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ABSTRACT 

 

Measurements of Earth-observing radiometers have been 

reported to be contaminated by radio frequency interference 

(RFI) due to active emissions in the densely occupied radio 

spectrum. This study presents a multi-dimensional, one-class 

Bayesian algorithm to detect and eliminate such RFI. The 

proposed algorithm was trained with RFI-free measurements 

only and operated in a feature space where the separation 

between RFI-free and RFI-contaminated measurements was 

maximized. Using standard metrics, the performance of the 

Bayesian algorithm was evaluated, and it was demonstrated 

that the one-class detection algorithm presented in this paper 

can outperform the existing state-of-the-art RFI detection 

algorithms, specifically for the low interference to noise ratio 

(INR) cases. 

 

Index Terms— Radio frequency interference, RFI, 

detection, remote sensing, microwave radiometry, Bayesian 

detection, one-class detection. 

 

1. INTRODUCTION 

 

Radio frequency interference (RFI) is an increasing threat for 

Earth-observing microwave radiometers as estimating 

important geophysical variables requires accurate and precise 

measurements. Along with passive services, the radio 

spectrum is occupied by active ones such as radars and 

wireless communication networks which radiate at 

microwave frequencies, and the frequency spectrum demand 

for such active services is increasing exponentially, leading 

to significant RFI contamination in the Earth observations [1-

3]. RFI contamination causes bias in the radiometer 

measurements which may result in erroneous estimation of 

critical geophysical variables. Therefore, RFI detection and 

mitigation studies for microwave radiometry are of utmost 

importance. 

Recent studies have demonstrated that machine learning 

algorithms can be utilized for efficient RFI detection in 

microwave radiometry [4-7]. Specifically, algorithms 

operating in multi-dimensional feature spaces which utilize 

only RFI-free data for their training have been proposed for 

cost-effective implementations [8-9]. Building upon those 

previous work, this study introduces a one-class Bayesian 

detection algorithm to identify RFI contamination in 

microwave radiometer measurements. Again, the proposed 

technique relies on only the distribution of the RFI-free 

measurements, a significant improvement on the Bayesian 

algorithms reported in [10-11], and can make statistical 

decisions while incorporating the uncertainties inherent in the 

decision-making process.  

The paper first summarizes the theoretical basis of the 

algorithm, then evaluates its performance using simulated 

radiometer datasets in which RFI contamination was modeled 

as a pulsed-sinusoidal signal with varying duty cycle (DC) 

and interference to noise ratio (INR). Finally, the results are 

discussed in the context of implementations in real 

microwave radiometer deployments.  

 

2. ONE-CLASS BAYESIAN RFI DETECTION 

ALGORITHM 

 

Consider a set 𝒓 of 𝑁 radiometer integration windows where 

each window 𝑟𝑖, 𝑖 = {1,2, . . , 𝑁}, contains 𝑀 number of 

samples and is described by 𝑑 number of features, namely 

𝐹1, 𝐹2, … , 𝐹𝑑. The corresponding feature values for window 𝑟𝑖 

are denoted as 𝑓𝑖𝑛, 𝑛 = {1,2, . . , 𝑑}. In general, the Bayesian 

RFI detection is formulated as a hypothesis testing problem 

where each window 𝑟𝑖 may belong to one of the two 

hypotheses (𝐻𝑖), i.e., RFI-contaminated (𝐻𝐶) and RFI-free 

(𝐻𝑁).  In one-class Bayesian detection, the problem can be 

formulated where 𝑟𝑖 may belong to RFI-free (𝐻𝑁) class or 

not. For each 𝑟𝑖, the posterior distribution 𝑃(𝐻𝑖|𝒓) is 

computed via Bayes’ theorem using class conditional 

distribution of each feature and the prior distribution of the 

data. To simplify the problem, the features can be assumed to 

be conditionally independent given the class label [12]. As a 

result, the final detection output, 𝑦𝑟̂ is estimated using 

maximum a posteriori (MAP) method as follows: 
 

𝑦𝑟̂ = arg max 𝑃(𝐻𝑗|𝒓), 𝑗 = {𝐶, 𝑁}                (1) 
 

Note that the output for the detection algorithm is a 

probability value which models the uncertainty.  

