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Abstract

We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-% chain in a random magnetic
field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a
nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes,
is independent of the size of the system and depends only on the energy interval. Our approach is based on the
reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body
XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously
derived in a single-particle localization context, to the many-body setting.
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1. Introduction

The last two decades have seen an explosion of physics research on the behavior of isolated quantum
systems in which both disorder and interactions are present. The appearance of these two features has
been linked to the existence of materials that fail to thermalize and consequently cannot be described
using equilibrium statistical mechanics. These materials are presumed to remain insulators at nonzero
temperature, a phenomenon called many-body localization (MBL). We refer the reader to the physics
reviews [ 1,9,38] for the general description of this phenomenon. MBL-type behavior has been observed
in cold atoms experiments [31, 41]. The stability of the MBL phase for infinite systems and all times
remains a topic of intense debate [25, 35, 43, 44, 45].

In this paper, we consider the random spin-% Heisenberg XXZ chain in the Ising phase, a one-
dimensional random quantum spin system. This is the most studied model in the context of MBL both
in the physics and mathematics literature (going back to [39, 47]). It can be mapped by the Jordan-
Wigner transformation into an interacting spinless fermionic model closely related to the disordered
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Fermi-Hubbard Hamiltonian, a paradigmatic model in condensed matter physics that provides crucial
insights into the electronic and magnetic properties of materials. One interesting feature of the random
one-dimensional XXZ quantum spin system is the emergence of a many-body localization-delocalization
transition. (In contrast, prototypical non-interacting one-dimensional random Schrddinger operators do
not exhibit a phase transition and are completely localized.) Numerical evidence for this transition in
the disordered XXZ model has been provided in a number of simulations (e.g., [3, 10, 11, 30, 39]), but
remains contested on theoretical grounds (e.g., [14]).

Until quite recently, mathematical results related to the proposed MBL characteristics, including zero-
velocity Lieb-Robinson bounds, exponential clustering, quasi-locality, slow spreading of information
and area laws, have been confined to quasi-free systems. The latter are models whose study can effectively
be reduced to one of a (disordered) one-particle Hamiltonian. Examples of such systems include the
XY spin chain in a random transversal field (going back to [29]; see [2] for a review on this topic),
the disordered Tonks-Girardeau gas [42] and systems of quantum harmonic oscillators [36]. Another
direction of research considers the effect of many-body interaction on a single-particle localization
(rather than MBL) within the framework of the effective field theories. This allows to consider a realistic
Hilbert space for a single particle, such as £2(Z%), rather than finite dimensional ones that are typically
used in the MBL context. In particular, the persistence of the dynamical localization in the Hartree-Fock
approximation for the disordered Hubbard model has been established in [16, 34].

In the last few years, there has been some (modest) progress in understanding genuine many-body
systems, all of which is concerned with the XXZ model, either in the quasi-periodic setting (where the
exponential clustering property for the ground state of the André-Aubry model has been established
[32, 33]) or in the droplet spectrum regime in the random case [12, 19]. In the latter case, several MBL
manifestations have been established, including some that have never been previously discussed in the
physics literature [18].

While not exactly solvable, the XXZ spin chain does have a symmetry; namely, it preserves the
particle number. This enables a reduction to an infinite system of discrete N-body Schrodinger operators
on the fermionic subspaces of ZV [21, 37]. For the XXZ spin chain in the Ising phase, in the absence
of a magnetic field, the low energy eigenstates above the ground state are characterized by a droplet
regime. In this regime, spins form a droplet (i.e., a single cluster of down spins (particles) in a sea of up
spins). This reduction has been effectively exploited inside the droplet spectrum (the interval 7} in (2.14)
below) using methods that resemble the fractional moment method for random Schrédinger operators,
yielding the small number of rigorous results [12, 19]. However, these methods seem to be inadequate
above this energy interval (i.e, inside the multi-cluster spectrum), and a new set of ideas that do not rely
on a reduction to Schrodinger operators are required to tackle this case.

In this paper, we extend the energy interval for which MBL holds well beyond the droplet spectrum,
deep inside the multi-cluster spectrum. We develop a suitable method, formulated and proved in terms of
spin systems concepts. In particular, our method does not rely on the reduction of the XXZ Hamiltonian
to a direct sum of Schrodinger operators (and the subsequent analysis that uses single-particle tools).

Localization phenomenon in condensed matter physics is usually associated with non-spreading
of wave packets in a disordered medium. Experimentally, it is observed in semiconductors whose
properties are predominantly caused by crystal defects or impurities, as well as in the variety of
other systems. This phenomenon is by now well understood for quantum single particle models. A
prototypical system studied in this context is the Anderson Hamiltonian H4, which is a self-adjoint
operator acting on the Hilbert space H = ¢2(Z¢) of the form Hy = —A + AV,,. Here, A is the (discrete)
Laplacian describing the kinetic hopping, V,, is a randomly generated multiplication operator (w is the
random parameter) describing the electric potential, and A is a parameter measuring the strength of the
disorder.

Letus denote by 8, € H the indicator of x € Z¢, and fix the random parameter w. An important feature
of Hy as a map on (%(Z%) is its locality, meaning (6x, Hady) = 0if [x —y| > 1. As a consequence,
the resolvent (H, — z)~! retain a measure of locality, which we will call quasi-locality, given by the
Combes-Thomas estimate
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(65, (Ha = 2)7'6y)| < C ezl (1.1)

where C, and m, are constants independent of w such that C; < oo and m, > 0 if z € C is outside
the spectrum of H4. Maps given by smooth functions of H4 also express a measure of quasi-locality —
namely,

[(6x, F(HA)SW)| < Cpou(1+]x—y])7", (1.2)

where Cy ,, < oo for all n € N and infinitely differentiable functions f. Moreover, these quasi-locality
estimate hold with the same constants for the restriction Hg of H, to a finite volume A c Z¢. (See, for
example, [26, 24, 40].)

The two mainstream approaches for proving localization in the single particle setting, the multi-
scale analysis (MSA) and the fractional moment method (FMM), going back to [15, 23, 22] and [4,
6], respectively — establish localization for the (random) Anderson model H 4 by proving quasi-locality
estimates for the finite volume resolvent inside the spectrum of H 4. In particular, the fractional moment
method shows that, fixing s € (0, 1), for large disorder A, we have

B{[(6.. (HY - B)6,)[} < ce L, (1.3)

for all finite A c Z4, x, y € A, and energies E € R, where the constants C < oo and m > 0 are in
dependent of A. Moreover, one also gets a quasi-locality estimate for Borel functions of H4 (dynamical
localization),

E{sup|(5x,f(H§)5y)’} < Cemhl, (1.4)
f

where the supremum is taken over all Borel functions on R bounded by one. Various manifestations of
one-particle localization, such as non-spreading of wave packets, vanishing of conductivity in response
to electric field, and statistics of the spacing between nearby energy levels, can be derived from these
quasi-locality estimates. (See, for example, [8].) On the mathematical level, the quasi-locality estimates
provides an effective description of single particle localization.

The MSA and the FMM prove localization for random Schrddinger operators, both in the discrete
and continuum settings. We refer the reader to the lecture notes [26, 27] and the monograph [8] for an
introduction to the multi-scale analysis and the fractional moment method, respectively.

