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ABSTRACT

Object-oriented data analysis is a fascinating and evolving field in modern statistical science, with the
potential tomake significant contributions to biomedical applications. This statistical framework facilitates
the development of new methods to analyze complex data objects that capture more information than
traditional clinical biomarkers. This paper applies the object-oriented framework to analyze physical
activity levels, measured by accelerometers, as response objects in a regression model. Unlike traditional
summary metrics, we utilize a recently proposed representation of physical activity data as a distributional
object, providing amore nuanced and complete profile of individual energy expenditure across all ranges of
monitoring intensity. A novel hybrid Fréchet regression model is proposed and applied to US population
accelerometer data from National Health and Nutrition Examination Survey (NHANES) 2011 to 2014.
The semi-parametric nature of the model allows for the inclusion of nonlinear effects for critical variables,
such as age, which are biologically known to have subtle impacts on physical activity. Simultaneously, the
inclusion of linear effects preserves interpretability for other variables, particularly categorical covariates
such as ethnicity and sex. The results obtained are valuable from a public health perspective and could lead
to new strategies for optimizing physical activity interventions in specific American subpopulations.

KEYWORDS: accelerometer devices; complex survey designs; distributional representations; functional
data analysis.

1. INTRODUCTION
Medical science is living in a golden age with the expansion of the clinical paradigms of digital
and precision medicine (Li et al. 2017; Kosorok and Laber 2019; Topol 2019; Onnela 2021;
Javaid et al. 2022). In this new context, it is increasingly common to record participant data that
is most faithfully represented using complex statistical objects such as probability distributions
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(Matabuena et al. 2021; Ghosal et al. 2022, 2023b; Matabuena and Petersen 2023) that contain
enriched information compared to traditional clinical biomarkers in predictive terms. Distribu-
tional representations can be seen as natural digital functional biomarkers to analyze wearable
data information. In a series of papers, the performance of the distributional representation was
compared with that of existing summary metrics, providing strong evidence of their advantages in
diabetes and physical activity domains (Matabuena et al. 2021, 2022; Cui et al. 2023; Ghosal et al.
2023b; Jašková et al. 2023; Matabuena and Petersen 2023). Distributional representations are a
direct functional extension of traditional compositional metrics (Battelino et al. 2019; Biagi et al.
2019; Park et al. 2025) and facilitate the creationof synthetic profiles over a continuumof intensities
measured by wearable devices that provide an individualized profile of the participant’s activity.
Importantly, these representations overcome the critical limitations of compositional metrics that
require one to define specific cut-off points to categorize participant information that can introduce
subjectivity and be highly dependent on the population under analysis.

This work ismotivated by the task to uncover factors that are associatedwith the physical activity
patterns of the American population, where these patterns are represented as distributional data
objects. As energetic expenditure behaves nonlinearly with age (Schrack et al. 2012), and other
anthropometrical measures (Mehta et al. 2017), more advanced and flexible regression models are
required to overcome the limitations of the linear model. Here, to provide a good balance between
the advantages and disadvantages of linear and nonlinear models, the proposed model extends the
partially linearmodel for scalar responses (Liang et al. 2010) to the case of a distributional response
object, yielding a partially linear Fréchet single index model. Analogous to the scalar response
case, this can be viewed as an extension of the recently proposed global Fréchet regression and
Fréchet single index models (Petersen and Müller 2019; Bhattacharjee and Müller 2023; Ghosal
et al. 2023a). Furthermore, the survey weights from the complex survey design of the NHANES
are incorporated into themodel estimation to obtain reliable population-based results according to
the composition of the US population (Lumley 2010).

From a public health point of view, the proposed model is attractive because it elucidates the
impact certain variables exert on the American population’s average physical activity level profiles
along the full range of accelerometer intensities. Moreover, these new findings can help to refine
and plan specific health interventions that reduce the gap in physical inactivity in different US
sub-populations. For example, one of the follow-up analyses conducted herein extracts clinical
phenotypes of individuals to characterize the participantswho aremore or less active thanpredicted
by the regression model.

The structure of the paper is as follows. Section 2 introduces the NHANES data that will be
analyzed, togetherwith a background of the physical activity distributional representations. Section
3 introduces the model and an efficient, spline-based estimator. Section 4 reports the various
analyses performed. Finally, Section 5 discusses the results from a public health perspective, this
paper’s role in the broader statistical literature on regressionmodels inmetric spaces, and its oppor-
tunities in themedical field to analyze other complex statistical objects. Additional results, included
in the Supplementary Materials, explore novel semi-supervised physical activity phenotypes and
demonstrate how classical physical activity metrics can be interpreted as specific instances of our
distributional models.

1.1 Contributions
The methodological contributions of this paper will first be summarized, followed by the findings
from the analysis of the NHANES database using the proposed regression model with responses
being the distributional representation of physical activity profiles.

• To the authors’ knowledge, the proposed model is the first partially linear Fréchet single
index (PL-FSI) regression model for responses that are probability distributions, viewed as
elements of theL2-Wasserstein space.Moreover, for this particular situation, theuseof splines
are introduced for the first time in the Fréchet regression modeling framework.
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• An efficient optimization strategy is proposed to address the complex survey sampling
mechanism of theNHANES data that retains the estimator’s form of a weighted least squares
problem. The key idea of our approach is to estimate the model’s nonlinear component by
means of regression splines after projecting the variables in the nonlinear term to a single
covariate.

• The primary findings of the analyses conducted on the NHANES are:
1. The proposed single-index model is shown to outperform both the global Fréchet model

and a competing, more general, partially linear Fréchet regression model in terms of the
adjusted Fréchet R2 measure (Petersen andMüller 2019).

2. Interpretations are provided for the effects of ethnicity and other interesting variables on
distributional physical activity profiles. These novel analyses can provide new insights into
how physical activity varies among the various US sub-populations.

3. New physical activity phenotypes are constructed corresponding to individuals who do
more or less exercise than is predicted by the model using the distributional represen-
tation. These analyses are new and help to examine how well individuals adhere to the
recommended physical activity guidelines.

The code for reproducing the results presented using the methods proposed in this paper are
publicly available on GitHub at https://github.com/aghosal89/FSI_NHANES_Application.

1.2 Literature review
Statistical regression analysis of response data in metrics spaces is an increasingly prominent
research direction in the statistical community (Petersen and Müller 2016; Yang et al. 2020; Fan
and Müller 2024; Petersen et al. 2021; Dubey and Müller 2022; Jeon et al. 2022; Petersen et al.
2022; Tucker 2022; Zhou and Müller 2022; Bhattacharjee and Müller 2025; Chen and Müller
2023; Chen et al. 2023; Ghosal et al. 2023a; Lin et al. 2023b). The first papers on hypothesis
testing (Lyons 2013; Dubey and Müller 2019; Petersen et al. 2021), variable selection (Tucker
et al. 2023;Coulter et al. 2024), causal inference (Katta et al. 2024),multilevelmodels (Matabuena
andCrainiceanu 2024), uncertainity quantification (Lugosi andMatabuena 2024;Matabuena et al.
2024), semi-parametric regression models (Bhattacharjee and Müller 2023; Ghosal et al. 2023a),
and non-parametric regression (Hanneke 2022), have recently appeared. For classical regression
models with univariate response data, single index models, including partially linear ones, have
been a topic with particular popularity in the last 20 yr in the statistical and econometrics literature
(Carroll et al. 1997; Horowitz 2012). There are several works in this direction, including recent
extensions of the model to functional data (Wang et al. 2016; Wong et al. 2019; Xiao et al. 2021;
Zhu et al. 2022). However, the authors are not aware of any existing extension of partially linear
single index models to response data in metric spaces, even for the special case of distributional
response data, or that incorporates the complex survey design into the analysis.

