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Abstract
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin- 1

2 chain in a random magnetic
field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a
nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes,
is independent of the size of the system and depends only on the energy interval. Our approach is based on the
reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body
XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously
derived in a single-particle localization context, to the many-body setting.
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1. Introduction

The last two decades have seen an explosion of physics research on the behavior of isolated quantum
systems in which both disorder and interactions are present. The appearance of these two features has
been linked to the existence of materials that fail to thermalize and consequently cannot be described
using equilibrium statistical mechanics. These materials are presumed to remain insulators at nonzero
temperature, a phenomenon called many-body localization (MBL). We refer the reader to the physics
reviews [1,9,38] for the general description of this phenomenon. MBL-type behavior has been observed
in cold atoms experiments [31, 41]. The stability of the MBL phase for infinite systems and all times
remains a topic of intense debate [25, 35, 43, 44, 45].

In this paper, we consider the random spin- 1
2 Heisenberg XXZ chain in the Ising phase, a one-

dimensional random quantum spin system. This is the most studied model in the context of MBL both
in the physics and mathematics literature (going back to [39, 47]). It can be mapped by the Jordan-
Wigner transformation into an interacting spinless fermionic model closely related to the disordered
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Fermi-Hubbard Hamiltonian, a paradigmatic model in condensed matter physics that provides crucial
insights into the electronic and magnetic properties of materials. One interesting feature of the random
one-dimensional XXZ quantum spin system is the emergence of a many-body localization-delocalization
transition. (In contrast, prototypical non-interacting one-dimensional random Schrödinger operators do
not exhibit a phase transition and are completely localized.) Numerical evidence for this transition in
the disordered XXZ model has been provided in a number of simulations (e.g., [3, 10, 11, 30, 39]), but
remains contested on theoretical grounds (e.g., [14]).

Until quite recently, mathematical results related to the proposed MBL characteristics, including zero-
velocity Lieb-Robinson bounds, exponential clustering, quasi-locality, slow spreading of information
and area laws, have been confined to quasi-free systems. The latter are models whose study can effectively
be reduced to one of a (disordered) one-particle Hamiltonian. Examples of such systems include the
XY spin chain in a random transversal field (going back to [29]; see [2] for a review on this topic),
the disordered Tonks-Girardeau gas [42] and systems of quantum harmonic oscillators [36]. Another
direction of research considers the effect of many-body interaction on a single-particle localization
(rather than MBL) within the framework of the effective field theories. This allows to consider a realistic
Hilbert space for a single particle, such as ℓ2(Z𝑑), rather than finite dimensional ones that are typically
used in the MBL context. In particular, the persistence of the dynamical localization in the Hartree-Fock
approximation for the disordered Hubbard model has been established in [16, 34].

In the last few years, there has been some (modest) progress in understanding genuine many-body
systems, all of which is concerned with the XXZ model, either in the quasi-periodic setting (where the
exponential clustering property for the ground state of the André-Aubry model has been established
[32, 33]) or in the droplet spectrum regime in the random case [12, 19]. In the latter case, several MBL
manifestations have been established, including some that have never been previously discussed in the
physics literature [18].

While not exactly solvable, the XXZ spin chain does have a symmetry; namely, it preserves the
particle number. This enables a reduction to an infinite system of discrete N-body Schrödinger operators
on the fermionic subspaces of Z𝑁 [21, 37]. For the XXZ spin chain in the Ising phase, in the absence
of a magnetic field, the low energy eigenstates above the ground state are characterized by a droplet
regime. In this regime, spins form a droplet (i.e., a single cluster of down spins (particles) in a sea of up
spins). This reduction has been effectively exploited inside the droplet spectrum (the interval 𝐼1 in (2.14)
below) using methods that resemble the fractional moment method for random Schrödinger operators,
yielding the small number of rigorous results [12, 19]. However, these methods seem to be inadequate
above this energy interval (i.e, inside the multi-cluster spectrum), and a new set of ideas that do not rely
on a reduction to Schrödinger operators are required to tackle this case.

In this paper, we extend the energy interval for which MBL holds well beyond the droplet spectrum,
deep inside the multi-cluster spectrum. We develop a suitable method, formulated and proved in terms of
spin systems concepts. In particular, our method does not rely on the reduction of the XXZ Hamiltonian
to a direct sum of Schrodinger operators (and the subsequent analysis that uses single-particle tools).

Localization phenomenon in condensed matter physics is usually associated with non-spreading
of wave packets in a disordered medium. Experimentally, it is observed in semiconductors whose
properties are predominantly caused by crystal defects or impurities, as well as in the variety of
other systems. This phenomenon is by now well understood for quantum single particle models. A
prototypical system studied in this context is the Anderson Hamiltonian 𝐻𝐴, which is a self-adjoint
operator acting on the Hilbert space H = ℓ2(Z𝑑) of the form 𝐻𝐴 = −Δ + 𝜆𝑉𝜔 . Here, Δ is the (discrete)
Laplacian describing the kinetic hopping, 𝑉𝜔 is a randomly generated multiplication operator (𝜔 is the
random parameter) describing the electric potential, and 𝜆 is a parameter measuring the strength of the
disorder.

Let us denote by 𝛿𝑥 ∈ H the indicator of 𝑥 ∈ Z𝑑 , and fix the random parameter𝜔. An important feature
of 𝐻𝐴 as a map on ℓ2(Z𝑑) is its locality, meaning 〈𝛿𝑥 , 𝐻𝐴𝛿𝑦〉 = 0 if |𝑥 − 𝑦 | > 1. As a consequence,
the resolvent (𝐻𝐴 − 𝑧)−1 retain a measure of locality, which we will call quasi-locality, given by the
Combes-Thomas estimate
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Forum of Mathematics, Sigma 3��〈𝛿𝑥 , (𝐻𝐴 − 𝑧)−1𝛿𝑦〉
�� ≤ 𝐶𝑧e−𝑚𝑧 |𝑥−𝑦 | , (1.1)

where 𝐶𝑧 and 𝑚𝑧 are constants independent of 𝜔 such that 𝐶𝑧 < ∞ and 𝑚𝑧 > 0 if 𝑧 ∈ C is outside
the spectrum of 𝐻𝐴. Maps given by smooth functions of 𝐻𝐴 also express a measure of quasi-locality –
namely, ��〈𝛿𝑥 , 𝑓 (𝐻𝐴)𝛿𝑦〉

�� ≤ 𝐶 𝑓 ,𝑛 (1 + |𝑥 − 𝑦 |)−𝑛, (1.2)

where 𝐶 𝑓 ,𝑛 < ∞ for all 𝑛 ∈ N and infinitely differentiable functions f. Moreover, these quasi-locality
estimate hold with the same constants for the restriction 𝐻Λ

𝐴 of 𝐻𝐴 to a finite volume Λ ⊂ Z𝑑 . (See, for
example, [26, 24, 40].)

The two mainstream approaches for proving localization in the single particle setting, the multi-
scale analysis (MSA) and the fractional moment method (FMM), going back to [15, 23, 22] and [4,
6], respectively – establish localization for the (random) Anderson model 𝐻𝐴 by proving quasi-locality
estimates for the finite volume resolvent inside the spectrum of 𝐻𝐴. In particular, the fractional moment
method shows that, fixing 𝑠 ∈ (0, 1), for large disorder 𝜆, we have

E

{��〈𝛿𝑥 , (𝐻Λ
𝐴 − 𝐸)−1𝛿𝑦

〉��𝑠} ≤ 𝐶e−𝑚 |𝑥−𝑦 | , (1.3)

for all finite Λ ⊂ Z𝑑 , 𝑥, 𝑦 ∈ Λ, and energies 𝐸 ∈ R, where the constants 𝐶 < ∞ and 𝑚 > 0 are in
dependent of Λ. Moreover, one also gets a quasi-locality estimate for Borel functions of 𝐻𝐴 (dynamical
localization),

E

{
sup
𝑓

��〈𝛿𝑥 , 𝑓 (𝐻Λ
𝐴)𝛿𝑦

〉��} ≤ 𝐶e−𝑚 |𝑥−𝑦 | , (1.4)

where the supremum is taken over all Borel functions on R bounded by one. Various manifestations of
one-particle localization, such as non-spreading of wave packets, vanishing of conductivity in response
to electric field, and statistics of the spacing between nearby energy levels, can be derived from these
quasi-locality estimates. (See, for example, [8].) On the mathematical level, the quasi-locality estimates
provides an effective description of single particle localization.

The MSA and the FMM prove localization for random Schrödinger operators, both in the discrete
and continuum settings. We refer the reader to the lecture notes [26, 27] and the monograph [8] for an
introduction to the multi-scale analysis and the fractional moment method, respectively.

Both methods have been extended to quantum system consisting of an arbitrary, but fixed, number
of interacting particles, showing that many characteristics of single-particle localization remain valid in
this case (e.g., [7, 13, 28]). But truly many-body systems (where the number of particles is proportional
to the system’s size) present new challenges. A major difficulty lies in the fact that the concepts of
MBL proposed in the physics literature are not easily tractable on the mathematical level, and it is not
clear what could be chosen as the fundamental description of the theory from which other properties
can be derived, as in a single particle case. For example, the available concept of quasi-locality in the
many-body systems looks very different from the one for single particle quantum systems.

To introduce a simple many-body system Hamiltonian, we consider a finite graph 𝚪 = (V , E) (where
V is the set of vertices and E is the set of edges) and a family {H𝑖}𝑖∈V of Hilbert spaces. The Hilbert
space of the subsystem associated with a set 𝑋 ⊂ V is given by H𝑋 =

⊗
𝑖∈𝑋 H𝑖 , and the full Hilbert

space (we ignore particles’ statistics) is HV . For each 𝑋 ⊂ V , one introduces the algebra of observables
A𝑋 measurable in this subsystem, which is the collection B(H𝑋 ) of bounded linear operators on the
Hilbert space H𝑋 . An observable O ∈ AV is said to be supported by 𝑋 ⊂ V if O = O𝑋 ⊗1HV\𝑋 , where
O𝑋 ∈ A𝑋 (i.e., if O acts trivially on HV\𝑋 ). Slightly abusing the notation, we will usually identify O
with O𝑋 and call X a support for O. Since we are primarily interested here in understanding the way
particles interact, the structure of a single particle Hilbert space H𝑖 will be only of marginal importance

https://doi.org/10.1017/fms.2024.119 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.119


4 A. Elgart and A. Klein

for us. So we will be considering the simplest possible realization of such system, where each H𝑖 is the
two dimensional vector space C2 describing a spin- 1

2 particle.
We next describe the interactions between our spins. We again are going to consider the simplest

possible arrangement, where only nearest neighboring spins are allowed to interact. Explicitly, for each
pair of vertices (𝑖, 𝑗) ∈ V that share an edge (i.e., {𝑖, 𝑗} ∈ E), we pick an observable (called an interaction)
ℎ𝑖, 𝑗 ∈ A{𝑖, 𝑗 } such that ℎ𝑖, 𝑗 = ℎ∗𝑖, 𝑗 , an observable (called a local transverse field) 𝑣𝑖 = 𝑣∗𝑖 ∈ A{𝑖 }, and
associate a Hamiltonian 𝐻V =

∑
{𝑖, 𝑗 }∈E ℎ𝑖, 𝑗 +

∑
𝑖∈V 𝑣𝑖 with our spin system. In particular, 𝐻V is the sum

of local observables and is consequently referred to as a local Hamiltonian. Locality is manifested by
[[𝐻V ,O],O′] = 0 for any pair of observables O ∈ A𝑋 , O′ ∈ A𝑌 , with dist(𝑋,𝑌 ) > 1. (To compare it
with the concept of (single particle) locality for the map 𝐻𝐴, we need to define a local observable for the
space ℓ2(Z𝑑). We will say that an observableO ∈ L(ℓ2(Z𝑑)) has support 𝑋 ⊂ Z𝑑 ifO = O𝑋 ⊕0ℓ2 (Z𝑑\𝑋 )
with O𝑋 ∈ L(ℓ2(𝑋)). With this definition, locality of the map 𝐻𝐴 (i.e., the property 〈𝛿𝑥 , 𝐻𝐴𝛿𝑦〉 = 0
whenever |𝑥 − 𝑦 | > 1) is equivalent to the statement that [[𝐻𝐴,O],O′] = 0 for any pair of observables
O,O′ with dist(supp(O), supp(O′)) > 1.)

The XXZ spin chain is defined as above on finite subgraphs Λ of the graph Z (see Section 2.1).
Consider Λ ⊂ Z connected, and let |Λ| be its cardinality. We say we have a particle at the site 𝑖 ∈ Λ
if we have spin down in the copy H𝑖 of C2. Let N𝑖 be the orthogonal projection onto configurations
with a particle at the site i, and set [𝑖]Λ𝑝 = { 𝑗 ∈ Λ, | 𝑗 − 𝑖 | ≤ 𝑝} for 𝑝 = 0, 1, . . .. Given 𝐵 ⊂ Λ, let 𝑃𝐵

+
be the orthogonal projection onto configurations with no particles in B. In the Ising phase, 𝐻Λ is a 2-
local, gapped, frustration-free system, and 𝑃Λ

+ describes the projection onto the ground state of 𝐻Λ (see
Remark 2.3).

We can now informally state our main results. We first prove that the resolvent 𝑅Λ
𝑧 = (𝐻Λ − 𝑧)−1

exhibits quasi-locality in the form (see Lemma 3.1 and Remark 3.2)����N𝑖𝑅
Λ
𝑧 𝑃

[𝑖 ]Λ𝑝
+

���� ≤ 𝐶𝑧e−𝑚𝑧 𝑝 , (1.5)

where 𝐶𝑧 and 𝑚𝑧 are constants, independent of Λ and of the transverse field, such that 𝐶𝑧 < ∞ and
𝑚𝑧 > 0 if 𝑧 ∈ C is outside the spectrum of 𝐻Λ. We also establish the many-body analogue of (1.2):����N𝑖 𝑓 (𝐻Λ)𝑃 [𝑖 ]Λ𝑝

+

���� ≤ 𝐶 𝑓 ,𝑛 (1 + 𝑝)−𝑛, (1.6)

where 𝐶 𝑓 ,𝑛 < ∞ for all 𝑛 ∈ N and infinitely differentiable functions f on R with compact support. (See
Appendix B.)

We next consider the random XXZ spin chain (see Definition 2.2). The relations (1.5)–(1.6) suggest,
by analogy with random Schrödinger operators, that localization should be manifested as quasi-locality
inside the spectrum of 𝐻Λ. This is indeed what we prove in Theorem 2.4. We introduce increasing
energy intervals 𝐼≤𝑘 , 𝑘 = 0, 1, 2, . . ., in (2.14) and prove that quasi-locality of the form given in (1.5)
holds for the resolvent for energies in 𝐼≤𝑘 for any fixed 𝑘 . In particular, given 𝑠 ∈ (0, 1

3 ), we prove, in
the appropriate (k dependent) parameter region, that

E

{����N𝑖𝑅
Λ
𝐸𝑃

[𝑖 ]Λ𝑝
+

����𝑠} ≤ 𝐶𝑘 |Λ| 𝜉𝑘 e−𝑚𝑘 𝑝 for all 𝐸 ∈ 𝐼≤𝑘 , (1.7)

where the constants 𝐶𝑘 < ∞, 𝜉𝑘 > 0, 𝑚𝑘 > 0 do not depend on Λ. As a consequence, we derive a
quasi-locality estimate for Borel functions of 𝐻Λ (Corollary 2.6):

E

(
sup
𝑓

����N𝑖 𝑓 (𝐻Λ)𝑃 [𝑖 ]Λ𝑝
+

����) ≤ 𝐶𝑘 |Λ| 𝜉𝑘 e−𝑚𝑘 𝑝 , (1.8)

where the supremum is taken over all Borel functions on R that are equal to zero outside the interval
𝐼≤𝑘 and bounded by one.
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While the estimates (1.7) and (1.8) are very natural from the mathematical perspective, it is far from
obvious whether they yield any of the MBL-type features proposed by physicists. Nevertheless, in a
sequel to this paper [17], we derive slow propagation of information, a putative MBL manifestation,
from Theorem 2.4 and Corollary 2.6, for any 𝑘 ∈ N.

In the droplet spectrum, [19, Theorem 2.1] imply Corollary 2.6 (with 𝑘 = 1), and a converse can
established using [17, Remark 3.3]. While [19] and the follow-up paper [18] contain several MBL-type
properties such as the (dynamical) exponential clustering property, (properly defined) zero-velocity
Lieb-Robinson bounds, and slow propagation (non-spreading) of information, they are all derived using
[19, Theorem 2.1] as the starting point. We stress that [19, Theorem 2.1], by its very nature, can only
hold in the droplet regime, so while it provides us with very strong consequences in the 𝑘 = 1 case, we
do not expect the methods of [19, 18] to be of any use in the multi-cluster case – that is, for 𝑘 ≥ 2.

Although the methods derived in this work are not universal (which is typical for many-body results),
they are sufficiently powerful for investigation of MBL phenomena in this context, as shown in [17].
We have to admit, however, that in the physics literature, MBL is usually associated with energies that
are not fixed (as we assumed in this work) but are comparable with the system size |Λ|. We do not
expect that our techniques will be sufficient to probe such energies. To be able to do so would require
non-perturbative techniques similar to the ones used in the investigations of one dimensional random
Schrödinger operators.

The model description and main results (Theorem 2.4 and Corollary 2.6) are presented in Section 2.
In Section 3, we outline the main ideas used in the proof of Theorem 2.4, which is completed in Section 4.
Corollary 2.6 is proven in Section 5. Appendix A contains some useful identities. Appendix B contains
the proof of of the many-body quasi-locality estimate (1.6).

Throughout the paper, we will use generic constants 𝐶, 𝑐, 𝑚, etc., whose values will be allowed to
change from line to line, even in a displayed equation. These constants will not depend on subsets of Z,
but they will, in general, depend on the parameters of the model introduced in Section 2.1 (such as 𝜇, k,
Δ0, 𝜆0 and s). When necessary, we will indicate the dependence of a constant on k explicitly by writing
it as 𝐶𝑘 , 𝑚𝑘 , etc. These constants can always be estimated from the arguments, but we will not track the
changes to avoid complicating the arguments.

2. Model description and main results

2.1. Model description

The random XXZ quantum spin- 1
2 chain on an finite subset Λ of Z is given by a self-adjoint Hamiltonian

𝐻Λ acting on the finite dimensional Hilbert space HΛ = ⊗𝑖∈ΛH𝑖 , where H𝑖 = C2 for each 𝑖 ∈ Λ. For a
vector 𝜙 ∈ C2, we let 𝜙𝑖 denote the vector as an element of H𝑖; for an operator (2 × 2 matrix) A on C2,
we let 𝐴𝑖 denote the operator acting on H𝑖 .

We consider only finite subsets of Z, so by a subset of Z we will always mean a finite subset. If
𝑆 ⊂ 𝑇 ⊂ Z, and 𝐴𝑆 is an operator on H𝑆 , we consider 𝐴𝑆 as operator on H𝑇 by identifying it with
𝐴𝑆 ⊗ 1𝑇 \𝑆 , where 1𝑅 denotes the identity operator on H𝑅. We thus identify A𝑆 with a subset of A𝑇 ,
where A𝑅 denotes the algebra of bounded operators on H𝑅.

