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Abstract: The random XXZ quantum spin chain manifests localization (in the form of
quasi-locality) in any fixed energy interval, as previously proved by the authors. In this
article it is shown that this property implies slow propagation of information, one of the
putative signatures of many-body localization (MBL), in the same energy interval.
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1. Introduction

The folk wisdom in physics is that particle interactions tend to delocalize (or, more pre-
cisely, dynamically thermalize) an isolated quantum system. In contrast, the presence
of disorder in the single particle context leads to the emergence of localization. It is,
therefore, an interesting question of how such systems behave in the presence of both
disorder and interactions. It has been proposed in the physics literature that in dimension
one strong disorder leads to the so-called many-body localized (MBL) phase, presumed
to be characterized by several exotic properties, such as the absence of thermalization,
slow propagation of information, zero-velocity Lieb–Robinson bound, Poisson distribu-
tion for level statistics, and area-law entanglement of eigenstates. This led to significant
theoretical and experimental work in condensed matter physics over the last decade that
focused on this phenomenon and its implications (see the physics reviews [2,4,20]).

Let us stress that, as of today, there is no unifying physics theory for MBL as well
as no clear consensus among the physics community on the existence and stability of
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an MBL phase in the thermodynamic limit, even in the strong disorder regime, due
to new numerical evidence and some theoretical work [1,14,17,21–25]. Moreover, the
hierarchical relationship between the proposed properties (i.e., whether one of them
implies others) is also not clear. The most significant difficulty in analyzing such models
is that the dimension of the underlying Hilbert space grows exponentially fast with the
system size L . Such growth limits reliable numerics to small L and makes it exceedingly
hard to capture the rare but potentially critical events (such as resonances) that inevitably
occur as the system size increases.

One of the central questions among the physics community is what a suitable (and
malleable) definition of MBL should be. A popular choice there is the existence of Local
Integrals of Motion (LIOM), which in particular implies a form of dynamical localization
[19]. However, the existence of LIOM is based on the exact diagonalization of the entire
Hamiltonian, a very strong assumption (it implies, in particular, the absence of a phase
transition for the infinite system—a debatable assertion even among physicists).

In [7], we introduced and proved a suitably defined notion of quasi-locality associ-
ated with the finite XXZ spin- 1

2 random chain in any fixed energy interval in a certain
parameter region, that includes the limiting cases of strong disorder and weak interac-
tions. The disordered XXZ model is one of the most common models used in the physics
and mathematics literature for the study of MBL (e.g., [2]). We consider finite volume
Hamiltonians, which are what is typically discussed in the physics literature (e.g., [2]).
An important feature of our result is that while the parameter region depends on the
energy interval, it is independent of system size.

A fixed energy interval is sometimes referred to in physics as the zero temperature
regime and has to be contrasted with the infinite-temperature regime, that is, the whole
energy spectrum.1 While we argued in [7] that our quasi-locality property (different
from any of the physics signatures of MBL mentioned above) is very natural from a
mathematical point of view, we do not expect it to be useful for studying the infinite-
temperature MBL.

While the quasi-locality property is amenable to rigorous analysis, we did not attempt
in [7] to explore its connection to the putative manifestations of MBL proposed in the
physics literature and mentioned above. The current work shows that the quasi-locality
property implies slow propagation of information (one of the aforementioned signature
properties) in the same energy interval on which the quasi-locality holds. This implication
was not obvious to us when [7] was completed, as it addresses a different object and its
proof required a new set of ideas.

Let us mention that the other proposed indicators of MBL-type localization (besides
slow information propagation) seem to be either unaccessible or significantly harder to
reach:

(i) It is expected that generic quantum many-body systems exhibit thermalization or
even satisfy the eigenstate thermalization hypothesis. However, up to now mathe-
matically tangible arguments have not been found for proving thermalization or its
failure outside the realm of exactly solvable systems.

(ii) As we already mentioned, the LIOMs’ approach hinges on a complete (for all en-
ergies) localization of the underlying Hamiltonian. Such property has been only
achieved for some exactly solvable models. Similarly, the proposal that the zero
velocity Lieb–Robinson bound holds for random systems (see [10]) relies on com-
plete localization. A modified analogue of the Lieb–Robinson bound was proven

1 Note that the diameter of the spectrum of the interacting system grows with the system size.
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in the droplet spectrum ( the special interval at the bottom of the spectrum) of the
random XXZ spin chain [8, Theorem 3]. However, the form of the resulting bound
is interval-dependent, making it unlikely to be a suitable candidate for an MBL
characteristic for systems where a phase transition could potentially occur.

(iii) In [6], it was shown that, even without disorder, the excited states of the XXZ
spin chain (with pretty much any choice for the background potential) satisfy the
area law with logarithmic corrections for any fixed energy interval. While the area
law without these corrections holds in the droplet spectrum of the random XXZ
spin chain [6], it is not expected to persist beyond this interval on physical grounds
[5,10]. Thus it is hard to probe localization at higher energies using an area law-type
criterion alone.

(iv) Another proposal is to link localization of the interacting ground state with ex-
ponential decay of the zero temperature grand-canonical truncated correlations of
local operators [16]. This result involves multiple limits (including zero tempera-
ture and thermodynamic ones), so it is not clear how to formulate it as a statement
that holds for a finite system. In addition, it appears that the result is highly sensitive
to the order in which these limits are taken.

Let us give an informal account of our result (the formal statement can be found in
Sect. 2 below). The random XXZ quantum spin- 1

2 chain on the finite discrete interval
(i.e., an interval in Z) �L = [1, L] is given by the Hamiltonian HL

ω = HL
0 +λV L

ω acting
on
⊗

i∈�L
C

2
i (here C

2
i is a copy of C2), where

H0 =
L−1∑

i=1

1
4

(
I − σ z

i σ z
i+1

)− 1
4�

(
σ x
i σ x

i+1 + σ
y
i σ

y
i+1

)

(here σ x,y,z are the standard Pauli matrices and � > 1 is the anisotropy parameter), and
V L

ω =∑L
i=1 ωiNi is the random field (here N = 1

2 (I −σ z), ω = {ωi }i∈Z is a family of
independent identically distributed positive random variables with sufficiently regular
randomness, and λ > 0 is the disorder parameter).

The following theorem is an informal statement of our main result, Theorem 2.6.

Theorem (Slow propagation of information, informal). For a given energy E > 0,
there exists a non-trivial region in the (�, λ) parameter space, such that for any fixed
point in this region, scales L , � ∈ N, and all t ∈ R, the following holds: For every
observable O supported on a discrete interval [a, b] ⊂ �L , there exists an observable
Ot = O(t, E, �, L), supported on [a − cE�, b + cE�] ∩ �L , such that

E

∥
∥
∥P[0,E]

(
ei t H

L
ω Oe−i t H L

ω − Ot

)
P[0,E]

∥
∥
∥ ≤ CE ‖O‖ (|t | + 1)qE LξE e−θE �, (1.1)

where E stands for the expectation with respect to ω, P[0,E] is the spectral projection of
H L

ω onto [0, E], and cE , ξE , θE > 0.

In general, the Lieb–Robinson bound for local spin Hamiltonians [15,18] implies that
there is an effective light cone for two-point dynamical correlations for such systems,
meaning that these correlations propagate no faster than linearly in time, up to expo-
nentially small corrections. As a consequence of this bound, if O is a local observable
supported on the discrete interval [a, b], given � ∈ N there exists an observable Ot,�,
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supported on the discrete interval [a − �, b + �], that approximates the (full) Heisenberg
evolution ei t HOe−i t H :

∥
∥
∥ei t HOe−i t H − Ot,�

∥
∥
∥ ≤ C ‖O‖ e−m(�−v|t |),

where m > 0 and v > 0 is the velocity in the Lieb–Robinson bound (see [11]).
For translation invariant systems, it is expected that information can indeed spread

within the light cone. This should be contrasted with the theorem above, that indicates
a much slower rate at which the information spreads for the random system: For a
given value of � � ln L , it takes time t ∼ ec� rather than t ∼ � until information can
potentially escape the corresponding cone. We note that our result considers propagation
of observables within the energy window [0, E], and, in particular, is fully compatible
with a possible phase transition for higher energies.

Rigorous results of this kind have been previously obtained for exactly solvable
systems (in fact, with no propagation at all), see, e.g., [3], and for the XXZ ferromagnetic
spin chain studied here, but restricted to the energy interval I≤1 (introduced in Sect. 2)
corresponding to so called droplet spectrum [8, Theorem 2]. Albeit this result provides a
strong bound on the information propagation speed, it is tailored for I≤1, and the method
developed there cannot be adapted to the larger intervals I≤q that are handled in Theorem
2.6. While the dependence of our bound on both the system size and time is by no means
optimal, it is generally expected that the random XXZ spin chain should exhibit some
form of slow propagation (e.g., [2]).