2. MOTIVATING EXAMPLE: DATA ON WEARABLE ACCELEROMETER
DEVICES FROM NHANES 2011 TO 2014

The NHANES aims to provide a broad range of descriptive health and nutrition statistics for the
non-institutionalized civilian US population (Johnson et al. 2014). Data collection consists of an
interview and an examination. The interview gathers personal demographic, health, and nutrition
information; the examination includes physical measurements such as blood pressure, a dental
examination, and the collection of blood and urine specimens for laboratory testing. Additionally,
participants were asked to wear a physical activity monitor, starting on the day of their exam, and to
keep wearing this device all day and night for seven full days (midnight to midnight) and remove it
on themorningof the8thday.Thedeviceusedwas theActiGraphGT3X+(ActiGraphofPensacola,
FL).Data from theNHANEScohorts 2011 to2014were used for the analyses in this paper (Johnson
et al. 2014).
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Physical activity signalswere pre-processed by staff from theNationalCenter forHealth Statistics
(NCHS) to determine signal patterns that were unlikely to result from human movement. Ac-
celeration measurements were then summarized at the minute level using Monitor-Independent
Summary (MIMS) units, an open-source, device-independent universal summary metric (John
et al. 2019).

Throughout the figures and text, we will refer to MIMS as Activity Counts for consistency and
clarity. In order to further increase the reliability of the analysis, we use the following filter criteria
strategy extracted from Smirnova et al. (2020) in order to remove participants with poor quality
in their accelerometry data. Those participants who (i) had fewer than 3 d of data with at least
10 h of estimated wear time or (ii) had non-wear periods, identified as intervals with at least 60
consecutive minutes of zero activity counts and at most 2min with counts between 0 and 5 were
deemed by NHANES to have poor quality and hence were removed. These protocol instructions
were adopted from high-level accelerometer research (see, for example, Troiano et al. 2008).

2.1 Quantile function representation of physical activity profiles
A novel representation of the resulting data is herein adopted that extends previous compositional
metrics to a functional setting (Matabuena and Petersen 2023), aimed at overcoming their de-
pendency on certain physical activity intensity thresholds. This approach also overcomes some
previously known limitations of more traditional approaches. Let i ∈ {1, 2, . . . , n} be the index for
participants, where n is the total number of participants in the study. For the ith participant, letMi
indicate the number of days (including partial days) for which accelerometer records are available
and ni be the number of observations recorded in the form of pairs

(
mij,Aij

)
, j ∈ {1, . . . , ni}. Here,

the mij are a sequence of time points in the interval [0,Mi] in which the accelerometer records
activity information and Aij is the measurement of the accelerometer at time mij. No data are
available during non-wear periods.

In this paper, each individual’s accelerometer measurements, {Aij}
ni
j= 1, are studied without

regard to their ordering in time. They are thus characterized by the empirical quantile function,
Yi(t) = Q̂i(t), for t ∈ [0, 1], which will be used as the response in the regression model. Here,
Q̂i(t) = inf{a ∈ R : F̂i(a) ≥ t} is the generalized inverse of F̂i (a) = 1

ni

∑ni
j= 1 1{Aij ≤ a}, a ∈ R, the

empirical cumulative distribution function for the physical activity values for the ith individual. In
order to illustrate clearly the difficulty of analyzing raw physical activity data from participants who
are monitored during different periods and in different experimental conditions, Fig. 1 shows the
plot of observed Aij against mij for an arbitrarily chosen participant in the study. In Fig. 2, the left
panel shows the empirical quantile functional representation of the physical activity measurements
of the participant whose raw measurements are shown in Fig. 1, while the right panel shows the
empirical quantile functions of all participants after transforming the raw time series physical
activity data into distributions of the physical activity. Quantile function representations of the
physical activity trajectories overcome the problems of the traditional summarymetrics of physical
activity when the raw time series have different lengths. In addition, the new representation uses
all accelerometer intensities (over a continuum) to construct the new physical activity functional
profile, generalizing traditional metrics of physical activity that summarize the information in a
compositional vector.

The precise relationship between the distributional representation and traditional compositional
metrics can be understood as follows. Given a subject’s cumulative distribution function (CDF)
of physical activity, F̂i(a), a compositional metric is formed by creating bins [aj−1, aj] for a0 <
a1 < . . . < aM. This process results in an M-dimensional compositional vector Ui, where each
component is defined as

Uij = F̂i(aj) − F̂i(aj−1).

Thus, any desired compositional information can always be derived from the distribution, and
the distributional representation can be thought of as a continuous extension of the compositional
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Fig. 1.The plot of physical activity time series Aij of one representative participant (one chosen i) in the
NHANES 2011 to 2014 study monitored during 8 d are plotted over the observed time intervalsmij, when
the physical activity measurements are counted as described in Section 2.1.

Fig. 2. (Left) The empirical quantile representation Q̂i, of the activity profile of the participant (chosen i)
described in Fig. 1 above, also described in the Section 2.1. (Right) The estimated empirical quantile
functions of physical activity profiles for all of the 4616 participants in the study.

approach. Most importantly, when physical activity distributions are the responses in a regression
model, distributional predictions produced by the regression fit can always provide any desired
compositional information regardless of the choice of bins or thresholds aj, j = 0, 1, . . . ,M.Hence,
from a practical perspective, there are two main advantages to choosing the distributional repre-
sentation. First, it avoids collapsing the information of physical activity into intervals, preventing
potential loss of information. Second, it eliminates the need to define thresholds that, in the context
of physical activity, depend on population and physical characteristics such as age, sex, and BMI.
This removes arbitrariness and subjectivity from the analysis.

Another key distinction between this work and others that have used distributional represen-
tations is that, while these previous papers have focused only on positive observations of physical
activity counts (Ghosal et al. 2025; Lin et al. 2023a), the current work also incorporates periods
of recorded inactivity. Inactivity behavior is an important component of human physical activity
profiles, and the proposed methodological approach allows for the integration of both inactivity
and activity behaviors comprehensively.
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Table 1. Summaries of the covariates Age, BMI (BodyMass Index), HEI (Healthy Eating Index), TAC
(Total Activity Count), and Ethnicity, stratified by Sex.a

Covariates Men Women

Numeric variables
Age 47.45 (16.45) 48.082 (16.50)
Body mass index 28.72 (5.73) 29.18 (7.41)
Healthy eating index 53.013 (14.13) 56.63 (14.75)
Total activity count 9.8 (3.1) 9.7 (2.6)
Ethnicities
Mexican American 8.55 % 6.42 %
Other Hispanic 5.42 % 5.28 %
Non-Hispanic White 70.65 % 72.3 %
Non-Hispanic Black 8.82 % 10.29 %
Non-Hispanic Asian 3.77 % 3.37 %
Other races including multi-racial 2.79 % 2.35 %
aIn the first column, the levels of the categorical variable Ethnicity are separated from the numerical covariates Age, BMI, HEI,
and TAC. In the third and fourth columns, the first four rows present the means and, in brackets, the standard deviations of the
continuous variables (Age, BMI, HEI, and TAC) for men and women respectively. Rows 5to 10 in the same columns represent
the percentage breakdown of the sub-populations of men and women into their respective ethnicities. The description of the
covariates are found in Section 2.2.

