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ABSTRACT

Measurements of Earth-observing radiometers have been
reported to be contaminated by radio frequency interference
(RFI) due to active emissions in the densely occupied radio
spectrum. This study presents a multi-dimensional, one-class
Bayesian algorithm to detect and eliminate such RFI. The
proposed algorithm was trained with RFI-free measurements
only and operated in a feature space where the separation
between RFI-free and RFI-contaminated measurements was
maximized. Using standard metrics, the performance of the
Bayesian algorithm was evaluated, and it was demonstrated
that the one-class detection algorithm presented in this paper
can outperform the existing state-of-the-art RFI detection
algorithms, specifically for the low interference to noise ratio
(INR) cases.

Index Terms— Radio frequency interference, RFI,
detection, remote sensing, microwave radiometry, Bayesian
detection, one-class detection.

1. INTRODUCTION

Radio frequency interference (RFI) is an increasing threat for
Earth-observing microwave radiometers as estimating
important geophysical variables requires accurate and precise
measurements. Along with passive services, the radio
spectrum is occupied by active ones such as radars and
wireless communication networks which radiate at
microwave frequencies, and the frequency spectrum demand
for such active services is increasing exponentially, leading
to significant RFI contamination in the Earth observations [1-
3]. RFI contamination causes bias in the radiometer
measurements which may result in erroneous estimation of
critical geophysical variables. Therefore, RFI detection and
mitigation studies for microwave radiometry are of utmost
importance.

Recent studies have demonstrated that machine learning
algorithms can be utilized for efficient RFI detection in
microwave radiometry [4-7]. Specifically, algorithms
operating in multi-dimensional feature spaces which utilize
only RFI-free data for their training have been proposed for
cost-effective implementations [8-9]. Building upon those
previous work, this study introduces a one-class Bayesian
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detection algorithm to identify RFI contamination in
microwave radiometer measurements. Again, the proposed
technique relies on only the distribution of the RFI-free
measurements, a significant improvement on the Bayesian
algorithms reported in [10-11], and can make statistical
decisions while incorporating the uncertainties inherent in the
decision-making process.

The paper first summarizes the theoretical basis of the
algorithm, then evaluates its performance using simulated
radiometer datasets in which RFI contamination was modeled
as a pulsed-sinusoidal signal with varying duty cycle (DC)
and interference to noise ratio (INR). Finally, the results are
discussed in the context of implementations in real
microwave radiometer deployments.

2. ONE-CLASS BAYESIAN RFI DETECTION
ALGORITHM

Consider a set r of N radiometer integration windows where
each window r;, i ={1,2,..,N}, contains M number of
samples and is described by d number of features, namely
Fy, F,, ..., F4. The corresponding feature values for window r;
are denoted as fi,, n = {1,2,..,d}. In general, the Bayesian
RFTI detection is formulated as a hypothesis testing problem
where each window 7; may belong to one of the two
hypotheses (H;), i.e., RFI-contaminated (H.) and RFI-free
(Hy). In one-class Bayesian detection, the problem can be
formulated where r; may belong to RFI-free (Hy) class or
not. For each 7;, the posterior distribution P(H;|r) is
computed via Bayes’ theorem using class conditional
distribution of each feature and the prior distribution of the
data. To simplify the problem, the features can be assumed to
be conditionally independent given the class label [12]. As a
result, the final detection output, y, is estimated using
maximum a posteriori (MAP) method as follows:

vy = argmaxP(Hj|r), j={C,N} €))

Note that the output for the detection algorithm is a
probability value which models the uncertainty.

3. SIMULATED RADIOMETER MEASUREMENTS

Simulated radiometer datasets were created for the study.
RFI-free radiometer measurements were modeled as white
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Figure 1: Implementation of the one-class Bayesian detection algorithm for this study. The process includes data
generation, pre-processing, feature selection, model development, and performance evaluation.

Gaussian noise with a mean () and standard deviation (o),
which can be expressed as xy (t) = N(u, 02). The statistical
parameters, i.c., 4 and g, were set to 0 V and 8 V, respectively
and the sampling rate was accepted to be 75 MSPS as
empirically calculated from the Soil Moisture Active Passive
Validation Experiment 2012 (SMAPVEX12) airborne data
measured by the Passive Active L-Band System (PALS) [13].

On the other hand, the interference was assumed to be a
pulsed-sinusoidal signal with varying DC and INR, and RFI-
contaminated radiometer observations were simulated by
adding such interference to the RFI-free measurements. Thus,
RFI-contaminated radiometer measurements could be
expressed as:

xc(8) = 2y () + A sin(2nft + @)rect (2

)
where A4, f, and ¢ denote the amplitude, frequency, and phase
shift of the interference signal. The rect() function provided
a rectangular pulse envelope which determined DC, and t,
and w controlled the time delay and width of the envelope,
respectively. In particular, w could be written in terms of the
DC of the interference signal and the radiometer integration
period (T) as DC = @ /T‘ The value of T, the length of each

radiometer integration window, was set to 350 us, again
similar to the PALS radiometer [13]. The variable parameters
(4, f, and @) were assumed to be uniformly distributed in
their respective ranges. f was varied uniformly within the the
PALS intermediate frequency (IF) band, from 15 MHz to 35
MHz. ¢ was also taken as a uniformly distributed random
variable between 0 and 2m radians. Finally, A was varied to
create the RFI contamination with INR values from -20 dB to
10 dB, and DC was changed from 1% to 100%. Overall, three
thousand one hundred RFI contaminated radiometer
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integration windows with distinct INR and DC values were

generated.