 

3. SIMULATED RADIOMETER MEASUREMENTS 

 

Simulated radiometer datasets were created for the study. 

RFI-free radiometer measurements were modeled as white 
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Gaussian noise with a mean (𝜇) and standard deviation (𝜎), 

which can be expressed as 𝑥𝑁(𝑡) = 𝑁(𝜇, 𝜎2). The statistical 

parameters, i.e., 𝜇 and 𝜎, were set to 0 V and 8 V, respectively 

and the sampling rate was accepted to be 75 MSPS as 

empirically calculated from the Soil Moisture Active Passive 

Validation Experiment 2012 (SMAPVEX12) airborne data 

measured by the Passive Active L-Band System (PALS) [13].  

On the other hand, the interference was assumed to be a 

pulsed-sinusoidal signal with varying DC and INR, and RFI-

contaminated radiometer observations were simulated by 

adding such interference to the RFI-free measurements. Thus, 

RFI-contaminated radiometer measurements could be 

expressed as: 
 

𝑥𝐶(𝑡) = 𝑥𝑁(𝑡) + 𝐴 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝜑)𝑟𝑒𝑐𝑡 (
𝑡−𝑡0

𝜔
)        (2) 

 

where 𝐴, 𝑓, and 𝜑 denote the amplitude, frequency, and phase 

shift of the interference signal. The 𝑟𝑒𝑐𝑡() function provided 

a rectangular pulse envelope which determined DC, and 𝑡0 

and 𝜔 controlled the time delay and width of the envelope, 

respectively. In particular, 𝜔  could be written in terms of the 

DC of the interference signal and the radiometer integration 

period (𝑇) as 𝐷𝐶 = 𝜔
𝑇⁄ . The value of 𝑇, the length of each 

radiometer integration window, was set to 350 𝜇𝑠, again 

similar to the PALS radiometer [13]. The variable parameters 

(𝐴, 𝑓, and 𝜑) were assumed to be uniformly distributed in 

their respective ranges. 𝑓 was varied uniformly within the the 

PALS intermediate frequency (IF) band, from 15 MHz to 35 

MHz. 𝜑 was also taken as a uniformly distributed random 

variable between 0 and 2𝜋 radians. Finally, 𝐴 was varied to 

create the RFI contamination with INR values from -20 dB to 

10 dB, and DC was changed from 1% to 100%. Overall, three 

thousand one hundred RFI contaminated radiometer 

integration windows with distinct INR and DC values were 

generated. 

To better reveal the characteristics of the simulated time 

series radiometer data, they were translated to a 

heterogeneous feature space, where each radiometer 

integration window was represented with thirty-one 

temporal, statistical, spectral features listed in [8]. 

 

4. IMPLEMENTATION OF THE ALGORITHM 

 

To reduce the computational complexity of the algorithm, a 

feature selection algorithm, first introduced in [8], was 

applied as the first step of RFI detection. The relevant subset 

of features which would increase the separability between the 

RFI-free and the RFI-contaminated radiometer 

measurements were identified as the variance, power, 

average over absolute value of first differences, mean of the 

auto-correlation coefficient, power spectral maximum, 

spectral entropy, spectral skewness, spectral kurtosis, spectral 

crest, spectral flatness, and spectral flux. 