We now want to address the presence of the polynomial pre-factor in the volume size
in (1.1). It is not unusual to have a volume dependence in local results concerning random
systems (e.g., the multiscale analysis for random Schrödinger operators yields decay in
a box of size L for distances ≥ Lζ , ζ ∈ (0, 1)), as in the localization phenomenon
there are two competing effects: A natural tendency for eigenstates to localize versus
the small denominator problem, coming from resonances. The former is responsible
for the exponential decay in (1.1), whereas the appearance of the volume prefactor is a
manifestation of the latter. Indeed, the number of resonances is directly related to the
density of states, which, for the ferromagnetic XXZ spin system studied here, grows as
a power of the volume (with the power increasing with the energy). For this reason, we
do not expect that the bound in (1.1) can be significantly improved.

Since the physics literature mainly considers finite spin systems (e.g., [2]), the poly-
nomial pre-factor is not a real issue in the presence of the exponential decay in �, as
long as � ≥ C ln L . Let us also mention that in (reliable) numerical experiments on
which physicists base their conclusions about the system’s behavior, the typical value
of L does not exceed a few dozen, in which case our results fit in rather well with the
physics picture for all energies.

Nonetheless, the presence of the volume factor has the unfortunate side effect that it
is not clear whether any conclusions can be drawn about the infinite volume XXZ model
from this estimate. This should be contrasted with the random Schrödinger operator
case, where the volume dependence in the decay estimates can be overcome to yield
Anderson localization in the infinite volume. This disparity can be traced to the radical
difference in the rank of the perturbation needed to decouple the Hamiltonian into two
(spatially non-interacting) parts in a discrete Schrödinger operator and in a spin chain.
In the former case, the rank is comparable with the size of the boundary between these
two parts (rank 2 in one dimension), while in the latter case the rank is comparable with
the dimension of the full Hilbert space, due to its tensor product nature.
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One way to mitigate the influence of resonances is to consider a matrix element ana-

logue of (1.1), that is, to consider
∣
∣
∣〈ψ, P[0,E]

(
ei t H

L
ω Oe−i t H L

ω − Ot

)
P[0,E] φ〉

∣
∣
∣ for a pair

of states ψ, φ ∈ H instead of
∥
∥
∥P[0,E]

(
ei t H

L
ω Oe−i t H L

ω − Ot

)
P[0,E]

∥
∥
∥. As a consequence

of (1.1), we obtain a bound on the expectation of this object where the dependence on
the volume is reduced to powers of ln L instead of L , see Corollary 2.7 below. The price
one has to pay here is that a priori the operator Ot constructed this way depends also
on the states ψ, φ. We expect that this result may shed light on properties of the infinite
volume system.

This article is organized as follows: Sect. 2 starts with the introduction of the XXZ
quantum spin- 1

2 chain in a random field, followed by a short summary (Theorem 2.2)
of our localization results in [7], which serves as the starting point for the statement
of our main result, Theorem 2.6, exhibiting slow propagation of information under
localization. The statement for matrix elements is given in Corollary 2.7. In Sect. 3 we
introduce important ingredients for the proof of Theorem 2.6. Section 4 contains the
proof of Theorem 2.6. Corollary 2.7 is proven in Sect. 5.

Throughout the paper, we will use generic constants C, c, etc., whose values will be
allowed to change from line to line, even in a displayed equation. These constants will
not depend on subsets of Z, but they will, in general depend on parameters of the model
such as μ, �0, and λ0. When necessary, we will indicate the dependence of a constant
on other parameters, say q, explicitly by writing the constant as Cq , etc. These constants
can always be estimated from the arguments, but we will not track the changes to avoid
complicating the arguments.

2. The Model, Localization, and the Main Result

2.1. Model description. Let ↑〉 :=
(

1
0

)

and ↓〉 =
(

0
1

)

denote the elements of the

canonical basis of C
2, called spin-up and spin-down, respectively. Let σ x,y,z be the

standard Pauli matrices, σ± = 1
2 (σ x ± iσ y). Set N = 1

2 (I − σ z), an operator on C
2,

and note that N ↑〉 = 0 and N ↓〉 =↓〉. We interpret ↓〉 as a particle, so N is the
projection onto the spin-down state (or local number operator).

Let Hi = H{i} = C
2
i for i ∈ Z. Given a vector v ∈ C

2, we denote by vi its copy in
Hi . If T is an observable (i.e., operator) on C

2, we denote by Ti the observable T acting
on Hi .

The (infinite volume) XXZ quantum spin- 1
2 chain in a random field is informally

given by the Hamiltonian

Hω = H0 + λVω, (2.1)

acting on
⊗

i∈ZHi , where:

(i) The (disorder) free Hamiltonian H0 is given by

H0 =
∑

i∈Z

( 1
4

(
I − σ z

i σ z
i+1

)− 1
4�

(
σ x
i σ x

i+1 + σ
y
i σ

y
i+1

))

=
∑

i∈Z

( 1
4

(
I − σ z

i σ z
i+1

)− 1
2�

(
σ +
i σ−

i+1 + σ−
i σ +

i+1

))
, (2.2)

where � > 1 is the anisotropy parameter, specifying the Ising phase (� = 1 selects
the Heisenberg chain and � = ∞ corresponds to the the Ising chain).
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(ii) Vω =∑i∈Z ωiNi is the random field, where ω = {ωi }i∈Z is a family of independent
identically distributed random variables, whose common probability distribution μ

is absolutely continuous with a bounded density and satisfies

{0, 1} ⊂ supp μ ⊂ [0, 1], (2.3)

and λ > 0 is the disorder parameter.

We set ωS = {ωi }i∈S for S ⊂ Z, and denote the corresponding expectation and
probability by ES and PS . (We will mostly omit the subscript and just write E and P

when the choice of S is clear from the context.)
The (infinite volume) Hamiltonian Hω in (2.1) can be rigorously defined on an appro-

priately defined Hilbert space, but in this work we only consider finite volume Hamil-
tonians, since that is what is typically discussed in the physics literature.

Given a finite subset � of Z (� will always denote a finite subset), we consider the
finite dimensional Hilbert space H� = ⊗i∈�Hi . If A ⊂ � and T is an operator on
HA, we consider T as an operator on H� by identifying it with the operator T ⊗ IH�\A
acting on H� = HA ⊗ H�\A. (For a fixed � we will often omit � from the notation,
e.g., Ac = � \ A.) For S ⊂ Z we let |S| denote the cardinality of the set S.

Since

1
4

(
I − σ z

i σ z
i+1

) = 1
2 (Ni + Ni+1) − NiNi+1, (2.4)

we set

hi,i+1 = −NiNi+1 − 1
2�

(
σ +
i σ−

i+1 + σ−
i σ +

i+1

)
, (2.5)

a self-adjoint operator hi,i+1 on the four-dimensional Hilbert spaceH{i,i+1} = Hi⊗Hi+1.
An explicit calculation shows

∥
∥hi,i+1

∥
∥ = 1. (2.6)

We can rewrite H0 as

H0 =
∑

i∈Z

(
hi,i+1 + 1

2 (Ni + Ni+1)
) =
∑

i∈Z
hi,i+1 + NZ, where NZ =

∑

i∈Z
Ni ,

(2.7)

which leads naturally to our definition of finite volume Hamiltonians.

Definition 2.1. The random XXZ quantum spin- 1
2 chain on a finite subset � of Z is

given by the self-adjoint Hamiltonian

H� = H�
0 + λV�

ω acting on H�, (2.8)

where

H�
0 =

∑

{i,i+1}⊂�

hi,i+1 + N�, with N� =
∑

i∈�

Ni and V�
ω =

∑

i∈�

ωiNi . (2.9)

We set R�
z = (H� − z)−1 for z �∈ σ(H�), the resolvent of H�.
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The free Hamiltonian H�
0 can be rewritten as

H�
0 = − 1

2�
�� + W� on H�, (2.10)

where

�� =
∑

{i,i+1}⊂�

(
σ +
i σ−

i+1 + σ−
i σ +

i+1

)
and W� = N� −

∑

{i,i+1}⊂�

NiNi+1. (2.11)

The canonical (orthonormal) basis 
� for H� is constructed as follows: Let φ∅ =
�� = ⊗i∈� ↑〉i be the vacuum state. Then


� =
{

φA =
(
∏

i∈A

σ−
i

)

�� : A ⊂ �

}

=
|�|⋃

N=0



(N )
� , (2.12)

where 

(N )
� = {φA : A ⊂ �, |A| = N }. We remark that 


(0)
� = {��}.

The total (spin-down) number operator N� on � is diagonalized by the canoni-
cal basis: N�φA = |A| φA for A ⊂ �, and hence has eigenvalues 0, 1, 2, . . . , |�|.
We set H(N )

� = Ran
(
χN (N�)

)
, obtaining the Hilbert space decomposition H� =

⊕|�|
N=0 H(N )

� .

The operators W� and V�
ω are also diagonalized by the canonical basis, and hence

the operators N�, W�, and V�
ω commute. W� is the number of clusters operator:

W�φA = WAφA for A ⊂ �, where WA is the number of connected components
(clusters) of A as a subset of �, so σ

(W�
) ⊂ {0, 1, 2, . . . , |�|}. V�

ω is the random
field: V�

ω φA = ωAφA for A ⊂ �, where ωA =∑i∈A ωi .

