← (Ai(vAi , li,t), ri,t ← δAi(vAi , li,t);
12 v′i ← (i(vi, li,t);

13 for i ∈ {e,a} do
14 π i

e(·|s, ve, va),π i
a(·|s, ve, va)←

FindNashEq
(
qi
e(s, ve, va), qi

a(s, ve, va)
)
;

15 qi
e(s, ve, va), qi

a(s, ve, va)← Equation (6);
16 s← s′, ve← v′e, va← v′a, λi ← λi ∪ {li,t},

ρi ← ρi ∪ {ri,t};

17 return
(
qee, qea, qae, qaa, ρe, ρa, λe, λa

)

the adversary’s policy πe
a . By estimating the adversary’s policy

we obtain the actions ae and aa (Lines 5 - 7) for each
agent. By executing the action we obtain the next state s′

and for each transition from state s to s′ we obtain the label
li,t, reward ri,t (given by the ground truth RM, Line 11),
and the next RM state v′i (Lines 8–12). We then use the
Lemke-Howson method to calculate the Nash equilibrium
policy solution to the stage game (Line 14). DBQRM updates
the q-values, G states, RM states and obtains the label
sequences λe, λa and reward sequences ρe, ρa for each agent
which later on will be used to find the ground truth RM
(Lines 15–17).

StochQ-RM (Algorithm 3) learns RMs equivalent to
the ground truth for the ego agent (Ue

e , Ue
a ) and the

adversary (Ua
e , Ua

a ) by utilizing the LLM-generated DFA
obtained by Algorithm 1 and updates optimal policies π#

e
and π#

a using Algorithm 2. Initially, q-values qee, qea, qae, qaa
and counterexample sets Xe

e, Xa
e, Xe

a, Xa
a are initialized

(Lines 1 - 2).
Prompts fe and fa are stored and their DFA sets initialized

(Lines 3–4). The LLM is then prompted to generate the LLM-
generated DFA (Lines 5, 8). Next, StochQ-RM uses DBQRM
to find best-response policies (Line 11), and checks if the
learned RM U j

i matches the ground truth RM (Line 14). If
the reward sequence is inconsistent with G (ground truth), the
counterexample (λi, ρi) is added to the counterexample set
(Line 15). The algorithm verifies whether the counterexample

Algorithm 3: StochQ-RM
Hyperparameters: eplen,α, γ , ε

Input: Ground truth RMs Ae,Aa, temperature T , Top p
P, prompt f , query budgets J e

e ,J a
e ,J e

a ,J a
a

1 qee, qea, qae, qaa← InitializeQfunction();
2 Xe

e, Xe
a, Xa

e, Xa
a ← ∅;

3 f ← {fe, fa};
4 H e

e,H
e
a,H

a
e,H

a
a← {}, Ue

e ,Ue
a ,Ua

e ,Ua
a ← {};

5 for j ∈ {e,a} do
6 for i ∈ {e,a} do
7 H j

i ← PromptLLMforDFA(fi, T, P);

8 U j
i ← InitializeRewardMachine

(
H j

i

)
;

9 for episode n = 1, 2, . . . do
10 Xe

e,init, Xa
e,init, Xe

a,init, Xa
a,init ← Xe

e, Xa
e, Xe

a, Xa
a ;

11 (qee, qea, qae, qaa, ρe, ρa, λe, λa)←
DBQRM(Ae,Aa,Ue

e ,Ua
e ,Ue

a ,Ua
a , qee, qea, qae, qaa);

12 for j ∈ {e,a} do
13 for i ∈ {e,a} do
14 if U j

i (λi) 2= ρi then
15 Xj

i ← Xj
i ∪ {(λi, ρi)};

16 if Xj
i 2= Xj

i,init then
17 if J j

i ≥ 0 and ∃(λi, ρi) ∈ Xj
i, ρi ≥ 0 and

λi /∈ L(H j
i ) then

18 fi ←
UpdatePromptCntExmp

(
fi, λj

)
;

19 H j
i ←

PromptLLMforDFA(fi, T, P);
20 J j

i ← J j
i − 1;

21 U j
i ←

LearnRewardMachine
(
H j

i , Xj
i

)
;