We now fix Λ ⊂ Z, and consider Λ as a subgraph of Z. We denote by distΛ the graph distance in Λ,
which can be infinite if Λ is not a connected subset of Z. We write 𝐾𝑐 = Λ \ 𝐾 for 𝐾 ⊂ Λ. To define
𝐻Λ, we introduce some notation and definitons.

1. By 𝜎𝑥,𝑦,𝑧 and 𝜎± = 1
2 (𝜎

𝑥 ± 𝑖𝜎𝑦) we will denote the standard Pauli matrices and ladder operators,
respectively.

2. By ↑〉 :=
(
1
0

)
and ↓〉 =

(
0
1

)
we will denote the elements of the canonical basis of C2, called spin-up

and spin-down, respectively. Letting N = 1
2 (1 − 𝜎𝑧), we note that N ↑〉 = 0 and N ↓〉 =↓〉, and

interpret ↓〉 as a particle.
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3. N𝑖 , the matrixN acting onH𝑖 , is the projection onto the spin-down state (also called the local number
operator) at site i. Given 𝑆 ⊂ Λ, N𝑆 =

∑
𝑖∈𝑆 N𝑖 is the total (spin-down) number operator in S.

4. The total number operator NΛ has eigenvalues 0, 1, 2, . . . , |Λ|. (|𝑆 | denotes the cardinality of 𝑆 ⊂ Z.)
We set H(𝑁 )

Λ = Ran(𝜒𝑁 (NΛ)), obtaining the Hilbert space decomposition HΛ =
⊕ |Λ |

𝑁=0 H
(𝑁 )
Λ . We

will use the notation 𝜒Λ𝑁 = 𝜒{𝑁 } (NΛ).
5. The canonical (orthonormal) basis ΦΛ for HΛ is constructed as follows: Let ΩΛ = 𝜙∅ = ⊗𝑖∈Λ ↑〉𝑖 be

the vacuum state. Then

ΦΛ =

{
𝜙𝐴 =

(∏
𝑖∈𝐴

𝜎−
𝑖

)
ΩΛ : 𝐴 ⊂ Λ

}
=

|Λ |⋃
𝑁=0

Φ(𝑁 )
Λ , (2.1)

where Φ(𝑁 )
Λ = {𝜙𝐴 : 𝐴 ⊂ Λ, |𝐴| = 𝑁}. Note that Φ(0)

Λ = {ΩΛ}.

We now define the free XXZ quantum spin- 1
2 Hamiltonian on Λ ⊂ Z by

𝐻Λ
0 = 𝐻Λ

0 (Δ) = − 1
2Δ𝚫

Λ +WΛ on HΛ, (2.2)

where

𝚫Λ =
∑

{𝑖,𝑖+1}⊂Λ

(
𝜎+
𝑖 𝜎

−
𝑖+1 + 𝜎

−
𝑖 𝜎

+
𝑖+1

)
, (2.3)

WΛ = NΛ −
∑

{𝑖,𝑖+1}⊂Λ
N𝑖N𝑖+1, (2.4)

and Δ > 1 is the anisotropy parameter, specifying the Ising phase (Δ = 1 selects the Heisenberg chain
and Δ = ∞ corresponds to the the Ising chain).

We will consider the XXZ model in the presence of a transversal field𝜆𝑉Λ
𝜔 , given by𝑉Λ

𝜔 =
∑
𝑖∈Λ 𝜔𝑖N𝑖 ,

where𝜔𝑖 ≥ 0, and the parameter 𝜆 > 0 is used to modulate the strength of the field. The full Hamiltonian
is then

𝐻Λ = 𝐻Λ
𝜔 = 𝐻Λ

𝜔 (Δ , 𝜆) = 𝐻Λ
0 (Δ) + 𝜆𝑉

Λ
𝜔 = − 1

2Δ𝚫
Λ +WΛ + 𝜆𝑉Λ

𝜔 . (2.5)

Remark 2.1.

1. The operator 𝚫Λ can be viewed as the analog of the Laplacian operator on HΛ.
2. N𝑖 is diagonalized by the canonical basis for all 𝑖 ∈ Λ:N𝑖𝜙𝐴 = 𝜙𝐴 if 𝑖 ∈ 𝐴 and 0 otherwise. It follows

that the total number operator NΛ is also diagonalized by the canonical basis: NΛ𝜙𝐴 = |𝐴|𝜙𝐴.
3. WΛ, the number of clusters operator, is diagonalized by the canonical basis: WΛ𝜙𝐴 = 𝑊Λ

𝐴𝜙𝐴, where
𝑊Λ

𝐴 ∈ [0, |𝐴|] ∩ Z is the number of clusters of A in Λ (i.e., the number of connected components of
A in Λ (considered as a subgraph of Z)).

4. 𝑉Λ
𝜔 is diagonalized by the canonical basis: 𝑉Λ

𝜔𝜙𝐴 = 𝜔 (𝐴)𝜙𝐴, where 𝜔 (𝐴) =
∑
𝑖∈𝐴𝜔𝑖 .

5. The operators NΛ, WΛ, and 𝑉Λ
𝜔 commute.

6. The XXZ Hamiltonian 𝐻Λ preserves the total particle number,

[𝐻Λ,NΛ] = − 1
2Δ [𝚫

Λ,NΛ] = 0. (2.6)

We will consider the XXZ model in the presence of a random transversal field; that is, 𝜔 = {𝜔𝑖}𝑖∈Z
is a family of random variables. More precisely, we make the following definition.

Definition 2.2. The random XXZ spin Hamiltonian on Λ ⊂ Z is the operator 𝐻Λ = 𝐻Λ
𝜔 (Δ , 𝜆) given in

(2.5), where Δ > 1, 𝜆 > 0, and 𝜔 = {𝜔𝑖}𝑖∈Z is a family of independent identically distributed random
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variables, whose common probability distribution 𝜇 satisfies

{0, 1} ⊂ supp 𝜇 ⊂ [0, 1] (2.7)

and is assumed to be absolutely continuous with a bounded density.

From now on, 𝐻Λ always denotes the random XXZ spin Hamiltonian on Λ. The corresponding
resolvent is given by 𝑅Λ

𝐸 =
(
𝐻Λ − 𝐸

)−1, which is well-defined for almost every energy 𝐸 ∈ R. We set
𝜔𝑆 = {𝜔𝑖}𝑖∈𝑆 for 𝑆 ⊂ Z and denote the corresponding expectation and probability by E𝑆 and P𝑆 .

It is convenient to introduce the local interaction terms

ℎ𝑖,𝑖+1 = −N𝑖N𝑖+1 − 1
2Δ

(
𝜎+
𝑖 𝜎

−
𝑖+1 + 𝜎

−
𝑖 𝜎

+
𝑖+1

)
, (2.8)

which allows us to rewrite

𝐻Λ
0 =

∑
{𝑖,𝑖+1}⊂Λ

ℎ𝑖,𝑖+1 +NΛ. (2.9)

It can be verified that on H{𝑖,𝑖+1} = H2
𝑖 ⊗ H2

𝑖+1, we have

1
2 (N𝑖 +N𝑖+1) −N𝑖N𝑖+1 ∓ 1

2
(
𝜎+
𝑖 𝜎

−
𝑖+1 + 𝜎

−
𝑖 𝜎

+
𝑖+1

)
≥ 0, (2.10)

which implies that WΛ ± 1
2𝚫Λ ≥ 0; that is,

−2WΛ ≤ −𝚫Λ ≤ 2WΛ. (2.11)

It follows that (
1 − 1

Δ

)
WΛ ≤ 𝐻Λ

0 ≤
(
1 + 1

Δ

)
WΛ, so

(
1 − 1

Δ

)
WΛ ≤ 𝐻Λ. (2.12)

We conclude that the spectrum of 𝐻Λ is of the form

𝜎(𝐻Λ) = {0} ∪
( [

1 − 1
Δ ,∞

)
∩ 𝜎(𝐻Λ)

)
. (2.13)

The lower bound in (2.12) suggests the introduction of the energy thresholds 𝑘
(
1 − 1

Δ

)
, 𝑘 = 0, 1, 2 . . ..

We define the energy intervals

𝐼̂≤𝑘 =
(
−∞, (𝑘 + 1)

(
1 − 1

Δ

))
, 𝐼̂𝑘 =

[
1 − 1

Δ , (𝑘 + 1)
(
1 − 1

Δ

))
,

𝐼≤𝑘 =
(
−∞, (𝑘 + 3

4 )
(
1 − 1

Δ

))
, 𝐼𝑘 =

[
1 − 1

Δ , (𝑘 +
3
4 )

(
1 − 1

Δ

))
.

(2.14)

We call 𝐼̂𝑘 the k-cluster spectrum.
Given ∅ ≠ 𝑆 ⊂ Λ, we define the orthogonal projections 𝑃𝑆± on HΛ by

𝑃𝑆+ =
⊗
𝑖∈𝑆

(
1H𝑖 −N𝑖

)
= 𝜒{0} (N𝑆) and 𝑃𝑆− = 1HΛ − 𝑃𝑆+ = 𝜒N(N𝑆). (2.15)

𝑃𝑆+ is the orthogonal projection onto states with no particles in the set S; 𝑃𝑆− is the orthogonal projection
onto states with at least one particle in S. We also set

𝑃∅
+ = 1HΛ and 𝑃∅

− = 0. (2.16)
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Remark 2.3. In the Ising phase (i.e., Δ > 1), we have (2.12) and (2.13) for all Λ ⊂ Z. It follows that
the XXZ chain Hamiltonian 𝐻Λ has ground state ΩΛ and the ground state energy is 0 (𝐻ΛΩΛ=0), and,
moreover, the ground state energy is gapped. This makes 𝐻Λ a 2-local, gapped, frustration-free system.
These features, plus the preservation of the total particle number, make the XXZ model especially
amenable to analysis. In particular, the number of eigenstates of 𝐻Λ in the intervals 𝐼≤𝑘 grows only
polynomially in the volume of Λ (not exponentially as the dimension of HΛ) as shown in Lemma 3.5
below.

2.2. Main results

Our main result establishes quasi-locality for the resolvent of the random XXZ chain inside the spectrum
of 𝐻Λ.
Theorem 2.4 (Quasi-locality for resolvents). Fix Δ0 > 1, 𝜆0 > 0, and let 𝑠 ∈ (0, 1

3 ). Then for all 𝑘 ∈ N0,
there exist constants 𝐷𝑘 , 𝐹𝑘 , 𝜉𝑘 , 𝜃𝑘 > 0 (depending on k, Δ0, 𝜆0 and s) such that, for all Δ ≥ Δ0 and
𝜆 ≥ 𝜆0 with 𝜆Δ2 ≥ 𝐷𝑘 , Λ ⊂ Z finite, and energy 𝐸 ∈ 𝐼≤𝑘 , we have

E

{��𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+
��𝑠} ≤ 𝐹𝑘 |Λ| 𝜉𝑘 e−𝜃𝑘 distΛ (𝐴,𝐵𝑐) , (2.17)

for 𝐴 ⊂ 𝐵 ⊂ Λ with A connected in Λ.

The theorem is proven in Section 4.
Remark 2.5. If A is not connected in Λ, the theorem still holds with (2.17) replaced by

E

{��𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+
��𝑠} ≤ 𝐹𝑘Υ

Λ
𝐴 |Λ|

𝜉𝑘 e−𝜃𝑘 distΛ (𝐴,𝐵𝑐) , (2.18)

where ΥΛ
𝐴 denotes the number of connected components of A in Λ. This follows from (2.17) and

𝑃𝐴
− =

ΥΛ
𝐴∑

𝑗=1
𝑃
⋃ 𝑗−1

𝑖=𝑖 𝐴𝑖

+ 𝑃
𝐴 𝑗
− , (2.19)

where 𝐴 𝑗 , 𝑗 = 1, 2, . . . ,ΥΛ
𝐴, are the connected components of A in Λ .

As a consequence of Theorem 2.4, we prove the following quasi-locality estimate for Borel functions
of 𝐻Λ. By 𝐵(𝐼≤𝑘 ) we denote the collection of Borel functions on R that are equal to zero outside the
interval 𝐼≤𝑘 .
Corollary 2.6 (Quasi-locality for Borel functions). Assume the hypotheses and conclusions of Theorem
2.4, Then for all 𝑘 ∈ N0, there exist constants 𝐹𝑘 , 𝜉𝑘 , 𝜃̃𝑘 > 0 (depending on k, Δ0, 𝜆0 and s) such that,
for all Δ ≥ Δ0 and 𝜆 ≥ 𝜆0 with 𝜆Δ2 ≥ 𝐷𝑘 , and Λ ⊂ Z finite, we have

EΛ

 !!" sup
𝑓 ∈𝐵 (𝐼≤𝑘 ):
‖ 𝑓 ‖∞≤1

��𝑃𝐴
− 𝑓 (𝐻Λ)𝑃𝐵

+
��#$$% ≤ 𝐹𝑘 |Λ| 𝜉𝑘 e−𝜃𝑘 distΛ (𝐴,𝐵𝑐) , (2.20)

for all 𝐴 ⊂ 𝐵 ⊂ Λ, A connected in Λ.

The proof of the Corollary is given in Section 5.

3. Key ingredients for the proofs

In this section, we collect a number of definitions, statements and lemmas that will facilitate the proof
of Theorem 2.4.
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Λ will always denote a finite subset of Z, and 𝐴 ⊂ Λ will always denote a nonempty subset connected
in Λ. (𝐵 ⊂ Λ, 𝑆 ⊂ Λ, etc., may not be connected in Λ.)

3.1. Some definitions

◦ Given 𝑀 ⊂ Λ and 𝑞 ∈ Z, we define enlarged (for 𝑞 ≥ 0) and trimmed (for 𝑞 < 0) set [𝑀]Λ𝑞 by

[𝑀]Λ𝑞 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{𝑥 ∈ Λ : distΛ(𝑥, 𝑀) ≤ 𝑞} if 𝑞 ∈ N0 = {0} ∪ N
{𝑥 ∈ Λ : distΛ(𝑥, 𝑀𝑐) ≥ 1 − 𝑞} = 𝑀 \ [𝑀𝑐]Λ−𝑞 if 𝑞 ∈ −N
{𝑥 ∈ Λ : distΛ(𝑥, 𝑀) < ∞} =

⋃
𝑝∈N0 [𝑀]Λ𝑝 if 𝑞 = ∞

. (3.1)

Note that [𝑀]Λ−|𝑀 | = ∅. Moreover, [𝑀]Λ∞ = [𝑀]Λ|Λ |−1 is the connected component of Λ containing
M, and we have

[𝐻Λ, 𝑃
[𝑀 ]Λ∞
± ] = 0. (3.2)

We define 𝜕Λ𝑒𝑥𝑀 (the external boundary of M in Λ), 𝜕Λ𝑖𝑛𝑀 (the inner boundary of M in Λ), and 𝜕Λ𝑀
(the boundary of 𝑀 in Λ), by

𝜕Λ𝑒𝑥𝑀 := {𝑥 ∈ Λ : distΛ (𝑥, 𝑀) = 1} = [𝑀]Λ1 \ 𝑀,

𝜕Λ𝑖𝑛𝑀 := {𝑥 ∈ Λ : distΛ (𝑥, 𝑀𝑐) = 1} = 𝑀 \ [𝑀]Λ−1,

𝜕Λ𝑀 := 𝜕Λ𝑖𝑛𝑀 ∪ 𝜕Λ𝑒𝑥𝑀.

(3.3)

It follows that

]𝑀 [Λ𝑞 := [𝑀]Λ𝑞+1 \ [𝑀]Λ𝑞 =

{
𝜕Λ𝑒𝑥 [𝑀]Λ𝑞 , 𝑞 ∈ N0

𝜕Λ𝑖𝑛 [𝑀]Λ𝑞+1 𝑞 ∈ −N
, (3.4)

and we have

]𝑀 [Λ𝑝=]𝑀𝑐 [Λ−𝑝−1 for 𝑝 ∈ Z. (3.5)

If 𝑀 = { 𝑗}, we write [ 𝑗]Λ𝑞 = [{ 𝑗}]Λ𝑞 .
◦ Given 𝐴 ⊂ 𝐵 ⊂ Λ, we let 𝜌Λ (𝐴, 𝐵) be the largest 𝑞 ∈ N0 ∪ {∞} such that [𝐴]Λ𝑞 ⊂ 𝐵; that is,

𝜌Λ (𝐴, 𝐵) = sup
{
𝑞 ∈ N0 : [𝐴]Λ𝑞 ⊂ 𝐵

}
= distΛ (𝐴, 𝐵𝑐) − 1. (3.6)

It will be more convenient to use 𝜌Λ (𝐴, 𝐵) instead of distΛ (𝐴, 𝐵𝑐) in the proofs.Note that

𝜌Λ (𝐴, 𝐵) = ∞ ⇐⇒ distΛ(𝐴, 𝐵𝑐) = ∞ ⇐⇒ [𝐴]Λ∞ ⊂ 𝐵. (3.7)

◦ It follows from (3.2) and (3.7) that

𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ = 0 if 𝐴 ⊂ 𝐵 ⊂ Λ and 𝜌Λ (𝐴, 𝐵) = ∞, (3.8)

so it suffices to prove Theorem 2.4 for 𝜌Λ (𝐴, 𝐵) < ∞. Moreover, since 𝐴 ⊂ 𝐵, we have [𝐴]Λ
𝜌Λ (𝐴,𝐵) ⊂

𝐵, and hence, ��𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+
�� ≤

����𝑃𝐴
−𝑅

Λ
𝐸𝑃

[𝐴]Λ
𝜌Λ (𝐴,𝐵)

+

����, (3.9)

so without loss of generality, it suffices to prove (2.17) for 𝐵 = [𝐴]Λ𝜌 with 𝜌 ∈ N0.
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◦ Given 𝐾 ⊂ Λ, we consider the operator 𝐻𝐾 = 𝐻𝐾 ⊗ 1H𝐾𝑐 acting on HΛ. We also consider the
operators on HΛ given by

𝐻𝐾,𝐾 𝑐
= 𝐻𝐾 + 𝐻𝐾 𝑐

, 𝑅𝐾,𝐾 𝑐

𝐸 =
(
𝐻𝐾,𝐾 𝑐 − 𝐸

)−1
, Γ𝐾 = 𝐻Λ − 𝐻𝐾,𝐾 𝑐

. (3.10)

3.2. Quasi-locality for resolvents

The following lemma and remark yields (deterministic) quasi-locality for the resolvent of the XXZ chain
outside the spectrum of 𝐻Λ.

Lemma 3.1. Let Θ ⊂ Λ, and consider the Hilbert space HΛ. Let the operator 𝑇 ∈ AΛ be of the form

𝑇 = 𝑇Θ + 𝑇Θ𝑐
; where 𝑇Θ ∈ AΘ and 𝑇Θ𝑐 ∈ AΘ𝑐 , (3.11)

and let X ∈ AΛ be a projection such that [X , 𝑇] = 0 and [X , 𝑃𝐾
± ] = 0 for all 𝐾 ⊂ Θ.

Suppose

1. For all 𝐾 ⊂ Θ, we have [𝑃𝐾
− , 𝑇]𝑃

[𝐾 ]Θ1
+ = 0.

2. For all 𝐾 ⊂ Θ, with K connected in Θ, we have
��[𝑃𝐾

− , 𝑇]
�� ≤ 𝛾.

3. 𝑇X , the restriction of the operator T to RanX , is invertible with
��𝑇−1

X
��

RanX ≤ 𝜂−1, where 𝜂 > 0.