The Hamiltonian H� preserves the total particle number,

[H�,N�] = − 1
2�

[��,N�] = 0, (2.13)

a feature that makes the XXZ model especially amenable to analysis.
It can be verified (e.g., [7]), that

(
1 − 1

�

)W� ≤ H�
0 , so

(
1 − 1

�

)W� ≤ H�, (2.14)

and the spectrum of H� is of the form

σ(H�) = {0} ∪ ([1 − 1
�

,∞) ∩ σ(H�)
)
. (2.15)

Moreover, the lower bound in (2.14) suggests the introduction of the energy thresholds
k
(
1 − 1

�

)
, k = 0, 1, 2 . . ..
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2.2. Localization as quasi-locality. Henceforth, by a subset of Z we will always mean
a finite subset and by an interval in Z a connected nonempty subset of Z. The observable
O is said to have support in A ⊂ � (we write suppO = A) if O acts trivially on HAc ,
that is, O = OA ⊗ IHAc

where OA is an observable on A. (We will identify O with OA.)
Note that the support of an operator is not uniquely defined.

Given ∅ �= S ⊂ Z, we define the orthogonal projections PS± on HS by

PS
+ =

⊗

i∈S

(
IHi − Ni

) = χ{0}
(
N S
)

and PS− = IHS − PS
+ = χ[1,∞)

(
N S
)

.

(2.16)

PS
+ is the orthogonal projection onto states with no particles in the set S; PS− is the

orthogonal projection onto states with at least one particle in S. (Note that P{i}
− = Ni

for i ∈ Z.) We also set

P∅
+ = IHS and P∅− = 0. (2.17)

Given J ⊂ Rmeasurable, B(J ) denotes the collection of Borel measurable functions
that vanish outside J ; we set B1(J ) = { f ∈ B(J ) : sup | f | ≤ 1}.

In [7] we interpreted localization for the random XXZ quantum spin- 1
2 chain as a

form of quasi-locality. The following theorem follows immediately from [7, Theorem
2.4 and Corollary 2.6].

Theorem 2.2 (Quasi-locality). Fix �0 > 1 and λ0 > 0. Then for all R ≥ 0 there exist
constants DR, FR, ξ̃R, θ̃R > 0 (depending on R, �0, λ0) such that, for all � ≥ �0 and
λ ≥ λ0 with λ�2 ≥ DR, finite interval � ⊂ Z, and A ⊂ B ⊂ � with A connected in
�, we have the following:

(i) For all z ∈ C with Re z ≤ R
(
1 − 1

�

)
we have

E�

{∥
∥
∥PA− R�

z P B
+

∥
∥
∥

1
4
}

≤ FR |�|ξ̃R e−θ̃R dist�(A,Bc). (2.18)

(ii)

E�

⎛

⎜
⎝ sup

f ∈B1

((
−∞,R

(
1− 1

�

)])

∥
∥
∥PA− f (H�)PB

+

∥
∥
∥

⎞

⎟
⎠ ≤ FR |�|ξ̃R e−θ̃R dist�(A,Bc).

(2.19)

Remark 2.3. [7, Theorem 2.4] is stated and proved for R = k + 3
4 , where k ∈ N

0, and
real energies E ≤ (k + 3

4 )
(
1 − 1

�

)
. However, the proof of [7, Theorem 2.4] is also valid

for complex energies z with Re z ≤ (k + 3
4 )
(
1 − 1

�

)
, with the same constants. Picking

k ∈ N
0 so that R ≤ k + 3

4 yields the result stated above. (As an alternative, the proof
of [7, Theorem 2.4] can be adapted for the case R = k + β with β ∈ (0, 1); we fixed
β = 3

4 in [7] for simplicity.)
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Remark 2.4. If A is not connected in �, the theorem still holds with (2.18) replaced by

E�

{∥
∥
∥PA− R�

z P B
+

∥
∥
∥

1
4
}

≤ FRϒ�
A |�|ξ̃R e−θ̃R dist�(A,Bc), (2.20)

where ϒ�
A denotes the number of connected components of A in �. This follows from

(2.18) and

PA− =
ϒ�

A∑

j=1

P
⋃ j−1

i=i Ai
+ P

A j
− , (2.21)

where A j , j = 1, 2, . . . , ϒ�
A , are the connected components of A in �.

2.3. Slow propagation of information. Our main result shows that localization of the
XXZ random spin chain in a fixed energy interval implies slow propagation of informa-
tion in this interval.

In this article we will assume that �0 > 9 in Theorem 2.2. This is done to simplify
our analysis, but in fact the result holds for arbitrary �0 > 1 with minor modifications
of the proofs.2

Given q ∈ 1
2Z, we consider the energy intervals

I≤q = (−∞, (q + 3
4 )
(
1 − 1

�

)]
, Iq = [1 − 1

�
, (q + 3

4 )
(
1 − 1

�

)]
,

Ǐ≤q = (−∞, (q + 7
8 )
(
1 − 1

�

)]
, Ǐq = [1 − 1

�
, (q + 7

8 )
(
1 − 1

�

)]
.

(2.22)

These intervals are increasing with q. We also note the relation

Ǐ≤q−1 ⊂ I≤q− 1
2

⊂ Ǐ≤q− 1
2

for q ∈ 1
2N. (2.23)

Let � be a finite subset of Z. Given an interval I ⊂ R, we set PI = P�
I = χI (H�).

If T and Y are observables on H�, we define

(T )Y = YTY ∗. (2.24)

We also consider the Heisenberg time evolution of observables:

τ�
t (T ) = ei t H

�

T e−i t H�

for t ∈ R. (2.25)

Given M ⊂ � ⊂ Z, we let

[M]�s :=
{

{x ∈ � : dist� (x, M) ≤ s} if s ∈ N
0 = {0} ∪ N

{
x ∈ � : dist�

(
x, Mc) ≥ 1 − s

} = M \ [Mc]�−s if s ∈ −N
.

(2.26)

If M = { j} we write [ j]�q = [{ j}]�q .

2 For 1 < �0 ≤ 9 we need to improve the decay rate m0 in (3.11), which is derived from the lower bound
in (3.7). If 1 < δ0 < �0 ≤ 9, we would have to replace Ĥ�

k in the proof by Ĥ�
k+r , where r = � 1

δ0−1 − 1
8 �,

leading to m0 = ln
(
(r + 1

8 ) (δ0 − 1)
)

> 0.
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Definition 2.5. Given q ∈ 1
2N

0, we say that Condition Lq is satisfied if the parameters
� and λ satisfy the hypotheses of Theorem 2.2 for R = q + 7

8 , so the conclusions of the

theorem are valid for R = q + 7
8 , that is, on the energy interval Ǐ≤q . We set ξq = ξ̃q+ 7

8

and θq = θ̃q+ 7
8
.

We use the notation 〈t〉 = (1 + t2
) 1

2 for t ∈ R. For q ∈ 1
2N

0 we set q̂ = �q� and
define βq recursively by

β0 = 0, βq = βq− 1
2

+ 9q̂ + 13. (2.27)

Note that 9q2 + 61
2 q ≤ βq ≤ 9q2 + 79

2 q.

Theorem 2.6 (Slow propagation of information). Let q ∈ 1
2N, and assume Condition

Lq+ 1
2
is satisfied. Then there exists a constant Cq such that for any given finite interval

� ⊂ Z, scale � ∈ N, and all t ∈ R, the following holds: For every observable T
supported on an interval X ⊂ � with ‖T ‖ ≤ 1 there exists an observable Tt =
T (t, q, �,�), supported in [X ]�(13+β

q+ 1
2
)�, such that

E

∥
∥
∥
∥
(
τ�
t (T ) − Tt

)
P�
I≤q

∥
∥
∥
∥ ≤ Cq〈t〉2q+4 |�|ξq+ 1

2 e
−θ

q+ 1
2

�
. (2.28)

This theorem is proved in Sect. 4.
As discussed in the introduction, we can improve the dependence on the volume

by considering matrix elements instead of the norm. The constant cμ > 0 in the esti-
mate comes from the large deviation estimate [7, Eq. (3.50]) and depends only on the
probability distribution μ.

Corollary 2.7 (Slow propagation of information, matrix elements version). Let q ∈ 1
2N,

and assume Condition Lq+1 is satisfied. There exist constants Cq and Yq such that given
a finite interval � ⊂ Z, scale � ∈ N, t ∈ R, the following holds: Given subsets
Mi ⊂ �, i = 1, 2, with |M1| = |M2|, then for every observable T supported on an
interval X ⊂ �, with ‖T ‖ ≤ 1 and |X | ≤ ln �, there exists an observable Tt =
T (t, q, �,�, M1 ∪ M2), supported on [X ]�(13+βq+1)�

, such that

E

∥
∥
∥
∥πM1

(
τ�
t (T ) − Tt

)
P�
I≤q

πM2

∥
∥
∥
∥ ≤ Cq〈t〉2q+5 (ln |�|)ξq+1 e

− 1
2 min

{

θq ,θ
q+ 1

2
,cμ

}

�
,

(2.29)

provided |�| ≥ Yq.