22 q j
i ← InitializeQfunction();

is due to an incompatible LLM-generated DFA or the learned
RM (Line 16). If the counterexample is due to the LLM-
generated DFA (Line 17), the DFA is updated with the
counterexample, and a new LLM-generated DFA is generated
using Algorithm 1 (Lines 18 - 20). To manage LLM hallu-
cinations, each agent is assigned a query budget J j

i . Based
on our experiments, we have seen that for RMs with 5 to
7 states, LLM hallucinations frequency is once every 7 to
8 queries (on GPT4o) thus, we have chosen J j

i = 20 to
be conservative. We have also observed that a low value of
J j

i = 3 might be depleted in rare cases. The budget depends
on the prompt; without a suitable prompt, we may not obtain
the LLM-generated DFA, regardless of J j

i . If the budget is
depleted without a correct LLM-generated DFA, we switch
to learning from traces only (Line 20). We then refine U j

i
using the learned LLM-generated DFA and counterexamples
(Line 21), and re-initialize q-values (Line 22).
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VI. LEARNING RM IN STOCHASTIC GAMES USING
LLM-GENERATED DFA

Agents learn an equivalent RM to the ground truth RM
by interacting with the environment. Each agent shares its
observations with its adversary, ensuring the derived RM by
the ego agent (Ue

a ) matches that of the adversary (Ua
a ), and

vice versa. This equivalence holds since the counterexample
Xe
a ⊆ (2P i)+ × R+

i for i ∈ {e,a} is the same for both
agents. Throughout learning, each agent’s opponent estimation
remains consistent with the ground truth through shared
observations. The learned RM U j

i is consistent with the
counterexample Xj

i , meaning U j
i (λi) = ρi for all (λi, ρi) ∈ Xj

i .
Using these counterexamples and label sequences, we learn an
equivalent RM [13]. This learning iteratively generates propo-

sitional logic formulas φ
Xj

i
κ , where κ ∈ N, from the proposition

set P = {x, y, . . .} using Boolean connectives {¬,∨,∧, 6→}.
The mapping I : P 6→ {0, 1} assigns Boolean values, with

I |= φ
Xj

i
κ indicating formula satisfaction. We increase the

formula size until finding a satisfiable formula, representing
an RM with κ states consistent with the counterexamples.

VII. CONVERGENCE TO OPTIMAL POLICY

The learned RM U j
i is considered equivalent to the ground

truth RM Aj if it correctly recognizes any label sequence
that is admissible within the underlying system G [16]. Given
that LLMs may hallucinate, we must account for potential
incompatibility in H . To ensure that StochQ-RM converges
correctly, we treat LLMs as potentially adversarial, meaning
the worst-case scenario.

Lemma 1: Let G be a labeled stochastic game, Aj the
ground truth RM encoding the rewards of G, and D j

i =
{H j

i1 , . . . ,H
j
im} the set of all LLM-generated DFAs (|D j

i| =
m ∈ N) that are added to H during the run of StochQ-RM
for each agent. Additionally, let

nmax = max
H j

i ∈D
j
i,z∈{1,...,m}

{
|H j

iz |
}

(7)

η = max
i,j∈{e,a}

{
2|G| ·

(
|Aj| + 1

)
· nmax, |G|

(
|Aj| + 1

)2
}

(8)

Then, StochQ-RM with eplen ≥ η almost surely (meaning
with probability 1) learns RM U j

i that is equivalent to Aj.
Proof: By showing that the set D j

i stabilizes within a
certain time interval, meaning no additional LLM-generated
DFAs are introduced or removed, given the assumption that
the agent encounters all possible (s, a, l) infinitely often we
can complete the proof. Here is the reasoning: if an LLM-
generated DFA added to D j

i is compatible, it remains in
the set indefinitely. This is because no counterexample will
invalidate it, preventing the condition in Line 16 from being
met. Conversely, if an LLM-generated DFA is incompatible,
the algorithm will eventually detect a trajectory that demon-
strates this inconsistency, leading to its removal from D j

i.
Additionally, the algorithm decreases J j

i by one each time
it adds a new LLM-generated DFA to D j

i, and this process
continues only while J j

i > 0. Thus, the total number of LLM-
generated DFAs created throughout the algorithm’s execution

is limited by J j
i . As a result, after a certain time interval, the

set D j
i stops changing since the algorithm either converges

on the correct RM Aj or all incompatible DFAs have been
removed, and LLM cannot be prompted (J j

i = 0).
Once D j

i becomes fixed, it can be shown, similarly to
Neider et al.’s proof [16], that the algorithm will eventually
learn the true RM, i.e., Aj. Also if the learned RM Aj is
not equivalent to the ground truth RM U j

i , then the algorithm
will collect a counterexample through its encounter with a
trajectory that is incompatible with U j

i . Additionally, in the
worst-case scenario, all trajectories of length eplen will be
incorporated into Xj

i , guaranteeing that the StochQ-RM will
learn the correct RM.

