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Abstract: The random XXZ quantum spin chain manifests localization (in the form of
quasi-locality) in any fixed energy interval, as previously proved by the authors. In this
article it is shown that this property implies slow propagation of information, one of the
putative signatures of many-body localization (MBL), in the same energy interval.
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1. Introduction

The folk wisdom in physics is that particle interactions tend to delocalize (or, more pre-
cisely, dynamically thermalize) an isolated quantum system. In contrast, the presence
of disorder in the single particle context leads to the emergence of localization. It is,
therefore, an interesting question of how such systems behave in the presence of both
disorder and interactions. It has been proposed in the physics literature that in dimension
one strong disorder leads to the so-called many-body localized (MBL) phase, presumed
to be characterized by several exotic properties, such as the absence of thermalization,
slow propagation of information, zero-velocity Lieb—Robinson bound, Poisson distribu-
tion for level statistics, and area-law entanglement of eigenstates. This led to significant
theoretical and experimental work in condensed matter physics over the last decade that
focused on this phenomenon and its implications (see the physics reviews [2,4,20]).
Let us stress that, as of today, there is no unifying physics theory for MBL as well
as no clear consensus among the physics community on the existence and stability of
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an MBL phase in the thermodynamic limit, even in the strong disorder regime, due
to new numerical evidence and some theoretical work [1,14,17,21-25]. Moreover, the
hierarchical relationship between the proposed properties (i.e., whether one of them
implies others) is also not clear. The most significant difficulty in analyzing such models
is that the dimension of the underlying Hilbert space grows exponentially fast with the
system size L. Such growth limits reliable numerics to small L and makes it exceedingly
hard to capture the rare but potentially critical events (such as resonances) that inevitably
occur as the system size increases.

One of the central questions among the physics community is what a suitable (and
malleable) definition of MBL should be. A popular choice there is the existence of Local
Integrals of Motion (LIOM), which in particular implies a form of dynamical localization
[19]. However, the existence of LIOM is based on the exact diagonalization of the entire
Hamiltonian, a very strong assumption (it implies, in particular, the absence of a phase
transition for the infinite system—a debatable assertion even among physicists).

In [7], we introduced and proved a suitably defined notion of quasi-locality associ-
ated with the finite XXZ spin-% random chain in any fixed energy interval in a certain
parameter region, that includes the limiting cases of strong disorder and weak interac-
tions. The disordered XXZ model is one of the most common models used in the physics
and mathematics literature for the study of MBL (e.g., [2]). We consider finite volume
Hamiltonians, which are what is typically discussed in the physics literature (e.g., [2]).
An important feature of our result is that while the parameter region depends on the
energy interval, it is independent of system size.

A fixed energy interval is sometimes referred to in physics as the zero temperature
regime and has to be contrasted with the infinite-temperature regime, that is, the whole
energy spectrum.! While we argued in [7] that our quasi-locality property (different
from any of the physics signatures of MBL mentioned above) is very natural from a
mathematical point of view, we do not expect it to be useful for studying the infinite-
temperature MBL.

While the quasi-locality property is amenable to rigorous analysis, we did not attempt
in [7] to explore its connection to the putative manifestations of MBL proposed in the
physics literature and mentioned above. The current work shows that the quasi-locality
property implies slow propagation of information (one of the aforementioned signature
properties) in the same energy interval on which the quasi-locality holds. This implication
was not obvious to us when [7] was completed, as it addresses a different object and its
proof required a new set of ideas.

Let us mention that the other proposed indicators of MBL-type localization (besides
slow information propagation) seem to be either unaccessible or significantly harder to
reach:

(1) It is expected that generic quantum many-body systems exhibit thermalization or
even satisfy the eigenstate thermalization hypothesis. However, up to now mathe-
matically tangible arguments have not been found for proving thermalization or its
failure outside the realm of exactly solvable systems.

(ii) As we already mentioned, the LIOMs’ approach hinges on a complete (for all en-
ergies) localization of the underlying Hamiltonian. Such property has been only
achieved for some exactly solvable models. Similarly, the proposal that the zero
velocity Lieb—Robinson bound holds for random systems (see [10]) relies on com-
plete localization. A modified analogue of the Lieb—Robinson bound was proven

1 Note that the diameter of the spectrum of the interacting system grows with the system size.
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in the droplet spectrum ( the special interval at the bottom of the spectrum) of the
random XXZ spin chain [8, Theorem 3]. However, the form of the resulting bound
is interval-dependent, making it unlikely to be a suitable candidate for an MBL
characteristic for systems where a phase transition could potentially occur.

(iii) In [6], it was shown that, even without disorder, the excited states of the XXZ
spin chain (with pretty much any choice for the background potential) satisfy the
area law with logarithmic corrections for any fixed energy interval. While the area
law without these corrections holds in the droplet spectrum of the random XXZ
spin chain [6], it is not expected to persist beyond this interval on physical grounds
[5,10]. Thus itis hard to probe localization at higher energies using an area law-type
criterion alone.

(iv) Another proposal is to link localization of the interacting ground state with ex-
ponential decay of the zero temperature grand-canonical truncated correlations of
local operators [16]. This result involves multiple limits (including zero tempera-
ture and thermodynamic ones), so it is not clear how to formulate it as a statement
that holds for a finite system. In addition, it appears that the result is highly sensitive
to the order in which these limits are taken.

Let us give an informal account of our result (the formal statement can be found in
Sect.2 below). The random XXZ quantum spin—% chain on the finite discrete interval

(i.e., aninterval in Z) Ay = [1, L] is given by the Hamiltonian H. = HOL +2VE acting
on @;ca, C? (here C? is a copy of C?), where

HO = ‘l‘ (I — O'iZO'iz_‘_l) - ﬁ (Uixo—i)-cl—l + Giyo'iy-;-l)

i=1

(here oY% are the standard Pauli matrices and A > 1 is the anisotropy parameter), and
Vaf = Zf:l ;N is the random field (here N = %(1 —0%), w = {wj};cz is a family of
independent identically distributed positive random variables with sufficiently regular
randomness, and A > 0 is the disorder parameter).

The following theorem is an informal statement of our main result, Theorem 2.6.

Theorem (Slow propagation of information, informal). For a given energy E > O,
there exists a non-trivial region in the (A, A) parameter space, such that for any fixed
point in this region, scales L, £ € N, and all t € R, the following holds: For every
observable O supported on a discrete interval [a, b] C Ay, there exists an observable
O, =0(, E, L, L), supported on [a — cgl, b+ cgl] N Ay, such that

E| Po.g (77507 — 0,) Po.py| < Cu IO (el + D% LEFe~% ¢, (1L1)

where E stands for the expectation with respect to w, Plo, g is the spectral projection of
HE onto [0, E, and cg, &g, 05 > 0.