For fixed Mi ⊂ �, i = 1, 2, with |M1| = |M2|, the bound (2.29) improves on the
dependence on |�| in (2.28), but the observable Tt in (2.29) a-priori depends on M1∪M2.
Note also that if |M1| �= |M2| the left hand side of (2.29) equals 0.

The proof of this corollary is given in Sect. 5.

3. Key Proof Ingredients

In this section we collect a number of definitions, statements and lemmas that, in con-
junction with Theorem 2.2, will facilitate the proof of Theorem 2.6.
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3.1. Preliminaries. � will always denote a finite subset of Z and A ⊂ � will always
denote an interval.

Given M ⊂ � and s ∈ N, we set

∂�,out
s M := {x ∈ � : dist� (x, M) = s} = [M]�s \ M,

∂�,in
s M := {x ∈ � : dist�

(
x, Mc) = s

} = M \ [M]�−s,

∂�
s M := ∂�,in

s M ∪ ∂�,out
ex M = [M]�s \ [M]�−s,

∂∂∂�M :=
{
{x, y} ⊂ � : (x, y) ∈

(
∂

�,in
1 M × ∂

�,out
1 M

)
∪
(
∂

�,out
1 M × ∂

�,in
1 M

)}
.

(3.1)

If s = 1, we occasionally omit it from the notation altogether.
Given B ⊂ N

0, we set Q�
B = χB

(W�
)
, Q�

m = Q�{m} for m ∈ N
0, and note that

Q�
0 = P�

+ and Q�
N

= χN(N�). For k ∈ N, we set

Q�≤k = Q�{1,2,...,k} =
k∑

m=1

Q�
m and Q̂�≤k = Q�≤k + k+1

k Q�
0 . (3.2)

We also set Q�
>k = I − Q̂�≤k = χ[k+1,�]

(W�
)
. For k ∈ N we have (see [7, Lemma 3.5])

tr Q�≤k ≤ k |�|2k and tr χ Ǐ≤k
(H�) ≤ k |�|2k + 1. (3.3)

We also set

Ĥ�
0 = H� +

(
1 − 1

�

)
Q�

0 ,

Ĥ�
k = H� + k

(
1 − 1

�

)
Q̂�≤k for k ∈ N.

(3.4)

We use the notation

R̂�
k,z = (Ĥ�

k − z
)−1

for z /∈ σ(Ĥ�
k ) for k ∈ N

0, (3.5)

and recall the resolvent identity

R�
z = R̂�

k,z + k
(
1 − 1

�

)
R�
z Q̂�≤k R̂

�
k,z = R̂�

k,z + k
(
1 − 1

�

)
R̂�
k,z Q̂

�≤k R
�
z . (3.6)

It follows from (2.14) and (2.22) that for k ∈ N
0 we have

Ĥ�
k ≥ (k + 1)

(
1 − 1

�

)
I and

(
Ĥ�
k − E

) ≥ 1
8

(
1 − 1

�

)
I for E ∈ Ǐ≤k (3.7)

and

∥
∥R̂�

k,z

∥
∥ ≤ ∥∥R̂�

k,Re z

∥
∥ ≤ 8

(
1 − 1

�

)−1
for Re z ∈ Ǐ≤k . (3.8)

For q ∈ 1
2N

0, we set

Ĥ�
q = Ĥ�

q̂ and R̂�
q,z = R̂�

q̂,z . (3.9)
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3.2. Quasi-locality (deterministic).

Lemma 3.1 ([7, Lemma 3.1]). Let T be an operator on the Hilbert space H�, and let
Y be a projection on H� such that [Y, T ] = 0 and [Y, PK± ] = 0 for all K ⊂ �.

Suppose

(i) For all K ⊂ � we have [PK− , T ]P [K ]�1
+ = 0.

(ii) For all connected K ⊂ � we have
∥
∥[PK− , T ]∥∥ ≤ γ .

(iii) TY , the restriction of the operator T to Ran Y , is invertible with
∥
∥
∥T−1

Y

∥
∥
∥

Ran Y
≤ η−1,

where η > 0.

Then for all A ⊂ B ⊂ �, we have
∥
∥
∥PA− T−1

Y PB
+

∥
∥
∥

Ran Y

≤ γ −1e−m dist�(A,Bc) = η−1e−m(dist�(A,Bc)−1), with m = ln
(
γ −1η

)
. (3.10)

This lemma yields quasi-locality for the resolvent of the operators H� and Ĥ�
q ,

as discussed in [7, Section 3.2]. The operator T = Ĥ�
q − z satisfies the hypotheses

of Lemma 3.1 for q ∈ 1
2N and Re z ∈ Ǐ≤q̂ , with γ = 1

�
≤ 1

�0
, Y = IH�

, and

η = dist(z, σ (Ĥ�
q )) ≥ 1

8

(
1 − 1

�

) ≥ 1
8

(
1 − 1

�0

)
, and hence for A ⊂ B ⊂ � the

estimate (3.10) yields (recall we assumed �0 > 9)
∥
∥
∥PA− R̂�

q,z P
B

+

∥
∥
∥ ≤ 1

�0
e−m0 dist�(A,Bc), where m0 = ln �0−1

8 > 0. (3.11)

3.3. Consequences of quasi-locality.

Lemma 3.2. Fix k ∈ N. Given a collection {Si }k+1
i=1 of nonempty subsets of � with

min
i �= j

dist�
(
Si , S j

) ≥ 2� + 1, where � ∈ N, (3.12)

we have

E

∥
∥
∥PI≤k

k+1∏

i=1

PSi−
∥
∥
∥ ≤ Ckϒ

�
max |�|2k+1 e−m0�, (3.13)

where ϒ�
max = maxk+1

i=1 ϒ�
Si
(see Remark 2.4).

Proof. Note that PI≤k

∏k+1
i=1 PSi− = PIk

∏k+1
i=1 PSi− . We can represent PIk as a contour

integral

PIk = 1

2π i
PIk

∮

�

R�
z dz, (3.14)

where� is defined by� = {z ∈ C : minx∈Ik |x − z| = 1
8

(
1 − 1

�

)}
. Note that

∥
∥PIk R

�
z

∥
∥ ≤

8
1− 1

�

for any z ∈ �.



Slow Propagation of Information... Page 13 of 27   239 

Using (3.6) and (3.7), we deduce that

PIk = k
(
1 − 1

�

)

2π i
PIk

∮

�

R�
z Q̂�≤k R̂

�
k,zdz. (3.15)

Let �k,� = χ[0,2�+k]
(N�

)
. Note that [H�,�k,�] = 0 and [PB± ,�k,�] = 0 for

B ⊂ �. Moreover, it follows from (3.12) that

�k,�

k+1∏

i=1

P
[Si ]��− = �k,�Q

�
>k

k+1∏

i=1

P
[Si ]��− . (3.16)

Since (3.11) and (2.21) yield

∥
∥
∥P

[Si ]��
+ R̂�

k,z P
Si−
∥
∥
∥ ≤ Cϒ�

Si e
−m0� for i = 1, 2, . . . k + 1, (3.17)

we have, using P
[Si ]��
+ + P

[Si ]��− = IH�
, that

∥
∥
∥Q̂�≤k R̂

�
k,z

k+1∏

i=1

PSi− �k,�

∥
∥
∥ ≤ C(k + 1)ϒ�

maxe−m0� +
∥
∥
∥Q�≤k Q>k�k,�

k+1∏

i=1

P
[Si ]��− R̂�

k,z

∥
∥
∥

= C(k + 1)ϒ�
maxe−m0� = Ckϒ

�
maxe−m0�, (3.18)

where we used (3.16) and Q�≤k Q>k = 0.
To prove (3.13), by a large deviation estimate (see [7, Eqs (5.18)–(5.23)]) we have

P
{
PI≤k �= PI≤k�k�

} = P
{
PI≤kχ(2�+k,|�|]

(N�
) �= 0

}

= P
{
σ
(
H�χ(2�+k,|�|]

(N�
)) ∩ I≤k �= ∅} ≤ Ck |�|2k+1 e−dμ�,

(3.19)

where dμ depends only on the probability distribution μ. The estimate (3.13) follows by
assuming, without loss of generality, that m0 ≤ dμ. ��
Remark 3.3. We have the following consequence of Lemma 3.2 and (2.19). Consider
i, j1, j2, . . . , jk ∈ � such that mins �=r | jr − js | ≥ 2� + 1 and mins |i − js | ≥ 3� + 1.
Then

E

⎛

⎜
⎝ sup

f ∈B(Ik ):‖ f ‖∞≤1

∥
∥Ni f (H

�)N j1N j2 . . .N jk

∥
∥

⎞

⎟
⎠ ≤ Ck |�|max{ξk ,2k+1} e−θk�. (3.20)

For k = 1 this bound has been established in [9]. It is proved as follows:

Ni f (H
�)N j1N j2 . . .N jk = Ni f (H

�)P [i]�
+ N j1N j2 . . .N jk

+ Ni f (H
�)P [i]�− N j1N j2 . . .N jk .