Both methods have been extended to quantum system consisting of an arbitrary, but fixed, number
of interacting particles, showing that many characteristics of single-particle localization remain valid in
this case (e.g., [7, 13, 28]). But truly many-body systems (where the number of particles is proportional
to the system’s size) present new challenges. A major difficulty lies in the fact that the concepts of
MBL proposed in the physics literature are not easily tractable on the mathematical level, and it is not
clear what could be chosen as the fundamental description of the theory from which other properties
can be derived, as in a single particle case. For example, the available concept of quasi-locality in the
many-body systems looks very different from the one for single particle quantum systems.

To introduce a simple many-body system Hamiltonian, we consider a finite graph I' = (V, £) (where
V is the set of vertices and £ is the set of edges) and a family {#;};<,, of Hilbert spaces. The Hilbert
space of the subsystem associated with a set X C V is given by Hx = (X), .y M, and the full Hilbert
space (we ignore particles’ statistics) is Hy . For each X C V), one introduces the algebra of observables
Ax measurable in this subsystem, which is the collection B(Hx) of bounded linear operators on the
Hilbert space Hx . An observable O € Ay, is said to be supported by X  Vif O = Ox ® 14, , where
Ox € Ax (i.e., if O acts trivially on Hy\x). Slightly abusing the notation, we will usually identify O
with Ox and call X a support for O. Since we are primarily interested here in understanding the way
particles interact, the structure of a single particle Hilbert space H; will be only of marginal importance
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for us. So we will be considering the simplest possible realization of such system, where each H, is the
two dimensional vector space C? describing a spin-% particle.

We next describe the interactions between our spins. We again are going to consider the simplest
possible arrangement, where only nearest neighboring spins are allowed to interact. Explicitly, for each
pair of vertices (i, j) € )V thatshare anedge (i.e., {i, j} € &), we pick an observable (called an interaction)
hij € Ay jy such that h; ; = hf’j, an observable (called a local transverse field) v; = v; € Ay, and
associate a Hamiltonian HY = 3 (i.jyee hi.j+ Xiey vi with our spin system. In particular, HY is the sum
of local observables and is consequently referred to as a local Hamiltonian. Locality is manifested by
[[HY,O],0’] = 0 for any pair of observables O € Ax, O’ € Ay, with dist(X,Y) > 1. (To compare it
with the concept of (single particle) locality for the map H 4, we need to define a local observable for the
space £2(Z4). We will say that an observable O € £(£*(Z%)) has support X c Z4if O = Ox ®0p2 (z4\x)
with Ox € L£(£*(X)). With this definition, locality of the map Hy4 (i.e., the property (5, Hpéy) =0
whenever |x — y| > 1) is equivalent to the statement that [[H4, O], O’] = 0 for any pair of observables
O, O’ with dist(supp(O), supp(O’)) > 1.)

The XXZ spin chain is defined as above on finite subgraphs A of the graph Z (see Section 2.1).
Consider A C Z connected, and let |A| be its cardinality. We say we have a particle at the site i € A
if we have spin down in the copy H,; of C2. Let \; be the orthogonal projection onto configurations
with a particle at the site i, and set [i];} ={jeA|j—-il<p}forp=0,1,...Given B C A, let PB
be the orthogonal projection onto configurations with no particles in B. In the Ising phase, H® is a 2-
local, gapped, frustration-free system, and P describes the projection onto the ground state of H* (see
Remark 2.3).

We can now informally state our main results. We first prove that the resolvent R? = (HMN - z)7!
exhibits quasi-locality in the form (see Lemma 3.1 and Remark 3.2)

A
H/\/,-RZAPE’]P < e, (1.5)

where C, and m, are constants, independent of A and of the transverse field, such that C; < oo and
m, > 0 if z € C is outside the spectrum of H*. We also establish the many-body analogue of (1.2):

HMf(HMPE”IA’ < Cra(l+p)™, (1.6)

where Cr , < oo for all #n € N and infinitely differentiable functions f on R with compact support. (See
Appendix B.)

We next consider the random XXZ spin chain (see Definition 2.2). The relations (1.5)—(1.6) suggest,
by analogy with random Schrédinger operators, that localization should be manifested as quasi-locality
inside the spectrum of H. This is indeed what we prove in Theorem 2.4. We introduce increasing
energy intervals I<x, k = 0,1,2,..., in (2.14) and prove that quasi-locality of the form given in (1.5)
holds for the resolvent for energies in /< for any fixed k. In particular, given s € (0, %), we prove, in
the appropriate (k dependent) parameter region, that

E{HJ\/-RAP[”2
gLy

N
} < Cr|A|% e P forall E €I, (1.7)

where the constants C, < oo, & > 0, my; > 0 do not depend on A. As a consequence, we derive a
quasi-locality estimate for Borel functions of H” (Corollary 2.6):

A
B{sup |V: £ (1) P

sup ) < Ci|A|Ske™ P, (1.8)
f

where the supremum is taken over all Borel functions on R that are equal to zero outside the interval
I <4 and bounded by one.
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While the estimates (1.7) and (1.8) are very natural from the mathematical perspective, it is far from
obvious whether they yield any of the MBL-type features proposed by physicists. Nevertheless, in a
sequel to this paper [17], we derive slow propagation of information, a putative MBL manifestation,
from Theorem 2.4 and Corollary 2.6, for any k € N.

In the droplet spectrum, [19, Theorem 2.1] imply Corollary 2.6 (with k = 1), and a converse can
established using [17, Remark 3.3]. While [19] and the follow-up paper [ 18] contain several MBL-type
properties such as the (dynamical) exponential clustering property, (properly defined) zero-velocity
Lieb-Robinson bounds, and slow propagation (non-spreading) of information, they are all derived using
[19, Theorem 2.1] as the starting point. We stress that [19, Theorem 2.1], by its very nature, can only
hold in the droplet regime, so while it provides us with very strong consequences in the k = 1 case, we
do not expect the methods of [19, 18] to be of any use in the multi-cluster case — that is, for k > 2.

Although the methods derived in this work are not universal (which is typical for many-body results),
they are sufficiently powerful for investigation of MBL phenomena in this context, as shown in [17].
We have to admit, however, that in the physics literature, MBL is usually associated with energies that
are not fixed (as we assumed in this work) but are comparable with the system size |A|. We do not
expect that our techniques will be sufficient to probe such energies. To be able to do so would require
non-perturbative techniques similar to the ones used in the investigations of one dimensional random
Schrodinger operators.

The model description and main results (Theorem 2.4 and Corollary 2.6) are presented in Section 2.
In Section 3, we outline the main ideas used in the proof of Theorem 2.4, which is completed in Section 4.
Corollary 2.6 is proven in Section 5. Appendix A contains some useful identities. Appendix B contains
the proof of of the many-body quasi-locality estimate (1.6).

Throughout the paper, we will use generic constants C, ¢, m, etc., whose values will be allowed to
change from line to line, even in a displayed equation. These constants will not depend on subsets of Z,
but they will, in general, depend on the parameters of the model introduced in Section 2.1 (such as g, k,
Ao, g and 5). When necessary, we will indicate the dependence of a constant on k explicitly by writing
it as Ck, my, etc. These constants can always be estimated from the arguments, but we will not track the
changes to avoid complicating the arguments.