2.2 Details of covariates
In addition to the accelerometer data, the covariates used in the model include sociodemographic,
dietary, and clinical variables such as age, BodyMass Index (BMI), andHealthyEating Index (HEI),
along with the categorical variables Ethnicity and Sex and their interaction. HEI is a continuous
score reflecting the overall diet quality of each participant. The ethnicity variable reported the
racial origin of the participants divided into the following six categories: Mexican American,
Other Hispanic, Non-HispanicWhite, Non-Hispanic Black, Non-Hispanic Asian, andOther races,
including Multi-racial. The age range of the participants in the analysis was 20 to 80 yr. The BMI
(kg/m2) was restricted to the range 18.5 to 40 to study individuals ranging from healthy to highly
overweight/obese. Under these restrictions, n = 4616 individuals were chosen for the analysis.
Although not included as a predictor in the models analyzed in Section 4, the Total Activity Count
(TAC) is a widely used summary metric for accelerometer data that represents the average activity
count over the complete series of physical activitymeasurements recorded by the device. In the data
cohort used for analysis, each element of the sequence {Aij}

ni
j= 1 is measured inMIMS units, unlike

NHANES 2003 to 2006, which uses Actigraph counts. For consistency, since the TAC variable
in both datasets represents the average count units of the monitor, this metric is termed Total
Activity Count (TAC) in both settings. More specifically, in the notation of Section 2.1, the TAC
of the ith participant is TACi =

1
ni

∑ni
j= 1 Aij. In this sense, TAC represents a scalar summary of

the distributional representation used in this paper. SupplementaryMaterials demonstrate how the
proposedmodel, which relates covariates to the full physical activity distribution, can subsequently
be used to interpret relationships between covariates and summaries of interest such as TAC.
Univariate summaries of each of these covariates, stratified by sex, are displayed in Table 1.

This paper aims to create a parsimonious and straightforward regression model to interpret the
several central aspects of energetic expenditure captured by the Age and BMI variables that are
expected to behave in a nonlinear way with the response. At the same time, it is of interest to
assess the effect of diet on physical exercise. It has been observed that sex and ethnicity differences
in the US population tend to interact concerning physical activity. For instance, women tend to
be physically less active than men within some ethnic groups (Black, While, Asian, Other races,
including Multi-racial) (Troiano et al. 2008), while among the Mexican American and Other
Hispanic ethnicities, men and women show very similar physical activity levels (Ortiz-Hernandez
and Ramos-Ibanez 2010) and adjusted for demographic factors (Medina et al. 2013). Hence, an
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interaction between sex and ethnicity was included to obtain reliable population-based conclusions
about the relationships between these covariates andphysical activity.The inherent samplingdesign
of the NHANES provides essential advantages to obtaining reliable population measurements that
cannot be guaranteed with observational cohorts such as the UK-Biobank due to selection bias. In
order to properly exploit this advantage, however, the survey design must be taken into account in
the estimation procedure, as described in Section 3.1.

3. THE PARTIALLY LINEAR FRÉCHET SINGLE INDEX
REGRESSION MODEL

LetYi be the empirical quantile function of daily activity levels corresponding to the ith participant.
In what follows, the regression relationship is built by directly modeling the pointwise mean
functionofYi(t)on the covariates, t ∈ [0, 1].Using thequantile function to characterize thephysical
activity distribution, as opposed to some other representation, can be justified as follows. First,
a density or cumulative distribution function (cdf) representation that ignores inactivity time is
inappropriate because the distributions represented by the Yi are a mixture of a mass at zero and
a continuous distribution for positive values. There are other practical reasons to prefer quantile
functions. For instance, quantile functions are less constrained than cdfs or density functions. For
example, one may add two quantile functions or multiply one by any positive constant to produce
another, but not so for cdfs or densities. This is crucial for predictive modeling, since applying
a post hoc adjustment to a model prediction to obtain a valid distributional representation can
affect both interpretation and introduce distortions that are more prominent for cdfs or densities
than for quantile functions (Petersen et al. 2021). Second, modeling the mean quantile function is
directly related to optimal transport through theWasserstein metric, offering a natural framework for
understanding biological phenomena (Villani 2009; Zhang andMüller 2011; Panaretos and Zemel
2019; Peyré et al. 2019).

Briefly, if µ and ν are two suitable measures on R with finite second moment, and if Qµ and
Qν are their corresponding quantile functions, then dW2(µ, ν), the Wasserstein distance between
µ and ν, is known to be equivalent to the L2 distance betweenQµ andQν , that is,

dW2(µ, ν) =

[∫ 1

0
(Qµ(t) − Qν(t))2dt

]1/2
. (1)

As a consequence, under this metric, the Fréchet mean (Fréchet 1948) measure of a random
measure is characterized by the pointwise mean of the corresponding random quantile process.
Hence, by proposing a regression model for the random quantile function Yi, one is implicitly
constructing a model for the conditional (Wasserstein-)Fréchet mean of the underlying random
physical activity distribution measure (Petersen et al. 2021).

The partially linear Fréchet single index (PL-FSI) model is formally defined as follows. Let
Xi ∈Rp denote the p-dimensional covariate vector in the single index part of the model, while
Zi ∈Rq is the covariate vector considered for the linear part. The PL-FSI model is

E(Yi(t)|Xi,Zi) = α(t) + β(t)TZi + g(θT0Xi, t), t ∈ [0, 1], (2)

where the vector θ0 ∈Rp, intercept function α, coefficient function β and link function g are the
unknown parameters.

3.1 Model estimation
For estimating the parameter θ0 and the identifiability of the PL-FSI model (Lin and Kulasekera
2007), define the parameter space

2p = {θ ∈Rp : ∥θ∥E = 1, first non-zero element being strictly positive}
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where ∥·∥E is the Euclidean norm. To facilitate estimation of the smooth bivariate function g, the
expansion

g(u, t) ≈
K+s∑
k=1

γk(t)φk(u) (3)

will be used, where {φk}
K+ s
k= 1 is a B-spline basis of order s on K interior knots, and γk(t) are the

coefficients of the basis as a function of t.
In practice, the tuning parameter K can be chosen by evaluating candidate values using a

goodness-of-fit measure, such as the coefficient of determination R2 or related measures, while
s = 4 is usually chosen, corresponding to cubic splines. The approximation to the PL-FSI model
(2) can thus be written as

E(Yi(t)|Xi,Zi) ≈ α(t) + β(t)TZi + γ (t)TU i(θ0), t ∈ [0, 1], (4)

where γ (t) = (γ1(t), . . . , γK+ s(t))T and, for any θ ∈ 2p, U i(θ) =

(φ1(θ
TXi), . . . ,φK+ s(θ

TXi))
T .