The expectation of the first term (with the sup inside) is estimated by (2.19). The second
term is estimated by (3.13) using f (H�) = f (H�)PIk for f ∈ B(Ik).
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Lemma 3.4. Let T be an observable supported on an interval X ⊂ � with ‖T ‖ ≤ 1,
let k, � ∈ N, and assume dist (X ,Z \ �) > 9(k + 1)� + 1. Consider the observables

Tj = T P
∂3�[X ]�9 j�
+

j−1∏

i=1

P
∂3�[X ]�9i�− for j = 1, 2, . . . , k + 1, with

0∏

i=1

P
∂3�[X ]�9i�− = I.

(3.21)

Then

Tj = P
∂3�[X ]�9 j�
+ Tj P

∂3�[X ]�9 j�
+ = P

∂out3� [X ]�9 j�
+ ⊗ P

∂ in3� [X ]�9 j�
+ ⊗ T

j−1∏

i=1

P
∂3�[X ]�9i�− ,

(3.22)

where supp Tj = [X ]�(9 j+3)� and supp

(

T
∏ j−1

i=1 P
∂3�[X ]�9i�−

)

= [X ]�(9 j−6)�, and such

that

E

∥
∥
∥
∥
∥
∥
∥

⎛

⎝T −
k+1∑

j=1

Tj

⎞

⎠

PI≤k

∥
∥
∥
∥
∥
∥
∥

≤ Ck |�|2k+1 e−m0�. (3.23)

Proof. We decompose

I =
k+1∏

i=1

P
∂3�[X ]�9i�− +

k+1∑

j=1

P
∂3�[X ]�9 j�
+

j−1∏

i=1

P
∂3�[X ]�9i�− . (3.24)

It follows from Lemma 3.2, using 3� > 2� + 1, ∂3�[X ]�9i� �= ∅ for i = 1, 2, . . . , k + 1
since dist (X ,Z\�) > 9(k + 1)� + 1, and ϒ�

∂3�[X ]�9i�
≤ 2, that

E

∥
∥
∥
(
T

k+1∏

i=1

P
∂3�[X ]�9i�−

)

PI≤k

∥
∥
∥ ≤ Ck |�|2k+1 e−m0�. (3.25)

The estimate (3.23) follows. ��

3.4. Decoupling. Let A ⊂ � be an interval. We consider the Hamiltonian

H A,Ac = H A + H Ac
on H�, (3.26)

set RA,Ac

z = (H A,Ac − z
)−1

, and let

�A = H� − H A,Ac =
∑

{i,i+1}∈∂∂∂�A

hi,i+1. (3.27)

It follows from (2.5) that
∥
∥
∥P

{i}
+ hi,i+1

∥
∥
∥ =
∥
∥
∥P

{i+1}
+ hi,i+1

∥
∥
∥ = 1

2�
, (3.28)
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so
∥
∥
∥PA

+ �A
∥
∥
∥ ≤ 1

�
and

∥
∥
∥PAc

+ �A
∥
∥
∥ ≤ 1

�
. (3.29)

We also set τ
A,Ac

t (M) = ei t H
A,Ac

Me−i t H A,Ac

, where M is an observable on H�.
We fix an infinitely differentiable function �̃ : R → [0, 1] such that

�̃(u) =

⎧
⎪⎨

⎪⎩

0 for u ∈ (−∞,−1]
1 for u ∈ [0, 3

4

(
1 − 1

�

)]
0 for u ∈ [ 7

8

(
1 − 1

�

)
,∞)

, (3.30)

and set

�q(u) =

⎧
⎪⎨

⎪⎩

�̃(u) for u ∈ (−∞, 0]
1 for u ∈ [0,

(
q + 3

4

) (
1 − 1

�

)]
�̃(u − q) for u ∈ [(q + 3

4

) (
1 − 1

�

)
,∞)

for q ∈ 1
2N. (3.31)

Note that �q is an infinitely differentiable function on the real line such that 0 ≤ �q ≤ 1,
and

�q(u) =

⎧
⎪⎨

⎪⎩

0 for u ∈ (−∞,−1]
1 for u ∈ [0,

(
q + 3

4

) (
1 − 1

�

)]
0 for u ∈ [(q + 7

8

) (
1 − 1

�

)
,∞)

. (3.32)

We also define 
q,t (u) = �q(u)ei tu for t ∈ R, so �q = 
q,0. Note that supp 
q,t ⊂
[−1,

(
q + 7

8

) (
1 − 1

�

)].
We have

PI≤q = PI≤q
q(H
�) ≤ 
q(H

�) ≤ PǏ≤q . (3.33)

Thus, if M is an observable on H�, we have
∥
∥
∥(M)PI≤q

∥
∥
∥ ≤
∥
∥
∥(M)�q

∥
∥
∥ ≤
∥
∥
∥(M)PǏ≤q

∥
∥
∥ . (3.34)

Lemma 3.5. Let q ∈ 1
2N, and assume Condition Lq . Then for t ∈ R, � ∈ N, b ∈ N, and

an interval A ⊂ �, we have

E

∥
∥
∥
(

q,t (H

�) − 
q,t (H
A,Ac

)
)
P∂b�A

+

∥
∥
∥ ≤ Cq 〈t〉3 |�|ξq e−bθq�. (3.35)

Proof. We use the Helffer–Sjöstrand formula for smooth functions f of self-adjoint
operators [12,13]. We consider the norms

{{ f }}m :=
m∑

r=0

∫

R

du | f (r)(u)| (1 + |u|2) r−1
2 , m = 1, 2, . . . . (3.36)

If {{ f }}m < ∞ with m ≥ 2, then for any self-adjoint operator K we have

f (K ) =
∫

R2
d f̃ (z) (K − z)−1, (3.37)
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where the integral converges absolutely in operator norm. Here z = x + iy, f̃ (z) is an
almost analytic extension of f to the complex plane, d f̃ (z) := 1

2π
∂z̄ f̃ (z) dx dy, with

∂z̄ = ∂x + i∂y , and |d f̃ (z)| := (2π)−1|∂ z f̃ (z)| dx dy. Moreover, for all p ≥ 0 we have
∫

R2
|d f̃ (z)| 1

|Im z|p ≤ cp {{ f }}m < ∞ for m ≥ p + 1 (3.38)

with a constant cp (see [13, Appendix B] for details).
By the Helffer–Sjöstrand formula we have (recall (3.27))


q,t (H
�) − 
q,t (H

A,Ac
) =
∫

R2
d
̃q,t (z)

(
(H� − z)−1 − (H A,Ac − z)−1

)

= −
∫

R2
d
̃q,t (z)(H

A,Ac − z)−1�A(H� − z)−1.

(3.39)

Thus

E

∥
∥
∥
(

q,t (H

�) − 
q,t (H
A,Ac

)
)
P∂b�A

+

∥
∥
∥

≤
∫

R2

∣
∣d
̃q,t (z)

∣
∣E
∥
∥
∥(H A,Ac − z)−1�A(H� − z)−1P∂b�A

+

∥
∥
∥

≤ C
∫

[−1,
(
q+ 7

8

)(
1− 1

�

)
]×R

∣
∣d
̃q,t (z)

∣
∣ |Im z|− 7

4 E

∥
∥
∥P∂1A− (H� − z)−1P∂b�A

+

∥
∥
∥

1
4

≤ C
{{


q,t
}}

3 |�|ξq e−bθq� ≤ Cq 〈t〉3 |�|ξq e−bθq�, (3.40)

where we used �A = �AP∂1A− , (3.38), the fact that
{{


q,t
}}

3 ≤ Cq 〈t〉3 with a constant
independent of q by its construction, and Theorem 2.2. ��
Lemma 3.6. Let q ∈ 1

2N, and assumeConditionLq . Let � ∈ N, and consider an interval
A ⊂ �. Let T be an arbitrary observable with ‖T ‖ ≤ 1. Then for all b ∈ N we have

E

∥
∥
∥
∥

(
τt

(
P∂b�A

+ T P∂b�A
+

)
− �q(H

A,Ac
)τ

A,Ac

t

(
P∂b�A

+ T P∂b�A
+

)
�q(H

A,Ac
)
)

PI≤q

∥
∥
∥
∥

≤ Cq 〈t〉3 |�|ξq e−bθq�. (3.41)

Proof. We have, recalling PI≤q = 
q(H�)PI≤q ,
∥
∥
∥
∥
∥

(
τt

(
P

∂b�A
+ T P

∂b�A
+

)
− �q (H A,Ac )τ

A,Ac
t

(
P

∂b�A
+ T P

∂b�A
+

)
�q (H A,Ac )

)

PI≤q

∥
∥
∥
∥
∥

=
∥
∥
∥
(
�q (H�)τt

(
P

∂b�A
+ T P

∂b�A
+

)
�q (H�)

− �q (H A,Ac )τ
A,Ac
t

(
P

∂b�A
+ T P

∂b�A
+

)
�q (H A,Ac )

)

PI≤q

∥
∥
∥
∥
∥

≤
∥
∥
∥
q,t (H

�)
(
P

∂b�A
+ T P

∂b�A
+

)

q,−t (H

�) − 
q,t (H
A,Ac )

(
P

∂b�A
+ T P

∂b�A
+

)

q,−t (H

A,Ac )
∥
∥
∥ .