2. Model description and main results
2.1. Model description

The random XXZ quantum spin—% chain on an finite subset A of Z is given by a self-adjoint Hamiltonian
HA acting on the finite dimensional Hilbert space Ha = ®;eaH,;, where H; = C2 for each i € A. For a
vector ¢ € C2, we let ¢; denote the vector as an element of H;; for an operator (2 X 2 matrix) A on 2,
we let A; denote the operator acting on H,;.

We consider only finite subsets of Z, so by a subset of Z we will always mean a finite subset. If
S ¢ T c Z, and Ag is an operator on Hs, we consider Ag as operator on Hr by identifying it with
As ® 17\s, where 1g denotes the identity operator on Hg. We thus identify Ag with a subset of Ar,
where Ag denotes the algebra of bounded operators on Hg.

We now fix A C Z, and consider A as a subgraph of Z. We denote by dist, the graph distance in A,
which can be infinite if A is not a connected subset of Z. We write K¢ = A\ K for K c A. To define
H", we introduce some notation and definitons.

1. By 0% and o* = %(o-x + io”) we will denote the standard Pauli matrices and ladder operators,
respectively.

2. By 1) = ((1)) and |) = ((1)) we will denote the elements of the canonical basis of C2, called spin-up

and spin-down, respectively. Letting A = %(IL - o%), we note that N' T) = 0 and N |) =|), and
interpret |) as a particle.
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3. N;, the matrix \ acting on H;, is the projection onto the spin-down state (also called the local number
operator) at site i. Given S C A, Ns = X, N, is the total (spin-down) number operator in S.

4. The total number operator A; has eigenvalues 0, 1,2, ..., |A]. (]S] denotes the cardinality of S C Z.)
We set ”H/(\N) = Ran(yn (NV,)), obtaining the Hilbert space decomposition H, = X,\lzo HS\N). We
will use the notation x5 = x(n}(Na).

5. The canonical (orthonormal) basis ®, for H is constructed as follows: Let Qx = ¢g = ®;en T): be
the vacuum state. Then

IA]
(DA={¢A=(| |0'l-_ Qy AcA}:UCD;\N), 2.1)
icA N=0

where ® V) = {4 : A C A, |A| = N}. Note that @) = {Q,}.

We now define the free XXZ quantum spin-% Hamiltonian on A C Z by

H) = Hy(A) = —£LA"+ W™ on Hy, (2.2)
where
AN = Z (ofor +oiohy)s (2.3)
{i,i+1}CA
WA=Na= > Nilia, 24
{i,i+1}CA

and A > 1 is the anisotropy parameter, specifying the Ising phase (A = 1 selects the Heisenberg chain
and A = oo corresponds to the the Ising chain).

We will consider the XXZ model in the presence of a transversal field V2, givenby VA = 3, 1 w; N},
where w; > 0, and the parameter A > 0 is used to modulate the strength of the field. The full Hamiltonian
is then

HM = HY = HY (A, 1) = HY (A) + VS = =AM + WA + V5, (2.5)
Remark 2.1.

1. The operator A* can be viewed as the analog of the Laplacian operator on H,.

2. N is diagonalized by the canonical basis foralli € A: N;pa = ¢4 ifi € A and 0 otherwise. It follows
that the total number operator Ny is also diagonalized by the canonical basis: Na¢a = |A|¢4.

3. WA, the number of clusters operator, is diagonalized by the canonical basis: W™ ¢4 = Wg\gb A, Where
Wg\ € [0, |A|] N Z is the number of clusters of A in A (i.e., the number of connected components of
A in A (considered as a subgraph of Z)).

4. VA is diagonalized by the canonical basis: VA¢ . = w ¢4, where 0 = ¥4 w;.

. The operators Ny, WA, and Vz commute.

6. The XXZ Hamiltonian H* preserves the total particle number,

9]

[H*, Nl = — 5 [AY, Na] = 0. (2.6)

We will consider the XXZ model in the presence of a random transversal field; that is, w = {w; };cz
is a family of random variables. More precisely, we make the following definition.

Definition 2.2. The random XXZ spin Hamiltonian on A C Z is the operator H* = H2 (A, 1) given in
(2.5), where A > 1,2 > 0, and w = {w; }; ¢z is a family of independent identically distributed random
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variables, whose common probability distribution u satisfies
2.7)

{0,1} c suppu c [0, 1]

and is assumed to be absolutely continuous with a bounded density.

From now on, H® always denotes the random XXZ spin Hamiltonian on A. The corresponding
(HM - E) ', which is well-defined for almost every energy E € R. We set

resolvent is given by R}

ws = {wi};eg for S C Z and denote the corresponding expectation and probability by Eg and Ps.
(2.8)

It is convenient to introduce the local interaction terms

1 — p—
hiiv1 = =NiNip1 = 55 (07 oy + 070 )).
2.9)

which allows us to rewrite
H(/)\ = Z hi,i+1 +NA.

{i,i+1}cA

It can be verified that on H; ;1) = le ® Hi2+1 , we have
r) =0, (2.10)

i + Hoto 4 om
3N+ Nist) = NiNiwt 7 5 (07 o + 07 0

@2.11)

which implies that W, + %AA > 0; that is,
—2Wx £ —Ap £ 2Wh.

It follows that

(1- gy <mp < (14 )V so (1= 40 <, (2.12)
We conclude that the spectrum of H” is of the form
(HY) = {0} U ([1 - 4.00) no(HY). 2.13)

The lower bound in (2.12) suggests the introduction of the energy thresholds & (1 - %) k=0,1,2....

We define the energy intervals
T = (-0, (ke D(1-4)), Te=[1- 4 k+1(1-1)),
(2.14)
I = (—oo, (k + g)(l - g)) I = [1 L (k+ 3)(1 - i))
We call Tk the k-cluster spectrum.
Given 0 # S C A, we define the orthogonal projections P3 on Hx by
PS =) (Lo, = Ni) = x(oy(WNs) and P =Ty, — P§ = yu(Ns). (2.15)
ieS
P% is the orthogonal projection onto states with no particles in the set S; PS is the orthogonal projection
onto states with at least one particle in S. We also set
PY=14, and P°=0. (2.16)
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Remark 2.3. In the Ising phase (i.e., A > 1), we have (2.12) and (2.13) for all A C Z. It follows that
the XXZ chain Hamiltonian H* has ground state Q, and the ground state energy is 0 (HAQ,=0), and,
moreover, the ground state energy is gapped. This makes H” a 2-local, gapped, frustration-free system.
These features, plus the preservation of the total particle number, make the XXZ model especially
amenable to analysis. In particular, the number of eigenstates of H” in the intervals I<; grows only
polynomially in the volume of A (not exponentially as the dimension of H,) as shown in Lemma 3.5
below.

2.2. Main results

Our main result establishes quasi-locality for the resolvent of the random XXZ chain inside the spectrum
of HM.

Theorem 2.4 (Quasi-locality for resolvents). Fix Ag > 1, g > 0, and let s € (0, %) Then for all k € N,
there exist constants Dy, Fi, &x, 0 > 0 (depending on k, Ao, Ao and s) such that, for all A > Ao and
A > Ao with AA*> > Dy, A C Z finite, and energy E € 1<y, we have

B{PAREPE|'} < FilAlfte s (AB, 2.17)

for A ¢ B C Awith A connected in A.
The theorem is proven in Section 4.