Then for all 𝐴 ⊂ 𝐵 ⊂ Θ, with A connected in Θ, we have��𝑃𝐴
− 𝑇

−1
X 𝑃𝐵

+
��

RanX ≤ 𝜂−1e−𝑚𝜌
Θ (𝐴,𝐵) , with 𝑚 = ln

(
𝛾−1𝜂

)
. (3.12)

Proof. We consider first the case X = 1HΛ . Let 𝐴 ⊂ 𝐵 ⊂ Θ, with A connected in Θ. Let 1 ≤ 𝑡 ≤
𝜌Θ(𝐴, 𝐵), so [𝐴]Θ𝑡 ⊂ 𝐵. We have

𝑃𝐴
− 𝑇

−1 𝑃𝐵
+ = 𝑇−1 [𝑇, 𝑃𝐴

− ]𝑇−1 𝑃𝐵
+ = 𝑇−1 [𝑇, 𝑃𝐴

− ]𝑃
[𝐴]Θ1− 𝑇−1 𝑃𝐵

+ , (3.13)

using condition (i) of the Lemma. Proceeding recursively, we get

𝑃𝐴
− 𝑇

−1 𝑃𝐵
+ =

 !"
𝑡−1∏
𝑝=0

𝑇−1 [𝑇, 𝑃 [𝐴]Θ𝑝
− ]#$%𝑃 [𝐴]Θ𝑡− 𝑇−1 𝑃𝐵

+ . (3.14)

Since A is connected in Θ, [𝐴]Θ𝑟 , 𝑟 = 1, 2, . . . , 𝑡, are also connected in Θ. Using assumptions (ii) and
(iii), we get ��𝑃𝐴

− 𝑇
−1 𝑃𝐵

+
�� ≤

(
𝛾𝜂−1

) 𝑡
𝜂−1. (3.15)

Since (3.15) holds for all 1 ≤ 𝑡 ≤ 𝜌Θ(𝐴, 𝐵), we get��𝑃𝐴
− 𝑇

−1 𝑃𝐵
+
�� ≤ 𝜂−1e−𝑚𝜌

Θ (𝐴,𝐵) , with 𝑚 = ln
(
𝛾−1𝜂

)
. (3.16)

If condition (iii) holds with a projection X ∈ AΛ such that [X , 𝑇] = 0 and [X , 𝑃𝐾
± ] = 0 for all

𝐾 ⊂ Θ, then 𝑇 = 𝑇X + 𝜂(1 −X ) satisfies conditions (i), (ii), and condition (iii) with X = 1HΛ , and the
estimate (3.16) for 𝑇 implies (3.12). �

Remark 3.2. Lemma 3.1 yields quasi-locality for the resolvent of the operator 𝐻Λ. The operator 𝐻Λ− 𝑧
satisfies the hypotheses of Lemma 3.1 for 𝑧 ∉ 𝜎(𝐻Λ), with Θ = Λ, 𝛾 = 1

Δ (use (A.6)), X = 1HΛ , and
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𝜂 = dist(𝑧, 𝜎(𝐻Λ)). It follows that, with 𝑅Λ
𝑧 = (𝐻Λ − 𝑧)−1, for all 𝐴 ⊂ 𝐵 ⊂ Λ, we have��𝑃𝐴

−𝑅
Λ
𝑧 𝑃

𝐵
+
�� ≤

(
dist(𝑧, 𝜎(𝐻Λ))

)−1
e−𝑚𝜌

Θ (𝐴,𝐵) , with 𝑚 = ln
(
Δ dist(𝑧, 𝜎(𝐻Λ))

)
. (3.17)

From now on, we fix Δ0 > 5, 𝜆0 > 0, and assume Δ ≥ Δ0 and 𝜆 ≥ 𝜆0. The constants will depend on
Δ0 and 𝜆0.

Given 𝑚 ∈ N0, we set 𝑄Λ
𝑚 = 𝜒{𝑚}

(
WΛ) , the orthogonal projection onto configurations with exactly

m clusters, and let 𝑄Λ
𝐵 = 𝜒𝐵

(
WΛ) = ∑

𝑚∈𝐵 𝑄
Λ
𝑚 for 𝐵 ⊂ N0. Note that 𝑄Λ

0 = 𝑃Λ
+ and 𝑄Λ

N
= 𝜒N(NΛ).

For 𝑘 ∈ N, we set

𝑄Λ
≤𝑘 = 𝑄Λ

{1,2,...,𝑘 } =
𝑘∑

𝑚=1
𝑄Λ
𝑚 and 𝑄Λ

≤𝑘 = 𝑄Λ
≤𝑘 +

𝑘+1
𝑘 𝑄Λ

0 . (3.18)

We also set

𝐻Λ
0 = 𝐻Λ +

(
1 − 1

Δ

)
𝑄Λ

0 ,

𝐻Λ
𝑘 = 𝐻Λ + 𝑘

(
1 − 1

Δ

)
𝑄Λ

≤𝑘 for 𝑘 ∈ N.
(3.19)

We use the notation

𝑅Λ
𝑘,𝐸 =

(
𝐻Λ
𝑘 − 𝐸

)−1
for 𝐸 ∉ 𝜎(𝐻Λ

𝑘 ), 𝑘 ∈ N0. (3.20)

It follows from (2.12) and (2.14) that for 𝑘 ∈ N0, we have

𝐻Λ
𝑘 ≥ (𝑘 + 1)

(
1 − 1

Δ

)
and

(
𝐻Λ
𝑘 − 𝐸

)
≥ 1

4

(
1 − 1

Δ

)
for 𝐸 ∈ 𝐼≤𝑘 . (3.21)

For 𝑘 ∈ N0 and 𝐸 ∈ 𝐼≤𝑘 , the operator 𝑇 = 𝐻Λ
𝑘 − 𝐸 satisfies the assumptions of Lemma 3.1 with

Θ = Λ, 𝛾 = 1
Δ , X = 1HΛ and 𝜂 = 1

4

(
1 − 1

Δ

)
(see (3.21)). In this case, 𝑚 = ln Δ−1

4 , and hence, for
𝐴 ⊂ 𝐵 ⊂ Λ, (3.12) yields ���𝑃𝐴

−𝑅
Λ
𝑘,𝐸𝑃

𝐵
+

��� ≤ 4
1− 1

Δ
e−(ln

Δ−1
4 )𝜌Λ (𝐴,𝐵) . (3.22)

To have decay in (3.22), we need Δ−1
4 > 1; that is, Δ > 5. In the proof of Theorem 2.4, we will

fix Δ0 > 5 and 𝜆0 > 0 and require Δ ≥ Δ0 and 𝜆 ≥ 𝜆0. In this case, we have 4
1− 1

Δ
≤ 4

1− 1
Δ0

and

ln Δ−1
4 ≥ ln Δ0−1

4 , so we have���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

��� ≤ 𝐶0e−𝑚0𝜌
Λ (𝐴,𝐵) , with 𝐶0 = 4

1− 1
Δ0
, 𝑚0 = ln Δ0−1

4 > 0. (3.23)

It follows from (3.2), which also holds for the operator 𝐻Λ
𝑘 , that

𝑃𝑀
− 𝑅Λ

𝐸𝑃
[𝑀 ]Λ∞
+ = 0 and 𝑃𝑀

− 𝑅Λ
𝑘,𝐸𝑃

[𝑀 ]Λ∞
+ = 0 for 𝑀 ⊂ Λ. (3.24)

Remark 3.3. We will prove Theorem 2.4 with Δ0 > 5 to simplify our analysis. The proof can be
extended to arbitrary Δ0 > 1 with minor modifications. Specifically, for 1 < Δ0 ≤ 5, we need to
improve the decay rate in (3.22), which is derived from the lower bound in (3.21). To do so, we would
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replace 𝐻Λ
𝑘 in the proof by 𝐻Λ

𝑘+𝑟 , where 𝑟 ∈ N, so (3.21) yields 𝐻Λ
𝑘+𝑟 −𝐸 ≥ (𝑟 + 1

4 )
(
1 − 1

Δ

)
for 𝐸 ∈ 𝐼≤𝑘 ,

leading to 𝑚0 = ln
(
(𝑟 + 1

4 ) (Δ0 − 1)
)
> 0 for an appropriate choice of r.

3.3. An a priori estimate

The first step toward the proof of Theorem 2.4 is to understand why the expression on the left-hand
side of (2.17) is actually finite. A useful technical device for this purpose is the following bound, where
‖𝑇 ‖𝐻𝑆 denotes the Hilbert-Schmidt norm of the operator T.

Lemma 3.4 (A priori estimate). Let 𝑖, 𝑗 ∈ Λ (𝑖 = 𝑗 is allowed), and let𝑇1, 𝑇2 be a pair of Hilbert-Schmidt
operators on HΛ that are 𝜔{𝑖, 𝑗 }-independent. Then we have

E{𝑖, 𝑗 }

(��𝑇1N𝑖𝑅
Λ
𝐸N 𝑗𝑇2

��𝑠
𝐻𝑆

)
≤ 𝐶𝜆−𝑠 ‖𝑇1‖𝑠𝐻𝑆 ‖𝑇2‖𝑠𝐻𝑆 for all 𝐸 ∈ R and 𝑠 ∈ (0, 1). (3.25)

The lemma follows from [5, Proposition 3.2], used with𝑈1 = N 𝑗 ,𝑈2 = N𝑘 there, and the layer-cake
representation for a non-negative random variable 𝑋𝜔: E(𝑋𝑠

𝜔) =
∫ ∞
0 P(𝑋𝜔 > 𝑡1/𝑠) 𝑑𝑡 for 𝑠 ∈ (0, 1).

The Hilbert-Schmidt operators for Lemma 3.4 are provided by the following result.

Lemma 3.5. Let 𝑘 ∈ N. Then ��𝑄Λ
≤𝑘

��
𝐻𝑆

≤
√
𝑘 |Λ|𝑘 , (3.26)

tr 𝜒𝐼̂≤𝑘 (𝐻
Λ) ≤ 𝑘 |Λ|2𝑘 + 1. (3.27)

Proof. For 𝑚 ≥ 1 and 𝑁 ≥ 1, we have the rough estimate

tr 𝜒Λ𝑁𝑄
Λ
𝑚 ≤ |Λ|𝑚𝑁𝑚−1. (3.28)

Thus,

tr 𝜒Λ𝑁𝑄
Λ
≤𝑘 ≤

𝑘∑
𝑚=1

|Λ|𝑚𝑁𝑚−1 = 1
𝑁

( |Λ |𝑁 )𝑘+1−( |Λ |𝑁 )
( |Λ |𝑁 )−1 ≤ 𝑘 |Λ|𝑘𝑁 𝑘−1. (3.29)

It follows that

tr𝑄Λ
≤𝑘 ≤ 𝑘 |Λ|𝑘

|Λ |∑
𝑁=1

𝑁 𝑘−1 ≤ 𝑘 |Λ|2𝑘 . (3.30)

To prove (3.27), let 𝐻Λ
𝑘 be as in (3.19), and note that (3.21) implies tr 𝜒𝐼̂≤𝑘 (𝐻

Λ
𝑘 ) = 0. Since the

spectral shift is bounded by the rank of the perturbation, it follows from (3.19) that

tr 𝜒𝐼̂≤𝑘 (𝐻
Λ) ≤ tr 𝜒𝐼̂≤𝑘 (𝐻

Λ
𝑘 ) + Rank

(
𝑘
(
1 − 1

Δ

)
𝑄Λ

≤𝑘

)
= tr𝑄Λ

≤𝑘 = tr𝑄Λ
≤𝑘 + 1. (3.31)

�

Lemmas 3.4 and 3.5 yield the a priori estimate

E{𝑖, 𝑗 }
��𝑄Λ

≤𝑘N𝑖𝑅
Λ
𝐸N 𝑗𝑄

Λ
≤𝑘

��𝑠
𝐻𝑆

≤ 𝐶𝜆−𝑠𝑘𝑠 |Λ|2𝑠𝑘 for all 𝑖, 𝑗 ∈ Λ and 𝑠 ∈ (0, 1). (3.32)

More generally, we have

E{𝐴∪𝐵}
��𝑄Λ

≤𝑘𝑃
𝐴
−𝑅

Λ
𝐸𝑃

𝐵
−𝑄

Λ
≤𝑘

��𝑠
𝐻𝑆

≤ 𝐶𝜆−𝑠𝑘𝑠 |Λ|2𝑠𝑘 |𝐴| |𝐵| for ∅ ≠ 𝐴, 𝐵 ⊂ Λ. (3.33)
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Those a priori estimates are only useful if we can ‘dress’ the resolvent with factors of 𝑄Λ
≤𝑘 on both

sides. To be able to do so, we will decorate 𝑅Λ
𝐸 with resolvents of positive operators that satisfy the

quasi-locality property.

3.4. Dressing resolvents with Hilbert-Schmidt operators

For 𝑘 = 1, 2, . . ., and 𝐸 ∈ 𝐼≤𝑘 , we use the resolvent identity

𝑅Λ
𝐸 = 𝑅Λ

𝑘,𝐸 + 𝑘
(
1 − 1

Δ

)
𝑅Λ
𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝑘,𝐸 = 𝑅Λ

𝑘,𝐸 + 𝑘
(
1 − 1

Δ

)
𝑅Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝐸 . (3.34)

Using it twice, we get

𝑅Λ
𝐸 = 𝑅Λ

𝑘,𝐸 + 𝑘
(
1 − 1

Δ

)
𝑅Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝑘,𝐸 + 𝑘2

(
1 − 1

Δ

)2
𝑅Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝑘,𝐸 . (3.35)

We use the notation (𝑝)+ = max(𝑝, 0) for 𝑝 ∈ R.

Lemma 3.6. Let X denote a spectral projection of NΛ (say, X = 1HΛ or X = 𝜒Λ𝑁 ). Let 𝐴 ⊂ 𝐵 ⊂ Λ,
and 1 ≤ 𝑡 = 𝜌Λ (𝐴, 𝐵) < ∞. Let 𝐸 ∈ 𝐼≤𝑘 , and let 𝑚0 be as in (3.23).

1. We have the following estimate on operator norms:

��X𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+
�� ≤ 𝐶𝑘

(
|Λ|e−𝑚0𝑡 +

|Λ |∑
𝑝=−|𝐴 |

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑝)+e−𝑚0 (𝑡−𝑞−1)+
��X𝐹Λ

𝑝,𝑞 (𝐸, 𝐴)
��) ,

where 𝐹Λ
𝑝,𝑞 (𝐸, 𝐴) = 𝑄Λ

≤𝑘𝑃
[𝐴]Λ𝑝
+ 𝑃

]𝐴[Λ𝑝
− 𝑅Λ

𝐸𝑃
[𝐴]Λ𝑞
+ 𝑃

]𝐴[Λ𝑞
− 𝑄Λ

≤𝑘 for 𝑝, 𝑞 ∈ Z.

(3.36)

2. We have the following estimates on Hilbert-Schmidt norms:

��X𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��
𝐻𝑆

≤ 𝐶𝑘

(
|Λ|𝑘e−𝑚0𝑡 +

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑞)+
���X𝑄Λ

≤𝑘𝑃
]𝐴[𝑞
− 𝑅Λ

𝐸𝑃
𝐵
+𝑄

Λ
≤𝑘

���
𝐻𝑆

)
. (3.37)

Moreover, for 𝑠 ∈ (0, 1), we have

E

(��X𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��𝑠
𝐻𝑆

)
≤ 𝐶𝑘,𝑠 |Λ|2𝑠𝑘+3. (3.38)

Proof. Let 𝐴 ⊂ 𝐵 ⊂ Λ, A connected in Λ. Since X commutes with all the relevants operators, we will
just do the proof for X = 𝐼.

Using (3.35), (3.18) and (3.23), we get��𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+
�� ≤ 𝐶0e−𝑚0𝑡 + 𝑘

���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

��� + 𝑘2
���𝑃𝐴

−𝑅
Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

���. (3.39)

Using (3.24), (A.7) and the fact that 𝑄Λ
≤𝑘 commutes with 𝑃± operators, we get

���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑄

Λ
≤𝑘+1𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

��� ≤
|Λ |∑

𝑞=−|𝐴 |

��𝐷𝑞

����𝐸𝑞

��, (3.40)

where

𝐷𝑞 = 𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑃

[𝐴]𝑞
+ and 𝐸𝑞 = 𝑃

]𝐴[𝑞
− 𝑅Λ

𝑘,𝐸𝑃
𝐵
+ . (3.41)
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Using (3.21), (3.23) and ]𝐴[𝑞⊂ 𝐵 for 𝑞 + 1 ≤ 𝑡, we get��𝐷𝑞

�� ≤ 𝐶0e−𝑚0 (𝑞)+ and
��𝐸𝑞

�� ≤ 𝐶0e−𝑚0 (𝑡−𝑞−1)+ for all 𝑞 ∈ Z. (3.42)

It follows that ���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑄

Λ
≤𝑘+1𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

��� ≤ 𝐶2
0

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑞)+e−𝑚0 (𝑡−𝑞−1)+ ≤ 𝐶 ′
0 |Λ|e

−𝑚0𝑡 . (3.43)

This leaves us with the estimation of the last term in (3.39). To this end, we use (3.24), (A.7) and
(3.42) to obtain ���𝑃𝐴

−𝑅
Λ
𝑘,𝐸𝑄

Λ
≤𝑘+1𝑅

Λ
𝐸𝑄

Λ
≤𝑘+1𝑅

Λ
𝑘,𝐸𝑃

𝐵
+

��� ≤
|Λ |∑

𝑝=−|𝐴 |

|Λ |∑
𝑞=−|𝐴 |

��𝐷 𝑝

����𝐹𝑝,𝑞����𝐸𝑞

��
≤ 𝐶2

0

|Λ |∑
𝑝=−|𝐴 |

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑝)+e−𝑚0 (𝑡−𝑞−1)+
��𝐹𝑝,𝑞��, (3.44)

where 𝐹𝑝,𝑞 = 𝐹Λ
𝑝,𝑞 (𝐸, 𝐴) is as in (3.36) for 𝑝, 𝑞 ∈ Z.

Combining (3.39), (3.43) and (3.44), we get (3.36).
To prove (3.37), we proceed as in (3.39) using (3.34), exploit ‖𝑇1𝑇2‖𝐻𝑆 ≤ ‖𝑇1‖‖𝑇2‖𝐻𝑆 , and use

(3.26), obtaining��𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��
𝐻𝑆

≤ 𝐶𝑘e−𝑚0𝑡 |Λ|𝑘 + 𝑘
���𝑃𝐴

−𝑅
Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

���
𝐻𝑆

. (3.45)

We then use (3.24), (A.7) and (3.42) to get���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑄

Λ
≤𝑘𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

���
𝐻𝑆

≤
|Λ |∑

𝑞=−|𝐴 |

��𝐷𝑞

�����𝑄Λ
≤𝑘𝑃

]𝐴[𝑞
− 𝑅Λ

𝐸𝑃
𝐵
+𝑄

Λ
≤𝑘

���
𝐻𝑆

≤
|Λ |∑

𝑞=−|𝐴 |
𝐶0e−𝑚0 (𝑞)+

���𝑄Λ
≤𝑘𝑃

]𝐴[𝑞
− 𝑅Λ

𝐸𝑃
𝐵
+𝑄

Λ
≤𝑘

���
𝐻𝑆

.