As (4) exhibits a linear form for each fixed value of θ , a semi-parametric least-squares approach
can be utilized for estimation. Due to the complex survey design of the NHANES database, a
weighted least squares criterion is needed in order to perform inference correctly and obtain reliable
results (Lumley 2010). Assume that a sample D = {(Yi,Xi,Zi) : i ∈ S} is available, where Yi is a
response variable, and Xi,Zi are vectors of covariates taking values in a finite-dimensional space.
The index set S represents a sample of n units from a finite population.

To account for sampling, each individual i ∈ S is associatedwith a positiveweightwi derived from
an experimental design such asmultistage random sampling. In the particular case ofNHANES, the
survey weightswi are specified by the Centers for Disease Control and Prevention (CDC) 1 and are
primarily used to mitigate selection bias, as explained in the CDC guidelines, 2 to obtain reliable
conclusions about the US population. In the analyses conducted in this paper, these weights were
taken to be the inverse of the probability πi > 0 of being selected into the sample, ie wi =

1
πi
(Kish

1965; Lumley 2004). These weights are used to construct an estimator of Horvitz-Thompson type
(Horvitz andThompson 1952; Rabe-Hesketh and Skrondal 2006) by constructing aweighted least
squares criterion.

The full procedure can be broken down into two steps. In the first step, for any θ ∈ 2p and any
t ∈ [0, 1], one computes weighted least squares estimates

(
α̂θ (t), β̂θ (t), γ̂ θ (t)

)
= argmin

a∈R,b∈Rq,c∈RK+s

n∑
i=1

wi
[
Yi(t) − a− bTzi − cTU i(θ)

]2 . (5)

These estimates lead to initial fitted quantile functions

Y∗
i (θ , t) = α̂θ (t) + β̂

T
θ (t)Zi + γ̂

T
θ (t)U i(θ), t ∈ [0, 1]. (6)

However, as a function of t, Y∗
i (θ , t) may not be monotonically increasing and hence is not a

proper quantile function. The typical solution for this is to project Y∗
i (θ , t), in the L2[0, 1] sense,

onto the nearest monotonic function (Petersen and Müller 2019; Petersen et al. 2021), yielding
a valid quantile function Ŷi(θ , t). For more details, the reader is referred to Algorithm 2 in the
Supplementary Material of Petersen et al. (2021). This algorithm produces a non-decreasing

1 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&CycleBeginYear=2011
2 https://wwwn.cdc.gov/nchs/nhanes/tutorials/weighting.aspx
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quantile function because the space of quantile functions is closed and convex, ensuring that the
projection is unique. The algorithm used is a quadratic program solver that effectively adjusts
the estimated quantile function to enforce monotonicity, thereby guaranteeing that the resulting
function is non-decreasing.

Once these initial quantities are formed for any θ and t, an estimate θ̂0 can be computed. As
justified in Ghosal et al. (2023a), one can use a generalized version of the residual sums of squares
to obtain the estimate. In the current context, the survey-weighted criterion

Wn(θ) =

n∑
i=1

wi

∫ 1

0

{
Yi(t) − Ŷi(θ , t)

}2 dt (7)

is proposed, and constitutes a weighted average of the squared L2 norms of the quantile residuals
(or, equivalently, of the squaredWasserstein distances between observed and fitted physical activity
distributions). Then the estimated parameter is

θ̂ = argmin
θ∈2p

Wn(θ). (8)

From this estimate of the index parameter, given any covariate pair (z, x), the conditional
Wasserstein-Fréchet mean quantile function can be estimated as follows. First, the basis functions
are evaluated at the relevant input by computing û= (φ1(θ̂

T
x), . . . ,φK+ s(θ̂

T
x))T . Then, (5) is

computed at the specified θ̂ and, as in (6), the preliminary estimate

Y∗(t; z, x) = α̂
θ̂
(t) + β̂

T
θ̂ (t)z+ γ̂

T
θ̂
(t)û. (9)

is constructed. Finally, the estimated quantile function Ŷ(t; z, x) is obtained by projecting (if
necessary), in the L2 sense, Y∗(t; z, x) onto the space of quantile functions, meaning the nearest
monotonically increasing function. In particular, for any set of observed covariates (Zi,Xi), fitted
values Ŷi(t) = Ŷ(t;Zi,Xi) are obtained.

Importantly, the proposed estimation method differs from other additive functional regression
models in the literature, such as those presented byMcLean et al. (2014), which represent quantile
functions using a basis. A basis representation for the quantile response objects is not required
for the several reasons: first, it is not necessary for implementation of the proposed estimation
algorithm, and its use would not simplify computation; second, it does not provide additional
insights into the biological problem or aid in interpretation; and, third, the zero pattern in quantile
functions does not lend itself well to such representations in general, except for special bases like
B-splines. Furthermore, another alternative used in the nonparametric regression literature is to
employ kernel smoothing to estimate the nonparametric part. However, local smoothers are more
difficult to incorporate with linear effect estimation compared to global smoothers like splines.

3.2 Model inference: global confidence bands via survey boostraping
In order to quantify the uncertainty associated with the estimates β̂(t) in the linear component
of the model, we employed a survey bootstrap methodology designed to derive global confidence
bands for each linear predictor. Global confidence bands for functional predictors provide a more
robust statistical interpretation by overcoming the limitations inherent in pointwise confidence
bands, which are affected by multiple comparisons.

Our bootstrap resampling procedure explicitly respects the hierarchical structure inherent to the
NHANES survey data. Instead of resampling individual activity count pairs (mij,Aij), the boot-
strap procedure involves resampling entire participant-level data from the database. This strategy
preserves the correlation structure between activity counts observed from the same participant
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and accurately reflects the variability at the participant level. Since the number of physical activity
measurements per participant is not linked to the survey sampling design, a two-step bootstrap ap-
proach involving separate resampling of measurements within individuals would be inappropriate.
Hence, the correct approach is to select individuals, with replacement, along with all associated
activity counts, effectively maintaining the dependence structure among multiple measurements
within each participant.

Specifically, we adopted the survey bootstrap methodology developed for multistage designs
described in Rust and Rao (1996). This methodology employs a multiplier bootstrap approach.
For each participant i ∈ {1, . . . , n} and each bootstrap replicate b ∈ {1, . . . ,Bs}, a positivemultiplier
weight Wi,b is generated. These random multipliers depend on tuning parameters such as the
number of observations selected fromeach stratum(basedon geographical Primary SamplingUnits
or PSUs) and the bootstrap sampling rate. The technical details and closed-form expressions for the
multiplier calculations in specific cases are provided by Rust andRao (1996). The bootstrap survey
weights are then defined as

w(b)
i =Wi,bwi,

where wi are the original NHANES survey weights. The resulting bootstrap weights w(b)
i mimic

the distributional behavior of the original survey weights wi, thereby providing valid uncertainty
quantification under complex survey designs. For different survey scenarios, appropriate bootstrap
weights can be computed using the surveybootstrap package in R.