Remark 2.5. If A is not connected in A, the theorem still holds with (2.17) replaced by
B{IPARYPE]"} < Forjiajfhe e dsn (A5, (2.18)

where Yﬁ denotes the number of connected components of A in A. This follows from (2.17) and

Y4 )
g1 4 X
pA= S P tpl, (2.19)
j=1
where A;, j=1,2,..., YQ, are the connected components of A in A .

As a consequence of Theorem 2.4, we prove the following quasi-locality estimate for Borel functions
of H*. By B(I<;) we denote the collection of Borel functions on R that are equal to zero outside the
interval 7.

Corollary 2.6 (Quasi-locality for Borel functions). Assume the hypotheses and conclusions of Theorem
2.4, Then for all k € NO, there exist constants Fi,&x, 0 > 0 (depending on k, Ay, Ay and s) such that,
forall A > Ay and A > Ay with AA% > Dy, and A C Z finite, we have

En|l sup ||PAF(HMPE||| < FilAlfke O disia (A9 (2.20)
FeB(i):
If o1

forall A c B C A, A connected in A.

The proof of the Corollary is given in Section 5.

3. Key ingredients for the proofs

In this section, we collect a number of definitions, statements and lemmas that will facilitate the proof
of Theorem 2.4.
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A will always denote a finite subset of Z, and A C A will always denote a nonempty subset connected
in A. (B C A, S C A, etc., may not be connected in A.)

3.1. Some definitions

o Given M C A and g € Z, we define enlarged (for ¢ > 0) and trimmed (for ¢ < 0) set [M] f]\ by

{x € A : dista(x, M) < g} ifgeN={0}UN
[M]} = {{x € A dista(x, M) > 1 —q} = M\ [M°]", ifge-N . (3.1
{x € A : distp(x, M) <00}=Up€No[M]$ if g =00

Note that [M]i\| M| = 0. Moreover, [M]A = [M]C\l_1 is the connected component of A containing
M, and we have

[H°, PIMIR) — . (3.2)

We define Bé\XM (the external boundary of M in A), c')l./)lM (the inner boundary of M in A), and "M
(the boundary of M in A), by

MM = {x e A: dista(x, M) = 1} = [M]*\ M,
MM = {x € A: dista(x, M) =1} = M \ [M]",, (3.3)
oMM = 9XM U A M.

It follows that

oM [M]D, qeN°
A A A _ J9exMlg>
]M[q~_ [M]q+1\[M]q _{8A[M]A qe—N’ (34)
in q+1
and we have
IM[p=IM [, for peZ (3.5)
If M = {j}, we write [j1} = [{;}]5-
o Given A C B C A, we let p*(A, B) be the largest ¢ € N” U {co} such that [A]) C B; that is,
p™(A, B) = sup{q € N’ : [A]} ¢ B} = dista(A, B°) - 1. (3.6)
It will be more convenient to use p™ (A, B) instead of dist (A, B€) in the proofs.Note that
pM(A,B) =0 & distpy(A,B°) =0 & [A]2 c B. (3.7
o It follows from (3.2) and (3.7) that
PARAPE =0 if AcBcA and p"(A,B)=c, (3.8)
so it suffices to prove Theorem 2.4 for p™ (A, B) < co. Moreover, since A C B, we have [A][/)\,\(A B C
B, and hence,
[A1%,
|PARAPE|| < (PARAP, "™ | (3.9)

so without loss of generality, it suffices to prove (2.17) for B = [A] ;\ with p € NO.
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o Given K C A, we consider the operator HX = HK © 1. acting on H,. We also consider the
operators on H, given by

HEKS = gK o gKe RECKS = (B ) TR =ph o gRKS (310)

3.2. Quasi-locality for resolvents

The following lemma and remark yields (deterministic) quasi-locality for the resolvent of the XXZ chain
outside the spectrum of H.

Lemma 3.1. Let © C A, and consider the Hilbert space H . Let the operator T € Ay be of the form
T=T°+7%; where T® € Ap and T® € Agec, (3.11)

and let X € Ay be a projection such that [X,T] = 0 and [X, PX] =0 forall K c ©.

Suppose
1. Forall K c ®, we have [PX, T]P =0.
2. Forall K C O, with K connected in ®, we have || PE.T || <.

3. Tx, the restriction of the operator T to Ran X, is invertible with HT IHRanX <n7!, wheren > 0.

Then for all A C B C O, with A connected in ®, we have
1PATZ! PElgy e < 7' e ™ OB with = 1n(y'n). (3.12)

Proof. We consider first the case X = 14,. Let A ¢ B C 0, with A connected in ©. Let 1 < ¢ <
p°(A, B), so [A]® c B. We have

PAT' PE = T7\[T, PAIT™ P = T[T, PA] P Al - L pB, (3.13)

using condition (i) of the Lemma. Proceeding recursively, we get

PAT B = ]—[ 71, PP |PLAR -1 pB. (3.14)
Since A is connected in ©, [A]f), r=1,2,...,t, are also connected in ®. Using assumptions (ii) and
(iii), we get
t
|PAT PB|| < (yn*‘) s (3.15)

Since (3.15) holds for all 1 < ¢ < p®(A, B), we get
HPf 77! Pf” < n_le_'"p@(A’B), with m = ln(y_ln). (3.16)
If condition (iii) holds with a projection X € A, such that [X,T] = 0 and [X, PX] = 0 for all

K c 0, then T= T/;\;’ +1(1 — X) satisfies conditions (i), (ii), and condition (iii) with X = 14;,, and the
estimate (3.16) for T implies (3.12). O

Remark 3.2. Lemma 3.1 yields quasi-locality for the resolvent of the operator H”. The operator H* — 7
satisfies the hypotheses of Lemma 3.1 for z ¢ O'(HA), with® = A,y = % (use (A.6)), X = 14,, and
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n = dist(z, o (H™)). It follows that, with R? =(HM-z)7!, forall A c B C A, we have

|PAR2PE| < (dist(z, a'(HA)))_le_m"@(A’B), with m = In(A dist(z, o (")), (3.17)

From now on, we fix Ag > 5, 19 > 0, and assume A > Ag and 1 > Ay. The constants will depend on
A() and /10.