In general, the Lieb—Robinson bound for local spin Hamiltonians [15, 18] implies that
there is an effective light cone for two-point dynamical correlations for such systems,
meaning that these correlations propagate no faster than linearly in time, up to expo-
nentially small corrections. As a consequence of this bound, if O is a local observable
supported on the discrete interval [a, b], given £ € N there exists an observable O, ¢,
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supported on the discrete interval [a — £, b + £], that approximates the (full) Heisenberg
evolution e/ Qe~iH.

where m > 0 and v > 0 is the velocity in the Lieb—Robinson bound (see [11]).

For translation invariant systems, it is expected that information can indeed spread
within the light cone. This should be contrasted with the theorem above, that indicates
a much slower rate at which the information spreads for the random system: For a
given value of £ > In L, it takes time ¢ ~ ¢ rather than ¢ ~ ¢ until information can
potentially escape the corresponding cone. We note that our result considers propagation
of observables within the energy window [0, E], and, in particular, is fully compatible
with a possible phase transition for higher energies.

Rigorous results of this kind have been previously obtained for exactly solvable
systems (in fact, with no propagation at all), see, e.g., [3], and for the XXZ ferromagnetic
spin chain studied here, but restricted to the energy interval /< (introduced in Sect.?2)
corresponding to so called droplet spectrum [8, Theorem 2]. Albeit this result provides a
strong bound on the information propagation speed, it is tailored for /<1, and the method
developed there cannot be adapted to the larger intervals /<, that are handled in Theorem
2.6. While the dependence of our bound on both the system size and time is by no means
optimal, it is generally expected that the random XXZ spin chain should exhibit some
form of slow propagation (e.g., [2]).

We now want to address the presence of the polynomial pre-factor in the volume size
in (1.1). Itis not unusual to have a volume dependence in local results concerning random
systems (e.g., the multiscale analysis for random Schrodinger operators yields decay in
a box of size L for distances > L%, ¢ € (0, 1)), as in the localization phenomenon
there are two competing effects: A natural tendency for eigenstates to localize versus
the small denominator problem, coming from resonances. The former is responsible
for the exponential decay in (1.1), whereas the appearance of the volume prefactor is a
manifestation of the latter. Indeed, the number of resonances is directly related to the
density of states, which, for the ferromagnetic XXZ spin system studied here, grows as
a power of the volume (with the power increasing with the energy). For this reason, we
do not expect that the bound in (1.1) can be significantly improved.

Since the physics literature mainly considers finite spin systems (e.g., [2]), the poly-
nomial pre-factor is not a real issue in the presence of the exponential decay in ¢, as
long as £ > Cln L. Let us also mention that in (reliable) numerical experiments on
which physicists base their conclusions about the system’s behavior, the typical value
of L does not exceed a few dozen, in which case our results fit in rather well with the
physics picture for all energies.

Nonetheless, the presence of the volume factor has the unfortunate side effect that it
is not clear whether any conclusions can be drawn about the infinite volume XXZ model
from this estimate. This should be contrasted with the random Schrddinger operator
case, where the volume dependence in the decay estimates can be overcome to yield
Anderson localization in the infinite volume. This disparity can be traced to the radical
difference in the rank of the perturbation needed to decouple the Hamiltonian into two
(spatially non-interacting) parts in a discrete Schrodinger operator and in a spin chain.
In the former case, the rank is comparable with the size of the boundary between these
two parts (rank 2 in one dimension), while in the latter case the rank is comparable with
the dimension of the full Hilbert space, due to its tensor product nature.

eitH e—itH _ O"ZH < C O] eI,
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One way to mitigate the influence of resonances is to consider a matrix element ana-
logue of (1.1), that is, to consider ‘ (¥, Po,E] (e”Hof Oc~itHy _ (’),) Ppo,E) ¢)‘ for a pair

of states ¥, ¢ € H instead of H Ppo, k) (ei’Haf Oe~itHs — (9;) Ppo,E] H . As a consequence

of (1.1), we obtain a bound on the expectation of this object where the dependence on
the volume is reduced to powers of In L instead of L, see Corollary 2.7 below. The price
one has to pay here is that a priori the operator O; constructed this way depends also
on the states v, ¢. We expect that this result may shed light on properties of the infinite
volume system.

This article is organized as follows: Sect.2 starts with the introduction of the XXZ
quantum spm—% chain in a random field, followed by a short summary (Theorem 2.2)
of our localization results in [7], which serves as the starting point for the statement
of our main result, Theorem 2.6, exhibiting slow propagation of information under
localization. The statement for matrix elements is given in Corollary 2.7. In Sect. 3 we
introduce important ingredients for the proof of Theorem 2.6. Section4 contains the
proof of Theorem 2.6. Corollary 2.7 is proven in Sect. 5.

Throughout the paper, we will use generic constants C, c, etc., whose values will be
allowed to change from line to line, even in a displayed equation. These constants will
not depend on subsets of Z, but they will, in general depend on parameters of the model
such as u, Ag, and Ag. When necessary, we will indicate the dependence of a constant
on other parameters, say g, explicitly by writing the constant as Cy, etc. These constants
can always be estimated from the arguments, but we will not track the changes to avoid
complicating the arguments.

2. The Model, Localization, and the Main Result

1
0

canonical basis of C?, called Sllml up and spin-down, respectlvely Let oY% be the
standard Pauli matrices, o ® (0 +ioY). Set N = 2(I — o0'%), an operator on C2?,
and note that AV 1) = 0 and J\/ 1) =l). We interpret |) as a particle, so A is the
projection onto the spin-down state (or local number operator).

LetH; = Hyy = (Cl-z for i € 7Z. Given a vector v € C?, we denote by v; its copy in
‘H;. If T is an observable (i.e., operator) on C2, we denote by T; the observable T acting
on H;.

The (infinite volume) XXZ quantum spin-% chain in a random field is informally
given by the Hamiltonian

2.1. Model description. Let 1) = < ) and |) = (?) denote the elements of the

H, = Hy+\V,, 2.1)
acting on ), ., Hi, where:
(1) The (disorder) free Hamiltonian H is given by
1 1
Ho = Z (Z (I —0; Ul+1) IA (Gl o} i+1 10 O't)-i—l))
ieZ
1 1 - -
= Z (7 (I —0f0iy) = 35 (00 + 07 0y)) (2.2)
i€’

where A > 1 is the anisotropy parameter, specifying the Ising phase (A = 1 selects
the Heisenberg chain and A = oo corresponds to the the Ising chain).
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(i) Vo =Y ez @i/ is the random field, where w = {w;}; <z is a family of independent
identically distributed random variables, whose common probability distribution w
is absolutely continuous with a bounded density and satisfies

{0, 1} C suppu C [0, 1], (2.3)

and A > 0 is the disorder parameter.

We set ws = {wj}jcs for S C Z, and denote the corresponding expectation and
probability by Eg and Pg. (We will mostly omit the subscript and just write E and P
when the choice of § is clear from the context.)

The (infinite volume) Hamiltonian H,, in (2.1) can be rigorously defined on an appro-
priately defined Hilbert space, but in this work we only consider finite volume Hamil-
tonians, since that is what is typically discussed in the physics literature.