(3.42)

Using Lemma 3.5, we conclude that

E

∥
∥
∥
∥
∥

(
τt

(
P∂b�A

+ T P∂b�A
+

)
− �q (H A,Ac

)τ
A,Ac

t

(
P∂b�A

+ T P∂b�A
+

)
�q (H A,Ac

)
)

PI≤q

∥
∥
∥
∥
∥

≤ Cq 〈t〉3 |�|ξq e−bθq�.

(3.43)

��
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Note that

�q(H
A,Ac

) = �q(H
A,Ac

)PǏ≤q
(H A,Ac

), so
∥
∥
∥
∥

(
(M)�q (H A,Ac )

)

PI≤q

∥
∥
∥
∥ ≤
∥
∥
∥
∥(M)PǏ≤q

(H A,Ac )

∥
∥
∥
∥ .

(3.44)

4. Proof of Slow Propagation of Information

In this section we prove Theorem 2.6. We start with the following lemma.

Lemma 4.1. Let q ∈ 1
2N

0, and assume Condition Lq is satisfied. Then there exists a
constant Cq such that, for any given finite interval � ⊂ Z, scale � ∈ N, and all t ∈ R,
the following holds:

(i) Let T be an observable supported on an interval X ⊂ � with ‖T ‖ ≤ 1, such that

T = PX− T PX− . (4.1)

Then there exists an observable Tt = T (t, q, �), supported in [X ]�βq�, such that

E

∥
∥
∥
∥
(
τ�
t (T ) − Tt

)
P�
I≤q

∥
∥
∥
∥ ≤ Cq〈t〉pq |�|ξq e−θq�. (4.2)

where p0 = 0, pq = 2q + 2 for q ∈ 1
2N, and βq is defined in (2.27).

(ii) If T is is an observable on � with ‖T ‖ ≤ 1 of the form

T = P
[Y]�2�−1
+ P

∂�[Y]�2�− T̃ P
∂�[Y]�2�− P

[Y]�2�−1
+ , with supp T̃ = ∂�[Y]�2�,

(4.3)

where Y ⊂ � is an interval, we can choose Tt , supported on [Y]�(βq+2)�+1 and
satisfying (4.2), such that

Tt = PY
+ Tt P

Y
+ . (4.4)

Proof. The lemma is proved by induction on q ∈ 1
2N

0. The lemma is obviously true for
q = 0 with Mt = M , C0 = 0, p0 = 0, ξ0 = 0, θ0 = 0. Given q ∈ 1

2N, we assume the
lemma is true for q − 1

2 and prove the lemma also holds for q.
So let � ⊂ Z be a finite interval. (We will often omit � from the notation.) We first

consider an observable M on � with ‖M‖ ≤ 1 of the form

M = P
∂out3� A
+ ⊗ M̃, (4.5)

where A ⊂ � is an interval and M̃ is an observable such that

supp M̃ = A, M̃ = P
∂ in3� A
+ M̃ P

∂ in3� A
+ , (4.6)

and

M̃ = PA− M̃ P A− . (4.7)

Note that M = P∂3�A
+ MP∂3�A

+ .
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Lemma 3.6 gives

E

∥
∥
∥
∥
∥

(
τ�
t (M) − �q(H

A,Ac
)τ

A,Ac

t (M)�q(H
A,Ac

)
)

P�
I≤q

∥
∥
∥
∥
∥

≤ Cq 〈t〉3 |�|ξq e−3θq�.

(4.8)

It follows from (4.5), (4.6) and (4.7) that

τ
A,Ac

t (M) = τ A
t (M̃)τ Ac

t (P
∂out3� A
+ ) = PA− τ A

t (M̃)τ Ac

t (P
∂out3� A
+ )PA− . (4.9)

Using

PA,Ac

Ǐ≤q
P A− = PA,Ac

Ǐq
P A
Ǐq
P Ac

Ǐ≤q−1
PA− = PA,Ac

Ǐ≤q
P A
Ǐ≤q

P Ac

Ǐ≤q−1
PA− , (4.10)

we get

PA,Ac

Ǐ≤q
τ A
t (M̃)τ Ac

t (P
∂out3� A
+ )PA,Ac

Ǐ≤q
= PA,Ac

Ǐ≤q
P A− τ A

t (M̃)τ Ac

t (P
∂out3� A
+ )PA− PA,Ac

Ǐ≤q

= PA,Ac

Ǐ≤q
P A
Ǐ≤q

τ A
t (M̃)PA

Ǐ≤q
P Ac

Ǐ≤q−1
τ Ac

t (P
∂out3� A
+ )PAc

Ǐ≤q−1
PA,Ac

Ǐ≤q
.

(4.11)

We set

M̃t = P
∂ in� A
+ PA

Ǐ≤q
τ A
t (M̃)PA

Ǐ≤q
P

∂ in� A
+ , (4.12)

an observable with supp M̃t = A. Using M̃ = P
∂ in3� A
+ M̃ P

∂ in3� A
+ , I − P

∂ in2� A
+ = P

∂ in2� A− , and
(2.19), we get

E

∥
∥
∥PA

Ǐ≤q
τ A
t (M̃)PA

Ǐ≤q
− PA

Ǐ≤q
M̃t P

A
Ǐ≤q

∥
∥
∥ ≤ Cq |�|ξq e−2θq�. (4.13)

To treat the term in Ac in (4.11), note that Ac = Ac
L ∪ Ac

R , where Ac
L and Ac

R are
subintervals of � (possibly empty, in each case they do not have to be considered); Ac

L is
the interval to the left of A and Ac

R the interval to the right of A. Since dist�
(
Ac
L , Ac

R

) ≥
|A| + 1 ≥ 2, we have H Ac = H Ac

L + H Ac
R , and P

∂out3� A
+ = P

∂
out,L
3� A

+ P
∂
out,R
3� A

+ , where
∂
out,#
3� A = ∂out3� A ∩ Ac

# for # = L , R. Thus we have

PAc

Ǐ≤q−1
τ Ac

t (P
∂out3� A
+ )PAc

Ǐ≤q−1

= PAc

Ǐ≤q−1

(

P
Ac
L

Ǐ≤q−1
τ
Ac
L

t (P
∂
out,L
3� A

+ )P
Ac
L

Ǐ≤q−1

)(

P
Ac
R

Ǐ≤q−1
τ
Ac
R

t (P
∂
out,R
3� A

+ )P
Ac
R

Ǐ≤q−1

)

PAc

Ǐ≤q−1
.

(4.14)

The two expressions in parenthesis in (4.14) are treated the same way. So let us
consider the expression on the right. Since Ǐ≤q−1 ⊂ I≤q− 1

2
, we can use the induction

hypothesis on the interval Ac
R . But it does not suffice to use it directly for the observable

P
∂
out,R
3� A

+ because we seek an observable Yt = Y (t, q, �) on Ac (we now drop the R from



Slow Propagation of Information... Page 19 of 27   239 

the notation to simplify the exposition: Ac will stand for Ac
R , P

∂
out,
3� A

+ for P
∂
out,R
3� A

+ , etc.)
that not only satisfies an estimate like

E

∥
∥
∥
∥P

Ac

Ǐ≤q−1

(

τ Ac

t (P
∂out3� A
+ ) − Yt

)

PAc

Ǐ≤q−1

∥
∥
∥
∥ ≤ Cq− 1

2
〈t〉pq− 1

2
∣
∣Ac
∣
∣
ξ
q− 1

2 e
−θ

q− 1
2
�
, (4.15)

but also satisfies

Yt = P
∂out� A
+ Yt P

∂out� A
+ . (4.16)

Let K (t) = τ Ac

t (P
∂out3� A
+ ). Then

K̇ (t) = τ Ac

t (D), where D := i[H Ac
, P

∂out3� A
+ ], (4.17)

and (for t ≥ 0; the case t ≤ 0 can be treated in the same way),

K (t) − K (0) = τ Ac

t (P
∂out3� A
+ ) − P

∂out3� A
+ =

∫ t

0
τ Ac

s (D) ds. (4.18)

Since P
∂out3� A
+ = P

∂out3�−1A
+ P

∂out3� A
+ , we have

D = P
∂out3�−1A
+ D̃P

∂out3�−1A
+ , where supp D̃ = ∂[A]�3� and D̃ = P∂[A]3�− D̃P∂[A]3�− .

(4.19)

Let us set B = ∂
�,out
� A ⊂ Ac, so ∂

�,out
3�−1 A = [B]Ac

2�−1, ∂�[A]�3� = ∂ Ac [B]Ac

2� . (Note
one endpoint of B is an endpoint of Ac. We are ignoring that Ac consists of possibly
two intervals, we do the procedure separately on each one.) We can write

D = P
[B]Ac2�−1
+ P

∂ Ac [B]Ac2�− D̃P
∂ Ac [B]Ac2�− P

[B]Ac2�−1
+ , with supp D̃ = ∂ Ac [B]Ac

2� .