To better reveal the characteristics of the simulated time
series radiometer data, they were translated to a
heterogeneous feature space, where each radiometer

integration window was represented with
temporal, statistical, spectral features listed in [8].

thirty-one

4. IMPLEMENTATION OF THE ALGORITHM

To reduce the computational complexity of the algorithm, a
feature selection algorithm, first introduced in [8], was
applied as the first step of RFI detection. The relevant subset
of features which would increase the separability between the
RFI-free and the  RFI-contaminated  radiometer
measurements were identified as the variance, power,
average over absolute value of first differences, mean of the
auto-correlation coefficient, power spectral maximum,
spectral entropy, spectral skewness, spectral kurtosis, spectral
crest, spectral flatness, and spectral flux.

Implementation of the Bayesian detection is illustrated in
Figure 1. After RFI-free and RFI-contaminated radiometer
measurements were generated and the relevant features were
identified, the features were organized in rows to construct
the data matrix. The data matrix was divided into two parts
for training and testing. The training data, RFI-free as
previously mentioned, was used to train the Bayesian
detection model which outputs the training parameters such
as prior and likelihood probabilities using maximum
likelihood estimation. Then, the trained Bayesian detection
model was evaluated on the test data to assess the algorithm
performance. To avoid overfitting, a five-fold cross-
validation was implemented during which the data matrix
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Figure 2: (i) Accuracy, (ii) precision, (iii) recall, and (iv)
AUC values for one-class Bayesian RFI detection
algorithm as functions of the INR and DC of the RFI-
contaminated radiometer measurements.

was divided into five folds of approximately equal size where
each fold was treated as a validation set for the model trained
on the remaining four-folds.

5. PERFORMANCE ANALYSES

Accuracy, precision, recall, and area under the curve (AUC)
were used as metrics to quantitatively evaluate the
performance of the one-class Bayesian algorithm against
pulsed-sinusoidal RFI. Accuracy denotes the ratio of
correctly identified, as RFI-free or RFI-contaminated,
measurements to the total number of measurements.
Precision provides the ratio of correctly identified RFI-
contaminated measurements to the total number of the
measurements identified as RFI-contaminated. Note that
some of the RFI-free measurements can be falsely identified
as RFI-contaminated. Finally, recall is the ratio of correctly
identified RFI-contaminated measurements to the total
number of truly RFI-contaminated measurements. Accuracy,
precision, and recall metrics can be mathematically defined
as follows:

TP+TN
Accuracy = ———
TP+FP+TN+FN
.. TP
Precision = 3)
TP+FP
TP
Recall =
TP+FN

where TP is the number true positives, i.e., number of RFI-
contaminated measurements identified as RFI-contaminated,
TN is the number of true negatives, i.e., number of RFI-free
measurements identified as RFI-free, FP is the number of
false positives, i.e., number of RFI-free measurements
identified as RFI-contaminated, and FN is the number of
false negatives, i.e., number of RFI-contaminated
measurements identified as RFI-free. AUC, computed using
the receiver operating characteristics (TP vs FP) curve, on
the other hand, was used to quantify the overall performance
of the proposed detection algorithm.
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Performance metrics in (3) were calculated for all the
three thousand one hundred RFI cases with different INR and
DC levels after implementing the detection algorithm. Figure
2 shows their values as functions of INR and DC. It can be
seen from the figure that nearly perfect accuracy, precision,
recall, and AUC have been achieved for INR levels as low as
-10 dB. This performance can also be extended to even lower
INR levels if the DC is high enough.

6. CONCLUSIONS AND DISCUSSION

In this study, a feature-based, multi-dimensional, one-class
Bayesian detection algorithm trained with only RFI-free
measurements is introduced and analyzed for detecting
pulsed-sinusoidal RFI  in  microwave radiometer
measurements. The performance analyses have suggested
efficient detection for INR cases as low as -20 dB provided
that DC values are high. Even for low DC levels, the
algorithm can detect interference contamination if INR is
higher than -10 dB. Therefore, it can be stated that the
proposed one-class Bayesian  detection  algorithm
outperforms the state-of-the-art RFI detectors such as pulse
blanking and kurtosis methods in terms of accuracy,
precision, recall, and AUC metrics, especially at low INR
levels [8].

Note that even though the one-class algorithm requires
prior information regarding the RFI-free radiometer
measurements for training, this can be collected during
remote sensing missions, from presumably RFI-free zones
with minimal human activity such as forests, vegetation
lands, deserts, ocean surfaces, ice sheets, etc.

Future research will include identifying globally robust
features that can provide better separation between RFI-free
and RFI-contaminated measurements for various RFI types
(other than pulsed-sinusoidal) representing the dynamic RFI
environment. Furthermore, the novel RFI detection algorithm
will be applied to real radiometer data, and possible training
and learning mechanisms for such algorithms during actual
remote sensing operations will be studied.
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