(3.46)

Given 𝑠 ∈ (0, 1), it follows from (3.37) and (3.33) that

E

(��X𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��𝑠
𝐻𝑆

)
≤ 𝐶𝑘,𝑠 |Λ|2𝑠𝑘+3. (3.47)

�

3.5. Large deviation estimate

Using a large deviation argument, we get the following refinement of (3.33). Recall we may assume
𝜌Λ (𝐴, 𝐵) < ∞ in view of (3.8).
Lemma 3.7. Let 𝑘 ∈ N. Let 𝐴 ⊂ 𝐵 ⊂ Λ, with 𝜌Λ(𝐴, 𝐵) < ∞. Given 𝑠 ∈ (0, 1

2 ), there exist constants
𝐶𝑘,𝑠 , 𝑐𝜇 > 0 such that for all 𝐸 ∈ 𝐼≤𝑘 , we have

E

(��𝜒Λ𝑁𝑄Λ
≤𝑘𝑃

𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��𝑠
𝐻𝑆

)
≤ 𝐶𝑘,𝑠 |Λ|2(𝑠𝑘+1)

(
e−𝑐𝜇𝑁 + e−𝑚0𝜌

Λ (𝐴,𝐵)
)
. (3.48)

In particular,

E
��𝜒Λ𝑁𝑄Λ

≤𝑘𝑃
𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘

��𝑠 ≤ 𝐶𝑘,𝑠 |Λ|2(𝑠𝑘+1)e−𝑚0,𝜇𝜌
Λ (𝐴,𝐵) if 8𝑘𝑁 ≥ 𝜌Λ (𝐴, 𝐵), (3.49)

where 𝑚0,𝜇 > 0.
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Proof. Recall H(𝑁 )
Λ = Ran 𝜒Λ𝑁 , and let H(𝑁 ,𝑘)

Λ = Ran 𝜒Λ𝑁𝑄
Λ
≤𝑘 . Recall also that the restriction of 𝑉Λ

𝜔 to
H(𝑁 )

Λ is diagonalized by the canonical basis Φ(𝑁 )
Λ as in Remark 2.1(iii).

Let us first assume that N is such that 𝑁𝜆𝜇̄ ≥ 2𝑘
(
1 − 1

Δ

)
, where 𝜇̄ denotes the mean of the probability

distribution 𝜇 (see Definition 2.2). The standard large deviation estimate (Cramer’s Theorem) gives

P

{
𝜆𝜔 (𝑀 ) < 𝑘

(
1 − 1

Δ

)}
≤ P

{
𝜔 (𝑀 ) < 𝑁 𝜇̄

2

}
≤ e−𝑐𝜇𝑁 for all 𝑀 ⊂ Λ with |𝑀 | = 𝑁, (3.50)

where 𝑐𝜇 is a constant depending only on the probability distribution 𝜇. This implies that there exists
𝐶𝑘 > 0 such that

P

{
𝜆𝜔 (𝑀 ) < 𝑘

(
1 − 1

Δ

)}
≤ 𝐶𝑘e−𝑐𝜇𝑁 for all 𝑁 ∈ N and 𝑀 ⊂ Λ with |𝑀 | = 𝑁. (3.51)

It follows that for the event

B𝑁
𝑘 =

{
∃𝑀 ⊂ Λ with |𝑀 | = 𝑁, 𝑊Λ

𝑀 = 𝑘 and 𝜆𝜔 (𝑀 ) < 𝑘
(
1 − 1

Δ

)}
, (3.52)

we have

PΛ

(
B𝑁
𝑘

)
≤ 𝐶𝑘e−𝑐𝜇𝑁 tr𝑄Λ,𝑁

≤𝑘 ≤ 𝐶𝑘 |Λ|2𝑘e−𝑐𝜇𝑁 for 𝑁 = 1, 2 . . . , |Λ|, (3.53)

where we also used Lemma 3.5. On the complementary event
(
B𝑁
𝑘

)𝑐
, we have

𝜆𝑉𝜔𝜒
Λ
𝑁𝑄

Λ
≤𝑘 ≥ 𝑘

(
1 − 1

Δ

)
𝜒Λ𝑁𝑄

Λ
≤𝑘 . (3.54)

If (3.54) holds, we conclude that

𝐻Λ,𝑁 ≥
(
1 − 1

Δ

)
WΛ + 𝜆𝑉𝜔 =

(
𝑄Λ,𝑁

≤𝑘 +𝑄Λ,𝑁
≥𝑘+1

) ((
1 − 1

Δ

)
WΛ + 𝜆𝑉𝜔

)
≥

(
1 − 1

Δ

)
𝑄Λ,𝑁

≥𝑘+1W
Λ +𝑄Λ,𝑁

≤𝑘

((
1 − 1

Δ

)
WΛ + 𝜆𝑉𝜔

)
≥ (𝑘 + 1)

(
1 − 1

Δ

)
.

(3.55)

We deduce that for 𝜔 ∈
(
B𝑁
𝑘

)𝑐
and 𝐸 ∈ 𝐼≤𝑘 , we have

𝐻Λ,𝑁 − 𝐸 ≥ (𝑘 + 1)
(
1 − 1

Δ

)
− (𝑘 + 3

4 )
(
1 − 1

Δ

)
= 1

4

(
1 − 1

Δ

)
. (3.56)

Proceeding as in the derivation of (3.23), it follows from Lemma 3.1 and Remark 3.2 that for
𝜔 ∈

(
B𝑁
𝑘

)𝑐
, we have, for 𝐴 ⊂ 𝐵 ⊂ Λ with A connected in Λ, that��𝜒Λ𝑁 𝑃𝐴

−𝑅
Λ
𝐸𝑃

𝐵
+
�� ≤ 𝐶0e−𝑚0𝜌

Λ (𝐴,𝐵) . (3.57)

Given 𝐸 ∈ 𝐼≤𝑘 , and letting 𝑇 = 𝜒𝑁𝑄
Λ
≤𝑘𝑃

𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 , we obtain

E
(
‖𝑇 ‖𝑠𝐻𝑆

)
≤ E

(
𝜒B𝑁

𝑘
‖𝑇 ‖𝑠𝐻𝑆

)
+ E

(
𝜒(B𝑁

𝑘 )
𝑐 ‖𝑇 ‖𝑠𝐻𝑆

)
≤

(
P

(
B𝑁
𝑘

)) 1
2
(
E

(
‖𝑇 ‖2𝑠

𝐻𝑆

)) 1
2 + 𝐶0e−𝑚0𝜌

Λ (𝐴,𝐵)��𝜒𝑁𝑄Λ
≤𝑘

��𝑠
𝐻𝑆

≤ 𝐶𝑘,𝑠 |Λ|2(𝑠𝑘+1)
(
e−

1
2 𝑐𝜇𝑁 + e−𝑚0𝜌

Λ (𝐴,𝐵)
)
,

(3.58)
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where we used (3.53), Lemma 3.5 and (3.33) with 2𝑠 instead of s. This estimate is (3.48), up to a
redefinition of the constant 𝑐𝜇.

The estimate (3.49) follows immediately from (3.48). �

3.6. Decoupling of resolvents

We now illustrate the basic idea that allows us to obtain the exponential decay of the left-hand side
in (2.17), analogous to the decoupling argument in the single particle localization literature. For this
purpose, we will consider a more convenient object than the one in (2.17). To do so, let 𝐴 ⊂ 𝑀 ⊂ 𝐵 ⊂ Λ,
and consider 𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ . Let 𝐾 ⊂ Z be such that 𝑀 ⊂ [𝐾]−1 ⊂ 𝐾 ⊂ [𝐾]1 ⊂ 𝐵. The resolvent

identity yields (recall (3.10))

𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ = −𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

𝐾,𝐾 𝑐

𝐸 Γ𝐾 𝑅Λ
𝐸𝑃

𝐵
+ = −𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

𝐾,𝐾 𝑐

𝐸 𝑃𝐾 𝑐

+ Γ𝐾 𝑅Λ
𝐸𝑃

𝐵
+

= −𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

𝐾
𝐸 𝑃

𝐾 𝑐

+ Γ𝐾 𝑅Λ
𝐸𝑃

𝐵
+ ,

(3.59)

where we used that 𝑃𝐴
−𝑅

𝐾,𝐾 𝑐

𝐸 𝑃𝐾
+ = 0 by (3.2) since [𝐴]𝐾∞ ⊂ 𝐾 , 𝑃𝑀𝑐

+ 𝑅𝐾,𝐾 𝑐

𝐸 = 𝑃𝑀𝑐

+ 𝑅𝐾,𝐾 𝑐

𝐸 𝑃𝐾 𝑐

+ by (3.2)
since 𝐾𝑐 ⊂ 𝑀𝑐 , and 𝑅𝐾,𝐾 𝑐

𝐸 𝑃𝐾 𝑐

+ = 𝑅𝐾
𝐸 𝑃

𝐾 𝑐

+ . Using the specific structure of the XXZ Hamiltonian –

that is, (A.3)–(A.5) – we have 𝑃𝐾 𝑐

+ Γ𝐾 = 𝑃𝐾 𝑐

+ 𝑃𝜕Λ𝐾
− Γ𝐾𝑃𝜕Λ𝐾

− = 𝑃𝐾 𝑐

+ 𝑃
𝜕Λ𝑖𝑛𝐾− Γ𝐾𝑃𝜕Λ𝑒𝑥𝐾− , so it follows from

(3.59) that

𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ = −𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

𝐾
𝐸 𝑃

𝜕Λ𝑖𝑛𝐾− 𝑃𝐾 𝑐

+ Γ𝐾𝑃𝜕Λ𝑒𝑥𝐾− 𝑅Λ
𝐸𝑃

𝐵
+ . (3.60)

We now use the resolvent identity for the operator 𝐻 [𝐾 ]Λ1 , ( [𝐾 ]Λ1 )
𝑐 and (A.3), obtaining

𝑃𝜕Λ𝑒𝑥𝐾− 𝑅Λ
𝐸𝑃

𝐵
+ = −𝑃𝜕Λ𝑒𝑥𝐾− 𝑅Λ

𝐸𝑃
𝜕Λ𝑒𝑥𝐾− Γ [𝐾 ]1𝑃𝜕Λ𝑒𝑥 [𝐾 ]1

− 𝑃 [𝐾 ]1
+ 𝑅

[𝐾 ]𝑐1
𝐸 𝑃𝐵

+ . (3.61)

Combining (3.60)–(3.61), we obtain

𝑃𝑀𝑐

+ 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ =

(𝑃𝐴
−𝑃

𝑀𝑐∩𝐾
+ 𝑅𝐾

𝐸 𝑃
𝜕Λ𝑖𝑛𝐾− )𝑃𝐾 𝑐

+ Γ𝐾
(
𝑃𝜕

Λ
𝑒𝑥𝐾− 𝑅Λ

𝐸𝑃
𝜕Λ𝑒𝑥𝐾−

)
Γ [𝐾 ]1𝑃 [𝐾 ]1

+

(
𝑃𝜕

Λ
𝑒𝑥 [𝐾 ]1

− 𝑅
[𝐾 ]𝑐1
𝐸 𝑃

𝐵∩[𝐾 ]𝑐1
+

)
.

(3.62)

This is the basic decoupling formula, in a sense that the expressions in the first and last parentheses
on the last line are statistically independent and of the same form as the left-hand side of (2.17). So,
if we can perform the averaging over the random variables at sites 𝑟 ∈ 𝜕Λ𝑒𝑥𝐾 to get rid of the middle
resolvent, we will effectively decouple the system into pieces supported by the disjoint subsets K and
[𝐾]𝑐1 . (Note that these pieces do not depend on the random variables at sites 𝑟 ∈ 𝜕Λ𝑒𝑥𝐾 .) This decoupling
will be performed using the a priori estimate (3.33), after we dress the corresponding resolvents with
Hilbert-Schmidt operators on both sides as in Lemma 3.6. In broad strokes, we then will extract the
(initial) exponential decay from the expression in the first parenthesis in (3.62) using reduction to lower
energies and obtain the full exponential decay using a sub-harmonicity argument. We flesh out details
of this process as we proceed with the proof.

3.7. Clusters classification

In preparation to initiate the FMM, we first inspect the structure of states in Ran𝑄Λ
≤𝑘 . Since 𝑄Λ

≤𝑘 is a

multiplication operator in the canonical basis
{
Φ(𝑁 )

Λ

} |Λ |

𝑁=0
introduced in (2.1), we just need to consider

the elements 𝜑𝑀 of this basis with M that belong to a set SΛ
𝑁 ,𝑘 :=

{
𝑀 ⊂ Λ : |𝑀 | = 𝑁, 1 ≤ 𝑊Λ

𝑀 ≤ 𝑘
}
,

𝑁 ≥ 1. (Recall that 𝑊Λ
𝑀 is the number of clusters of the configuration M – that is, the number of

connected components of M in the graph Λ.) Denoting by 𝜋𝜑 the orthogonal projection onto C𝜑, given
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𝑀 ∈ SΛ
𝑁 ,𝑘 , we abuse the notation and write 𝜋𝑀 for 𝜋𝜑𝑀 , so 𝜋𝑀 =

(∏
𝑗∈𝑀 N 𝑗

)
𝑃𝑀𝑐

+ , and note that
𝜒Λ𝑁𝑄

Λ
≤𝑘 =

∑
𝑀 ∈SΛ

𝑁,𝑘
𝜋𝑀 .

Given 𝐴 ⊂ Λ, we set SΛ,𝐴
𝑁 ,𝑘 =

{
𝑀 ∈ SΛ

𝑁 ,𝑘 : 𝑀 ∩ 𝐴 ≠ ∅
}
, and note that 𝜒Λ𝑁𝑄

Λ
≤𝑘𝑃

𝐴
− =

∑
𝑀 ∈SΛ,𝐴

𝑁 ,𝑘
𝜋𝑀 .

We set

𝛾𝐴(𝑀) = max
𝑥∈𝑀

distΛ(𝑥, 𝐴) ≤ diamΛ (𝑀) = max
𝑥,𝑦∈𝑀

distΛ (𝑥, 𝑦) for 𝑀 ∈ SΛ,𝐴
𝑁 ,𝑘 . (3.63)

Note that diamΛ (𝑀) = 𝑁 − 1 for 𝑘 = 1 and diamΛ (𝑀) ≥ 𝑁 ≥ 2 for 𝑘 ≥ 2.
If 8𝑘𝑁 < 𝜌Λ (𝐴, 𝐵), we will use the following lemma.

Lemma 3.8. Fix 𝑘 ≥ 2. Let 𝐴 ⊂ 𝐵 ⊂ Λ be such that 8𝑘𝑁 < 𝜌Λ(𝐴, 𝐵) < ∞, and let 𝑀 ∈ SΛ,𝐴
𝑁 ,𝑘 .

1. Suppose 𝛾𝐴(𝑀) < 4𝑘𝑁 . Then setting 𝑍 = [𝐴]Λ6𝑘𝑁 , we have

𝐴 ∪ 𝑀 ⊂ [𝑍]−1 ⊂ 𝑍 ⊂ [𝑍]1 ⊂ 𝐵; 𝜌Λ (𝐴 ∪ 𝑀, 𝑍) ≥ 2𝑘𝑁; 𝜌Λ(𝑍, 𝐵) ≥ 2𝑘𝑁. (3.64)

2. Suppose 𝜌Λ (𝐴, 𝐵) ≤ 2𝛾𝐴(𝑀). Let 𝑑𝜌 :=
⌊
𝜌Λ (𝐴,𝐵)

6𝑘

⌋
. Then there exists 𝑎 ∈ {1, 2, . . . , 3𝑘 − 1}, such

that, letting 𝐾 = [𝐴]Λ𝑎𝑑𝜌 , we have

𝜌Λ
(
𝜕Λ𝐾,Λ \ 𝑀

)
≥ 𝑑𝜌 − 1. (3.65)

Moreover, letting 𝑀1 = 𝑀 ∩ 𝐾 and 𝑀2 = 𝑀 ∩ 𝐾𝑐 , we have 𝐾 ⊂ 𝐵 and 𝑀𝑖 ≠ ∅ for 𝑖 = 1, 2.
3. Suppose 8𝑘𝑁 < 2𝛾𝐴(𝑀) < 𝜌Λ(𝐴, 𝐵). Let 𝑑𝛾 :=

⌊
𝛾𝐴 (𝑀 )

3𝑘

⌋
. Then there exists 𝑎 ∈ {1, 2, . . . , 3𝑘 − 1},

such that, letting

𝐾 = [𝐴]Λ𝑎𝑑𝛾 ∪
(
[𝐴]Λ𝛾𝐴 (𝑀 )+𝑑𝛾 \ [𝐴]

Λ
𝑎𝑑𝛾+1

)
, (3.66)

we have

𝜌Λ
(
𝜕Λ𝐾,Λ \ 𝑀

)
≥ 𝑑𝛾 − 1. (3.67)

Moreover, letting 𝑀1 = 𝑀 ∩ [𝐴]Λ𝑗𝑑𝛾 and 𝑀2 = 𝑀 ∩ [𝐴]Λ
𝛾𝐴 (𝑀 ) \ [𝐴]

Λ
𝑗𝑑𝛾+1, we have 𝑀1 ∪ 𝑀2 = 𝑀 ⊂

𝐾 ⊂ 𝐵 and 𝑀𝑖 ≠ ∅ for 𝑖 = 1, 2.

Proof. Part (i) is obvious. To prove Parts (ii) and (iii), let 𝑑 = 𝑑𝜌 in Part (ii), and 𝑑 = 𝑑𝛾 in Part (ii); note
that 𝑑 ≥ 𝑁 in both cases. We set 𝑌𝑎 = [𝐴]Λ𝑎𝑑 \ [𝐴]

Λ
(𝑎−1)𝑑 ⊂ 𝐵 for 𝑎 = 1, 2, . . . , 3𝑘; note 3𝑘𝑑 ≤ 𝜌Λ (𝐴,𝐵)

2
in both cases.