Let β̂
(b)
r (t) be the estimate of the rth regression parameter βr(t), r ∈ {1, . . . , q}, for the bth

simulation and the tth quantile, using the same estimation process as described in Section 3.1,
replacing the survey weights wi with w(b)

i . Define the pointwise boostrap means and variances as

¯̂βr(t) =
1
Bs

Bs∑
b=1

β̂(b)
r (t), s2

r,β̂
(t) =

1
Bs − 1

Bs∑
b=1

(
β̂(b)
r (t) − ¯̂βr(t)

)2
,

then calculate

ur,b = sup
t∈(0,1)

∣∣∣β̂(b)
r (t) − β̂r(t)

∣∣∣
sr,β̂(t)

, b ∈ {1, 2, . . . ,Bs}; r ∈ {1, 2, . . . , q}.

The upper 95% quantile of {ur,1, ur,2, . . . , ur,Bs} is denoted by q(r)
0.05. Hence, the 95% bootstrap

confidence interval for the parameter βr(t) is(
β̂r(t) − q(r)

0.05sr,β̂(t), β̂r(t) + q(r)
0.05sr,β̂(t)

)
.

3.3 Computational details
Details regarding the implementation of the proposed PL-FSI model and its estimation for the
NHANES database will now be provided. In the models implemented below in Section 4, the
nonlinear covariate Xi for the ith individual consists of their BMI and Age, so the dimension for
this component is p = 2, ie θ0 ∈ 22. For the spline basis in (3), computations were performed
using the dbs function in the package splines2 (Wang and Yan 2021). Knot placement was
determined internally by the default option of the dbs function and varied with the value of θ .
Specifically, for any K, equally spaced values rk, k = 1, . . . ,K, were computed, where r0 = 0 <
r1 < · · · < rK < rK+ 1 = 1; the kth interior knot was then taken as the rkth empirical quantile of
the values {θTXi; i = 1, . . . , n}. In the experiments conducted, s = 4 andK = 5were used, so the
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number of spline regression parameters was K + s = 9. The choice K = 5 was made based on a
preliminary investigation of the PL-FSI model fit for potential valuesK = 4, . . . , 10. The adjusted
Fréchet R2 criterion, defined below in Section 4, showed a jump from K = 4 to K = 5, followed
by stable values for largerK. The covariates in the linear componentZi consist of HEI (continuous)
and indicator variables for Sex and Ethnicity, as well as the interaction between these categorical
variables.

The estimates of parameters in (5) can be efficiently computed as a weighted least squares
problem for any fixed θ and t ∈ [0, 1]. However, this can only be done in practice for a finite
ordered grid of values t ∈ Tm = {t1, . . . , tm} ⊂ [0, 1]. These initial survey-weighted least squares
computations were done using R package survey (Lumley 2004, 2010, 2020), which allows
for the introduction of splines into the regression model while simultaneously computing and
incorporating the survey weights wi.

For any given θ and grid point t, computation of (6) is straightforward. To execute the projection
step, observe that monotonicity can only be achieved in the discrete sense in dependence on the
chosen grid Tm. We refer to Petersen et al. (2021) for a simple description of this projection
algorithm, which can be done using any basic quadratic program solver. Consequently, for a given
θ , (7) is approximated by numerical integration. Finally, to perform the optimization in (8), the
function optim in R was used with the L-BFGS-B algorithm by repeatedly performing the above
steps to evaluateWn(θ) for different values of θ across iterations. Todeal with the possibility of local
minima, four different starting values (taken to be equally spaced in their angular representation) in
22 were used for this optimization step, yielding four (possibly not unique) candidate estimators
at convergence. The final estimator was taken to be the candidate yielding the smallest value ofWn.

4. EXPERIMENTAL RESULTS
This section explores the PL-FSI model when it is fitted to the NHANES database, with physical
activity distributions as the response functions. First, the PL-FSI model is compared to two
competingmodels, the global Fréchet regressionmodel and an alternative semi-parametric Fréchet
regressionmodel. This latter model replaces the single index term in (2) with two separate additive
terms g1(Xi1) + g2(Xi2), and is termed a Partially Linear (Additive) Fréchet (PLF) model. The
PLF model is a natural candidate for including nonlinear effects for Age and BMI. While it does
not impose a single index structure, it also does not account for any interaction between these
two covariates, which is a critical biological feature. The PLF model was similarly fitted using two
separate cubic spline terms, each with K = 5 knots.

After these initial model comparisons, the fitted linear and nonlinear components of the PL-
FSI model are interpreted in turn in order to identify the implied associations with the various
covariates. Beginning with the predictors in the linear component of the model, differences be-
tween diverse subpopulations corresponding to ethnicity and sex are investigated. From there,
the combined associations of BMI and age are elucidated through the spline fit of the nonlinear
model component. Throughout, due to the use of the quantile representation of physical activity,
comparisons are made across the range of physical activity intensities, rather than at the mean
intensity or some pre-specified selection of quantiles as is the common practice.

4.1 Comparison of competingmodels
To provide an even comparison, the global Fréchet (GF) model was slightly modified by introduc-
ing the specific survey weights in the estimation criterion. The covariates used were the same in
each of theGF, PL-FSI, and PLFmodels, with the only difference being that the latter two included
the BMI and Age in their nonlinear single index and nonlinear additive components, respectively.
Hence, the global Fréchet model can be considered as a special case of both the PL-FSI and PLF
models, in which all covariates are included in the linear component. To facilitate interpretation, all
numerical covariates were centered and scaled prior to fitting the models.
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To quantify differences in the quality of model fits, the capacity of the models to explain
differences in physical activity distributions across individuals can be evaluated using the survey-
weighted Fréchet R2

R2
⊕ = 1−

∑n
i=1 wi

∫ 1
0 (Yi(t) − Ŷi(t))2dt∑n

i=1 wi
∫ 1
0 (Yi(t) − Y(t))2dt

(10)

where Y(t) =
(∑n

i= 1 wi
)−1∑n

i= 1 wiYi(t) is the weighted sample Wasserstein-Fréchet mean of
the observed physical activity distributions and wi is the survey weight corresponding to ith
observation. Since the weights wi are positive, Y is a convex combination of the individual quantile
functions Yi, ensuring that it is non-decreasing and thus a valid quantile function.

Because the models have differing levels of complexity even with the same set of predictors,
R2
⊕ does not provide a fair comparison. Hence, the adjusted Fréchet R2, denoted as R̄2

⊕, was also
computed (Petersen andMüller 2019).With n being the number of observations and q′ the number
of regression parameters included in the model being considered,

R̄2
⊕ = R2

⊕ −
(
1− R2

⊕

) q′

n− q′ − 1
(11)

enables a fair comparison of the quality of model fit that adjusts for the different complexity of each
model.