Given m € N°, we set Q8 = X {m} (WA), the orthogonal projection onto configurations with exactly
m clusters, and let Q% = xg(W") = 3,5 O, for B ¢ N°. Note that 0 = P} and Qf} = xu(N™).
For k € N, we set

k
0% = Q{1 2k} T Z 0, and Q% =0% +510p. (3.18)
m=1
We also set
A = HN + (1 - %)Q{)‘,
_ (3.19)
AY = HM+k(1- £)0% for keN
We use the notation
1 ~
R, = (HA E) for E ¢ or(HY), k e NV, (3.20)
It follows from (2.12) and (2.14) that for k € N°, we have
A > (k+ 1)(1 - %) and (ﬁﬁ - E) (1 - —) for E € I;. 3.21)

For k € N? and E € Iy, the operator T = ﬁA E satisfies the assumptions of Lemma 3.1 with

O=Av= %, X =1y, and 7 = (1 - —) (see (3.21)). In this case, m = In 27, and hence, for
A C B C A, (3.12) yields

HPARA pB

< e (niten, (3.22)

To have decay in (3.22), we need % > 1; that is, A > 5. In the proof of Theorem 2.4, we will

fix Ap > 5 and 49 > 0 and require A > Ag and 4 > Ag. In this case, we have 1_4 < 1_4] and
A
1 A-1 Ao-1 ‘
5 = i
|PARR P2 < Coe " A8, with €y = -, mo =1 25 > 0. (3.23)
’ )
It follows from (3.2), which also holds for the operator H?, that
PMRAPIMIE 0 and PMRY . PME -0 for McA. (3.24)

Remark 3.3. We will prove Theorem 2.4 with Ag > 5 to simplify our analysis. The proof can be
extended to arbitrary Ay > 1 with minor modifications. Specifically, for I < Ay < 5, we need to
improve the decay rate in (3.22), which is derived from the lower bound in (3.21). To do so, we would
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replace ﬁ£ in the proof by H?. ,wherer €N, so (3.21) yields ﬁ,’(‘w -E > (r+%)(l - %) for E € I,

k+r?

leading to mg = ln((r + %)(AU - 1)) > 0 for an appropriate choice of r.

3.3. An a priori estimate

The first step toward the proof of Theorem 2.4 is to understand why the expression on the left-hand
side of (2.17) is actually finite. A useful technical device for this purpose is the following bound, where
IIT|| s denotes the Hilbert-Schmidt norm of the operator 7.

Lemma 3.4 (A priori estimate). Leti, j € A (i = j is allowed), and let Ty, T, be a pair of Hilbert-Schmidt
operators on H that are wy; ;)-independent. Then we have

E{,,j}(;|n/\/,~RgJ\/,-T2||;IS) < CA¥ T35 T2 |15 5 for all E € R and s € (0,1). (3.25)

The lemma follows from [5, Proposition 3.2], used with U; = N}, U, = N there, and the layer-cake
representation for a non-negative random variable X,,: E(X{)) = fow P(X,, > t'/%) dt for s € (0,1).
The Hilbert-Schmidt operators for Lemma 3.4 are provided by the following result.

Lemma 3.5. Let k € N. Then

”Q[s\k“Hs < ‘/%|A|k’ (3.26)
trxz., (HY) < kAP + 1. (3.27)

Proof. Form > 1 and N > 1, we have the rough estimate

tr yNOh < |A"N™L (3.28)
Thus,
k k+1
w0 < Y IAMNTT = L UARUAND o A f N (3.29)
m=1
It follows that
Al
Qe < kIAK DTN < kAP, (3.30)
N=1

To prove (3.27), let I:I\Q be as in (3.19), and note that (3.21) implies trxy, (ﬁi\) = 0. Since the
spectral shift is bounded by the rank of the perturbation, it follows from (3.19) that

trxg, (HY) <ty (A)) + Rank(k(l - Al)égk) =l =l +1. 3.31)
[

Lemmas 3.4 and 3.5 yield the a priori estimate
B || QN REN; QL |l g < CASKSIA*F forall i, j € A and s € (0, 1). (3.32)
More generally, we have

E(aus)||02 PAREPEOL, |V, ¢ < CAKIAIPN|AIIB] for 0#A,BcA. (3.33)
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Those a priori estimates are only useful if we can ‘dress’ the resolvent with factors of Q’z  on both
sides. To be able to do so, we will decorate Rg with resolvents of positive operators that satisfy the
quasi-locality property.

3.4. Dressing resolvents with Hilbert-Schmidt operators

Fork =1,2,...,and E € I, we use the resolvent identity
RE = RY o+ k(1= £REOYRY ;= RY o+ k(1= £)RY O, RY. (3.34)
Using it twice, we get
2
A _ DA SA AA pA 2 L\"pA AA pAAA BA
R =Ry g+ k(l - %)Rk,EngRk,E +k (1 - K) Ry e Qo REQ R k- (3.35)

We use the notation (p); = max(p,0) for p € R.

Lemma 3.6. Let X' denote a spectral projection of Ny (say, X = 1y, or X = )(I/}]). Let A C B CA,
and1 <t = pA(A, B) < 0. Let E € I, and let mg be as in (3.23).

1. We have the following estimate on operator norms:

Al A

| XPAREPE| < Cifjale™ 4 Y N ey E) (E, 4)]),
p=—|A| g=—|A| (3.36)
A A

where  FD(E, A) = 04 PPV P paptAliplilion = g pe g,

2. We have the following estimates on Hilbert-Schmidt norms:

|A|
- - A
[XPAREPEQY s < Cuintemr s 3 e PlerppEOY] ). 37
q=—1A|
Moreover, for s € (0, 1), we have
B(|lXPAREPEQY, lyrs) < Crsl AP, (3.38)

Proof. Let A € B C A, A connected in A. Since X' commutes with all the relevants operators, we will
just do the proof for X = I.
Using (3.35), (3.18) and (3.23), we get

|PARPE|| < Coe + k|[PARD O, R o PE|| + K7||PARY o2 REQYRE cPE. 3.39)
Using (3.24), (A.7) and the fact that Q’;  commutes with P, operators, we get
A
|PARY cob REPE| < > o (3.40)
q=—|A|
where
D, = PAR} PN and E, = PMlURD L PB. (3.41)
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Using (3.21), (3.23) and JA[,C B for g + 1 < ¢, we get

|Dg]| < Coe 0@+ and |Eq]| < Coe ™0 =4=Dx for all ¢ € Z. (3.42)
It follows that
~ ~ A
[PARY 2 RE P < €3 ), em@nermtimamie < e, (3.43)
q=—]A|

This leaves us with the estimation of the last term in (3.39). To this end, we use (3.24), (A.7) and
(3.42) to obtain

Al Al

< 2, 2 IpslllEsalllE]

p=—I1A| q=—1A|

A pA A A A DA B
“P— Rk,Eng+1REQ§k+1Rk,EP+

A Al (3.44)

ch Z Z e=m0(p)s g=mo(t=q-1),

p=—IA| g=—|A|

Fp.l:

where F), , = Fi’,\,q(E,A) is as in (3.36) for p, q € Z.

Combining (3.39), (3.43) and (3.44), we get (3.30).

To prove (3.37), we proceed as in (3.39) using (3.34), exploit ||T1T2||gs < IIT1l[|72]| s, and use
(3.26), obtaining

[PAREPEQL s < Cre™ ™A + kHPfI?Q’EQ’;kR;}PfQQk s (3.45)
We then use (3.24), (A.7) and (3.42) to get
>y S A plAlg pA
|PaRycotriPEON | < X Dot Pt rEPEQY |

=—|A

a |A|| | (3.46)
= Z Coe™ 0@+ Q/;kPJ—A[ngpr[g\k HS'
q=—|A|
Given s € (0, 1), it follows from (3.37) and (3.33) that

E(||XP£‘R§P§Q/S‘k||;,S) < Cr | APSF3, (3.47)
O

3.5. Large deviation estimate

Using a large deviation argument, we get the following refinement of (3.33). Recall we may assume
p™(A, B) < oo in view of (3.8).