The set M consists of s clusters where 2 ≤ 𝑠 ≤ 𝑘 , so 𝑁 ≥ 2. Each cluster has length ≤ 𝑁 − 1, so it
can intersect at most two of the 𝑌𝑎’s (as 𝑑 ≥ 𝑁); hence, M can intersect at most 2𝑘 of the distinct 𝑌𝑎’s.
Thus, there exists 𝑎∗ ∈ {1, 2, . . . , 3𝑘 − 1} such that

𝑀 ∩
(
𝑌𝑎∗ ∪ 𝑌𝑎∗+1

)
= ∅, (3.68)

and 𝑀1 = 𝑀 ∩ [𝐴]Λ(𝑎∗−1)𝑑 ≠ ∅ since 𝐴 ∩ 𝑀 ≠ ∅.
To prove Part (ii) with 𝑑 = 𝑑𝜌, set 𝐾 = [𝐴]Λ𝑎∗𝑑𝜌 ⊂ 𝐵. Then 𝑀1 = 𝑀 ∩ 𝐾 ≠ ∅ since 𝐴 ∩ 𝑀 ≠ ∅, and

𝑀2 = 𝑀 ∩ (Λ \ 𝐾) ≠ ∅ as 𝜌Λ (𝐴, 𝐵) ≤ 2𝛾𝐴(𝑀) by hypothesis. Moreover, (3.65) holds due to (3.68).
To prove Part (iii) with 𝑑 = 𝑑𝛾 , let K be given in (3.66). Then 𝑀1 = 𝑀 ∩𝐾 ≠ ∅ since 𝐴∩𝑀 ≠ ∅, and

𝑀2 = 𝑀 ∩ (Λ\𝐾) ≠ ∅ as 𝜌Λ(𝐴, 𝐵) ≤ 2𝛾𝐴(𝑀) by hypothesis. Moreover, (3.65) holds due to (3.68). �
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Motivated by Lemma 3.8, given 𝐴 ⊂ 𝐵 ⊂ Λ with 8𝑘𝑁 < 𝜌Λ (𝐴, 𝐵) < ∞, we decompose SΛ,𝐴
𝑁 ,𝑘 into

three distinct groups:

1. Small 𝛾𝐴(𝑀): 𝑀 ∈ GΛ,𝑁
1 (𝐴, 𝐵) if 2𝛾𝐴(𝑀) ≤ 8𝑘𝑁 < 𝜌Λ (𝐴, 𝐵).

2. Large 𝛾𝐴(𝑀): 𝑀 ∈ GΛ,𝑁
2 (𝐴, 𝐵) if 8𝑘𝑁 < 𝜌Λ (𝐴, 𝐵) ≤ 2𝛾𝐴(𝑀).

3. Intermediate 𝛾𝐴(𝑀): 𝑀 ∈ GΛ,𝑁
3 (𝐴, 𝐵) if 8𝑘𝑁 < 2𝛾𝐴(𝑀) < 𝜌Λ(𝐴, 𝐵).

Note that for 8𝑘𝑁 < 𝜌Λ(𝐴, 𝐵) < ∞, we have

𝜒Λ𝑁𝑄
Λ
≤𝑘𝑃

𝐴
− =

3∑
1=1

𝜋GΛ,𝑁
𝑖 (𝐴,𝐵) , where 𝜋GΛ,𝑁

𝑖 (𝐴,𝐵) , =
∑

𝑀 ∈GΛ,𝑁
𝑖 (𝐴,𝐵)

𝜋𝑀 . (3.69)

3.8. Decoupling revisited

We will need to estimate 𝜒Λ𝑁𝑄
Λ
≤𝑘𝑃

𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 . If 8𝑘𝑁 ≥ 𝜌Λ(𝐴, 𝐵), we use (3.49). If 8𝑘𝑁 < 𝜌Λ(𝐴, 𝐵),

we note that

𝜋𝑀 𝜒Λ𝑁𝑄
Λ
≤𝑘𝑃

𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 = 𝜋𝑀𝑃𝐴

−𝑅
Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 for 𝑀 ∈ 𝑆Λ,𝐴𝑁 ,𝑘 . (3.70)

We will use different strategies for 𝑀 ∈ G𝑖 = GΛ,𝑁
𝑖 (𝐴, 𝐵), 𝑖 = 1, 2, 3.

If 𝑀 ∈ G1, we use the decoupling argument of Section 3.6, getting (3.62) with 𝐾 = [𝐴]Λ8𝑘𝑁 . The
estimation for the expression in the first parenthesis in (3.62) will be performed using directly the a
priori estimate (3.48) and (3.64). (No energy reduction.) This yields exponential decay in 𝛾𝐴(𝑀) for
this type of contributions, and the sub-harmonicity argument concludes the analysis.

To handle 𝑀 ∈ G2, we consider 𝐾, 𝑀1, 𝑀2 as in Lemma 3.8(ii), set 𝑆 = [𝜕𝐾]Λ𝑑𝛾−1, and note that

𝜋𝑀𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 = 𝜋𝑀𝑃𝑆+𝑃

𝐾
− 𝑃

𝐾 𝑐

− 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+𝑄

Λ
≤𝑘 . (3.71)

Using 𝑀1 ⊂ 𝐵, we get

𝑃𝑆+𝑃
𝐾
− 𝑃

𝐾 𝑐

− 𝑅Λ
𝐸𝑃

𝐵
+ = −

(
𝑃𝑆+𝑃

𝐾
− 𝑃

𝐾 𝑐

− 𝑅𝐾,𝐾 𝑐

𝐸 𝑃𝜕Λ𝐾
−

)
ΓK𝑃𝜕Λ𝐾

− 𝑅Λ
𝐸𝑃

𝐵
+ . (3.72)

The expression in parenthesis is estimated by reduction to lower energies 𝐸 ′ ∈ 𝐼≤𝑘−1, allowing the use of
the induction hypothesis (in k) together with the estimate (3.65) to obtain exponential decay in 𝜌Λ(𝐴, 𝐵).

If 𝑀 ∈ G3, we use a decoupling based on Lemma 3.8(iii), we get exponential decay in 𝛾𝐴(𝑀) from
the induction hypothesis (in k), and the sub-harmonicity argument concludes the analysis.

3.9. Reduction to lower energies

We first observe that 𝑃𝐴
−𝑅

Λ
𝐸𝑃

𝐵
+ = 𝑃𝐴

−𝑅
Λ
0,𝐸𝑃

𝐵
+ decays exponentially in 𝜌Λ(𝐴, 𝐵) for 𝐸 ≤ 3

4

(
1 − 1

Δ

)
due

to (3.23) with 𝑘 = 0; that is, Theorem 2.4 holds for k=0. Suppose now that we already established (2.17)
for all energies 𝐸 ∈ 𝐼≤𝑘−1 and we want to push the allowable energies to the interval 𝐼≤𝑘 . The principal
idea here is to observe that if ∅ ≠ 𝐾 � Λ, then we have the nontrivial decoupling 𝐻𝐾,𝐾 𝑐

= 𝐻𝐾 + 𝐻𝐾 𝑐 ,
and 𝑅𝐾,𝐾 𝑐

𝐸 can be decomposed as

𝑅𝐾,𝐾 𝑐

𝐸 =
∑

𝜈∈𝜎 (𝐻𝐾𝑐 )

𝑅𝐾
𝐸−𝜈 ⊗ 𝜋𝜅𝜈 , (3.73)
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where {𝜅𝜈}𝜈∈𝜎 (𝐻𝐾𝑐 ) is an orthonormal basis for H𝐾 𝑐 that diagonalizes 𝐻𝐾 𝑐 : 𝐻𝐾 𝑐
𝜅𝜈 = 𝜈𝜅𝜈 . In

particular, if 𝐾1 ⊂ 𝐾 and 𝐾2 ⊂ 𝐾𝑐 , we deduce that

𝑃𝐾1
− 𝑃𝐾2

− 𝑅𝐾,𝐾 𝑐

𝐸 =
∑

𝜈∈𝜎 (𝐻𝐾𝑐 )∩[1− 1
Δ ,∞)

(
𝑃𝐾1
− 𝑅𝐾

𝐸−𝜈

)
⊗

(
𝑃𝐾2
− 𝜋𝜅𝜈

)
, (3.74)

since 𝑃𝐾2− 𝜋𝜅0 = 0, and we have min𝜈∈𝜎 (𝐻𝐾𝑐 )\{0} 𝜈 ≥ 1 − 1
Δ . This is exactly the type of setup we have

in (3.71)–(3.72). It means that the factor 𝑃𝐾1− 𝑃𝐾2− allows us effectively to lower the energy 𝐸 ∈ 𝐼≤𝑘 to
𝐸 − 𝜈 ∈ 𝐼≤𝑘−1 and therefore use the induction hypothesis to obtain exponential decay (we of course still
need to control the summation over 𝜈 on the right-hand side of (3.74)).

4. Proof of the main theorem

In this section, we prove Theorem 2.4. We fix Δ0 > 5 and 𝜆0 > 0, and assume Δ ≥ Δ0 and 𝜆 ≥ 𝜆0. As
discussed in Remark 3.3, the argument can be modified for Δ0 > 1.

The proof proceeds by induction on k. Theorem 2.4 holds for 𝑘 = 0, since in this case, (2.17) follows
from (3.23) with 𝐹0 = 𝐶0, 𝜉0 = 0 and 𝜃0 = 𝑚0 as 𝑃𝐴

−𝑅
Λ
𝐸 = 𝑃𝐴

−𝑅
Λ
0,𝐸 . Given 𝑘 ∈ N, we assume the

theorem holds for 𝑘 − 1, and we will prove the theorem holds for k.
We now fix 𝑘 ∈ N and Λ ⊂ Z, finite and nonempty. We also fix 𝐴 ⊂ 𝐵 ⊂ Λ, where A is a nonempty

subset connected in Λ; it follows that [𝐴]Λ𝑝 is also connected in Λ and
��]𝐴[Λ𝑝 �� ≤ 2 for all 𝑝 ∈ Z.

To derive the bound (2.17) from Lemma 3.6(i), we will estimate E
(��𝐹Λ

𝑝,𝑞 (𝐸, 𝐴)
��𝑠
𝐻𝑆

)
for 𝑝, 𝑞 =

−|𝐴|,−|𝐴| + 1, . . . , |Λ| for 𝐸 ∈ 𝐼≤𝑘 , where 𝐹Λ
𝑝,𝑞 (𝐸, 𝐴) is given in (3.36). The estimate (3.33) gives the

a priori bound (𝐹𝑝,𝑞 = 𝐹Λ
𝑝,𝑞 (𝐸, 𝐴))

E
��𝐹𝑝,𝑞��𝑠𝐻𝑆

≤ 𝐶𝜆−𝑠0 𝑘𝑠 |Λ|2𝑠𝑘+2. (4.1)

Since 𝐹𝑝,𝑞 = 𝐹∗
𝑞,𝑝 , we may assume 𝑝 ≤ 𝑞. If 𝑝 = 𝑞, we use (4.1); if 𝑝 < 𝑞, we note that��𝐹𝑝,𝑞��𝐻𝑆
≤

����𝑄Λ
≤𝑘𝑃

]𝐴[Λ𝑝
− 𝑅Λ

𝐸𝑃
[𝐴]Λ𝑞
+ 𝑄Λ

≤𝑘

����
𝐻𝑆

≤
∑

𝑗∈]𝐴[Λ𝑝

����𝑄Λ
≤𝑘N 𝑗𝑅

Λ
𝐸𝑃

[ 𝑗 ]Λ𝑞−𝑝−1
+ 𝑄Λ

≤𝑘

����
𝐻𝑆

, (4.2)

where we used []𝐴[Λ𝑝]Λ𝑞−𝑝−1 ⊂ [𝐴]Λ𝑞 for 𝑝 < 𝑞.
For 𝑟 ∈ N0 and 𝐸 ∈ 𝐼≤𝑘 , we set

𝑓 Λ(𝑘, 𝐸, 𝑟) = max
Θ⊂Λ

max
𝑗∈Θ
E

(���𝑄Θ
≤𝑘N 𝑗𝑅

Θ
𝐸𝑃

[ 𝑗 ]Θ𝑟
+ 𝑄Θ

≤𝑘

���𝑠
𝐻𝑆

)
(4.3)

and prove the following lemma.

Lemma 4.1. Let 𝑘 ∈ N, 𝑠 ∈ (0, 1
3 ), and assume Theorem 2.4 holds for 𝑘 − 1. Then there exist constants

𝐷𝑘 , 𝐶𝑘 , 𝜁𝑘 , 𝑚𝑘 > 0 (depending on k, Δ0, 𝜆0 and s), such that such that, for all Δ ≥ Δ0 and 𝜆 ≥ 𝜆0 with
𝜆Δ2 ≥ 𝐷𝑘 , Λ ⊂ Z finite, energy 𝐸 ∈ 𝐼≤𝑘 , and 𝑟 ∈ N0, we have

𝑓 Λ(𝑘, 𝐸, 𝑟) ≤ 𝐶𝑘 |Λ|𝜁𝑘 e−𝑚𝑘𝑟 . (4.4)

To finish the proof of the theorem, we assume that Δ ≥ Δ0 and 𝜆 ≥ 𝜆0 with 𝜆Δ2 ≥ 𝐷𝑘 as in the
lemma. Then, since E

(��𝐹𝑝,𝑞��)𝑠𝐻𝑆
≤ 2 𝑓 Λ(𝑘, 𝐸, |𝑞 − 𝑝 | −1) for |𝑞 − 𝑝 | ≥ 1, and we have (4.1) for 𝑞 = 𝑝,

we obtain

E
 !"

|Λ |∑
𝑝=−|𝐴 |

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑝)+e−𝑚0 (𝑡−𝑞−1)+
��𝐹𝑝,𝑞��#$%

𝑠

≤ 𝐶𝑘 |Λ|𝜁𝑘 e−𝑠𝑚𝑘 𝑡 . (4.5)
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The estimate (2.17) now follows from (3.36) and (4.5) (recall (3.6)), so Theorem 2.4 holds for k.
To complete the proof of Theorem 2.4, we need to prove Lemma 4.1. To do so, we need the following

lemma.

Lemma 4.2. Let 𝑘 ∈ N, 𝑠 ∈ (0, 1
3 ), and assume Theorem 2.4 holds for 𝑘 − 1. Then there exist constants

𝐶𝑘 , 𝜁𝑘 , 𝑚𝑘 > 0 (depending on k, Δ0, 𝜆0 and s), such that, for all Δ ≥ Δ0 and 𝜆 ≥ 𝜆0, 𝑗 ∈ Λ ⊂ Z finite,
energy 𝐸 ∈ 𝐼≤𝑘 , 𝑁 ∈ N, and 𝑟 ∈ N0 such that 8𝑘𝑁 < 𝑟 , we have

𝐺Λ
𝑁 (𝑟) = E

(���𝜒Λ𝑁𝑄Λ
≤𝑘N 𝑗𝑅

Λ
𝐸𝑃

[ 𝑗 ]Λ𝑟
+ 𝑄Λ

≤𝑘

���𝑠
𝐻𝑆

)
≤ 𝐶𝑘

 !"|Λ|𝜁𝑘 e−𝑚𝑘𝑟 + e−𝑚𝑘𝑁
(
𝜆Δ2

)−𝑠 𝑟∑
𝑝=0

e−𝑚𝑘 (𝑟−𝑝) 𝑓 Λ𝑁 (𝑝)#$%.
(4.6)

Proof. Let 𝑘 ∈ N, 𝑠 ∈ (0, 1
3 ), and assume Theorem 2.4 holds for 𝑘 − 1. Let 𝑗 ∈ Λ ⊂ Z finite and

𝐸 ∈ 𝐼≤𝑘 , 𝑁 ∈ N, and 𝑟 ∈ N0 such that 8𝑘𝑁 < 𝑟 . Let 𝐺Λ
𝑁 (𝑟) be as in (4.6). It follows from (3.69), setting

G𝑁
𝑖 = GΛ,𝑁

𝑖 ({ 𝑗}, [ 𝑗]Λ𝑟 ), 𝑖 = 1, 2, 3 (see Section 3.7), that

𝐺Λ
𝑁 (𝑟) ≤

3∑
𝑖=1

𝐺𝑖 (𝑟), where 𝐺𝑖 (𝑟) = 𝐺Λ,𝑁
𝑖 (𝑟) = E

(���𝜋G𝑁
𝑖
N 𝑗𝑅

Λ
𝐸𝑃

[ 𝑗 ]Λ𝑟
+ 𝑄Λ

≤𝑘

���𝑠
𝐻𝑆

)
. (4.7)

To estimate 𝐺1 (𝑟), we use (3.62) with 𝑀 = [ 𝑗]Λ4𝑘𝑁 and 𝐾 = [ 𝑗]Λ6𝑘𝑁 , (3.25) and (A.6), obtaining

𝐺1(𝑟) ≤ 𝐶
(
𝜆Δ2

)−𝑠
E𝐾

(
‖𝑌 ‖𝑠𝐻𝑆

)
E( [𝐾 ]Λ1 )

𝑐
(
‖𝑍 ‖𝑠𝐻𝑆

)
;

𝑌 := 𝜒𝐾𝑁𝑄
𝐾
≤𝑘𝑃

𝐾\𝑀
+ 𝑅𝐾

𝐸 𝑃
𝜕Λ𝑖𝑛𝐾− , 𝑍 := 𝑃𝜕Λ𝑒𝑥 [𝐾 ]1

− 𝑅
( [𝐾 ]Λ1 )

𝑐

𝐸 𝑃
[ 𝑗 ]Λ𝑟 ∩( [𝐾 ]Λ1 )

𝑐

+ 𝑄
( [𝐾 ]Λ1 )

𝑐

≤𝑘 𝜒
( [𝐾 ]Λ1 )

𝑐

𝑁 .

(4.8)

To estimate E𝐾
(
‖𝑌 ‖𝑠𝐻𝑆

)
, note that

‖𝑌 ‖𝐻𝑆 ≤
∑

𝑢∈𝜕Λ𝑖𝑛𝐾

‖𝑌𝑢 ‖𝐻𝑆 , where 𝑌𝑢 = 𝜒𝐾𝑁𝑄
𝐾
≤𝑘𝑃

𝐾\𝑀
+ 𝑅𝐾

𝐸N𝑢 , and
��𝜕Λ𝑖𝑛𝐾 �� ≤ 2. (4.9)

Using (3.37) and 𝜌𝐾 (𝜕Λ𝑖𝑛𝐾, 𝐾 \ 𝑀) ≥ 2𝑘𝑁 , for 𝑢 ∈ 𝜕Λ𝑖𝑛𝐾 , we get

E𝐾
(
‖𝑌𝑢 ‖𝑠𝐻𝑆

)
≤ 𝐶𝑠

𝑘
 !"|𝐾 |𝑠𝑘e−𝑠𝑚02𝑘𝑁 +

|𝐾 |∑
𝑞=−1

e−𝑠𝑚0 (𝑞)+E

(���𝜒𝐾𝑁𝑄𝐾
≤𝑘𝑃

]𝑢 [𝐾𝑞
− 𝑅𝐾

𝐸 𝑃
𝐾\𝑀
+ 𝑄𝐾

≤𝑘

𝑠

𝐻𝑆

���)#$%
≤ 𝐶𝑘,𝑠

 !"|𝐾 |2𝑠𝑘+1e−𝑠𝑚02𝑘𝑁 + 2
2𝑘𝑁−1∑
𝑞=−1

e−𝑠𝑚0 (𝑞)+ 𝑓 𝐾𝑁 (2𝑘𝑁 − 𝑞 − 1)#$%
≤ 𝐶𝑘,𝑠e−𝑚

′
0,𝑘 𝑘𝑁 ,

(4.10)

where we used the a priori bounds (3.33) and (3.48).
Similarly,

‖𝑍 ‖𝐻𝑆 ≤
∑

𝑢∈𝜕Λ𝑒𝑥 [𝐾 ]1

‖𝑍𝑢 ‖𝐻𝑆 , where 𝑍𝑢 = N𝑢𝑅
( [𝐾 ]Λ1 )

𝑐

𝐸 𝑃
[ 𝑗 ]Λ𝑟 ∩( [𝐾 ]Λ1 )

𝑐

+ 𝑄
( [𝐾 ]Λ1 )

𝑐

≤𝑘 𝜒
( [𝐾 ]Λ1 )

𝑐

𝑁 , (4.11)
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and
��𝜕Λ𝑒𝑥 [𝐾]1�� ≤ 2. Using (3.37), for 𝑢 ∈ 𝜕𝑒𝑥 [𝐾]1, we get

E( [𝐾 ]Λ1 )
𝑐
(
‖𝑍𝑢 ‖𝑠𝐻𝑆

)
≤ 𝐶𝑠

𝑘

(
|Λ|𝑠𝑘e−𝑠𝑚0 (𝑟−6𝑘𝑁−2)+

|Λ |∑
𝑞=−1

e−𝑠𝑚0 (𝑞)+E
(���𝜒( [𝐾 ]Λ1 )

𝑐

𝑁 𝑄
( [𝐾 ]Λ1 )

𝑐

≤𝑘 𝑃
]𝑢 [( [𝐾 ]Λ1 )𝑐

𝑞
− 𝑅

( [𝐾 ]Λ1 )
𝑐

𝐸 𝑃
[ 𝑗 ]Λ𝑟 ∩( [𝐾 ]Λ1 )

𝑐

+ 𝑄
( [𝐾 ]Λ1 )

𝑐

≤𝑘

���𝑠
𝐻𝑆

)#$%
≤ 𝐶𝑠

𝑘
 !"|Λ|2𝑠𝑘+2e−𝑠𝑚0 (𝑟−6𝑘𝑁−2) +

𝑟−6𝑘𝑁−3∑
𝑞=−1

e−𝑠𝑚0 (𝑞)+ 𝑓 Λ𝑁 (𝑟 − 6𝑘𝑁 − 𝑞 − 3)#$%
= 𝐶𝑠

𝑘
 !"|Λ|2𝑠𝑘+2e−𝑠𝑚0 (𝑟−6𝑘𝑁−2) +

𝑟−6𝑘𝑁−2∑
𝑝=0

e−𝑠𝑚0 (𝑟−𝑝−6𝑘𝑁−3)+ 𝑓 Λ𝑁 (𝑝)#$%.
(4.12)

Combining (4.8)–(4.12), we get

𝐺1(𝑟) ≤ 𝐶
(
𝜆Δ2

)−𝑠
e−𝑚

′
𝑘 𝑘𝑁

(
|Λ|2𝑠𝑘+2e−𝑚

′
𝑘𝑟 +

𝑟∑
𝑝=0

e−𝑚
′
𝑘 (𝑟−𝑝) 𝑓 Λ𝑁 (𝑝)

)
, (4.13)

for an appropriate 𝑚′
𝑘 > 0.