Given a finite subset A of Z (A will always denote a finite subset), we consider the
finite dimensional Hilbert space Hp = ®;eaH;. f A C A and T is an operator on
H a4, we consider T as an operator on H s by identifying it with the operator T’ ® I, ,
acting on Hy = Ha ® Ha\a. (For a fixed A we will often omit A from the notation,
e.g., A°= A\ A) For § C Z we let |S| denote the cardinality of the set S.

Since

T =0f0l) =3 Wi + Niwp) = NiNia1, (2.4)

we set

1

hiivt = —NiNipt — 55 (070, + 07 0) (2.5)

aself-adjoint operator 4; ;41 on the four-dimensional Hilbert space Hy; j+1) = H; ® Hi1.
An explicit calculation shows

|i i1 | = 1. (2.6)
We can rewrite Hy as

Ho =Y (hijs1+5N; + Nis)) = Y hiin1 + N?, where N =3 N,
i€Z i€Z i€Z
2.7

which leads naturally to our definition of finite volume Hamiltonians.

Definition 2.1. The random XXZ quantum spin—% chain on a finite subset A of Z is
given by the self-adjoint Hamiltonian

H" = Hé\ +)LVC£\ actingon Hjp, (2.8)

where

Y him NN with N2 =3"N; and V) =) wili. 2.9)

{i,i+1}CA ieA ieA

We set R} = (H® — z)~! forz ¢ o (H?), the resolvent of H™.
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The free Hamiltonian HOA can be rewritten as
Hé‘:—ﬁAA+WA on Hy, (2.10)
where

At = Z (0f 0 +0, 0fy) and W =NA — Z NiNig1. (2.11)

{i,i+1}CA {i,i+1}CA

The canonical (orthonormal) basis ® 5 for H  is constructed as follows: Let ¢y =
QA = ®jea 1)i be the vacuum state. Then

1Al
Py = {m = (]_[o,.> Qa: AC A} = [J o}, (2.12)

icA N=0

where <I>5\N) ={pa : A C A, |A| = N}. We remark that @5?) ={Qa}.

The total (spin-down) number operator N** on A is diagonalized by the canoni-
cal basis: ./\/A¢A = |A| ¢4 for A C A, and hence has eigenvalues 0, 1,2, ..., |A].

We set H") = Ran (xn(N™)), obtaining the Hilbert space decomposition H, =
N (N)
Do Ha -
The operators W" and V* are also diagonalized by the canonical basis, and hence
the operators A/ A WA and Vaf commute. W2 is the number of clusters operator:

WA¢A = Waps for A C A, where Wy is the number of connected components
(clusters) of A as a subset of A, so o (WA) c {0,1,2,...,|Al}. Vaf\ is the random

field: V£¢A = waps for A C A, where wg =) ;.4 ;.
The Hamiltonian H” preserves the total particle number,

[HY N = =L [AY N2 =0, (2.13)

a feature that makes the XXZ model especially amenable to analysis.
It can be verified (e.g., [7]), that

(1—- WA <HP, so (1- L)W < H”, (2.14)
and the spectrum of H” is of the form
o(HY) = {0} U ([1 — L, 00) Na(HY)). 2.15)

Moreovler, the lower bound in (2.14) suggests the introduction of the energy thresholds
k(1—%),k=0,1,2....
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2.2. Localization as quasi-locality. Henceforth, by a subset of Z we will always mean
a finite subset and by an interval in Z a connected nonempty subset of Z. The observable
O is said to have support in A C A (we write supp O = A) if O acts trivially on H ¢,
thatis, O = 04 ® I3, where Oy is an observable on A. (We will identify O with O4.)
Note that the support of an operator is not uniquely defined.

Given ¥ # S C Z, we define the orthogonal projections Pis on Hg by

P} = Q) (I, = Ni) = xqo) (NS> and P2 = Iy — Py = xi1,00) (NS) :
e (2.16)

P+S is the orthogonal projection onto states with no particles in the set S; PS is the

orthogonal projection onto states with at least one particle in S. (Note that Pl = N;
fori € Z.) We also set

P! =1y, and P =0. (2.17)

Given J C R measurable, B(J) denotes the collection of Borel measurable functions
that vanish outside J; we set B{(J) = {f € B(J) :sup|f| < 1}.

In [7] we interpreted localization for the random XXZ quantum spin-% chain as a
form of quasi-locality. The following theorem follows immediately from [7, Theorem
2.4 and Corollary 2.6].

Theorem 2.2 (Quasi-locality). Fix Ag > 1 and Ay > 0. Then for all R > 0 there exist
constants Dy, Fg, g, Or > 0 (depending on R, Ao, Lo) such that, for all A > Aoy and
A > Ao with AAZ > Dg, finite interval A C Z, and A C B C A with A connected in
A, we have the following:

(i) Forall z € CwithRez < R (1 - %) we have
1 . .
Ex {H PARMP] H} < Fi |A[fk e~ Trdista(d.5%), (2.18)
(ii)

E, sup H PAr(HMPE| | < Fg AR e Ordistaa.B)

ren((-==x(-4))

(2.19)

Remark 2.3. [7, Theorem 2.4] is stated and proved for R = k + %, where k € N°, and

real energies E < (k+ %) (1 — %) However, the proof of [7, Theorem 2.4] is also valid

for complex energies z with Rez < (k + %) (1 — %), with the same constants. Picking

k € N so that R < k + % yields the result stated above. (As an alternative, the proof
of [7, Theorem 2.4] can be adapted for the case R = k + 8 with § € (0, 1); we fixed
B = % in [7] for simplicity.)
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Remark 2.4. If A is not connected in A, the theorem still holds with (2.18) replaced by

1 - .
Ep {H pré\pf 4 } < FRT;‘\ | A|ER @O dista (4,B%) (2.20)

where Tfl\ denotes the number of connected components of A in A. This follows from

(2.18) and

A
B TA U'-j_'l A A
pA = Z poi= i pli (2.21)
j=1
where A, j=1,2,..., Tf“, are the connected components of A in A.

2.3. Slow propagation of information. Our main result shows that localization of the
XXZ random spin chain in a fixed energy interval implies slow propagation of informa-
tion in this interval.

In this article we will assume that Ay > 9 in Theorem 2.2. This is done to simplify
our analysis, but in fact the result holds for arbitrary Ag > 1 with minor modifications
of the proofs.?

Given g € %Z, we consider the energy intervals

Iqg=(—00,@+D(1-5)] L=[1-%x@+p(1-3)]

. . (2.22)
Lyg=(=00.q+p(1=%)]. L=[1-5@+p(1-3)]
These intervals are increasing with g. We also note the relation
y ¥ 1
I<4—1 C ISq_% C Ifq_% for g € 53N. (2.23)

Let A be a finite subset of Z. Given an interval I C R, we set P; = IA = x1(HM).
If T and Y are observables on H 5, we define

(Tyy =YTY™. (2.24)
We also consider the Heisenberg time evolution of observables:
tMNT) = eH Te=itHY for 1 ¢ R. (2.25)
Given M C A C Z, we let

{x € A : disty (x, M) <s)} ifseNO={0JUN

m1d =
1Ms [x € A:dista (x, M) > 1 —s} = M\ M2, ifse-N

(2.26)
If M = {j} we write [12 = [{j}2.