Lemma 3.7. Let k € N. Let A ¢ B C A, with p™(A, B) < . Given s € (0, %), there exist constants
Ck.s, cu > 0 such that for all E € I<, we have

. _ _ A
B([leh QL PAREPEQY, [lys) < Crs APUHD (emeul o e (A8, (3.48)

In particular,
Elyn @2 PAREPEQL, | < Cu s APCH Ve (4B) i 8kN > pM(A, B), (3.49)
where mg,,, > 0.
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Proof. Recall ”H(N) Ran XN’ and let 7—[<N %) = Ran XN Q/‘ Recall also that the restriction of V2 to

7—[1(\ ) is diagonalized by the canonical basis d)/(\N) as in Remark 2.1(iii).

Let us first assume that N is such that NAg > 2k (1 - l) where (i denotes the mean of the probability
distribution u (see Definition 2.2). The standard large deviation estimate (Cramer’s Theorem) gives

P{Aw“”) < k(l - %)} < P{w“‘“ < N*—;} < eN forall M C A with [M] = N, (3.50)

where c,, is a constant depending only on the probability distribution u. This implies that there exists
Cy > 0 such that

P{m“‘“ < k( )} < Cre=#N forall N e Nand M C A with |M| = (3.51)
It follows that for the event
BN = {aM c A with [M| =N, WA =k and 2™ < k(l - %)} (3.52)
we have

PA(BY) < Cee N QY < CUAPR N for N =12 A, (3.53)
c
where we also used Lemma 3.5. On the complementary event (Bg’ ) , we have

WVxn0%, = k(l )xﬁQQk. (3.54)

If (3.54) holds, we conclude that

HMY 2 (1= Hwh s v, = (Y + o )((1- £ +av,)

> (1= H)od W+ oY (1= Fr 4 avy) = (ke (1= 4). 9
We deduce that for w € (B,iv)c and E € Iy, we have
HMN 2 (e )(1-4) - e D(1-4) = 4(1-4). (3.56)

Proceeding as in the derivation of (3.23), it follows from Lemma 3.1 and Remark 3.2 that for
C
we (BIICV) , we have, for A ¢ B c A with A connected in A, that

i PARSPE] < Coemh 357

Given E € I, and letting T = yn Q% PARAPBQ

By we obtain

<k’
B(ITI3s) < By ITN3s) + B sm) 1Tl

< (3(s; ))E(E(HTIIZS ))2 +Coe " AP L 0% [ 339

C |A|2(sk+l)(e sculN + e~mop A(A, B))

A

https://doi.org/10.1017/fms.2024.119 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.119

16 A. Elgart and A. Klein

where we used (3.53), Lemma 3.5 and (3.33) with 2s instead of s. This estimate is (3.48), up to a
redefinition of the constant c,.
The estimate (3.49) follows immediately from (3.48). |

3.6. Decoupling of resolvents

We now illustrate the basic idea that allows us to obtain the exponential decay of the left-hand side
in (2.17), analogous to the decoupling argument in the single particle localization literature. For this
purpose, we will consider a more convenient object than the one in (2.17). Todoso,letA ¢ M c B C A,
and consider PM°PARAPE. Let K C Z be such that M c [K]_; ¢ K c [K]; C B. The resolvent
identity yields (recall (3.10))

PM pARAPE = _pM* pARK-K DK RAPE — _pM® pARK-K* pK DK RA PE

. . (3.59)
= —PM pARK pPKIKRAPE,

where we used that PARK-X“ PX = 0 by (3.2) since [A]X c K, PMRE-K" = pM“RE-K* pK< by (3.2)

since K¢ ¢ M€, and Rg K CP{_( ‘= Rg PK“. Using the specific structure of the XXZ Hamiltonian —
(& (& (& A A

that is, (A.3)—(A.5) — we have Pf rx = Pf P?AKFKPéAK = Pf P?‘”KFKP(_%"K, so it follows from

(3.59) that

PMpARAPE = _pM° pARK pOiK pK“[K pdlK pApB. (3.60)
We now use the resolvent identity for the operator H'K I (KT and (A.3), obtaining
PONK RA B — _ pooK A pot. K pIK ] poe (Kli plKh g KT pB. (3.61)
Combining (3.60)—(3.61), we obtain
PMpARAPE =

(PAPYOK R p2k) KU PK (pO0ek R pIRK YK pLK D (pois 1K gy IF pE0IKIE). 2
This is the basic decoupling formula, in a sense that the expressions in the first and last parentheses
on the last line are statistically independent and of the same form as the left-hand side of (2.17). So,
if we can perform the averaging over the random variables at sites » € 9\ K to get rid of the middle
resolvent, we will effectively decouple the system into pieces supported by the disjoint subsets K and
[K]{. (Note that these pieces do not depend on the random variables at sites r € 0\ K.) This decoupling
will be performed using the a priori estimate (3.33), after we dress the corresponding resolvents with
Hilbert-Schmidt operators on both sides as in Lemma 3.6. In broad strokes, we then will extract the
(initial) exponential decay from the expression in the first parenthesis in (3.62) using reduction to lower
energies and obtain the full exponential decay using a sub-harmonicity argument. We flesh out details
of this process as we proceed with the proof.

3.7. Clusters classification
In preparation to initiate the FMM, we first inspect the structure of states in Ran Q/g\ - Since Q’; cisa

Al
multiplication operator in the canonical basis { d)ﬁ\N)} introduced in (2.1), we just need to consider
N=0

the elements ¢y, of this basis with M that belong to a set S,’\\] K= {M CA: |M|=N,1< W;\\,I < k},

N > 1. (Recall that W1[\\4 is the number of clusters of the configuration M — that is, the number of
connected components of M in the graph A.) Denoting by 7, the orthogonal projection onto Cy, given
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A
M € SN’k,

AN _
XNng _ZMESQ’,( ™ -

Given A C A, we set 51/\\/’2 = {M € S}Q,k T MNA+# (Z)}, and note that)(]’\\,Q/S\ka = ZMeS,@’f}( .
We set

we abuse the notation and write s for 7y, S0 Ty = (HjeM J\/})Pi"’c, and note that

ya(M) = max dista (x, A) < diamy(M) = max dista(x,y) for M e Sy’ (3.63)
xeM x,yeM >

Note that diamy (M) = N — 1 for k = 1 and diamp (M) > N > 2 for k > 2.
If 8kN < p™(A, B), we will use the following lemma.

Lemma 3.8. Fix k > 2. Let A € B C A be such that 8kN < p™(A, B) < oo, and let M € Sy

1. Suppose ys(M) < 4kN. Then setting Z = [A]é\kN’ we have
AUMC [Z]-1cZc [Z]i c B; pP"(AUM,Z) > 2kN; p™(Z,B) > 2kN. (3.64)
2. Suppose p™(A,B) < 2ys(M). Let dy = {’%J. Then there exists a € {1,2,...,3k — 1}, such
that, letting K = [A];\d , we have
7%
pA(aAK, A\ M) >d, - 1. (3.65)

Moreover, letting M1 = M N K and My = M N K¢, we have K C B and M; # 0 fori =1,2.
3. Suppose 8kN < 2y, (M) < p™(A, B). Let d, = l%J Then there exists a € {1,2,...,3k — 1},
such that, letting

K = A1, U (TA12, (vyea, \ [ATS 1) (3.66)
we have

pA(aAK,A \ M) >d, - 1. (3.67)

Moreover, letting M| = M N [A]j.\dy and M, = M N [A];\A(M) \ [A];.\dyﬂ, we have M UMy =M C
K cBand M; # 0 fori =1,2.