The PLF and PL-FSI models had R̄2
⊕ values of 0.147 and 0.146, respectively, which are roughly

24% higher relative to the 0.118 value obtained by the global Fréchet model. This suggests that,
although the predictive capacity all threemodels is moderate, the additional parameters introduced
by the spline representation of the smooth terms in the partially linear models improved the vari-
ance explained. The overall moderate statistical associations are not surprising given the multitude
of factors that can influence high-dimensional physical activity distributions,many of which are not
included in ourmodel or theNHANES database. Nonetheless, we acknowledge this limitation and
emphasize the interpretative value of the detected associations in the next sections with functional
coefficients despite the moderate R2 values.

To provide a more reliable predictive evaluation between the three models, cross-validation was
conducted using 40 independent data splits (90% training and 10% testing), and the empirical
performance across threemodels was compared in terms of themean square prediction error on the
test sets, quantified as the average squared Wasserstein distance between predicted and observed
physical activity quantile functions. Empirically, the GF and PLF models are both outperformed
in terms of out-of-sample prediction by the proposed PL-FSI model. Figure 3 visualizes the error
comparison of the three models considered, each with different levels of complexity and structural
properties. The PL-FSI model strikes a balance between the restrictive global Fréchet regression
model and themore flexible PLFmodel, while also accounting for the age-BMI interaction through
the single index—a feature that neither of the other models accommodates.

4.2 Interpretation of the PL-FSI model fit
A salient advantage of the PL-FSI model is its diverse model components that incorporate linear,
categorical, and nonlinear effects. These components are harmonized into the final regression
model through an additive regression structure. It is important to stress that, while the model is
accurately described as linear in the way that it models covariate associations at each t ∈ [0, 1], the
nature of the model is entirely nonparametric in its treatment of the variations across t of both the
coefficient functions and, by extension, the fitted quantile functions of physical activity.

A important practical issue arises from the fact that, due to the final projection step in obtaining
fitted quantile functions, the interpretability of coefficient function estimates from the linear
component could be questionable. In the setting of global Fréchet regression, Lemma 2 in Petersen
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Fig. 3. (Left) Out-of-sample mean square prediction errors across 40 independent data splits for the
Global Fréchet (GF), Partially Linear Fréchet (PLF), and Partially Linear Fréchet Single Index (PL-FSI)
models. (Right) Differences between out-of-sample mean square prediction errors of GF and PLF
models, respectively, relative to the PL-FSI model, with horizontal solid line at 0 for reference.

et al. (2021) demonstrated that, as n grows to infinity, the probability that the projection step is
necessary for computing a prediction for any of the n data points converges to zero. Given that the
analyzed cohort consists of over 4,000 individuals, the effect of projection is expected to be minor.
This is verified empirically in the Supplementary Material.

In Sections 4.2.1 to 4.2.3, the estimated regression parameters in (9) will be interpreted and
discussed. Due to the boundary effects induced by knot placement in the spline representation,
as well as the inherently noisy nature of the observations of each physical activity profile in the right
tail, these parameters will be displayed and interpreted over the restricted interval t ∈ [0, 0.98]. For
the linear components α̂

θ̂
(t) and β̂

θ̂
(t), the interpretations are aided by the use global confidence

bands using the survey boostrap methodology described in Section 3.2.

4.2.1. Linear effect of healthy eating index
The Healthy Eating Index (HEI) reflects the diet quality of the participants. The outcomes of this
analysis provide the statistical association of the diet patterns with physical activity patterns, with
the corresponding coefficient function estimate being plotted in Fig. 4. For t < 0.25, the estimated
coefficient takes the constant value zero, reflecting the inactive portion of each participant’s physical
activity distribution. Even beyond the inactive region of quantile levels,HEI does not exhibit strong
relevance for low to moderately high physical activity intensities (0.25 < t < 0.90). However,
for individuals with very high physical activity intensities (quantiles t > 0.90), the plot suggests
that healthier diet quality (higher HEI), is associated, on average, with greater physical activity
intensities, after accounting for the other covariates in the model. These findings underscore the
intricate relationship between diet quality, lifestyles (Patterson et al. 1994; Leroux et al. 2015) and
physical activity (Scarmeas et al. 2009), especially in contexts where a prevalence of individuals ac-
tively engage in rigorous exercise regimens, such as high-intensity cardio and/or resistance training
and/or physically-demanding manual labor. An interesting point is that establishing directionality,
rather than merely interpreting statistical associations, would be ideal. However, to rigorously
achieve this, we would require a mediation model (Feng et al. 2021) within metric spaces using
the 2-Wasserstein distance.

4.2.2. Associations with categorical predictors: ethnicity and sex
The inclusion of categorical covariates as predictors of physical activity patterns is critical, as this
allows for the identification of potential disparities in physical activity across various subgroups
of the American population, opening the possibility for the development of targeted clinical
interventions. The subsequent interpretations of the PL-FSI model fits are designed to address
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Fig. 4.The estimated functional coefficient for the covariate HEI in the PL-FSI model (4) is shown here
as the solid black line and its 95% global confidence band is indicated by the grey shaded region. The
dotted black line at 0 is for reference.

the following inquiries regarding significant epidemiological and public health questions related
to differences across sexes and ethnicities.

1. Are there variations in physical activity levels between men and women, and how do these
variations differ among the represented ethnicities?

2. Dowomen of different ethnicities exhibit differences in physical activity levels, and if so, how
do these differences vary?

3. Do men of different ethnicities demonstrate disparities in physical activity levels, and if so,
how do these differences vary?

To address question 1, Fig. 5 illustrates the estimated coefficient functions for male participants
subtracted from those for female participants within each ethnic group. The estimated differences
plotted as functions of t for each ethnicity, along with their 95% global confidence intervals, reveal
that, for quantile levels t around 0.30 to 0.98, men exhibit significantly higher physical activity
levels, on average, thanwomenamongWhite, Black,Asian, andOtherRaces, includingMulti-Racial
ethnicities. However, in Mexican American and Other Hispanic groups, men and women display
statistically similar levels of physical activity, on average.

Addressing question 2 above, Fig. 6 illustrates pairwise differences in estimatedmodel intercepts
for females across different ethnicities, along with 95% pointwise confidence intervals. These
comparisons condition on fixed Age, HEI and BMI. Over the range of quantile levels t from 0.30 to
0.98,Mexican American andOther Hispanic women, on average, showcase higher physical activity
levels compared to certain other ethnicities. Women of White, Black, Asian, and Other Races,
includingMulti-Racial backgrounds, exhibit statistically similar physical activity levels, on average.
Similarly, Mexican American and Other Hispanic women, on average, display comparable levels of
physical activity.