2 Forl < Ag < 9 we need to improve the decay rate m in (3.11), which is derived from the lower bound
in (3.7). If 1 < 89 < Ag <9, we would have to replace HkA in the proof by Hk/-\w’ where r = [80%1 - %],

leading to mg = In ((r + 5 6o - 1)) > 0.
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Definition 2.5. Given g € %NO, we say that Condition £, is satisfied if the parameters
A and A satisfy the hypotheses of Theorem 2.2 for R = g + %, so the conclusions of the
theorem are valid for R = g + %, that is, on the energy interval Iqu. We set &, = Eq +1

and 0, =5q+%.

1
We use the notation (t) = (1 + t2)2 fort € R. For g € %NO we set ¢ = [g] and
define B, recursively by

Po=0, By =B,_1+9+13, (2.27)
Note that 9¢> + §q < B, < 9¢% + Zq.

Theorem 2.6 (Slow propagation of information). Let g € %N, and assume Condition
L g+) is satisfied. Then there exists a constant C, such that for any given finite interval
2

A C Z, scale £ € N, and all t € R, the following holds: For every observable T
supported on an interval X C A with |T|| < 1 there exists an observable T; =
T(t,q,t, N), supported in [X]f\l3+ﬂq+l)£’ such that

2

1 4

—0
E §Cq(t)2q+4|A|E‘“%e a+3 " (2.28)

(5(T) = T,)

This theorem is proved in Sect. 4.

As discussed in the introduction, we can improve the dependence on the volume
by considering matrix elements instead of the norm. The constant ¢, > 0 in the esti-
mate comes from the large deviation estimate [7, Eq. (3.50]) and depends only on the
probability distribution p.

Corollary 2.7 (Slow propagation of information, matrix elements version). Let g € %N,
and assume Condition L. is satisfied. There exist constants Cy and Y, such that given
a finite interval A C Z, scale £ € N, t € R, the following holds: Given subsets
M; C A, i = 1,2, with |M1| = |Ma|, then for every observable T supported on an
interval X C A, with |T|| < 1 and |X| < InA, there exists an observable T; =
T(t,q,¢, A, M1 U M>), supported on [X]f\13+ﬁq+1)e’ such that

1 .
3 mln{eqﬂwl ,CM]Z

E < Cy (0¥ (A5 e 1

Ty (7 (T) = Tr) pa 7wty
=q
(2.29)
provided |A| > Y.

For fixed M; C A,i = 1,2, with |M| = |M3], the bound (2.29) improves on the
dependence on | A|in (2.28), but the observable 7 in (2.29) a-priori depends on MU M,.
Note also that if | M| # | M>| the left hand side of (2.29) equals 0.

The proof of this corollary is given in Sect. 5.

3. Key Proof Ingredients

In this section we collect a number of definitions, statements and lemmas that, in con-
junction with Theorem 2.2, will facilitate the proof of Theorem 2.6.
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Slow Propagation of Information...
3.1. Preliminaries. A will always denote a finite subset of Z and A C A will always

denote an interval.
Given M C A ands € N, we set

BSA'OMM ={x e A: disty (x, M) =s} = [M]f\ \M’
3;\”'”M = {x e A : disty (x, MC) = S} =M\ [M]ﬁs’
3.1

Apg . oA A, A A
MM ="M UMM = M)\ [M]2,,
' M i={tryh A oy e (M x o m) U (o x o) |
If s = 1, we occasionally omit it from the notation altogether.

Given B C N, we set 04 = x5 (W?%), 04 = Qf}ﬂ} for m € N°, and note that

08 = P2 and Qf = xn(NW2). For k € N, we set

k
0 =00, ;=D 0h and 0% = 0% +5L0f. (3.2)
m=1
We alsoset 4, =1 — Q\gk = xik+1,a] (W™ ). Fork € N we have (see [7, Lemma 3.5])
tr Q4 <k[A* and Xi, (H) <k |APF+1. (3.3)
We also set
He = H" + (1 - §) 05,
HY = H* +k (1 - 1) 0%, for keN. G4
We use the notation
RM, = (B —2)"' for z ¢ o(HL) for kel (3.5)
and recall the resolvent identity
RM=RP, +k(1— L) RMOYRE. = RE.+k(1— L) RP.ONRY. (3.6
It follows from (2.14) and (2.22) that for k € N we have
=G+ (1—=1)7 and (HA-E)=1(1-1)1 for Eciy (37
and
IR = | Riteecl <801=5)7" for Reze fg. G8)
(3.9)

Forg e %NO, we set
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3.2. Quasi-locality (deterministic).

Lemma 3.1 ([7, Lemma 3.1]). Let T be an operator on the Hilbert space H x, and let
Y be a projection on H such that [Y, T] = 0 and [Y, Pf] =0forall K C A.
Suppose
. K K1
(i) Forall K C A we have [P, T]P, =0.
(ii) For all connected K C A we have ||[Pf, T]H <y.

(iii) Ty, the restriction of the operator T to Ran'Y, is invertible with H Ty ! <!

RanY —

s

where n > 0.

Then for all A C B C A, we have

| PATy P

+

RanY
<y leTm S4B —1o=m(@ista(A.BO=D) ity — In (7/7177> .(3.10)

This lemma yields quasi-locality for the resolvent of the operators H* and ﬁq/\

as discussed in [7, Section 3.2]. The operator 7 = Ifl\qA — z satisfies the hypotheses
of Lemma 3.1 for ¢ € %N and Rez € IVSqA, with y = % < ALO’ Y = Iy, , and
n = dist(z,a(ﬁ,;\)) > %(1 - %) > %(1 - ALO), and hence for A € B C A the

estimate (3.10) yields (recall we assumed Ag > 9)

< ALOe_mOdiS[A(A’BE), where mg = In 2¢=L = 0. (3.11)

A DA B
H PARL . P} :

3.3. Consequences of quasi-locality.

Lemma 3.2. Fix k € N. Given a collection {Si}i.‘;ll of nonempty subsets of A with

n;éin distp (Si, Sj) >20+1, where £ €N, (3.12)
i#]
we have

< CeYA AP ot (3.13)

max

k+1
IEH P P8
i=1

where YT}, = max*! T§ (see Remark 2.4).