(4.20)

Since D is an observable on Ac of the form given in (4.3), and by the induction
hypothesis the lemma is true for q − 1

2 , it follows from Part (ii) of the theorem that there
exists an observable Dt = D(t, q − 1

2 , �) on Ac, supported on

[B]Ac

(β
q− 1

2
+2)�+1 = ∂

�,out
(β

q− 1
2

+3)�+1A, (4.21)

such that

E

∥
∥
∥PAc

Ǐ≤q−1

(
τ Ac

t (D) − Dt

)
PAc

Ǐ≤q−1

∥
∥
∥ ≤ E

∥
∥
∥
∥P

Ac

I≤q− 1
2

(
τ Ac

t (D) − Dt

)
PAc

I≤q− 1
2

∥
∥
∥
∥

≤ Cq− 1
2
〈t〉pq− 1

2
∣
∣Ac
∣
∣
ξ
q− 1

2 e
−θ

q− 1
2
�
,

(4.22)

and

Dt = PB
+ Dt P

B
+ = P

∂
�,out
� A

+ Dt P
∂

�,out
� A

+ . (4.23)
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It follows, using (4.18), that the observable on Ac given by (we now bring back the
R index)

Y (R)
t = P

∂
�,out,R
3� A

+ +
∫ t

0
τ
Ac
R

s (D) ds, (4.24)

is supported on [∂�,out,R
� A]Ac

R
(β

q− 1
2

+3)�+1, and satisfies

E

∥
∥
∥
∥P

Ac
R

Ǐ≤q−1

(

τ
Ac
R

t (P
∂
out,R
3� A

+ ) − Yt

)

P
Ac
R

Ǐ≤q−1

∥
∥
∥
∥ ≤ C ′

q− 1
2
〈t〉pq− 1

2
+1 ∣
∣Ac

R

∣
∣
ξ
q− 1

2 e
−θ

q− 1
2
�
,

(4.25)

and

Y (R)
t = P

∂
�,out,R
� A

+ Y (R)
t P

∂
�,out,R
� A

+ . (4.26)

We construct Y (L)
t in a similar way for the interval Ac

L , and define

Mt = M(t, q, �) = M̃tY
(L)
t Y (R)

t . (4.27)

It follows that

supp Mt = A ∪ ∂
�,out
(β

q− 1
2

+3)�+1A = [A]�(β
q− 1

2
+3)�+1 ⊂ [A]�(β

q− 1
2

+4)�, (4.28)

and

Mt = P
∂�
� A

+ Mt P
∂�
� A

+ . (4.29)

We have, using (4.13) and (4.25),

E

∥
∥
∥�q (H A,Ac

)
(
τ
A,Ac

t (M) − Mt

)
�q (H A,Ac

)

∥
∥
∥ ≤ E

∥
∥
∥
∥P

A,Ac

Ǐ≤q

(
τ
A,Ac

t (M) − Mt

)
PA,Ac

Ǐ≤q

∥
∥
∥
∥

≤ Cq |�|ξq e−2θq� + 2C ′
q− 1

2
〈t〉pq− 1

2
+1 ∣
∣Ac
∣
∣
ξ
q− 1

2 e
−θ

q− 1
2
�

≤ Cq 〈t〉pq− 1
2

+1 |�|ξq e−θ
q− 1

2
�
.

(4.30)

In addition, it follows from Lemma 3.6 and (4.29) that (recall �q = �q,0)

E

∥
∥
∥
∥
∥

(
�q(H

A,Ac
)Mt�q(H

A,Ac
) − Mt

)

P�
I≤q

∥
∥
∥
∥
∥

= E

∥
∥
∥
∥
∥
∥

(

�q(H
A,Ac

)P
∂�
� A

+ Mt P
∂�
� A

+ �q(H
A,Ac

) − P
∂�
� A

+ Mt P
∂�
� A

+

)

P�
I≤q

∥
∥
∥
∥
∥
∥

≤ Cq 〈t〉3 |�|ξq e−θq�.

(4.31)
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Using (4.8), (4.30), and (4.31), we get

E

∥
∥
∥
∥
(
τ�
t (M) − Mt

)
P�
I≤q

∥
∥
∥
∥ ≤ E

∥
∥
∥
∥
∥

(
τ�
t (M) − �q(H

A,Ac
)τ

A,Ac

t (M)�q(H
A,Ac

)
)

P�
I≤q

∥
∥
∥
∥
∥

+ E

∥
∥
∥
∥
∥

(
�q(H

A,Ac
)τ

A,Ac

t (M)�q(H
A,Ac

) − �q(H
A,Ac

)Mt�q(H
A,Ac

)
)

P�
I≤q

∥
∥
∥
∥
∥

+ E

∥
∥
∥
∥
∥

(
�q(H

A,Ac
)Mt�q(H

A,Ac
) − Mt

)

P�
I≤q

∥
∥
∥
∥
∥

≤ Cq 〈t〉3 |�|ξq e−3θq� + Cq〈t〉pq− 1
2

+1 |�|ξq e−θ
q− 1

2
�

+ Cq 〈t〉3 |�|ξq e−θq�

≤ Cq〈t〉
max

{

p
q− 1

2
+1,3

}

|�|ξq e−θq�.

(4.32)

We can now prove Part (i). Let T be an observable supported on an interval X ⊂ �

with ‖T ‖ ≤ 1 satisfying (4.1). If dist (X ,Z \ �) ≤ βq�, there is nothing to prove since
[X ]�βq� = �, just take Tt = τ�

t (T ). So assume dist (X ,Z\�) > βq�. As βq−9(q̂+1) =
βq− 1

2
+4 ≥ 4, we can use Lemma 3.4, and let T̂ =∑q̂+1

j=1 Tj where Tj is given in (3.22),

so
∥
∥Tj
∥
∥ ≤ 1, and observe that in view of (3.23) it suffices to prove Part (i) for each Tj ,

j = 1, 2, . . . , q̂ + 1.
Let j = 1, 2, . . . , q̂ + 1 and set A j = [X ]9 j�. It follows from (3.22) that

Tj = P
∂out3� A j
+ ⊗ T̃ j = P

∂3�A j
+ Tj P

∂3�A j
+ , supp T̃ j = A j , T̃ j = P

∂ in3� A j
+ T̃ j P

∂ in3� A j
+ .

(4.33)

Moreover, it follows from (4.1) that

T̃ j = P
A j
− T̃ j P

A j
− for j = 1, 2, . . . , q̂ + 1. (4.34)

Thus Tj is an observable satisfying (4.5) and (4.7) with M = Tj and A = A j . Thus
there exists an observable (Tj )t with support

�
(β

q− 1
2

+4)� = [X ]�(β
q− 1

2
+4+9 j)�, (4.35)

satisfying (4.32) for Tj .
Defining

Tt =
q̂+1∑

j=1

(Tj )t , (4.36)

an observable on � with

supp Tt = [X ]�
(β

q− 1
2

+4+9(q̂+1))�
= [X ]�βq�, where βq = (βq− 1

2
+ 9q̂ + 13),

(4.37)
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we have, using also (3.23),

E

∥
∥
∥
∥
(
τ�
t (T ) − Tt

)
P�
I≤q

∥
∥
∥
∥ ≤ Cq〈t〉pq |�|ξq e−θq�, with pq = max

{
pq− 1

2
+ 1, 3

}
.

(4.38)

Since p0 = 0, we have p 1
2

= 3, so pq = pq− 1
2

+ 1 > 3 for q ≥ 1. It follows that

pq = 3 + 2(q − 1
2 ) = 2q + 2 for q ≥ 1.

Using (2.27), we have

βq− 1
2

+ 9q + 13 ≤ βq ≤ β
q− 1

2
+ 9(q + 1

2 ) + 13 = β
q− 1

2
+ 9q + 35

2 . (4.39)

Letting γs = β s
2

for s ∈ N
0, we have γ0 = 0 and γs−1 + 9

2 s + 13 ≤ γs ≤ γs−1 + 9
2 s + 35

2
for s ∈ N. It follows that for s ∈ N we have

9
2
s(s+1)

2 + 13s ≤
s∑

r=1

( 9
2r + 13

) ≤ γs ≤
s∑

r=1

(
9
2r + 35

2

)
= 9

2
s(s+1)

2 + 35
2 s, (4.40)

so 9
4 s

2 + 61
4 s ≤ γs ≤ 9

4 s
2 + 79

4 s. It follows that for q ∈ 1
2N we have 9q2 + 61

2 q ≤ βq ≤
9q2 + 79

2 q.
We now turn to Part (ii). If T is is an observable on � with ‖T ‖ ≤ 1 of the form

given in (4.3), T satisfies the hypothesis of Part (i) with X = supp T = [Y]�2�+1. Thus
the proof of Part (i) applies to this observable T , but we modify it as follows. We

observe that since T = P
[Y]��
+ T P

[Y]��
+ in view of (4.3), when we apply Lemma 3.4

the observable Tj also satisfies Tj = P
[Y]��
+ Tj P

[Y]��
+ in view of (3.22). Moreover, the

corresponding observable T̃ j given in (4.5) also satisfies T̃ j = P
[Y]��
+ T̃ j P