StochQ-RM provides an upper bound for the episode length
that needs to be explored. Its correctness follows the Lemma 1
and the correctness of the QRM algorithm [1].

Theorem 1: Let G, Aj, D j
i, η, and m be as in Lemma 1.

Then, StochQ-RM will converge to an optimal policy almost
surely (meaning with probability 1) if eplen ≥ η.

Proof: Theorem 1 follows from Lemma 1 and correctness
of QRM algorithm [1].

Theorem 1 guarantees the convergence of the StochQ-RM
to an optimal policy if sufficient episode length is given for
exploration. It also provides an upper bound for convergence,
as illustrated in Lemma 1.

VIII. RESULTS

We study two scenarios: a zero-sum game (Pacman) and
a general-sum game (Factory), investigating the performance
of the StochQ-RM for each. We use GPT4o to obtain the
LLM-generated DFA. In our case studies, tasks are encoded
using RMs, and the task description is used to derive the
LLM-generated DFA. We compare our method with Nash-Q,
Nash-QAS, MADDPG, MADDPG-AS, and QRM-SG.

Case Study 1. In the general-sum factory game, each agent
must complete a series of sub-tasks shown in Figure 2(b)
within the environment (Figure 2(a)). We obtain the LLM-
generated DFA, {ζw,Υw} for agent e (Agent 1 in Figure 3)
and agent a (Agent 2 in Figure 3), meaning that DFA reaches
its accepting state when labels ζw and Υw are encountered.
Figure 3 shows that the StochQ-RM converges to an optimal
policy faster by using LLM-generated DFA H , NashQAS can
only converge to an optimal policy faster for Agent 1, and it
is not as stable as StochQ-RM (see shaded area). Simulation
results are for four independent runs averaged over each 200
episodes.

Case Study 2. We study StochQ-RM performance in zero-
sum games. We consider the Pacman game similar to [11].
The obtained LLM-generated DFAs are {〈e, Pe〉, 〈e, Pa〉} and
{〈a, Pa〉, 〈a, Pe〉} for agents e and a, i.e., Agent 1 and 2 in
Figure 5, respectively. Figure 5 shows that the StochQ-RM
converges to an optimal policy faster by using LLM-generated
DFA H , simulation results are for five independent runs
averaged over each 200 episodes.

Case Study 3. We test StochQ-RM in a different scenario
of the factory game with grid dimension increased to 12 × 12,
where the agents must visit a remote station located at

Authorized licensed use limited to: Arizona State University. Downloaded on July 25,2025 at 00:05:51 UTC from IEEE Xplore.  Restrictions apply. 



2762 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Fig. 2. (a) Environment of general-sum game. (b) Ground truth RM of
the general-sum game. βw , Υw and ζw where w ∈ {1, 2} are the tool
stations, component locations, and assembly points, respectively, and
triangles are the agents.

Fig. 3. StochQ-RM uses the LLM-generated DFA H to learn an
equivalent to the ground truth RM.

Fig. 4. (a) Environment of zero-sum game (b) RM of the general-sum
game. Pe and Pa are the powerhouses of agents e and a, respectively.
be and ba are the bases. ε1 and ε2 are neutral bases used to make the
learning of the RM more challenging.

Fig. 5. StochQ-RM converges to an optimal policy faster compared to
the baselines by using the LLM-generated DFA.

(x = 0,y = 3) in the grid (origin is at the left bottom
corner similar to Figure 2(a)). The LLM-generated DFA for
agents e and a is {ζw,Υw} where w ∈ {1, 2}, and {βw,4w},
with 4w representing the added sub-task. Figure 6 shows
StochQ-RM converging to an optimal policy faster by using
LLM-generated DFA for both agents, while the baselines fail
since the sparsity of the events is higher in this case.

IX. CONCLUSION

We showed that our proposed algorithm StochQ-RM outper-
forms the baselines for both general-sum and zero-sum games.

Fig. 6. StochQ-RM converges to an optimal policy faster by using LLM-
generated DFA.

Moreover, we showed that the StochQ-RM converges to an
optimal policy by using LLM-generated DFA H .
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