Proof. Note that Py_, ]_[f‘:l P = Pr, Hf:l P%. We can represent Py as a contour
integral

1
Pj, = —Py, f R}z, (3.14)
2mi r

where I"isdefinedby I = {z e C: minyey |x —z| = % (1 - %)}.Notethat || P[kRZf\ “ <
8

T foranyz € I'.
A
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Using (3.6) and (3.7), we deduce that

k(- %

Py = )P ngAQ (RE.dz. (3.15)

2mi

Let O ¢ = xj0,204k) (N?). Note that [H?, O ¢] = 0 and [PE, Oy ¢] = 0 for
B C A. Moreover, it follows from (3.12) that

k+1 [S-] k+1 o
O [[ P2 = zQ>k]_[P A (3.16)

Since (3.11) and (2.21) yield
[sz ’H<CTA ot for i=1,2,...k+1, (3.17)

. S;i1A Si1A
we have, using PJE ey P£ e _ Iy, , that

. (513
HQAkRanP Ope| = Clr DY e+ |08 kQ>k®kg1_[P CRY
i=1

= C(k+ YA e b = YA, et (3.18)

max

where we used (3.16) and Q2 2:Q>1=0.
To prove (3.13), by a large deviation estimate (see [7, Eqs (5.18)—(5.23)]) we have

P{Pr_, # Pr,Ore} = P{Pr, x@esk an N*) # 0}

(3.19)
=P{o (H x@eskjan (ND)) NIz # B} < C [A[PFH et

where d,, depends only on the probability distribution . The estimate (3.13) follows by
assuming, without loss of generality, that mo < d,. O

Remark 3.3. We have the following consequence of Lemma 3.2 and (2.19). Consider
i, j1, j2, ..., jv € A such that ming, |j, — js| > 2€ + 1 and ming |i — js| > 3¢+ L.
Then

E| sup |[Nif(HONGNG, . N | | < Crlamaxtéo2ketl =0t = (3 50
feB):
Iflloo=<1
For k = 1 this bound has been established in [9]. It is proved as follows:
A[if(HA)N/IN/Z N = Mf(HA)PP]ZNilNiz N,
+ NG FHY PYNG NG, NG,

The expectation of the first term (with the sup inside) is estimated by (2.19). The second
term is estimated by (3.13) using f(H®) = f(HA)PIk for f € B(Iy).
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Lemma 3.4. Let T be an observable supported on an interval X C A with ||T| < 1,
letk, ¢ € N, and assume dist (X, Z \ A) > 9(k + 1)£ + 1. Consider the observables

j—1

a [XIA 330X B30l X
T, =1p, T PPN o = 1.2, k41, with l_[P Wl X _ .
i=1 i=1
(3.21)
Then
1
el XTA, X1, B2 X T, TR =
T] — P+ 9]ZTjP+ 9j¢ — P+3i 9j¢ ® P 3¢ 9j¢ ® T 1_[ P 9,[
i=1
(3.22)

1 el XA
where supp Tj = [X]$j+3)l and supp <T ]_[{:11 p! ]9”3) = [X]gj—ﬁ)tz’ and such
that

k+1
E((7-)"1; < Cy | AR gmmot, (3.23)
, P
Proof. We decompose
k+1 k+1 j—1
x4 330[ X4, X184
;= l_[PE%[ 1oi¢ + ZP:M 1950 1—[ PEM[ ]9,(. (3.24)

i=1 j=1 i=1

It follows from Lemma 3.2, using 3¢ > 2¢+1, 83/1[/1’]&Z #@Pfori =1,2,...,k+1

since dist (X, Z\A) > 9(k + 1)£ + 1, and TA o, <2 that
9i¢
k+1 ol XTA
EH (T]_[P_”[ ]9"@) H < Cp | AJKH gt (3.25)
i=1 Pig

The estimate (3.23) follows. O

3.4. Decoupling. Let A C A be an interval. We consider the Hamiltonian

HAA = HA + HA on Hy, (3.26)

4 c —1
set R = (HA4 —2)7, and let

FA = HA — HA’AC = Z hi,i+1~ (327)
{i,i+1}ed® A
It follows from (2.5) that
PR | = | PI i | = 5k (3.28)
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SO

We also set r, ’ C(M) eitH ™ “ Me—itH" “ , where M is an observable on H .
We fix an infinitely differentiable function U:R— [0, 1] such that

A 1
0T fo and ‘

PATA| < & (3.29)

0 for ue (—oo0,—1]

Tu)y=141 for uef0,3(1—L)1 . (3.30)
0 for ue[%(l—%),oo)
and set
) for u € (—o0, 0]
W) =11 for uel0,(g+3)(1—-1)1 for geiN. (331

U(u—q) for uel(g+3 )(1— £). 00)

Note that W, is an infinitely differentiable function on the real line such that0 < W, < 1,
and

0 for ue (—o0, —1]
Yow)=431 for uel0,(g+2)(1— 1)l (3.32)
1

0 for uel(g+g)( —%) oo)

We also define @, t(u) v, (w)e'™ fort € R, so Y, = @, 0. Note that supp &, ; C

(=L (¢ +g) (1 - %)

We have
Pi=g = P1g®q(H") < @4 (HY) < Py_,. (3.33)
Thus, if M is an observable on H p, we have
[, | < |00y, | = |one,_ (3.34)

Lemma 3.5. Let g € %N, and assume Condition [,q. Thenfort e R, £ e N, b e N, and
an interval A C A, we have

£ ” <q>q’t(HA) - ch,t(HA’AC)> poveA

‘ <C 3 et (335)

Proof. We use the Helffer—Sjostrand formula for smooth functions f of self-adjoint
operators [12,13]. We consider the norms

{f = Z/Rdu FOWI A+, m=1,2,.... (3.36)
r=0

If {f}},, <oowithm > 2, then for any self-adjoint operator K we have

f(K) = fdef(z) (K —2)7 1, (3.37)
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where the integral converges absolutely in operator norm. Here z = x + iy, f(z) is an

almost analytic extension of f to the complex plane, d f(z) := %85 f(z)dxdy, with

9z = 8y +idy, and |d f(2)| := (27) 79z f (2)| dx dy. Moreover, for all p > 0 we have
~ 1

LN < e U <00 for m=pe1 G39)

with a constant ¢, (see [13, Appendix B] for details).
By the Helffer—Sjostrand formula we have (recall (3.27))

Dy (HY) — g (HAA) = /2d€>q,t(z) ((HA —)7 = (HA - z)‘l)
R (3.39)
B _/ d®g,()(HA — )7 'TAHA — 27"
R2

Thus
E H (q)q,t(HA) _ (Dq’t(HA’AC)) P_EIJZA H

= /Rz d®y. ()| E H (HAY — 7Tl - Z)flpfbm”

1
P

~ 7 P
43, mzl~# B PHAHEA — 57 P
xR

o
1) (1-5)1
< C{@g )5 1AL et < Cq ()3 | Afe et (3.40)

where we used I'4 = I'4 P24, (3.38), the fact that {{®,,J}, < Cq (r)* with a constant
independent of ¢ by its construction, and Theorem 2.2. 0O

Lemma 3.6. Let g € %N, and assume Condition L. Let £ € N, and consider an interval
A C A. Let T be an arbitrary observable with || T || < 1. Then for all b € N we have

E ‘ (7 (PIATPPA) = w (A4 A (pIAT ) \Ilq(HA’AC))PI
=q
< Cq (1) |A[fs e PPt (3.41)
Proof. We have, recalling P_, = ®,(H A)P]Eq,
(r, (be’fATPfMA) — W, (HAAT) A (be‘ATPj'“A) \Ilq(HA’AC)> .
- ot (e s was
gAY (e i) \yq(HA,Ac)>Pl<q

< H ®y (HY) (be‘ATPf“A> Oy (HN) — @y (HAA) (Pf“ATPfMA) Qq,_,(HA»A“)H .