[Y]��
+ . We define

(T̃ j )t as in (4.12), and also define (T̂ j )t = PY
+ (T̃ j )t P

Y
+ . Since I − PY

+ = PY
− (note

A j = [[Y]�2�+1]�9 j� = [Y]�(9 j+2)�+1), we have

E
∥
∥(T̃ j )t − (T̂ j )t

∥
∥ ≤ E

∥
∥
∥
∥P

A j

Ǐ≤q
τ
A j
t (T̃ j )P

A j

Ǐ≤q
− PY

+ P
A j

Ǐ≤q
τ
A j
t (T̃ j )P

A j

Ǐ≤q
PY

+

∥
∥
∥
∥

≤ Cq |�|ξq e−θq�

(4.41)

by (2.19). As a result, we can replace (T̃ j )t by (T̂ j )t for j = 1, 2, . . . , q̂ + 1 in the

definition of (Tj )t in (4.27), so now we have (Tj )t = PY
+ (Tj )t P

Y
+ . As a consequence,

Tt defined as in (4.36) satisfies (4.4), and Part (ii) is proven. ��
Proof of Theorem 2.6. Let q ∈ 1

2N
0, and assume Condition Lq+ 1

2
is satisfied. Let T be

an observable supported on an interval X ⊂ � with ‖T ‖ ≤ 1. As in the proof of Part (i)
of Lemma 4.1, we may assume dist (X ,Z\�) > (βq+ 1

2
+ 13)�, and use Lemma 3.4. Let

T̂ =∑q̂+1
j=1 Tj = T1 + Ť , where Ť =∑q̂+1

j=2 Tj with Tj given in (3.22), so
∥
∥Tj
∥
∥ ≤ 1,

and, using (3.23), it suffices to prove the theorem for T1 and Ť .
Each Tj , j = 2, 3, . . . , q̂+1, T can be treated as in the proof of Part (i) of Lemma 4.1,

see (4.33)–(4.38). Setting Ťt =∑q̂+1
j=2(Tj )t , we get (4.37) and (4.38) with Ťt substituted

for Tt . Note that supp Ť = [X ]�
(9(q̂+1)+3)�

.
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Thus it only remains to prove the theorem forT1 = T P∂3�[X ]9�
+ = P∂3�[X ]9�

+ T P∂3�[X ]9�
+ .

Note that M = T1 satisfies (4.5)–(4.6) with A = [X ]9�, but (4.7) may not hold. We pro-
ceed as in the proof for M in (4.5) but without (4.7), so (4.11) is replaced by

PA,Ac

Ǐ≤q
τ A
t (M̃)τ Ac

t (P
∂out3� A
+ )PA,Ac

Ǐ≤q

= PA,Ac

Ǐ≤q
P A
Ǐ≤q

τ A
t (M̃)PA

Ǐ≤q
P Ac

Ǐ≤q
τ Ac

t (P
∂out3� A
+ )PAc

Ǐ≤q
P A,Ac

Ǐ≤q
.

(4.42)

We continue the proof as before up to (4.20). D, defined in (4.20), is an observable
on Ac

R of the form given in (4.3). We now use that Condition Lq+ 1
2

is satisfied, and hence
we can apply Part (ii) of Lemma 4.1 to the observable D in the energy interval I≤q+ 1

2
.

It follows that there exists an observable Dt = D(t, q + 1
2 , �) on Ac

R , supported on

[B]Ac
R

(β
q+ 1

2
+2)�+1 = ∂

�,out,R
(β

q+ 1
2

+3)�+1A, (4.43)

such that

E

∥
∥
∥
∥
∥

(
τ
Ac
R

t (D) − Dt

)

PAc

Ǐ≤q

∥
∥
∥
∥
∥

≤ E

∥
∥
∥
∥
∥
∥

(
τ
Ac
R

t (D) − Dt

)

P
AcR
I≤q+ 1

2

∥
∥
∥
∥
∥
∥

≤ Cq+ 1
2
〈t〉pq+ 1

2
∣
∣Ac
∣
∣
ξ
q+ 1

2 e
−θ

q+ 1
2
�
,

(4.44)

where we used Ǐ≤q ⊂ I≤q+ 1
2
, and

Dt = PB
+ Dt P

B
+ = P

∂
�,out,R
� A

+ Dt P
∂

�,out,R
� A

+ . (4.45)

Letting Y (R)
t be as in (4.24), we have supp Yt = [∂�,out,R

� A]Ac
R

(β
q+ 1

2
+3)�+1,

E

∥
∥
∥
∥P

Ac
R

Ǐ≤q

(

τ
Ac
R

t (P
∂
out,R
3� A

+ ) − Y (R)
t

)

P
Ac
R

Ǐ≤q

∥
∥
∥
∥ ≤ C ′

q+ 1
2
〈t〉pq+ 1

2
+1 ∣
∣Ac
∣
∣
ξ
q+ 1

2 e
−θ

q+ 1
2
�
, (4.46)

and we have (4.26).
We construct Y (L)

t in a similar way for the interval Ac
L , and define

Mt = M(t, q, �) = M̃tY
(L)
t Y (R)

t , (4.47)

as in (4.27), so

supp Mt = A ∪ ∂
�,out
(β

q+ 1
2

+3)�+1A = [A]�(β
q+ 1

2
+3)�+1 ⊂ [A]�(β

q+ 1
2

+4)� = [X ]�(β
q+ 1

2
+13)�,

(4.48)

and we have (4.29).
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We have, using (4.13) and (4.46),
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2 e
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2
�
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(4.49)

In addition, (4.31) holds. Using (4.8), (4.49), and (4.31), we get
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(4.50)

Setting Tt = T̂t + Mt , then Tt is supported in [X ]�(β
q+ 1

2
+13)� and, using now (3.23), Tt

satisfies (2.28). ��

5. Proof of Slow Propagation of Information, Matrix Elements Version

Proof of Corollary 2.7. Let q ∈ 1
2N, and assume Condition Lq+1 is satisfied. Set

α = max

{

2
ξ
q+ 1

2
θ
q+ 1

2

,
4�q�
cμ

+ 1

}

, (5.1)

and consider a finite interval � ⊂ Z with |�| sufficiently large so

r + 2(4r + 2)r = 8r2 + 5r < |�| , where r = �α ln |�|�. (5.2)

Let � ∈ N, t ∈ R, and M1, M2 ⊂ � with |M1| = |M2| = N̂ ∈ [1, |�|] ∩ N.
Suppose � ≥ r . In this case we pick Tt as in Theorem 2.6, so it follows from (2.28)

and (5.1) that
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Thus we only need to consider the case � < r . Suppose first that N̂ ≥ r . In this
case we use a large deviation argument. On the complement of the event B N̂�q� we have

χ N̂
� P�

I≤q
= 0 (see [7, Eqs. (3.52 and (3.55)]), and hence, taking Tt = T we have
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(5.4)

where in the second step we used the large deviation estimate [7, Eq. (3.53)] and (5.1).
It remains to consider the case N̂ < r and � < r . It follows that |M1 ∪ M2| ≤ 2(r−1).

We assume |X | ≤ ln |�| < r (note α > 1 by (5.1)). It follows from (5.2) that there
exists j ∈ [0, 2r ] ∩ N

0 such that

(
[X ]�(2 j+2)r \ [X ]�2 jr

)
∩ (M1 ∪ M2) = ∅, (5.5)

and set Xr := [X ]�(2 j+1)�, and observe that

|Xr | ≤ |X | + 2(4r + 1)r ≤ r + 2(4r + 1)r = 8r2 + 3r ≤ 11r2. (5.6)

Since T is supported by X ⊂ Xr , we use Theorem 2.6 with � = Xr and q + 1
2 instead

of q, concluding that there exists an observable T� = T (t, q + 1
2 , �,Xr ) supported by
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Ǐ≤q

∥
∥
∥
∥
∥

≤ E

∥
∥
∥
∥
∥
∥

(
τ
Xr
t (T ) − Tt

)

PXr
I≤q+ 1

2

∥
∥
∥
∥
∥
∥

≤ Cq+ 1
2
〈t〉2q+5|Xr |ξq+1 e−θq+1� ≤ Cq+ 1

2
〈t〉2q+5

(
ln(11r2)

)ξq+1
e−θq+1�

≤ C ′
q〈t〉2q+5 (ln r)ξq+1 e−θq+1� ≤ C ′′

q 〈t〉2q+5 (ln |�|)ξq+1 e−θq+1�.

(5.7)

Since πMi = πMi P
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r Xr

+ = P
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r Xr

+ πMi , i = 1, 2, we use Lemma 3.5 and an argument
similar to the proof of Lemma 3.6 to deduce that
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(5.8)

where we used (5.1) and ξq
θq

≤
ξ
q+ 1

2
θq+ z

z 12
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We note that τ
Xr ,X c

r
t (T ) = τ

Xr
t (T ) on H� since T is supported by X ⊂ Xr . Thus
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where we used P
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It follows from (5.8) and (5.9) that
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We conclude from (5.3), (5.4), and (5.10) that for all � ∈ N there exists an observable
Tt = T (t, q, �,�, M1 ∪ M2), supported in [X ]�(13+βq+1)�

, such that we have
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