Correspondingly, to address the question 3, Fig. 7 presents results akin to Fig. 6, focusing
on male participants. These comparisons condition on fixed Age, HEI and BMI. The estimates
indicate that, for low to high physical activity levels (t ∈ [0.30, 0.98]), males identified as Mexican
American or Other Hispanic ethnicities are more physically active, on average, compared to males
of Black, White, Asian, and Other Races (including Multi-Racial backgrounds). While there is
scientific evidence highlighting disparities in physical activity levels among different ages, sexes,
and ethnicities (Caspersen et al. 2000; Ji et al. 2024) in U.S. populations, to the best of the
authors’ knowledge, this is the first time that these disparities are addressed across the full range of
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Fig. 5.The model intercepts for the PL-FSI model (4), are considered for male and female participants of
different ethnic backgrounds. The intercepts for the males are subtracted from the intercepts of the
females for each ethnicity, considering the numeric variables HEI, Age and BMI as fixed. The respective
estimated parameter combinations are computed along with their 95% global Confidence Intervals, and
plotted as solid black lines and grey shaded regions respectively. The dotted black line at 0 is for reference.
The differences are considered for the ethnicities: Mexican American, Other Hispanic, Non-Hispanic
White, Non-Hispanic Black, Non-Hispanic Asian, Other races including Multi-Racial.

accelerometer intensities using a distributional representation approach.Themodel fit also suggests
that men of White and Black ethnicities exhibit slightly higher physical activity levels than Asian
men for certain quantile values. Men of Other Races, including Multi-Racial individuals, show
slightly lower activity levels, on average, compared to Black andWhite men, but statistically similar
levels to Asian men.

From a public health perspective, this underscores the need for tailored interventions to promote
physical activity based on accelerometer data, considering variations among sexes and ethnicities.
Such targeted strategies are pivotal in enhancing public health outcomes and addressing disparities.
Public health policies aimed at promoting health should not be uniform across all groups, differing,
for instance, between Asian men and Asian women or across ethnicities like Mexican American
and Asian men, when conditioning on the same HEI, Age and BMI values. It is crucial to note that
conducting sex-stratified analyses enhances the reliability of the presented findings as they reveal
important interactions between these categorical variables when associated with physical activity
intensities, when HEI, Age and BMI are the same.

4.2.3. Nonlinear associations with age and BMI
Due to the semiparametric model structure, the interpretation of estimated associations between
physical activity levels and the single index composedofAge andBMI requires somecare.As already
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Fig. 6.The estimated model intercepts for the PL-FSI model are compared for females of different ethnic
backgrounds. The pairwise differences of such intercepts are displayed, along with their 95% Confidence
Intervals, as solid black lines and grey shaded regions respectively. The dotted red line at 0 is for reference.
The title for each panel indicates the order of the differences of the intercepts. The abbreviations for the
ethnicities are, OH: Other Hispanic, MA: Mexican American, NHW: Non-Hispanic White, NHB:
Non-Hispanic Black, NHA: Non-Hispanic Asian, and ORIMR: Other Races Including Multi-Racial. As
an example, the title “OH—MA” indicates that the estimated intercepts for females identifying as
Mexican American were subtracted from the estimated intercepts for females identifying as Other
Hispanic ethnicity.

demonstrated, this increased complexity yields a measurably improved model fit and predictive
capacity. In addition, by appropriately examining the estimatedmodel components, an intuitive but
nuanced association emerges. To begin, the estimated index parameter was θ̂ = (0.2661, 0.9639)
for the standardized variables BMI and Age respectively. The nonparametric function g cannot
distinguish between age and BMI since it only accounts for their linear combination as defined by
the single indexmodel. However, since both variables have been scaled to have a standard deviation
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Fig. 7. Estimated model intercepts for the PL-FSI model are compared for males of different ethnic
backgrounds, conditional on fixed HEI, Age and BMI. The pairwise differences of such intercepts are
computed along with their 95% Confidence Intervals, and plotted here as solid black lines and grey
shaded regions, respectively. The dotted black line at 0 is for reference. The abbreviations for ethnicities as
well as the order of the differences are the same as in Fig. 6.

of 1, the relative magnitudes of θ̂ do indeed reflect the relative contributions of each variable. In
this case, age has a higher coefficient, suggesting a stronger association with the response variable
compared to BMI.

As the effect is nonlinear, eachof the four panels inFig. 8 plots the fittedquantile valuesY∗(t, z, x̃)
for quantile levels t = 0.50, 0.75, 0.90, and 0.97; here, the linear covariate z was fixed to represent
the reference groups for sex and ethnicity and the median value of HEI, while x̃ represents the
standardized value of the Age and BMI combinations present along the horizontal and vertical axes
of each panel. The choice of displayed quantile levels, reflects the finding that the single index only
exhibits a notable association with physical activity levels near or above the median intensities.
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Fig. 8.Heatmap plot of Ŷ(θ̂ , t) across different quantiles, t = 0.50 (top left), 0.75 (top right), 0.90
(second row left), 0.97 (second row right) respectively. A 2-dimensional grid was considered for the
covariates BMI (in range [18.5,40]) and Age (in range [20,80]) for the single index component of the
PL-FSI regression model. The categorical covariates in the linear component were fixed at their baseline
levels (ie sex male, ethnicity Mexican American) while the numerical covariate HEI was fixed at the
median level. This plot describes the estimated nonlinear interaction in the conditional mean function
between age and BMI.

For the lowest BMI group (< 20), people in the age range 55 to 70 are estimated by the
model to perform the largest physical activity levels in terms of the median and third quartile
(t = 0.50, 0.75). However, for the same BMI range, people in the age range 25 to 35 perform
the highest physical activity in the extreme right tail corresponding to quantiles t = 0.90, 0.97. In
each of the panels (or, quantiles) the age range for highest physical activity linearly decreases with
increase in BMI. For the highest BMI in our study (≈ 40), the highest average physical activity for
quantiles t = 0.50, 0.75 is estimated to occur within age range 40 to 55. However, in the quantiles
t = 0.90, 0.97, the highest physical activity are shown by the BMI range 25 to 30 in the age range
20 to 25. Hence, these panels indicate that the nonlinear association of average physical activity
intensity with Age and BMI is more pronounced for larger values of t. This estimated association
is more robust for middle age individuals with intermediate BMI values than in the rest of the
range. As the age increases and the BMI decreases, individuals aremore likely to have lower activity
intensities, especially in the extremes of Age and/or BMI.
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Fig. 9. (Left) Plot of (∂ ĝ/∂u)(u, t), the derivative of the spline-based estimate of the nonlinear component
defined in (12), for u across the empirical range of observed index values θ̂

T
Xi, i = 1, . . . , n, and for

quantile levels t = 0.50, 0.75, 0.90, and 0.97 given in increasing thickness of lines respectively. Knot
locations are shown as vertical dotted lines, and the derivative curves are depicted as solid black
(respectively, dotted grey lines) within (resp., outside of) the interior knot range. (Right) Histogram of
observed index values θ̂

T
Xi, i = 1, . . . , n. (Right) Histogram of the distribution of the single index

projection evaluation for 4,616 included participants in NHANES 2011 to 2014.