Using Lemma 3.5, we conclude that

E|(r (PPATPIAY = wy (AT (PIAT P wy (1A A)

Pro,

(3.43)

< Cq ()3 |A[fa POt
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Note that

Wy (YY) = W (HAY) Py (HAY),  so
(3.44)

H ((m )%w“%)msq H : H My, st
4. Proof of Slow Propagation of Information
In this section we prove Theorem 2.6. We start with the following lemma.

Lemma4.1. Let g € %NO, and assume Condition L, is satisfied. Then there exists a
constant Cy such that, for any given finite interval A C Z, scale £ € N, and all t € R,
the following holds:

(i) Let T be an observable supported on an interval X C A with ||T|| < 1, such that
T = PY¥TPY. (4.1)

Then there exists an observable T; = T (t, q, £), supported in [X]l‘;qe, such that

E (52 (T) = T1) py

=q

< Cy(r)P1 |Alfa e %t (4.2)

where pg =0, p; = 2q +2 forq € %N, and B is defined in (2.27).
(ii) If T is is an observable on A with ||T|| < 1 of the form

A GATVIA ~  gA[YPIA A ~
T — Piy]zzfl p’ Dj]ﬂTPﬁ (Y13, P_P}]N*l, with suppT = 8A[y]é\(» (4.3)

where Y C A is an interval, we can choose T;, supported on [y]f;gq +2)0+1 and
satisfying (4.2), such that

T, = PYT,PY. (4.4)

Proof. The lemma is proved by induction on g € %NO. The lemma is obviously true for
g =0with M, = M, Co =0, po =0, & = 0, 6y = 0. Given ¢ € LN, we assume the
lemma is true for g — % and prove the lemma also holds for g.

So let A C Z be a finite interval. (We will often omit A from the notation.) We first
consider an observable M on A with |M| < 1 of the form

oA

M=P> "M, (4.5)

where A C A is an interval and M is an observable such that
~ ~ a[nA ~ BI”A
suppM = A, M=P> MP>", (4.6)
and

M = PAMPA. 4.7

Note that M = P24y pPed,
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Lemma 3.6 gives

(i (M) = W (HAAYG ) Wy (HA)) | < Cq (07 A e,

A
I<q
4.8)
It follows from (4.5), (4.6) and (4.7) that
c ~ ¢ qout
AMy = A (P = pALAGDH A (P pA, (4.9)
Using
pAATpA _ pAATpAPAT pA _ pAATpA pAT pA (4.10)
I<q Iq Iy I=q—1 I Isqg I<g-1
we get
c ~ ¢ aoutA c c ~ P auutA
PR AT (2T P = PR PAGA G (P AP
= = = = 4.11)
_ pAAS A AT pA pAS A p03 AL LA A AC
- PiSq Pisqrt (M)Pisq Pisq—ltt (P )Piiq—lpifq
We set
~ A A 3 A
i1, = Pl P 7/ (M)P , (4.12)
an observable with supp M; = A. Using M = Pa” MPBWA I— PEZ‘ZA = PE”A, and
(2.19), we get
JEHP;‘ (M@ PL — PA i, P H < C, |\ 5 e, 4.13)
=q =q =q =q

To treat the term in A€ in (4.11), note that A = A U A%, where A§ and A%, are
subintervals of A (possibly empty, in each case they do not have to be cons1dered) A 718
the interval to the left of A and A% the interval to the right of A. Since dist A (Ac A ) >

out A aout LA dout RA
Al +1 > 2, we have HA = HAL + HA%, and P © = P " p3 , where
95" A = 834 A N A for # = L, R. Thus we have
Ac_AC pOSTAL LA
PR OPE
¢ AC 8014[ LA AC C AC aout RA AL C(414)
—pa (pf Ay pit Pv o rphe A pie ) pac
I<g-1 ISq— I<g-1 ,q—l I<g-1 ) I<q—1

The two expressions in parenthesis in (4.14) are treated the same way. So let us
consider the expression on the right. Since I<;—1 C I_ g—1» We can use the induction
- = 2

hypothesis on the interval A%. But it does not suffice to use it directly for the observable
out,R

P " because we seek an observable Y, = Y (¢, ¢, £) on A° (we now drop the R from
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aout, aout,R

the notation to simplify the exposition: A will stand for A%, P,** * for P,** ', etc.)
that not only satisfies an estimate like

¢ g c -0 ¢
E| P ( e A>—Yz> PA <,y facfrie 3 @as)
Iqul Iﬁq—l q9—3
but also satisfies
out out
v, = P2 Ay, P2 (4.16)
Oll[
Let K (1) = t/* “(py 05t ) Then
' A¢ A pliita 4.17
K(t) =1t/ (D), where D:=i[H 1, 4.17)

and (for ¢ > 0; the case t < 0 can be treated in the same way),

auutA BoutA t ¢
K(t)—K©0) =t (P ") — P> " = f A (D) ds. (4.18)
0
anu A a out A aoutA
Since P,** © = P P, 7, we have
gyt A 05 A I~ A ~ A Alze ;3 pdlAlse
D =P, DP, , where supp D = 9d[A]3, and D = P_ DP_

(4.19)

Letusset B = 9, """ A C A, 50 8;,"{'A = [B1f,_,, 0" [Al}, = 3*°[B]3, . (Note
one endpoint of B is an endpoint of A°. We are ignoring that A€ consists of possibly
two intervals, we do the procedure separately on each one.) We can write

(B

21 with supp D = 94 [B}, .
(4.20)

A ‘1813

p = plB1 p? 1B f5 p0 B pl

Since D is an observable on A€ of the form given in (4.3), and by the induction
hypothesis the lemma is true for g — %, it follows from Part (ii) of the theorem that there
exists an observable D; = D(t,q — %, £) on A€, supported on

A,out
[B](ﬂ 1+2)Z+1 - a Uul+3)£+1A’ (4'21)
2

such that

E ” P (r,A‘(D) . Dt) P ” < E‘
=q-1 =q-1

P;i" ) (r;‘”(D) _ D,) P,A”
—0

h“m

and

0[\ outA az\,outA' (423)
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It follows, using (4.18), that the observable on A¢ given by (we now bring back the

R index)
(4.24)

BA,out,RA t A
y® = p + / t®(D) ds,
0

. A¢ .
is supported on [8?’0"”RA](5R | +3)04+1> and satisfies
972

E ” Plfil (rtA%(Pfgg"RA) - Y,) Plfi: < c;_%g)pq*%” |Ag[fob e Tt
. i (4.25)
and
y o _ p Ay w pat A (4.26)
We construct Yt(L) in a similar way for the interval A, and define
M, =M, q,0) = My "Py®. (4.27)
It follows that
o A= [A]Ss L 43)esl © [A]&q_%m)e’ (4.28)

q—

[S]

supp M; = AU 3(,3q L +3)e41
-2

and
(4.29)