To estimate 𝐺2 (𝑟), we note that it follows from Lemma 3.8(ii), letting

𝐾 (𝑎) = [ 𝑗]Λ𝑎𝑑𝜌 and 𝑆(𝑎) = [𝜕Λ𝐾 (𝑎)]Λ𝑑𝜌−1 for 𝑎 ∈ N, (4.14)

that

𝐺2(𝑟) ≤
3𝑘−1∑
𝑎=1

𝐺 (𝑎)
2 (𝑟), 𝐺 (𝑎)

2 (𝑟) = E
(���𝜒Λ𝑁𝑄Λ

≤𝑘𝑃
𝑆 (𝑎)
+ 𝑃𝐾 (𝑎)

− 𝑃 (𝐾 (𝑎))𝑐
− N 𝑗𝑅

Λ
𝐸𝑃

[ 𝑗 ]Λ𝑟
+ 𝑄Λ

≤𝑘

���𝑠
𝐻𝑆

)
. (4.15)

To estimate𝐺 (𝑎)
2 (𝑟), we use (3.71) and (3.72), the Cauchy-Schwarz inequality and Hölder’s inequality

(recall 3𝑠 < 1) to get (we mostly omit a from the notation)

𝐺 (𝑎)
2 (𝑟) ≤ 𝐶Δ−𝑠

(
E‖𝑌 ‖2𝑠

)1/2 (
E‖𝑍 ‖2𝑠

𝐻𝑆

)1/2

≤ 𝐶Δ−𝑠 (E‖𝑌 ‖𝑠)1/4
(
E‖𝑌 ‖3𝑠

)1/4 (
E‖𝑍 ‖2𝑠

𝐻𝑆

)1/2
,

(4.16)

where

𝑌 = 𝜒Λ𝑁𝑄
Λ
≤𝑘𝑃

𝑆 (𝑎)
+ 𝑃𝐾 (𝑎)

− 𝑃 (𝐾 (𝑎))𝑐
− N 𝑗𝑅

𝐾 (𝑎) , (𝐾 (𝑎))𝑐
𝐸 𝑃𝜕Λ𝐾 (𝑎)

− and 𝑍 = 𝑃𝜕
Λ𝐾 (𝑎)

− 𝑅Λ
𝐸𝑃

[ 𝑗 ]Λ𝑟
+ 𝑄Λ

≤𝑘 𝜒
Λ
𝑁 .

(4.17)

It follows immediately from (3.38) that

E‖𝑍 ‖2𝑠
𝐻𝑆 ≤ 𝐶 |Λ|4𝑠𝑘+3 and E‖𝑌 ‖3𝑠 ≤ 𝐶 |Λ|6𝑠𝑘+3, (4.18)

where we used
��𝜕Λ𝐾 (𝑎)

�� ≤ 4 since 𝐾 (𝑎) is connected, and hence, we have

𝐺 (𝑎)
2 (𝑟) ≤ 𝐶Δ−𝑠 |Λ|

7
2 𝑠𝑘+

9
4 (E‖𝑌 ‖𝑠)1/4. (4.19)
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To estimate 𝐸 ‖𝑌 ‖𝑠 , we use ( the dependence on a is being ommitted)

‖𝑌 ‖ ≤
∑

𝑥∈𝜕Λ𝐾
‖𝑌𝑥 ‖, with 𝑌𝑥 = 𝜒Λ𝑁𝑄

Λ
≤𝑘𝑃

𝑆
+𝑃

𝐾
− 𝑃

𝐾 𝑐

− N 𝑗𝑅
𝐾,𝐾 𝑐

𝐸 N𝑥 . (4.20)

We consider first the case 𝑥 ∈ 𝜕Λ𝑖𝑛𝐾 . Using (3.74), we can further decompose 𝑌𝑥 as

𝑌𝑥 =
∑

𝜈∈𝜎 (𝐻𝐾𝑐 )∩[1− 1
Δ ,∞)

𝑌𝑥,𝜈 , 𝑌𝑥,𝜈 = 𝜒Λ𝑁𝑄
Λ
≤𝑘𝑃

𝑆
+𝑃

𝐾
− 𝑃

𝐾 𝑐

− N 𝑗

(
𝑅𝐾
𝐸−𝜈 ⊗ 𝜋𝜅𝜈

)
N𝑥 . (4.21)

Note that

‖𝑌𝑥 ‖ = max
𝜈

��𝑌𝑥,𝜈�� ≤
∑

𝜈∈𝜎 (𝐻𝐾𝑐 )∩[1− 1
Δ ,𝑘 (1−

1
Δ ))

��𝑌𝑥,𝜈�� + max
𝜈∈𝜎 (𝐻𝐾𝑐 )∩[𝑘 (1− 1

Δ ) ,∞)

��𝑌𝑥,𝜈��. (4.22)

Clearly, we can bound ��𝑌𝑥,𝜈�� ≤
���𝑃𝑆+ (𝑅𝐾

𝐸−𝜈 ⊗ 𝜋𝜅𝜈

)
N𝑥

��� ≤
��𝑃𝑆∩𝐾+ 𝑅𝐾

𝐸−𝜈N𝑥

��. (4.23)

For 𝜈 ≥ 1− 1
Δ , we have 𝐸−𝜈 ∈ 𝐼≤𝑘−1 for 𝐸 ∈ 𝐼≤𝑘 (recall (2.14)). For 𝜈 ∈ 𝜎(𝐻𝐾 𝑐 )∩ [1− 1

Δ , 𝑘 (1−
1
Δ )),

we use the induction hypothesis for Theorem 2.4 and the statistical independence of 𝐻𝐾 𝑐 and {𝜔𝑖}𝑖∈𝐾
to conclude that

E
��𝑌𝑥,𝜈��𝑠 ≤ E𝐾 ��𝑃𝑆∩𝐾+ 𝑅𝐾

𝐸−𝜈N𝑥

��𝑠 ≤ 𝐶𝑘−1 |Λ| 𝜉𝑘−1e−𝜃𝑘−1
𝑟
6𝑘 , (4.24)

where we used (3.65).
For 𝜈 ∈ 𝜎(𝐻𝐾 𝑐 ) ∩ [𝑘 (1 − 1

Δ ),∞), 𝐸 − 𝜈 ≤ 3
4

(
1 − 1

Δ

)
, and in this case,

𝑃𝑆∩𝐾+ 𝑅𝐾
𝐸−𝜈N𝑥 = 𝑃𝑆∩𝐾+ 𝑅𝐾

𝐸−𝜈N𝑥 , (4.25)

so it follows from (3.23) with 𝑘 = 0, using (3.65), that��𝑌𝑥,𝜈�� ≤ 𝐶0e−𝑚0
𝑟
6𝑘 . (4.26)

Using (4.22), (4.24), (4.26) and (3.27), we get

E‖𝑌𝑥 ‖𝑠 ≤ 𝐶 |Λ| 𝜉𝑘−1e−𝜃𝑘−1
𝑟
6𝑘 tr 𝜒[1− 1

Δ ,𝑘 (1−
1
Δ ))

(𝐻𝐾 𝑐 ) ≤ 𝐶𝑘 |Λ| 𝜉𝑘−1+2𝑘 e−
𝜃𝑘−1

6𝑘 𝑟 . (4.27)

Similar considerations show that the estimate (4.27) holds also for 𝑥 ∈ 𝜕Λ𝑒𝑥𝐾 .
Combining (4.20) and (4.27) and recalling

��𝜕Λ𝐾 �� ≤ 4, we get

E‖𝑌 ‖𝑠 ≤ 𝐶𝑘 |Λ| 𝜉𝑘−1+2𝑘 e−
𝜃𝑘−1

6𝑘 𝑟 . (4.28)

Combining (4.19) and (4.28), we see that

𝐺 (𝑎)
2 (𝑟) ≤ 𝐶𝑘Δ

−𝑠 |Λ|𝜁𝑘 e−
𝜃𝑘−1
24𝑘 𝑟 . (4.29)

It now follows from (4.15) and (4.29) that

𝐺2(𝑟) ≤ 𝐶𝑘Δ
−𝑠 |Λ|𝜁𝑘 e−

𝜃𝑘−1
24𝑘 𝑟 ≤ 𝐶𝑘Δ

−𝑠 |Λ|𝜁𝑘 e−𝜃
′′
𝑘−1𝑟 . (4.30)
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To estimate 𝐺3 (𝑟), given 4𝑘𝑁 < 𝛾 < 𝑟
2 , we let 𝑑𝛾 :=

⌊ 𝛾
3𝑘

⌋
. Given 𝑎 ∈ {1, 2, . . . , 3𝑘 − 1}, we

let 𝐾 (𝑎, 𝛾) be as in (3.66) with 𝐴 = { 𝑗}, and let 𝐾1(𝑎, 𝛾) = [ 𝑗]Λ𝑎𝑑𝛾 , the connected component of
𝐾 (𝑎, 𝛾) that contains j. We also set 𝐾2(𝑎, 𝛾) = 𝐾 (𝑎, 𝛾) \ 𝐾1(𝑎, 𝛾), 𝑆(𝑎, 𝛾) = [𝜕Λ𝐾 (𝑎, 𝛾)]Λ𝑑𝛾−1, and
𝑇 (𝑎, 𝛾) = [ 𝑗]Λ

𝛾{ 𝑗} (𝑀 ) . It follows from Lemma 3.8(iii) that

𝜋𝑀 = 𝜋𝑀𝑃
𝑇 (𝑎,𝛾{ 𝑗} (𝑀 ))
+ 𝑃

𝑆 (𝑎,𝛾{ 𝑗} (𝑀 ))
+ 𝑃

𝐾1 (𝑎,𝛾{ 𝑗} (𝑀 ))
− 𝑃

𝐾2 (𝑎,𝛾{ 𝑗} (𝑀 ))
− , (4.31)

for some 𝑎 ∈ {1, 2, . . . , 3𝑘 − 1}, and hence,

𝐺3 (𝑟) ≤
� 𝑟

2 �∑
𝛾=4𝑘𝑁+1

3𝑘−1∑
𝑎=1

𝐺
(𝑎,𝛾)
3 (𝑟), where

𝐺
(𝑎,𝛾)
3 (𝑟) = E

(���𝜒Λ𝑁𝑄Λ
≤𝑘𝑃

𝑇 (𝑎,𝛾)
+ 𝑃

𝑆 (𝑎,𝛾)
+ 𝑃𝐾1 (𝑎,𝛾)

− 𝑃𝐾2 (𝑎,𝛾)
− N 𝑗𝑅

Λ
𝐸𝑃

[ 𝑗 ]Λ𝑟
+ 𝑄Λ

≤𝑘

���𝑠
𝐻𝑆

)
.

(4.32)

To estimate 𝐺 (𝑎,𝛾)
3 (𝑟), we start with the following analogue of (4.8) (we mostly omit (𝑎, 𝛾) from the

notation):

𝐺
(𝑎,𝛾)
3 (𝑟) ≤ 𝐶

(
𝜆Δ2

)−𝑠
E𝐾 (‖𝑌 ‖𝑠) E[𝐾 ]𝑐1

(
‖𝑍 ‖𝑠𝐻𝑆

)
;

𝑌 := 𝜒𝐾𝑁𝑄
𝐾
≤𝑘𝑃

𝑇∩𝐾
+ 𝑃𝑆+𝑃

𝐾1
− 𝑃𝐾2

− 𝑅𝐾
𝐸 𝑃

𝜕Λ𝑖𝑛𝐾− ,

𝑍 := 𝑃𝜕
Λ
𝑒𝑥 [𝐾 ]1

− 𝑅
( [𝐾 ]Λ1 )

𝑐

𝐸 𝑃
[ 𝑗 ]Λ𝑟 ∩( [𝐾 ]Λ1 )

𝑐

+ 𝑄
( [𝐾 ]Λ1 )

𝑐

≤𝑘 𝜒
( [𝐾 ]Λ1 )

𝑐

𝑁 .

(4.33)

Proceeding exactly as in (4.11)–(4.12), we get

E( [𝐾 ]Λ1 )
𝑐
(
‖𝑍 ‖𝑠𝐻𝑆

)
≤ 𝐶𝑠

𝑘

(
|Λ| 𝜉𝑘 e−𝑠𝑚0 (𝑟−𝛾−𝑑𝛾) +

𝑟−(𝛾+𝑑𝛾)−2∑
𝑝=0

e−𝑠𝑚0(𝑟−𝑝−(𝛾+𝑑𝛾)−3)+ 𝑓 Λ𝑁 (𝑝)
)
. (4.34)

We estimate 𝐸 ‖𝑌 ‖𝑠 similarly to (4.20)–(4.28). We have

‖𝑌 ‖ ≤
∑

𝑥∈𝜕𝑖𝑛𝐾
‖𝑌𝑥 ‖, where 𝑌𝑥 = 𝜒𝐾𝑁𝑄

𝐾
≤𝑘𝑃

𝑇∩𝐾
+ 𝑃𝑆+𝑃

𝐾1
− 𝑃𝐾2

− 𝑅𝐾
𝐸N𝑥 . (4.35)

We consider first the case 𝑥 = 𝑥𝑖 ∈ 𝜕𝑖𝑛
(
[𝐾]Λ1

)𝑐
𝐾𝑖 , 𝑖 ∈ {1, 2}, and 𝑖′ = {1, 2} \ {𝑖}. Using (3.74), we can

further decompose 𝑌𝑥 as

𝑌𝑥𝑖 =
∑

𝜈∈𝜎 (𝐻𝐾𝑖′ )∩[1− 1
Δ ,∞)

𝑌𝑥𝑖 ,𝜈 , 𝑌𝑥𝑖 ,𝜈 = 𝑃𝑆+𝑃
𝐾𝑖′
−

(
𝑅𝐾𝑖

𝐸−𝜈 ⊗ 𝜋𝜅𝜈

)
N𝑥 . (4.36)

Note that��𝑌𝑥𝑖�� = max
𝜈

��𝑌𝑥𝑖 ,𝜈�� ≤
∑

𝜈∈𝜎 (𝐻𝐾𝑖′ )∩[1− 1
Δ ,𝑘 (1−

1
Δ ))

��𝑌𝑥𝑖 ,𝜈�� + max
𝜈∈𝜎 (𝐻𝐾𝑖′ )∩[𝑘 (1− 1

Δ ) ,∞)

��𝑌𝑥𝑖 ,𝜈��. (4.37)

Clearly, we can bound ��𝑌𝑥𝑖 ,𝜈�� ≤
���𝑃𝑆+ (𝑅𝐾𝑖

𝐸−𝜈 ⊗ 𝜋𝜅𝜈

)
N𝑥𝑖

��� ≤
���𝑃𝑆∩𝐾𝑖

+ 𝑅𝐾𝑖

𝐸−𝜈N𝑥𝑖

���. (4.38)

For 𝜈 ≥ 1− 1
Δ , we have 𝐸−𝜈 ∈ 𝐼≤𝑘−1 for 𝐸 ∈ 𝐼≤𝑘 (recall (2.14)). For 𝜈 ∈ 𝜎(𝐻𝐾𝑖′ )∩ [1− 1

Δ , 𝑘 (1−
1
Δ )),

we use the induction hypothesis for Theorem 2.4 and the statistical independence of 𝐻𝐾𝑖′ and {𝜔𝑖}𝑖∈𝐾𝑖
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to conclude that

E
��𝑌𝑥,𝜈��𝑠 ≤ E𝐾𝑖

���𝑃𝑆∩𝐾𝑖
+ 𝑅𝐾𝑖

𝐸−𝜈N𝑥𝑖

���𝑠 ≤ 𝐶𝑘−1 |𝐾𝑖 | 𝜉𝑘−1e−𝜃𝑘−1𝑑𝛾 ≤ 𝐶𝑘−1 |𝛾 | 𝜉𝑘−1e−𝜃𝑘−1𝑑𝛾 . (4.39)

For 𝜈 ∈ 𝜎(𝐻𝐾𝑖′ ) ∩ [𝑘 (1 − 1
Δ ),∞), 𝐸 − 𝜈 ≤ 3

4

(
1 − 1

Δ

)
, and in this case,

𝑃𝑆∩𝐾𝑖
+ 𝑅𝐾𝑖

𝐸−𝜈N𝑥 = 𝑃𝑆∩𝐾𝑖
+ 𝑅𝐾𝑖

𝐸−𝜈N𝑥𝑖 ,

so it follows from (3.23) with 𝑘 = 0 that ��𝑌𝑥𝑖 ,𝜈�� ≤ 𝐶0e−𝑚0𝑑𝛾 . (4.40)

Using (4.37), (4.39), (4.40) and (3.27), we get

E
��𝑌𝑥𝑖��𝑠 ≤ 𝐶𝛾 𝜉𝑘−1e−

𝜃𝑘−1
3𝑘 𝛾 tr 𝜒[1− 1

Δ ,𝑘 (1−
1
Δ ))

(𝐻𝐾𝑖′ ) ≤ 𝐶𝑘𝛾
𝜉𝑘−1+2𝑘 e−

𝜃𝑘−1
3𝑘 𝛾 . (4.41)

Combining (4.35) and (4.41) and recalling
��𝜕Λ𝑖𝑛𝐾𝑖

�� ≤ 4, we get

E‖𝑌 ‖𝑠 ≤ 𝐶𝑘 |𝛾 | 𝜉𝑘−1+2𝑘 e−
𝜃𝑘−1

3𝑘 𝛾 ≤ 𝐶𝑘e−𝜃
′
𝑘−1𝛾 . (4.42)

Combining (4.33), (4.34) and (4.42), we get

𝐺
(𝑎,𝛾)
3 (𝑟) ≤ 𝐶𝑘

(
𝜆Δ2

)−𝑠
e−𝜃

′
𝑘−1𝛾

(
|Λ|2𝑠𝑘+2e−𝑠𝜃

′
𝑘−1𝑟 +

𝑟∑
𝑝=0

e−𝑠𝜃
′
𝑘−1 (𝑟−𝑝) 𝑓 Λ𝑁 (𝑝)

)
. (4.43)

It follows from (4.32) and (4.43) that

𝐺3(𝑟) ≤ 𝐶𝑘

(
𝜆Δ2

)−𝑠
e−𝑚̂𝑁

(
|Λ|2𝑠𝑘+2e−𝑠𝜃

′
𝑘−1𝑟 +

𝑟∑
𝑝=0

e−𝑠𝜃
′
𝑘−1 (𝑟−𝑝) 𝑓 Λ𝑁 (𝑝)

)
. (4.44)

Putting together (4.7), (4.13), (4.30) and (4.44), we obtain (4.6). �

We can now prove Lemma 4.1.