Implementation of the Bayesian detection is illustrated in 

Figure 1. After RFI-free and RFI-contaminated radiometer 

measurements were generated and the relevant features were 

identified, the features were organized in rows to construct 

the data matrix. The data matrix was divided into two parts 

for training and testing. The training data, RFI-free as 

previously mentioned, was used to train the Bayesian 

detection model which outputs the training parameters such 

as prior and likelihood probabilities using maximum 

likelihood estimation. Then, the trained Bayesian detection 

model was evaluated on the test data to assess the algorithm 

performance. To avoid overfitting, a five-fold cross-

validation was implemented during which the data matrix 

Figure 1: Implementation of the one-class Bayesian detection algorithm for this study. The process includes data 

generation, pre-processing, feature selection, model development, and performance evaluation. 
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was divided into five folds of approximately equal size where 

each fold was treated as a validation set for the model trained 

on the remaining four-folds. 

 

5. PERFORMANCE ANALYSES 

 

Accuracy, precision, recall, and area under the curve (AUC) 

were used as metrics to quantitatively evaluate the 

performance of the one-class Bayesian algorithm against 

pulsed-sinusoidal RFI. Accuracy denotes the ratio of 

correctly identified, as RFI-free or RFI-contaminated, 

measurements to the total number of measurements. 

Precision provides the ratio of correctly identified RFI-

contaminated measurements to the total number of the 

measurements identified as RFI-contaminated. Note that 

some of the RFI-free measurements can be falsely identified 

as RFI-contaminated. Finally, recall is the ratio of correctly 

identified RFI-contaminated measurements to the total 

number of truly RFI-contaminated measurements. Accuracy, 

precision, and recall metrics can be mathematically defined 

as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (3) 

                              𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      

where 𝑇𝑃 is the number true positives, i.e., number of RFI-

contaminated measurements identified as RFI-contaminated, 

𝑇𝑁 is the number of true negatives, i.e., number of RFI-free 

measurements identified as RFI-free, 𝐹𝑃 is the number of 

false positives, i.e., number of RFI-free measurements 

identified as RFI-contaminated, and 𝐹𝑁 is the number of 

false negatives, i.e., number of RFI-contaminated 

measurements identified as RFI-free. AUC, computed using 

the receiver operating characteristics (𝑇𝑃 vs 𝐹𝑃) curve, on 

the other hand, was used to quantify the overall performance 

of the proposed detection algorithm. 

Performance metrics in (3) were calculated for all the 

three thousand one hundred RFI cases with different INR and 

DC levels after implementing the detection algorithm. Figure 

2 shows their values as functions of INR and DC. It can be 

seen from the figure that nearly perfect accuracy, precision, 

recall, and AUC have been achieved for INR levels as low as 

-10 dB. This performance can also be extended to even lower 

INR levels if the DC is high enough. 

 

6. CONCLUSIONS AND DISCUSSION 

 

In this study, a feature-based, multi-dimensional, one-class 

Bayesian detection algorithm trained with only RFI-free 

measurements is introduced and analyzed for detecting 

pulsed-sinusoidal RFI in microwave radiometer 

measurements. The performance analyses have suggested 

efficient detection for INR cases as low as -20 dB provided 

that DC values are high. Even for low DC levels, the 

algorithm can detect interference contamination if INR is 

higher than -10 dB. Therefore, it can be stated that the 

proposed one-class Bayesian detection algorithm 

outperforms the state-of-the-art RFI detectors such as pulse 

blanking and kurtosis methods in terms of accuracy, 

precision, recall, and AUC metrics, especially at low INR 

levels [8].   

Note that even though the one-class algorithm requires 

prior information regarding the RFI-free radiometer 

measurements for training, this can be collected during 

remote sensing missions, from presumably RFI-free zones 

with minimal human activity such as forests, vegetation 

lands, deserts, ocean surfaces, ice sheets, etc. 

Future research will include identifying globally robust 

features that can provide better separation between RFI-free 

and RFI-contaminated measurements for various RFI types 

(other than pulsed-sinusoidal) representing the dynamic RFI 

environment. Furthermore, the novel RFI detection algorithm 

will be applied to real radiometer data, and possible training 

and learning mechanisms for such algorithms during actual 

remote sensing operations will be studied. 
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