M A M A
]‘4[=f)+43 M[I:)_'_Z

We have, using (4.13) and (4.25),

E H"I’q(HA’AC) (r,A’AC M) — Mz) \I/q(HA’AC)H <E H P;\,Af (rtA’AC M) — Mt) P;LAC
=q =q
1 —0 2
< Cq |A|§q e—ZBqE +2C; | (t>pq—%+ |AC|54—% e q—% (430)
-2
1 —0 14
< Cqy" 3 At

In addition, it follows from Lemma 3.6 and (4.29) that (recall ¥, = ¥, o)

E
I=q

(wy (M0 (A = ;)

P,

o . " 4.31)
) <\I-’q(HA’A VPY A, P, (A — P g P A) )
PI
=q9

< Cy (1) | A5 e %",
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Using (4.8), (4.30), and (4.31), we get

E <E

(t (M) — M)

2 (e ) = Wy (HAA) T ) wy (A
=q

+E (\Ifq(HA’AC)rtA‘A (M) \Ilq(HA’AC)—\IJq(HA'AC)M,\I/q(HA’AC)>

+E (\I—’q(HA’AH)Ml‘-IJq(HA’AK) - M,)

A
I<q

+1 —0 Y4
<C, 03 |Af el 4 C ) 3T (A e 1 1O, ()P AL et

maxi p +1,3}
< Cylt) [ R RN

We can now prove Part (i). Let 7 be an observable supported on an interval X C A
with | T|| < 1 satisfying (4.1). If dist (X', Z \ A) < B,¢, there is nothing to prove since
[X]ng = A,justtake T; = TZA(T). Soassume dist (X, Z\A) > B,L. As B, —9(¢g+1) =
(]24:']1 T; where T} is givenin (3.22),
s0 ||Tj|| < 1. and observe that in view of (3.23) it suffices to prove Part (i) for each T},
j=12,...,g+1.

Letj=1,2,...,g+1andset A; = [X]g,. It follows from (3.22) that

,Bq_% +4 > 4, we can use Lemma 3.4, and letT = >

T; = Pfse Yo 7. = Pf}eAjTijyjAj’ supp s = A, T, = PBMA,-TJ_PEMAJ-'
(4.33)
Moreover, it follows from (4.1) that
~ Ajs pAj . A~
Tj=P/TiP7/ for j=1,2,....4+1 (4.34)

Thus 77 is an observable satisfying (4.5) and (4.7) with M = T; and A = A;. Thus
there exists an observable (7;),; with support

A A
B _1+4e = (X1 _+449))0 (4.35)
E) 73
satisfying (4.32) for T;.
Defining

g+l
=) (T (4.36)

j=1

an observable on A with

supp Ty = [X](’;gq L AOGE = [X]ng, where S, = (B,_1 +94 +13),
-2
(4.37)
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we have, using also (3.23),

< Cy()Pr |Affr e, with p, = max {pq_% +1, 3}.

E (TtA (1) — T’)PIA
(4.38)

Since po = 0, we have pL= 3,50 p; = Py 1+ 1 > 3 for g > 1. It follows that
pg=3+2(q— 1) =2q+2forqg>1.
Using (2.27), we have

By +99+13 <Py < B 3

+9(q+%)+13=,8 +9q+7. (4.39)

8=

1
) a-

Letting y;, = ﬂ for s € N°, we have yp = 0 and y,_ 1+3 s+13<ys<yx 1+gs+%25

fors € N. It follows that for s € N we have

9*<‘+”+13s<2 (2r +13) <yS<Z< P F) =304 P (440)

sois +§41s<ys_2s2+ sItfollowsthatforqe Nwehave9q +8 qfﬂqg

9q + = 2 q

We now turn to Part (ii). If T is is an observable on A with ||T|| < 1 of the form
given in (4.3), T satisfies the hypothesis of Part (i) with X = supp T = [y]é\l +1+ Thus
the proof of Part (i) applies to this observable 7', but we modify it as follows. We

observe that since T = P[y]z TP[y]‘Z
the observable T also satisfies 7; = P[y]‘Z TP,

in view of (4.3), when we apply Lemma 3.4

0 in view of (3 22). Moreover, the

correspondlng observable T, givenin (4 5) also satisfies T = P[y ¢ T P DI . We define

(Tj), as in (4.12), and also define (7}); = P} (r,)[PE’. Since I — PS’ — PY (note

Aj= [[y]é\(iﬂ]é\j(i = [y]$j+2)l+l)’ we have

PN (TP - PY PN (TP Y
lﬁq ’ 156] Ifq <

e
I<q

Ewﬁ»—@bmsE‘

(4.41)
< Cq |Affr e~

by (2.19). As a result, we can replace (T ) by (T )y for j = 1,2,...,4 + 1 in the
definition of (7); in (4.27), so now we have (T}); = P (T; ),P . As a consequence,
T; defined as in (4.36) satisfies (4.4), and Part (ii) is proven. O

Proof of Theorem 2.6. Letq € 1N0 and assume Condition E 4l is satisfied. Let T be
an observable supported on an interval ¥ C A with | T|| < 1. As in the proof of Part (i)
of Lemma 4.1, we may assume dist (X, Z\A) > (,3 1 +13)¢, and use Lemma 3.4. Let
T=y""1Tj=ni+T. where T=Y11; with T; givenin (3.22), 50 | T;]| < 1,

and, using (3.23), it suffices to prove the theorem for 77 and T.
EachT;,j=2,3,..., g+1, T canbe treated as in the proof of Part (i) of Lemma 4.1,

see (4.33)—(4.38). Setting YV} = Z’;:Z(Tj),, we get (4.37) and (4.38) with YV", substituted

for T;. Note that supp T = [X]E\9(1§+1)+3)[
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Thus it only remains to prove the theorem for T = T P{* [¥loe _ pr [Xloe ph [Xloe

Note that M = T satisfies (4.5)—(4.6) with A = [X]o¢, but (4.7) may not hold. We pro-
ceed as in the proof for M in (4.5) but without (4.7), so (4.11) is replaced by

AAC A, T A€ out A A, A€
Piq, (M) (P )Pi<q

(4.42)

c ~ c c AU A c c
= PHAPA LAGHPE P (2 Ty PA P
I<g Iz Izg 1< Izg I

We continue the proof as before up to (4.20). D, defined in (4.20), is an observable
on A% of the form given in (4.3). We now use that Condition £ a+) is satisfied, and hence

we can apply Part (ii) of Lemma 4.1 to the observable D in the energy interval /_ g+

It follows that there exists an observable D; = D(¢, g + % £) on A%, supported on

A% A,out,R
[B](/S T 8(,3 1+3)£+1A (4.43)
such that
AR AR
E|(z*D) = D), | <E| (D)= D1)
I '<gel (4.44)
3 -0 1t
< G |afrd
where we used I;q C I<q+1 and
A out, RA z)A,out,R
D, = PEp,PE = p[t p,pY (4.45)