Proof. Part (i) is obvious. To prove Parts (ii) and (iii), let d = d,, in Part (ii), and d = d,, in Part (ii); note

A
that d > N in both cases. We set ¥, = [A]2 )\ [A]E\u—l)d c Bfora=1,2,...,3k;note 3kd < ’#
in both cases.

The set M consists of s clusters where 2 < s < k, so N > 2. Each cluster has length < N — 1, so it
can intersect at most two of the Y,,’s (as d > N); hence, M can intersect at most 2k of the distinct Y,,’s.
Thus, there exists a. € {1,2,...,3k — 1} such that

MnN(Yy, UYqr) =0, (3.68)

and M, :Mn[A]E\a»_l)d #0since ANM # 0.
To prove Part (ii) with d = d,,, set K = [A](’l\d C B.Then M =M NK # (0 since ANM # @, and
«dp

M, =M N (A\K) # 0as p(A, B) < 2ya(M) by hypothesis. Moreover, (3.65) holds due to (3.68).
To prove Part (iii) with d = d,, let K be given in (3.66). Then My = M NK # () since ANM # (), and
M, = MN(A\K) # 0 as p*(A, B) < 2y (M) by hypothesis. Moreover, (3.65) holds due to (3.68). O
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Motivated by Lemma 3.8, given A ¢ B C A with 8kN < p(A, B) < oo, we decompose 81/\\/’/2 into
three distinct groups:

1. Small ya(M): M € GV (A, B) if 2ya(M) < 8kN < p™(A, B).
2. Large ya(M): M € G°V (A, B) if 8kN < p™(A, B) < 2y (M).
3. Intermediate yA(M): M € g3A’N(A, B) if 8kN < 2y4(M) < p™(A, B).

Note that for 8k N < p(A, B) < oo, we have

3
/\(1’}, Q’;ka = ﬂg;\,N(A’B), where ﬂgl{\,N(A’B), = Z M. (3.69)
1=1 MeGMN (A.B)

3.8. Decoupling revisited

We will need to estimate yy Q% PARYPEQ%, [If8kN > p™(A, B), we use (3.49). If 8kN < p™(A, B),
we note that

muh QL PARLPIOY, = r PARLPIOY, for M €Sy, 370

We will use different strategies for M € G; = Q{\’N (A,B),i=1,2,3.

If M € G, we use the decoupling argument of Section 3.6, getting (3.62) with K = [A]é‘kN. The
estimation for the expression in the first parenthesis in (3.62) will be performed using directly the a
priori estimate (3.48) and (3.64). (No energy reduction.) This yields exponential decay in y (M) for
this type of contributions, and the sub-harmonicity argument concludes the analysis.

To handle M € G,, we consider K, M, M, as in Lemma 3.8(ii), set S = [6[(]9 _1 and note that
Y
i PARAPEQY, = my PYPEPE PARAPEQA, . (3.71)
Using M| C B, we get
c c K,KC A A
PSPK pK°RAPB = —(PfPi‘Pf RK-K< p? K)F’CP? K RAPpE. (3.72)

The expression in parenthesis is estimated by reduction to lower energies E’ € 1<, allowing the use of
the induction hypothesis (in k) together with the estimate (3.65) to obtain exponential decay in p* (A, B).

If M € G3, we use a decoupling based on Lemma 3.8(iii), we get exponential decay in y4 (M) from
the induction hypothesis (in k), and the sub-harmonicity argument concludes the analysis.

3.9. Reduction to lower energies

We first observe that PARNPE = Péﬁ(’)\’ P2 decays exponentially in p* (A, B) for E < %(1 - %) due
to (3.23) with k = 0; that is, Theorem 2.4 holds for k=0. Suppose now that we already established (2.17)
for all energies E € I<x_; and we want to push the allowable energies to the interval /<. The principal
idea here is to observe that if O # K C A, then we have the nontrivial decoupling HX-X* = HK 4+ K,
and RE K can be decomposed as

K,K¢ _ K
Rp= ), RE, @M, (3.73)

veo (HKS)
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where {«y}, ¢, (pxey is an orthonormal basis for Hge that diagonalizes HX": HKx, = vi,. In
particular, if K; ¢ K and K, c K¢, we deduce that

PKipR2 KK _ > (PRIRE_,) @ (PXory, ),

veo (HK)N[1-£,00)

(3.74)

since PX2zr,, = 0, and we have min, ¢, gy ¥V 2 1 - %. This is exactly the type of setup we have
in (3.71)=(3.72). It means that the factor PX1 PX2 allows us effectively to lower the energy E € I to
E —v € I<,_; and therefore use the induction hypothesis to obtain exponential decay (we of course still
need to control the summation over v on the right-hand side of (3.74)).

4. Proof of the main theorem

In this section, we prove Theorem 2.4. We fix Ag > 5 and 49 > 0, and assume A > Ag and 1 > Ap. As
discussed in Remark 3.3, the argument can be modified for Ay > 1.

The proof proceeds by induction on k. Theorem 2.4 holds for £ = 0, since in this case, (2.17) follows
from (3.23) with Fy = Cy, & = 0 and 6g = my as Png = PfR(’iE. Given k € N, we assume the
theorem holds for k — 1, and we will prove the theorem holds for k.

We now fix k € Nand A C Z, finite and nonempty. We also fix A ¢ B C A, where A is a nonempty

subset connected in A; it follows that [A] 2 is also connected in A and |]A [2| <2forall p € Z.

To derive the bound (2.17) from Lemma 3.6(i), we will estimate E(“lev\q (EA)H;S) for p,q =
—|A|,—|Al+1,...,|A| for E € I, where FI’J\’q(E,A) is given in (3.36). The estimate (3.33) gives the
a priori bound (F, 4 = Fpy ,(E, A))

El|Fp.allys < CAGSK IAPF2 (4.1)

Since Fp 4 = F; ,, we may assume p < q.If p = g, we use (4.1); if p < g, we note that

Alp [ALA -
[Fp.alls < CUREPIOY| < Z QL NREP; b o] . 4.2)
AS  jelar s
where we used []A[j,}](’;_p_1 c [A]) for p < g.
Forr € N0 and E € I, we set
Mk, E,r) = max max]E(”Q N; R® Q ) (4.3)
OCA je® HS

and prove the following lemma.

Lemmad.l. Letk € N, s € (0, %), and assume Theorem 2.4 holds for k — 1. Then there exist constants
Dy, Cy, Lk, mi > 0 (depending on k, Ay, Ay and s), such that such that, for all A > Ao and 1 > Ay with
AA? > Dy, A C Z finite, energy E € Iy, and r € N°, we have

FNK E 1) < Crl Al e 4.4)

To finish the proof of the theorem, we assume that A > Ag and 4 > Ay with AA?% > Dy as in the
lemma. Then, sinceE(HF,,,q” s < <2fMk,E,|q - p|-1)for|g — p| > 1, and we have (4.1) for ¢ = p,
we obtain

[A] [A]
E Z e m0(P)rg—mo(t—q=1),

Fpqll] < CrlA|feesmet, 4.5)
p=-14A] g=—|A|
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The estimate (2.17) now follows from (3.36) and (4.5) (recall (3.6)), so Theorem 2.4 holds for k.
To complete the proof of Theorem 2.4, we need to prove Lemma 4.1. To do so, we need the following
lemma.