Proof of Lemma 4.1. For Λ ⊂ Z finite, 𝐸 ∈ 𝐼≤𝑘 , 𝑁 ∈ N, and 𝑟 ∈ N0, we set

𝑓 Λ𝑁 (𝑟) = 𝑓 Λ𝑁 (𝑘, 𝐸, 𝑟) = max
Θ⊂Λ

max
𝑗∈Θ
E

(���𝜒Θ𝑁𝑄Θ
≤𝑘N 𝑗𝑅

Θ
𝐸𝑃

[ 𝑗 ]Θ𝑟
+ 𝑄Θ

≤𝑘

���𝑠
𝐻𝑆

)
. (4.45)

Note that 𝑓 Λ𝑁 (𝑟) is monotone increasing in Λ, and it follows from (3.33) that

max
𝑟 ∈N0

𝑓 Λ𝑁 (𝑟) ≤ 𝐶𝜆−𝑠𝑘𝑠 |Λ|2𝑠𝑘+1. (4.46)

Moreover, if 8𝑘𝑁 ≥ 𝑟 , it follows from (3.49) that

𝑓 Λ𝑁 (𝑟) ≤ 𝐶𝑘,𝑠 |Λ|2(𝑠𝑘+1)𝑒−𝑚0,𝜇𝑟 . (4.47)

If 8𝑘𝑁 < 𝑟 , we use Lemma 4.2. Since this lemma holds for arbitrary finite subsets of Z, it follows
from (4.6) that for 8𝑘𝑁 < 𝑟 , we have

𝑓 Λ𝑁 (𝑟) ≤ 𝐶𝑘
 !"|Λ|𝜁𝑘 e−𝑚𝑘𝑟 + e−𝑚𝑘𝑁

(
𝜆Δ2

)−𝑠 𝑟∑
𝑝=0

e−𝑚𝑘 (𝑟−𝑝) 𝑓 Λ𝑁 (𝑝)#$%, (4.48)
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for all Λ ⊂ Z finite. Combining with (4.47), we get (with possibly slightly different constants C, 𝑚𝑘 > 0,
𝜁𝑘 > 0)

𝑓 Λ(𝑟) ≤
|Λ |∑
𝑁=1

𝑓 Λ𝑁 (𝑟) ≤ 𝐶
 !"|Λ|𝜁𝑘 e−𝑚𝑘𝑟 +

(
𝜆Δ2

)−𝑠 𝑟∑
𝑝=0

e−𝑚𝑘 (𝑟−𝑝)#$%. (4.49)

The proof can now be completed by a standard subharmonicity argument. Let ℎΛ (𝑟) = 𝑓 Λ (𝑟) −
2𝐶 |Λ|𝜁𝑘 e−𝑚𝑘

𝑟
2 , and take Δ ≥ Δ0 and 𝜆 ≥ 𝜆0 such that

2𝐶
(
𝜆Δ2

)−𝑠 ∞∑
𝑞=−∞

e−𝑚𝑘
|𝑞 |
2 ≤ 1. (4.50)

Then (4.49) implies that

ℎΛ (𝑟) ≤ 𝐶 |Λ|𝜁𝑘 e−𝑚𝑘𝑟 − 2𝐶 |Λ|𝜁𝑘 e−𝑚𝑘
𝑟
2

+ 𝐶
(
𝜆Δ2

)−𝑠 𝑟∑
𝑝=0

e−𝑚𝑘 (𝑟−𝑝)
(
ℎΛ (𝑝) + 2𝐶 |Λ|𝜁𝑘 e−𝑚𝑘

𝑝
2

)
≤ 𝐶 |Λ|𝜁𝑘

(
e−𝑚𝑘𝑟 − e−𝑚𝑘

𝑟
2

)
+ 𝐶

(
𝜆Δ2

)−𝑠 𝑟∑
𝑝=0

e−𝑚𝑘 (𝑟−𝑝)ℎΛ (𝑝),

(4.51)

for all 𝑟 ∈ N0. In addition, it follows from (4.46) that

𝑅 = sup
𝑟 ∈N0

ℎΛ (𝑟) ≤ sup
𝑟 ∈N0

𝑓 Λ(𝑟) ≤ 𝐶 |Λ|2𝑠𝑘+3 < ∞. (4.52)

We claim that 𝑅 ≤ 0, which implies that (4.4) holds (with different constants), finishing the proof of
Lemma 4.1. Indeed, suppose that 𝑅 > 0. Then it follows from (4.51) and (4.50) that

𝑅 ≤ 𝐶
(
𝜆Δ2

)−𝑠
sup
𝑟 ∈N0

 !"
|Λ |∑
𝑝=0

e−𝑚𝑘 |𝑟−𝑝 |#$%𝑅 ≤ 𝐶
(
𝜆Δ2

)−𝑠 ( ∞∑
𝑞=−∞

e−𝑚𝑘
|𝑞 |
2

)
𝑅 ≤ 1

2𝑅, (4.53)

a contradiction. �

The proof of Theorem 2.4 is complete.

5. Quasi-locality in expectation

In this section, we prove Corollary 2.6. To do so, we first extract from Theorem 2.4 a probabilistic
statement (cf. [20, Proposition 5.1] and [19, Lemma 7.2]).

We fix 𝑘 ∈ N and let 𝑠, 𝜃𝑘 , 𝜉𝑘 be as in (2.17), slightly modified so (2.17) holds with 𝜌Λ (𝐴, 𝐵)
substituted for distΛ (𝐴, 𝐵𝑐) (recall (3.6)).

We fix a finite subset Λ of Z. Given ∅ ≠ 𝐾 ⊂ Λ, we let 𝐻𝐾 ′ be the restriction of 𝐻𝐾 to Ran 𝑃𝐾
− =

Ran 𝜒N(N𝐾 ), 𝐾𝑐 = Λ \ 𝐾 (we allow 𝐾𝑐 = ∅), and consider 𝐻𝐾 ′,𝐾 𝑐
= 𝐻𝐾 ′ + 𝐻𝐾 𝑐 , Γ𝐾

′,𝐾 𝑐
=

𝐻Λ − 𝐻𝐾 ′,𝐾 𝑐 , 𝑅𝐾 ′,𝐾 𝑐

𝐸 = (𝐻𝐾 ′,𝐾 𝑐 − 𝐸)−1, operators on Ran 𝑃𝐾
− ⊕ H𝐾 𝑐 . Given an interval I and an

operator H, we set 𝜎𝐼 (𝐻) = 𝜎(𝐻) ∩ 𝐼.
We start by proving Wegner-like estimates for the XXZ model.

Lemma 5.1. Let ∅ ≠ 𝐾 ⊂ Λ.
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1. Consider the open interval 𝐼 ⊂ 𝐼𝑘 . Then

P𝐾

{
𝜎𝐼 (𝐻𝐾 ′,𝐾 𝑐 ) ≠ ∅

}
≤ 𝐶𝑘𝜆

−1 |𝐼 | |Λ|2𝑘+1. (5.1)

2. Let 0 < 𝛿 < 1
4

(
1 − 1

Δ

)
. Then (recall (2.14))

P

{
dist

{
𝜎𝐼̂𝑘 (𝐻

𝐾 ′,𝐾 𝑐 ), 𝜎𝐼̂𝑘 (𝐻
𝐾 𝑐 )

}
< 𝛿

}
≤ 𝐶𝑘𝜆

−1𝛿 |Λ|4𝑘+1. (5.2)

Proof. To prove Part (i), recall (3.27) (it applies to 𝐻 (𝐾 ′,𝐾 𝑐) ), and let 𝐸1 ≤ 𝐸2 ≤ . . . be the at most
𝐶𝑘 |Λ|2𝑘 eigenvalues of 𝐻𝐾 ′,𝐾 𝑐 in 𝐼̂≤𝑘 , counted with multiplicity, which we consider as functions of𝜔𝐾

for fixed 𝜔𝐾 𝑐 . Since N𝐾 ≥ 1, each 𝐸𝑛 (𝜔𝐾 ) is a monotone function on R |𝐾 | . Let 𝑒 = (1, 1, . . . , 1) ∈
R |𝐾 | . We have 𝐸𝑛 (𝜔𝐾 + 𝑡𝑒) − 𝐸𝑛 (𝜔𝐾 ) ≥ 𝜆𝑡 for all 𝑡 > 0 and all n by the min-max principle, so we can
apply Stollmann’s Lemma [46] to get

P𝐾 {𝐸𝑛 (𝜔𝐾 ) ∈ 𝐼} ≤ 𝐶 |𝐼 |𝜆−1 |𝐾 |. (5.3)

In view of (3.27), (5.1) follows using (5.3) for each one of the eigenvalues 𝐸𝑛.
Part (ii) follows from Part (i) and (3.27) for 𝐻𝐾 𝑐 , since the random variables 𝜔𝐾 and 𝜔𝐾 𝑐 are

independent. �

Let 𝐸 ∈ R, 𝑚 > 0, 𝑟 ∈ N, ∅ ≠ 𝐾 ⊂ Λ, and let 𝐻♯ denote either 𝐻𝐾 or 𝐻 (𝐾 ′,𝐾 𝑐) . Then the operator
𝐻𝐾 ♯ is said to be (𝑚, 𝐸, 𝑟)-regular if

𝐹𝐾 ♯

𝐸 ≤ e−𝑚𝑟 and dist(𝐸, 𝜎(𝐻𝐾 ♯ )) > e−𝑚𝑟 ,

where 𝐹𝐾 ♯

𝐸 = max
𝑖∈𝐾

𝐹𝐾 ♯

𝐸 (𝑖) with 𝐹𝐾 ♯

𝐸 (𝑖) =
���N𝑖𝑅

𝐾 ♯

𝐸 𝑃
[𝑖 ]𝐾𝑟
+

���. (5.4)

In addition, consider the probabilistic event

FΛ
𝑘 (𝐾, 𝑚, 𝑟) =

{
𝐸 ∈ 𝐼𝑘 =⇒ either 𝐻 (𝐾 ′,𝐾 𝑐 ) or 𝐻𝐾 𝑐

is (𝑚, 𝐸, 𝑟)-regular
}
. (5.5)

Lemma 5.2. Let ∅ ≠ 𝐾 � Λ, and let 𝑟 ∈ N, 𝑟 ≥ 18
𝜃𝑘

. Then

P

{(
FΛ
𝑘 (𝐾,

𝜃𝑘
9 , 𝑟)

)𝑐}
≤ 𝐶 |Λ| 𝜉

′
𝑘 e−

𝜃𝑘
9 𝑟 . (5.6)

Proof. Let ∅ ≠ 𝐾 � Λ, 𝑟 ≥ 18
𝜃𝑘

, and set 𝑚 = 𝜃𝑘
9 , so e𝑚𝑟 ≥ 4. Let S denote either the pair 𝐾 ′, 𝐾𝑐 or 𝐾𝑐 ,

and let 𝑆′ = 𝐾 if 𝑆 = 𝐾 ′, 𝐾𝑐 , or 𝑆′ = 𝐾𝑐 if 𝑆 = 𝐾𝑐 . Consider the (random) energy sets

𝐷𝑆 =
{
𝐸 ∈ 𝐼𝑘 : 𝐹𝑆

𝐸 > e−𝑚𝑟
}

and 𝐽𝑆 =
{
𝐸 ∈ 𝐼𝑘 : 𝐹𝑆

𝐸 > e−2𝑚𝑟 }, (5.7)

and the event

J𝑆 =
{
|𝐽𝑆 | > 𝑒−5𝑚𝑟 }. (5.8)

Using (2.17), we get

P{J𝑆} ≤ e5𝑚𝑟
E{|𝐽𝑆 |} ≤ e5𝑚𝑟

E

{∫
𝐼𝑘

e2𝑠𝑚𝑟
(
𝐹𝑆
𝐸

)𝑠
𝑑𝐸

}
≤ e7𝑚𝑟

∫
𝐼𝑘

∑
𝑖∈𝑆′
E

{(
𝐹𝑆
𝐸 (𝑖)

)𝑠}
𝑑𝐸 ≤ 𝐶𝑘 |Λ| 𝜉𝑘+1𝑒−2𝑚𝑟 .

(5.9)
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We now consider the (random) energy set

𝑌𝑆 =
{
𝐸 ∈ 𝐼𝑘 : dist(𝐸, 𝜎(𝐻𝑆)) ≤ e−𝑚𝑟

}
(5.10)

and claim that 𝐷𝑆 ⊂ 𝑌𝑆 on the complementary event J 𝑐
𝑆 =

{
|𝐽𝑆 | ≤ 𝑒−5𝑚𝑟 }.

To see this, suppose |𝐽𝑆 | ≤ 𝑒−5𝑚𝑟 and 𝐸 ∈ 𝐷𝑆 \ 𝑌𝑆 . Since 𝐸 ∈ 𝐷𝑆 , there exists 𝑖 ∈ 𝑆′ such that
𝐹𝑆
𝐸 (𝑖) > 𝑒−𝑚𝑟 . Let 𝐸 ′ ∈ 𝐼𝑘 such that |𝐸 ′ − 𝐸 | ≤ 2𝑒−5𝑚𝑟 . Using 𝐸 ∈ 𝑌𝑆 , we get dist(𝐸 ′, 𝜎(𝐻𝑆) >

𝑒−𝑚𝑟 − 2𝑒−5𝑚𝑟 ≥ 1
2 𝑒

−𝑚𝑟 . Thus, using the resolvent identity and 𝑟 ≥ 18
𝜃𝑘

, we have

𝐹𝑆
𝐸′ (𝑖) ≥ 𝐹𝑆

𝐸 (𝑖) − |𝐸 ′ − 𝐸 |
��𝑅𝑆

𝐸

����𝑅𝑆
𝐸′
�� > 𝑒−𝑚𝑟 − (2𝑒−5𝑚𝑟 )𝑒𝑚𝑟 (2𝑒𝑚𝑟 ) ≥ 𝑒−2𝑚𝑟 . (5.11)

It follows that [𝐸 − 2𝑒−5𝑚𝑟 , 𝐸 + 2𝑒−5𝑚𝑟 ] ∩ 𝐼𝑘 ⊂ 𝐽𝑆 . Since |𝐼𝑘 | ≥ 2𝑒−5𝑚𝑟 as 𝑟 ≥ 18
𝜃𝑘

, we conclude that
|𝐽𝑆 | ≥ 2𝑒−5𝑚𝑟 > 𝑒−5𝑚𝑟 , a contradiction.

We proved that |𝐽𝑆 | ≤ 𝑒−5𝑚𝑟 implies 𝐷𝑆 ⊂ 𝑌𝑆 , so 𝑌𝑆 = 𝐼𝑘 \ 𝑌𝑆 ⊂ 𝐼𝑘 \ 𝐷𝑆 . In particular, outside the
event J𝑆 , 𝐸 ∈ 𝑌𝑆 implies that 𝐻𝑆 is (𝑚, 𝐸, 𝑟)-regular.

We now consider the event

E𝐾 =
{
𝐼𝑘 \ (𝑌𝐾 ′,𝐾 𝑐 ∪ 𝑌𝐾 𝑐 ) ≠ ∅

}
=

{
𝐼𝑘 ∩ 𝑌𝐾 ′,𝐾 𝑐 ∩ 𝑌𝐾 𝑐 ≠ ∅

}
⊂

{
dist

{
𝜎𝐼̂𝑘 (𝐻

𝐾 ′,𝐾 𝑐 ), 𝜎𝐼̂𝑘 (𝐻
𝐾 𝑐 )

}
≤ 2𝑒−𝑚𝑟

} (5.12)

and note that it follows from Lemma 5.1(ii) that

P{E𝐾 } ≤ 𝐶𝑘 |Λ|4𝑘+1𝑒−𝑚𝑟 . (5.13)

Since

P
{
E𝐾 ∪ J𝐾 ′,𝐾 𝑐 ∪ J𝐾 𝑐

}
≤ 𝐶𝑘 |Λ|4𝑘+1𝑒−𝑚𝑟 + 2𝐶𝑘 |Λ| 𝜉𝑘+1𝑒−2𝑚𝑟 ≤ 𝐶 |Λ| 𝜉

′
𝑘 e−𝑚𝑟 , (5.14)

and on the complementary event, we have 𝐼𝑘 = 𝑌𝐾 ′,𝐾 𝑐 ∪ 𝑌𝐾 𝑐 , so for 𝐸 ∈ 𝐼𝑘 , either 𝐻𝐾 ′,𝐾 𝑐 or 𝐻𝐾 𝑐 is
(𝑚, 𝐸, 𝑟)-regular, the lemma is proved. �

Proof of Corollary 2.6. Let 𝐴 ⊂ 𝐵 ⊂ Λ, A connected in Λ, let 𝑟 = 𝜌Λ(𝐴, 𝐵), and recall��𝑃𝐴
− 𝑓 (𝐻Λ)𝑃𝐵

+
�� ≤

���𝑃𝐴
− 𝑓 (𝐻Λ)𝑃 [𝐴]Λ𝑟

+

���.
We set

ΘΛ (𝐴, 𝑟) = sup
𝑓 ∈𝐵 (𝐼≤𝑘 ):
‖ 𝑓 ‖∞≤1

���𝑃𝐴
− 𝑓 (𝐻Λ)𝑃 [𝐴]Λ𝑟

+

��� ≤ 1. (5.15)

To estimate E
{
ΘΛ (𝐴, 𝑟)

}
, note that

ΘΛ(𝐴, 𝑟) ≤
∑

𝐸 ∈𝜎𝐼𝑘
(𝐻Λ)

���𝑃𝐴
−𝑃{𝐸 }𝑃

[𝐴]Λ𝑟
+

���, where 𝑃{𝐸 } = 𝜒{𝐸 } (𝐻Λ). (5.16)

The spectrum of 𝐻Λ is simple almost surely, as commented in [19, Section 3], so we assume this
on what follows for simplicity. (Otherwise, we just need to label the eigenvalues taking into account
multiplicity.) For 𝐸 ∈ 𝜎(𝐻Λ), we let 𝜙𝐸 denote the corresponding eigenfunction, and let 𝑁𝐸 ∈ N0 be
given by NΛ𝜙𝐸 = 𝑁𝐸𝜙𝐸 .
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For 𝐸 ∈ 𝐼𝑘 , we have

𝑃{𝐸 } = 𝑅Λ
𝑘,𝐸

(
𝐻Λ
𝑘 − 𝐸

)
𝑃{𝐸 } = 𝑅Λ

𝑘,𝐸

(
𝐻Λ
𝑘 − 𝐻Λ + (𝐻Λ − 𝐸)

)
𝑃{𝐸 }

= 𝑘
(
1 − 1

Δ

)
𝑅Λ
𝑘,𝐸 𝑄

Λ
≤𝑘𝑃{𝐸 } .