Letting Y( ) be as in (4.24), we have suppY; = [BA out. RA](ﬁ e

D

1+1 3 —0
<C' @ty |AC
< qu%() | |

c AC autR c e
E ” pUR ( R(P 03, A) _ YI(R)> P?R q+% e q+% , (446)
=q

and we have (4.26).
We construct Y,(L) in a similar way for the interval A, and define

M, =M, q, 0 =My®"y™, (4.47)
as in (4.27), so
A.out A A A
suppM; = AU 8 0”1 +3)e+1A = [A](ﬁq+%+3)li+1 - [A](ﬂq+%+4)£ = [X](ﬁw%“g)g,
(4.48)

and we have (4.29).
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We have, using (4.13) and (4.46),

E H W, (HAA) (&*AC (M) — M,) \yq(HA~A”)H <E H PIVA’A” (r,A’AC (M) — M,) PIf"AC
=q =q
< CyIafr et yoc! | et 4ot ¢ Card
el
: (4.49)
<c et |A|max{s"’5q+%} e_m‘“{ze""’w% I
q+t3
1 —6 l
< Cpp 0/ ed T Al e
In addition, (4.31) holds. Using (4.8), (4.49), and (4.31), we get
E| (" (M) = M)ps | <E (rtA (M) — Wy (HAA)t M4 (M \I/q(HA’AC)> X
=1 I<q
+E (\I/q(HA’AC)ttA’AC (M) W, (HAA) — \IJq(HA'AC)M,\I/q(HA’AC)) )
I<q
A,AC A, AC
+E (\Ifq(H MW, (HAA) — M,) K (4.50)
I<q

+1 3 -0 1¢
< C, (1)} |A [ e—394‘3+cq+1<:>”4+% A2 e 3 +.Cy (1) | AL et

max p 1+1,3} max{é K3 1} —0 ¢
<C .. {t) {‘“7 PR e R

q+y

[ST]

[N

p 1+l E.1 —0 1L E 1 —0 1t
=C (1) "2 |Al2e 2 =C (1) A[ e .
q+ q+3

[S]

Setting 7; = f, + M;, then T; is supported in [X]E}Sq+l+l3)i and, using now (3.23), T;
2
satisfies (2.28). 0O

5. Proof of Slow Propagation of Information, Matrix Elements Version

Proof of Corollary 2.7. Letq € %N , and assume Condition £, is satisfied. Set

§.,1 4
a:max{Z(; z, [4] +1}, (5.1)

q+5 Cu

and consider a finite interval A C Z with |A| sufficiently large so
r+2@r+2r = 8r2 +5r < |A|, where r = Jaln]|Al]. 5.2)

Letf e N,t € R,and M|, My C A with |[M;| = |My| = N e[l, [A]]NN.
Suppose £ > r. In this case we pick T; as in Theorem 2.6, so it follows from (2.28)
and (5.1) that

lo ¢

E <E < C,(1)2te Pora

T, (TzA(T) - Tt)pIA ™, (TtA(T) - TI)PIA
=q =q

(5.3)
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Thus we only need to consider the case £ < r. Suppose first that N > r. In this
case we use a large deviation argument. On the complement of the event Bfi[] we have

XIJ\VPI/; = 0 (see [7, Eqgs. (3.52 and (3.55)]), and hence, taking 7; = T we have

E

M, (I,A(T) — T,)PIA M, | < 2P (B%]) <Cy TNEE
=q

(5.4)

_1 _1
< C,e 1% < Cyem 1%,

where in the second step we used ihe large deviation estimate [7, Eq. (3.53)] and (5.1).
Itremains to consider the case N < r and £ < r.Itfollowsthat |[M; U M| < 2(r—1).

We assume |X'| < In|A| < r (note « > 1 by (5.1)). It follows from (5.2) that there
exists j € [0,2r] N NO such that

(1218 120, \ [X135,) 0 (M U M) = 0, (5.5)
and set X, := [X](A2j+1)l’ and observe that
X, < |X|+2@r + Dr <r+2(@4r+Dr =82 +3r < 1172, (5.6)

Since T is supported by X C X}, we use Theorem 2.6 with A = X} and ¢ +% instead
of g, concluding that there exists an observable T, = T (¢, q + %, £, X,) supported by
X, A
[X](13+ﬁq+l)£ C [X](13+/3q+1)z’ such that

X, X
E (rt (T) — T,) | <E (1:, (T) — T,) .
P P
=q =q+3 (5 7)
§q+1 ’
< C l<l‘>2q+5|‘Xr|§q+lefeqﬂl < C ] (t>2q+5 (ln(] 11"2)) a* e*9q+ll
q+3 q+3
< C ()7 (Inr)fert e %1t < €7/ (1)%4%5 (In | A])Sert e Pt
. A X, P, .
Since my, = g, Py =P, "my,,i =1,2,weuse Lemma 3.5 and an argument
similar to the proof of Lemma 3.6 to deduce that
c erX;‘ c
E |, (r/‘(T)—wq(HXth)r, ()W, (H XX ))PA T,
I<q
ap Xy ¢ X, XS ¢ N,
= E |y, P (5 (1) = g (YN (@ (D) Py, 58
I<q .
3l x, ¢ X, XC xc N X,
<E|PY (z;\(T) — Wy (HX X (7w, (X ))PA Py

I<q

1
< Cq 3 IAfa e < cy(n)Pem 2%,

SW%

q+§|2

where we used (5.1) and z—‘; <
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X, X¢ X, . .
We note that 7, (T) =1,/ (T) on Hp since T is supported by X C A}.. Thus

o (XS X
E |man, (W (B ) (577 (1) = 1) Wy () o,

Py
c Xr’Afr" c
<E (‘I'q(HX”X’) (r, (T) — T,) W, (HY )) K (5.9)
=q

<E (T;Xr’(T) - TZ)PXr =< CZ;(I)Z‘H’S (In |A|)Eq+1 efeqﬂe,

I<q

where we used P;("X’C = pX p 4nd (5.7)
<q <q I<q
It follows from (5.8) and (5.9) that

E

T[Ml (TtA(T) - TI)PIA 7TM2
=q

¢ Xr,Xf L XE
< E i (TtA(T) . \Ijq(HXr,Xr )Tt (T)\I/q(HX 2 )) pA TTM,
I<q
(5.10)
 yc X XS XS
+E JTMI(\IJq(HX"X’)<‘L', (T)—Tt>\l"q(HX'Xr)>PA TTM,

I<q
1
< Cy e 2% 4+ C:I/(t)2"+5 (In| Ao+t e~ Oart

< € Ay & e |
‘We conclude from (5.3), (5.4), and (5.10) that for all £ € N there exists an observable
T, =T(,q,t, A, M1 U M>), supported in [X]f\13+ﬁq+1)z’ such that we have

g R .
E < Cy (1) (in |ADS ¢ minfene, penft (s 1)

TTM,y (TtA(T) - ]})PA TTM,

I<q

O
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