As an additional visualization of the nonlinear association with these covariates in the model,
consider a direct analysis of the derivative of the nonlinear fit, namely

∂ ĝ
∂u

(u, t) =
K+s∑
k=1

γ̂
θ̂ ,k(t)

[
d
du

φk(u)
]
. (12)

The reason to consider the derivative is that, if ĝ were a linear function in u, then this derivative
could be interpreted in the same way as the linear coefficient estimates in the previous sections.
In other words, it is the direct counterpart of the linear coefficient functions for this nonlinear
term. The left panel of Fig. 9 displays the behavior of (9) across the relevant range of values u,
with respect to the empirical values θ̂

T
Xi (whose distribution is depicted via a histogram in the

right panel of the figure) that were used to generate the estimates, for t = 0.5, 0.75, 0.9, 0.97. As
the observed shape of the curves within the interior knots is most reliable, this region is indicated
by the solid portion of each curve in the figure. The various derivative curves suggest that, given
the covariates in the linear term, for negative values of the single index containing BMI and Age,
there is little to no association with the physical activity quantile response; for positive single index
values, the estimated association becomes negative. Since both elements of θ̂ are positive, these
findings imply that themodel reflects a negative association between physical activity quantiles and
BMI/Age when at least one of these is large. Furthermore, the strength of this negative association
increases as the quantile level t becomes larger, as evidenced by the increasingly negative derivative
estimates in the leftpanel as t increases. For instance, the derivative for t = 0.5 (themedianphysical
activity quantile) is only slightly negative for values of u near zero, whereas it steadily decreases as
one examines the curves for t = 0.75, 0.9, 0.97. In short, for positive values of u= θ̂

T
x, average

physical activity quantiles above the median tend to decrease, and the rate of decrease becomes
more pronounced for both larger values of u and quantile level t.
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5. DISCUSSION
The main contribution of this paper is to propose a new PL-FSI regression model to analyze
responses of a distributional functional nature. The new methods have been implemented to
analyze the physical activity data from the NHANES database 2011 to 2014, for participants aged
20 to 80 and in BMI range 18.5 to 40. The NHANES survey weights were incorporated into the
PL-FSI algorithm using the sampling mechanism of the Horvitz-Thompson type estimator (Kish
1965) to construct a weighted least squares criterion to estimate the model parameters.

The findings from application of this new model are summarized as follows.

1. The discrepancies in physical activity levels betweenmen and women of different ethnicities
were examined in the American population. Associations between physical activity and the
continuous variables HEI, BMI, and Age were quantified, visualized, and interpreted across
the rangeof humanphysical activity intensities, as opposed to just themeanormedian activity
level, due to the new quantile distributional representation of physical activity. For example,
it was shown that diet is important only in the high-intensity levels of physical activity range;
a better diet, according to the HEI score, is related to more exercise. We also show that
the Mexican American and Other Hispanic groups are the most active individuals in the
American population for both men and women. An interaction between Age and BMI was
discovered and exploited in determining their association with energetic expenditure, valid
more specifically in the moderate to higher intensities of physical activity levels.

2. The modeling advantages of the new PL-FSI algorithm over the classical global Fréchet
regression model were shown in terms of adjusted Fréchet R-squared and mean square
prediction error. In addition, interpretation of the nonlinear term in the PL-FSI model was
demonstrated using the gradient of a conditional mean function.

From a practical perspective, these new results illustrate the variation in physical activity across
the range of accelerometer intensities, unlike previous models that focus on scalar summaries and
averages (Leroux et al. 2019). The results derived from the PL-FSI model, primarily based on
demographic variables, show that we can define expected physical activity levels in different U.S.
populations. From a public health perspective, this approach can be generalized—for instance,
by proposing tolerance regions for physical activity and creating new recommendations about
expected physical activity levels, following Matabuena et al. (2024). However, the model in this
previous work does not provide interpretable statistical associations as our case, as they are no
longer explainable.

From a methodological point of view, we propose the first PL-FSI regression model in the
context of object data analysis to bridge the gap between the global Fréchet regression (Petersen
and Müller 2019) and the Frechet single index model (Ghosal et al. 2023a), while preserving the
interpretability of the predictors and parameter estimates. To the best of our knowledge, this is also
the first regression model to incorporate survey data in the context of object data analysis.

The most popular approach to analyzing accelerometer data is through finite dimensional
compositional metrics. Here, the functional extension of these metrics (Matabuena and Petersen
2023), was instead used to capture more information about physical activity from an individual by
adopting the mathematical framework of the L2-Wasserstein space. Due to the positive probability
at zero physical activity level for each individual (corresponding to periods of inactivity), the
quantile function, which is intimately connected with the Wasserstein metric, provides a natural
functional representation of such mixed distributions. In addition, the range of values measured
by the accelerometer varies widely among individuals and groups, which can present difficulties
when trying to apply the standard distributional data analysis methods in this setting (Matabuena
and Petersen 2023). For example, functional compositional transformations can be an alternative
strategy to creating a regression model about physical activity in a linear space (Van den Boogaart
et al. 2014; Hron et al. 2016; Petersen and Müller 2016). However, the distributional physical
activity representation arises from a mixed-stochastic process (see Figs 1 and 2 for more details)
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that prevents the naive use of the linear functional data methods that typically utilize a basis
of smooth functions to represent the functional response and/or the functional parameters in
the model, due to the discontinuity of the quantile function in the transition from inactivity to
activity in the physical exercise. While specialized basis functions that allow for jumps in the
functional parameters or their derivatives could be used, the proposed model and its estimation
procedure demonstrate that it is not necessary to do so. As future work, we propose generalizing
the distributional variable selection model proposed in Coulter et al. (2024) for survey data, and
extending our PL-FSI semi-parametric approach to select the most relevant predictors in settings
with a larger pool of variables. Additionally, providing prediction regions could be highly valuable
for modeling scientific problems. Leveraging a previous framework for uncertainty quantification
inmetric spaces (Matabuena et al. 2024), adapted for survey data and applied to the PL-FSImodel,
can be especially relevant. For instance, defining tolerance regions from a distributional perspective
on physical activity could address emerging scientific challenges that are currently focused on scalar
variables as step counts in the literature.

Missing data is another significant challenge in wearable data analysis, especially when studying
younger populations or during shortermonitoring periods. Although accelerometers generally pro-
vide more consistent data quality, smartphone-based tracking of physical activity often introduces
greater variability anddata gaps,which complicate the reliability of analyses.Addressing these issues
necessitates the development of innovative methods and stringent criteria specifically tailored to
smartphone-derived data to ensure data integrity. Implementing these approaches is essential for
producing accurate and robust results when applying distributional representations of physical
activity as both predictor and response variables.

The analysis of complex statistical objects in biomedical science provides an excellent oppor-
tunity to create new clinical biomarkers that enrich those available for medical decision-making
beyond those commonly used to monitor the health and evolution of diseases. For example, distri-
butional representations are a significant advancement in digital medicine (Javaid et al. 2022) as a
digital biomarker (Matabuena et al. 2021; Zhang et al. 2022).However, the generality of techniques
introduced also enables the application of the methods developed here to other complex statistical
objects such as connectivity graphs, shapes, and directional objects. These methods have potential
to introduce new clinical findings in a broad list of clinical situations, for example in neuroimaging
and in phylogenetic tree analysis (Yuan et al. 2012; Nye et al. 2017; Relión et al. 2019; Dubey
and Müller 2022; Zhou and Müller 2022). Furthermore, with the increasing availability of data
from large cohort studies, such as from longitudinal surveys with carefully designed subpopulation
sampling weights, the methods provided here will gain more popularity among practitioners. The
use of complex statistical objects will undoubtedly enhance daily statistical practice in biomedical
applications.
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