(5.17)

Let 𝑟 ≥ 𝑅𝑘 = 6𝑘 (� 18
𝜃𝑘
� + 2). Using (A.7) and (3.23), we obtain���𝑃𝐴

−𝑃{𝐸 }𝑃
[𝐴]Λ𝑟
+

��� = 𝑘
(
1 − 1

Δ

)���𝑃𝐴
−𝑅

Λ
𝑘,𝐸 𝑄

Λ
≤𝑘𝑃{𝐸 }𝑃

[𝐴]Λ𝑟
+

���
= 𝑘

(
1 − 1

Δ

)���𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑃

[𝐴]Λ∞− 𝑄Λ
≤𝑘𝑃{𝐸 }𝑃

[𝐴]Λ𝑟
+

���
≤ 𝑘

|Λ |∑
𝑞=−|𝐴 |

����𝑃𝐴
−𝑅

Λ
𝑘,𝐸𝑃

[𝐴]Λ𝑞
+

��������𝑃]𝐴[Λ𝑞
− 𝑄Λ

≤𝑘𝑃{𝐸 }𝑃
[𝐴]Λ𝑟
+

����
≤ 𝐶0

|Λ |∑
𝑞=−|𝐴 |

e−𝑚0 (𝑞)+
����𝑃]𝐴[Λ𝑞

− 𝑄Λ
≤𝑘𝑃{𝐸 }𝑃

[𝐴]Λ𝑟
+

����
≤ 2𝐶0

𝑟−1−𝑅𝑘∑
𝑞=−|𝐴 |

e−𝑚0 (𝑞)+
∑

𝑢∈]𝐴[Λ𝑞

����𝑄Λ
≤𝑘N𝑢𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑟−𝑞−1
+

���� + 𝐶𝑘 |Λ|e−𝑚0𝑟 .

(5.18)

Let 𝑢 ∈ Λ and 𝑝 ≥ 𝑅𝑘 . If 8𝑘𝑁𝐸 ≥ 𝑝, it follows from (3.53)–(3.55) that����𝜒Λ𝑁𝐸
𝑄Λ

≤𝑘N𝑢𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+

���� ≤ 𝜒B𝑁𝐸
𝑘

,

PΛ

(
B𝑁𝐸

𝑘

)
≤ 𝐶𝑘 |Λ|2𝑘𝑒−𝑐𝜇𝑁𝐸 ≤ 𝐶𝑘 |Λ|2𝑘e−

𝑐𝜇
8𝑘 𝑝 .

(5.19)

If 𝑝 > 8𝑘𝑁𝐸 , we set (cf. (4.14))

𝐾 (0) = [𝑢]Λ3𝑝
4

and 𝐾 (𝑎) = [𝑢]Λ
𝑎� 𝑝

6𝑘 �
for 𝑎 = 1, 2, . . . , 3𝑘 − 1,

𝑆(𝑎) = [𝜕Λ𝐾 (𝑎)]Λ� 𝑝
6𝑘 �−1 for 𝑎 = 0, 1, . . . , 3𝑘 − 1.

(5.20)

Using Lemma 3.8, we get���𝜒Λ𝑁𝐸
𝑄Λ

≤𝑘N𝑢𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+

��� ≤
3𝑘−1∑
𝑎=0

���𝜒Λ𝑁𝐸
𝑄Λ

≤𝑘N𝑢𝑌 (𝑎)𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+

���, (5.21)

where 𝑌 (0) = 𝑃
Λ\[𝑢 ]Λ𝑝

2
+ and 𝑌 (𝑎) = 𝑃𝑆 (𝑎)+ 𝑃𝐾 (𝑎)

− 𝑃𝐾 𝑐 (𝑎)
− for 𝑎 > 0.

We now consider the event (see (5.5))

J𝑘 (𝑢, 𝑝) =
3𝑘−1⋂
𝑎=0

FΛ
𝑘 (𝐾 (𝑎), 𝜃𝑘 , 𝑝), where 𝜃𝑘 = 𝜃𝑘

9 and 𝑝 =
⌊ 𝑝

6𝑘
⌋
− 1 ≥ 18

𝜃𝑘
(5.22)

and note that it follows from Lemma 5.2 that

P{(J𝑘 (𝑢, 𝑝))𝑐} ≤ 3𝑘𝐶 |Λ| 𝜉
′
𝑘 e− 𝜃̂𝑘 𝑝 . (5.23)
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For 𝜔 ∈ J𝑘 (𝑢, 𝑝) and 𝑎 ∈ {0, 1, . . . , 3𝑘 − 1}, either 𝐻 (𝐾 (𝑎) ,𝐾 𝑐 (𝑎)) or 𝐻𝐾 𝑐 (𝑎) is (𝜃𝑘 , 𝐸, 𝑝)-regular
(𝐾𝑐 (𝑎) = (𝐾 (𝑎))𝑐). If 𝐻𝐾 𝑐 (𝑎) is (𝜃𝑘 , 𝐸, 𝑝)-regular, we note that

𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+ = 𝑃{𝐸 }

(
𝐻𝐾 (𝑎) + 𝐻𝐾 𝑐 (𝑎) − 𝐸

)
𝑅𝐾 𝑐 (𝑎)
𝐸 𝑃

[𝑢 ]Λ𝑝
+

= −𝑃{𝐸 }Γ
(𝐾 (𝑎) ,𝐾 𝑐 (𝑎))𝑃𝜕Λ𝑒𝑥𝐾 (𝑎)

− 𝑃𝐾 (𝑎)
+ 𝑅𝐾 𝑐 (𝑎)

𝐸 𝑃
[𝑢 ]Λ𝑝
+ ,

(5.24)

where we have used 𝑅𝐾 𝑐 (𝑎)
𝐸 𝑃

[𝑢 ]Λ𝑝
+ = 𝑃𝐾 (𝑎)

+ 𝑅𝐾 𝑐 (𝑎)
𝐸 𝑃

[𝑢 ]Λ𝑝
+ due to 𝐾 (𝑎) ⊂ [𝑢]Λ𝑝 . We deduce that����𝜒Λ𝑁𝐸

𝑄Λ
≤𝑘N𝑢𝑌 (𝑎)𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���� ≤
����𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���� ≤ 1
Δ

����𝑃𝜕Λ𝑒𝑥𝐾 (𝑎)
− 𝑅𝐾 𝑐 (𝑎)

𝐸 𝑃
[𝑢 ]Λ𝑝∩(𝐾 𝑐 (𝑎))
+

���� ≤ 2e−𝜃𝑘 𝑝

Δ ,

(5.25)

using (A.3), (5.4) and the definition of 𝐾 (𝑎). If 𝐻 (𝐾 (𝑎) ,𝐾 𝑐 (𝑎)) is (𝜃𝑘 , 𝐸, 𝑝)-regular, we use

N𝑢𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+ = N𝑢𝑅

(𝐾 (𝑎) ,𝐾 𝑐 (𝑎))
𝐸

(
𝐻 (𝐾 (𝑎) ,𝐾 𝑐 (𝑎)) − 𝐸

)
𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

= −N𝑢𝑅
(𝐾 (𝑎) ,𝐾 𝑐 (𝑎))
𝐸 𝑃𝜕Λ𝐾 (𝑎)

− Γ (𝐾 (𝑎) ,𝐾 𝑐 (𝑎))𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+ .

(5.26)

Thus,����𝜒Λ𝑁𝐸
𝑄Λ

≤𝑘N𝑢𝑌 (𝑎)𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+

���� ≤
����N𝑢𝑌 (𝑎)𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���� ≤ 1
Δ

���N𝑢𝑌 (𝑎)𝑅 (𝐾 (𝑎) ,𝐾 𝑐 (𝑎))
𝐸 𝑃𝜕Λ𝐾 (𝑎)

−

���
≤ 1

Δ

���𝑃𝑆 (𝑎)+ 𝑅 (𝐾 (𝑎) ,𝐾 𝑐 (𝑎))
𝐸 𝑃𝜕Λ𝐾 (𝑎)

−

��� ≤ 2
Δ e− 𝜃̂𝑘 𝑝 ,

(5.27)

using (A.3), (5.4) and the definition of 𝑆(𝑎).
Combining (5.21), (5.25) and (5.27), we conclude that for 𝑝 > 8𝑘𝑁𝐸 and 𝜔 ∈ J𝑘 (𝑢, 𝑝), we have����𝜒Λ𝑁𝐸

𝑄Λ
≤𝑘N𝑢𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���� ≤ 12𝑘
Δ e− 𝜃̂𝑘 𝑝 . (5.28)

Since
����𝜒Λ𝑁𝐸

𝑄Λ
≤𝑘N𝑢𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���� ≤ 1, it follows that for 𝑝 > 8𝑘𝑁𝐸 , we have

����𝜒Λ𝑁𝐸
𝑄Λ

≤𝑘N𝑢𝑃{𝐸 }𝑃
[𝑢 ]Λ𝑝
+

���� ≤ 12𝑘
Δ e− 𝜃̂𝑘 𝑝 + 𝜒J𝑘 (𝑢,𝑝)𝑐 . (5.29)

It follows that for 𝑢 ∈ Λ and 𝑝 ≥ 𝑅𝑘 , using (5.19), (5.29) and (3.27), we conclude that

E

( ∑
𝐸 ∈𝜎𝐼𝑘

(𝐻Λ)

���𝑄Λ
≤𝑘N𝑢𝑃{𝐸 }𝑃

[𝑢 ]Λ𝑝
+

���) ≤ 𝐶𝑘 |Λ| 𝜉
′
𝑘 e−𝜃

′
𝑘 𝑝 . (5.30)

Combining with (5.16), (5.18) and (3.27), we obtain

E
{
ΘΛ (𝐴, 𝑟)

}
≤ 𝐶𝑘 |Λ| 𝜉

′
𝑘 e−𝜃

′
𝑘𝑟 . (5.31)

The estimate (5.31) holds for 𝑟 ≥ 𝑅𝑘 . Since E
{
ΘΛ (𝐴, 𝑟)

}
≤ 1 for all 𝑟 ≥ 0, it holds for all 𝑟 ≥ 0 if the

constant 𝐶𝑘 is replaced by the constant 𝐶𝑘 = 𝐶𝑘e𝜃′𝑘𝑅𝑘 . �
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A. Useful identities

In this appendix, we list some useful identities. Their derivations are straightforward, so we leave out
the proofs.

We fix Λ ⊂ Z finite,

◦ For all 𝑖, 𝑗 ∈ Λ, we have (recall (2.15))

𝑃{𝑖 }
− = N𝑖 ,

𝑃{𝑖, 𝑗 }
− = N𝑖 +N 𝑗 −N𝑖N 𝑗 = N𝑖

(
1 −N 𝑗

)
+N 𝑗 = 𝑃

( { 𝑗 })
+ N𝑖 +N 𝑗 .

(A.1)

◦ Consider the self-adjoint operator ℎ𝑖,𝑖+1 (recall (2.8)) on the four-dimensional Hilbert spaceH{𝑖,𝑖+1} =
C2
𝑖 ⊗ C2

𝑖+1. An explicit calculation shows that ℎ𝑖,𝑖+1 has eigenvalues −1, 0,± 1
Δ . It follows that if

{𝑖, 𝑖 + 1} ⊂ Λ, we have ��ℎ𝑖,𝑖+1
�� = 1 on HΛ. (A.2)

◦ The following identities hold on HΛ for {𝑖, 𝑖 + 1} ⊂ Λ:

ℎ𝑖,𝑖+1𝑃
{𝑖,𝑖+1}
+ = 𝑃{𝑖,𝑖+1}

+ ℎ𝑖,𝑖+1 = 0,���𝑃{𝑖 }
+ ℎ𝑖,𝑖+1

��� = ���𝑃{𝑖+1}
+ ℎ𝑖,𝑖+1

��� = 1
2Δ ,

𝑃 ( {𝑖 })
+ ℎ𝑖,𝑖+1𝑃

( {𝑖 })
+ = 𝑃 ( {𝑖+1})

+ ℎ𝑖,𝑖+1𝑃
( {𝑖+1})
+ = 0,

ℎ𝑖,𝑖+1N𝑖N𝑖+1 = N𝑖N𝑖+1ℎ𝑖,𝑖+1 = N𝑖N𝑖+1ℎ𝑖,𝑖+1N𝑖N𝑖+1.

(A.3)

In particular, the first identity above implies

ℎ𝑖,𝑖+1 = ℎ𝑖,𝑖+1𝑃
{𝑖,𝑖+1}
− = 𝑃{𝑖,𝑖+1}

− ℎ𝑖,𝑖+1 = 𝑃{𝑖,𝑖+1}
− ℎ𝑖,𝑖+1𝑃

{𝑖,𝑖+1}
− . (A.4)

◦ Let 𝐾 ⊂ Λ, and recall (3.10). It follows from (A.4) that

Γ𝐾 = 𝑃𝜕Λ𝐾
− Γ𝐾𝑃𝜕Λ𝐾

− . (A.5)

If K is connected in Λ, it follows from (A.5) that��𝑃𝐾
+ Γ𝐾

�� ≤ 1
Δ and

��𝑃𝐾 𝑐

+ Γ𝐾
�� ≤ 1

Δ . (A.6)

◦ The following identities hold for any nonempty 𝑀 ⊂ Λ (recall (2.16)):

𝑃 [𝑀 ]∞
− 𝑃𝑀

+ =
|Λ |∑
𝑞=0

𝑃
[𝑀 ]Λ𝑞
+ 𝑃

]𝑀 [Λ𝑞
− =

|Λ |∑
𝑞=0

𝑃
[𝑀 ]Λ𝑞
+ 𝑃

𝜕Λ𝑒𝑥 [𝑀 ]𝑞
− ,

𝑃𝑀
− =

−1∑
𝑞=−|𝑀 |

𝑃
[𝑀 ]Λ𝑞
+ 𝑃

]𝑀 [Λ𝑞
− =

−1∑
𝑞=−|𝑀 |

𝑃
[𝑀 ]Λ𝑞
+ 𝑃

𝜕Λ𝑖𝑛 [𝑀 ]𝑞+1
− ,

𝑃 [𝑀 ]Λ∞− =
|Λ |∑

𝑞=−|𝑀 |
𝑃
[𝑀 ]Λ𝑞
+ 𝑃

]𝑀 [Λ𝑞
− .

(A.7)

B. Many-body quasi-locality

In this appendix, we prove (1.6). Recall we only consider finite subsets of Z. We fix Λ ⊂ Z and consider
the Hilbert space HΛ.
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Lemma B.1. Suppose that 𝐻 ∈ AΛ satisfies

1. For all 𝐾 ⊂ Λ, we have [𝑃𝐾
− , 𝐻]𝑃 [𝐾 ]Λ1

+ = 0.
2. For all connected 𝐾 ⊂ Λ, we have

��[𝑃𝐾
− , 𝐻]

�� ≤ 𝛾.

Then for all 𝐴 ⊂ 𝐵 ⊂ Λ, A connected in Λ, we have��𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+
�� ≤ 𝛾𝑟

|𝑡 |𝑟

𝑟!
, where 𝑟 = distΛ (𝐴, 𝐵𝑐) ≥ 1. (B.1)

Proof. We note that [𝐴]Λ𝑠 ⊂ 𝐵 for 𝑠 = 0, 1, . . . , 𝑟 − 1. We have

𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+ = 𝑖𝑒𝑖𝑡𝐻
∫ 𝑡

0
𝐾 (𝑠) 𝑃𝐵

+ 𝑑𝑠, (B.2)

where 𝐾 (𝑠) = 𝑒−𝑖𝑠𝐻 [𝑃𝐴
− , 𝐻] 𝑒𝑖𝑠𝐻 . If 𝑟 ≥ 2, condition (i) of the Lemma yields 𝐾 (𝑠) =

𝑒−𝑖𝑠𝐻 [𝑃𝐴
− , 𝐻]𝑃 [𝐴]Λ1− 𝑒𝑖𝑠𝐻 . Proceeding recursively, we get

𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+ = 𝑖𝑟
∫ 𝑡

0

∫ 𝑠1

0
. . .

∫ 𝑠𝑟−1

0

𝑟∏
𝑗=1

𝐾 𝑗−1 (𝑠 𝑗 )𝑑𝑠 𝑗 𝑃𝐵
+ ,

𝐾 𝑗 (𝑠) = 𝑒−𝑖𝑠𝐻 [𝑃 [𝐴] 𝑗
− , 𝐻] 𝑒𝑖𝑠𝐻 .

(B.3)

Using assumption (ii), we get ��𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+
�� ≤ 𝛾𝑟

|𝑡 |𝑟

𝑟!
. (B.4)

�

Lemma B.2. Let 𝑓 ∈ 𝐶𝑛
0 (i.e., f is compactly supported and n times differentiable function on R (with

𝑛 ≥ 2)). Then for 𝐴, 𝐵, 𝐻 as in Lemma B.1 and 𝑟 = distΛ(𝐴, 𝐵𝑐), we have��𝑃𝐴
− 𝑓 (𝐻) 𝑃𝐵

+
�� ≤ 𝐶 ( 𝑓 , 𝑛)𝑟−(𝑛−1) min(1, 𝑟𝑛 ) ≤ 𝐶 ( 𝑓 , 𝑛)𝑟−𝑛. (B.5)

Proof. Let 𝑓 denote the Fourier transform of f. Then we have
�� 𝑓 (𝑡)�� ≤ 𝐶 ( 𝑓 , 𝑛)〈𝑡〉−𝑛 for 𝑡 ∈ R (we recall

that 〈𝑡〉 :=
√

1 + 𝑡2). We can bound��𝑃𝐴
− 𝑓 (𝐻) 𝑃𝐵

+
�� ≤

∫
R

��𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+
���� 𝑓 (𝑡)��𝑑𝑡 + ∫

R𝑐

�� 𝑓 (𝑡)��𝑑𝑡, (B.6)

where R := [−𝑅, 𝑅], where 𝑅 > 0 will be chosen later.
We can bound the first integral on the right-hand side of (B.6) using (B.1) as∫

R

��𝑃𝐴
− 𝑒𝑖𝑡𝐻 𝑃𝐵

+
���� 𝑓 (𝑡)��𝑑𝑡 ≤ 𝐶 ( 𝑓 , 𝑛) 𝛾

𝑟

𝑟!

∫
R
|𝑡 |𝑟 〈𝑡〉−𝑛𝑑𝑡 ≤ 𝐶𝑛𝐶 ( 𝑓 , 𝑛) 𝛾

𝑟𝑅1+(𝑟−𝑛)+

𝑟!

≤ 𝐶 ′
𝑛𝐶 ( 𝑓 , 𝑛)

( e𝛾
𝑟

)𝑟
𝑅1+(𝑟−𝑛)+ ,

(B.7)

where we used 𝑟! ≥ 𝑒1−𝑟𝑟𝑟 .
We can bound the second integral in (B.6) as∫

R𝑐

�� 𝑓 (𝑡)��𝑑𝑡 ≤ 𝐶 ( 𝑓 , 𝑛)
∫
R𝑐

〈𝑡〉−𝑛𝑑𝑡 ≤ 𝐶𝑛𝐶 ( 𝑓 , 𝑛) (1 + 𝑅)1−𝑛 ≤ 𝐶𝑛𝐶 ( 𝑓 , 𝑛)𝑅1−𝑛. (B.8)
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Choosing 𝑅 =
(
𝑟
𝑒𝛾

) 𝑟
𝑛+(𝑟−𝑛)+ , we get (B.5). �
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