Lemmad4.2. Letk € N, s € (0, %), and assume Theorem 2.4 holds for k — 1. Then there exist constants
Ck, lx,my > 0 (depending on k, Ay, Ao and s), such that, for all A > Ag and A > Ao, j € A C Z finite,
energy E € I, N € N, and r € N° such that 8k N < r, we have

us)

< Cy |A|5ke_m”+e_mkN(/lA2) e i (p) |
p=0

Gh () =B (b ot REPYY 02,
(4.6)

Proof. Let k € N, s € (0, %), and assume Theorem 2.4 holds for k — 1. Let j € A C Z finite and
E € I, N € N,and r € N such that 8k N < r.Let G4, (r) be as in (4.6). It follows from (3.69), setting
Q QAN({]} [F1M),i =1,2,3 (see Section 3.7), that

G (r) < i Gi(r), where Gi(r) = GI*N (r) = B(|ngn N REPYY 02,
i=1

’ S). 4.7)

To estimate G (r), we use (3.62) with M = [j]f‘\kN and K = (3.25) and (A.6), obtaining

G1(r) < C(A82) " B (I l155) B ey (12135

(4.8)
aan A A [ ]Aﬁ [KA [KA [KA
Y = xK QK PXW RK p%K 7. pad k) gUIKE B pLIAn(IK T Q( )y X "
To estimate Ex (|Y |3, 5). note that
pK\M
1Y llgs < Z I¥ullyzs» where Y, = xK 0K PE\MREAL,, and |02 K] < 2. 4.9)
ueai/;lK
Using (3.37) and pK(al./l\iK,K \M) > 2kN, foru e 8{)11(, we get
Ex (IVulllys) < CJ| 1K |*Fesm2kN 4 Z ""°<‘1)+E(Hx ok Pl RKPK\MQ<kH5H)
g=—1
2kN-1 (4.10)
Ck s |K|2sk+le—sm()2kN +2 Z e—smo(q)+f1{l( (ZkN —q- 1)
q=—1
< Cx Se*’”f),kkN,

where we used the a priori bounds (3.33) and (3.48).
Similarly,

KA An([K]A
1Zlns <> WZulls, where Z,, = A REKI) pUIP(IKI o UUIDT (KIY
MGBQX[K]]
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and |(9é\x [K]1| < 2. Using (3.37), for u € d.x[K];, we get

B(irpye (1Zullys) < C;(|A|ske—smo<r—ek1v_2)+

[A|

/\ /\ ([ ) /\ A /\ A cns
Z —5m0(q)+E(HX ) Q( ) P Rl(:j[K ) P 71 ﬂ( ) Q( ) HS)
g=-1
r—6kN-3 (4.12)
<c |A[25k+2emsmo(r—6kN=2) | Z e“va(")*fﬁ(r —6kN — g -3)
g=—1
r—6kN -2
— Cli |A|2sk+26—sm0(r—6kN—2) + Z e—smo(r—p—GkN—3)+f1/\> (p) )
p=0
Combining (4.8)—(4.12), we get
2\ kN (| A (25k+2 N : A
Gi(r) < C(/lA ) e Mk (|A| Sktsommr 4 Ze_mk(r_P)fN (P)), (4.13)
p=0
for an appropriate m; > 0.
To estimate Gz(r) we note that it follows from Lemma 3.8(ii), letting
K(a)=[j1%, and S(a)=[0"K(a)]}_, for a€N, (4.14)
o o

that

3k-1
Ga(r) = 3, GY (), Y () = B[k 08 P2 PE @ PR N REPUI 01,
a=1

S). (4.15)

To estimate Géa) (r), weuse (3.71) and (3.72), the Cauchy-Schwarz inequality and Holder’s inequality
(recall 35 < 1) to get (we mostly omit a from the notation)

1/2 1/2
Gy (r) < CA™ (BIYIZ) " (BI1ZI3s )
(4.16)

~ ' S\ 174 N\1/2
< ca= @Y (BIYIS) T (B1ZI3s)
where

= Xy 1, P PR(@ p(K (@)% py, R (@ (K@) p3'K @) yng 7 = pO*K (@ RAPUI 0

4.17)
It follows immediately from (3.38) that
ElZ|I3g < CIAI*M and  E[Y|* < C|A®F+, (4.18)
where we used |8AK (a)| < 4 since K(a) is connected, and hence, we have
G\ (r) < CA™S AR E||y||) 4. (4.19)
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To estimate E||Y||®, we use ( the dependence on a is being ommitted)

I < > el with Yo = xn QY PEPE PE NGRES N,

x€ONK

We consider first the case x € 6{)11( . Using (3.74), we can further decompose Y, as

Vo= D Yew Yew=xhONPIPEPENG(RE, @ m )N
VE(T(HKC)Q[I—%,OO)
Note that
1Yl = max|¥,.. || < > I¥all+ max

c 1
vea (HK)N[1-4,k(1-4)) YT HEDAKA-5).)

Clearly, we can bound

pS (Rg_v ® nkv)Nx

¥l < | < [P R N

(4.20)

4.21)

(4.22)

(4.23)

Forv > 1—%, wehave E—v € I for E € Iy (recall (2.14)). Forv € o (HX“)n [1—%, k(l—%)),
we use the induction hypothesis for Theorem 2.4 and the statistical independence of HX“ and {w; };cx

to conclude that
Bll¥e | < Bx|PSTKRE NS < CrlAl e,

where we used (3.65).
For v € o-(HK) 0 [k(1 = 1),00), E— v < %(1 - %), and in this case,

anKRIbS—vNX = PEQKEIILS—VNX’
so it follows from (3.23) with k = 0, using (3.65), that
[Vx.v|| < Coe™o5E.
Using (4.22), (4.24), (4.26) and (3.27), we get
E||Y || < C|A|#1 e~ O%15F tr)(“_Ai’k(l_%))(HKv) < Cr|A|5142k &~

Similar considerations show that the estimate (4.27) holds also for x € 92\ K.
Combining (4.20) and (4.27) and recalling |0"K| < 4, we get

0,

k1
6k |,

E[IY]* < Cx|A]5+1+K e

Combining (4.19) and (4.28), we see that

Op—

G\ (r) < LA™ |AS e 27

It now follows from (4.15) and (4.29) that

0y _ "
Go(r) < CLA™S A% e 2" < CL A |A |4 e 0T,
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To estimate G3(r), given 4kN < y < 3, we let d, := |_lkJ Given a € {1,2,...,3k — 1}, we
let K(a,y) be as in (3.66) with A = {j}, and let K{(a,y) = [j];\dy, the connected component of
K(a,y) that contains j. We also set K»(a,y) = K(a,y) \ Ki(a,y), S(a,y) = [BAK(a,y)];\y_l, and
T(a,y) = [j])//\{j)(M)' It follows from Lemma 3.8(iii) that

Tag = Tag Pz(a’y(j)(M))Pf(asy{j)(M))P{(I(a’Y(j)(M))Pl(Z(aJ’(j)(M))’ 4.31)
for some a € {1,2,...,3k — 1}, and hence,
5] 3k-1
Gs(r) < Z Z Gg“”)(r), where
y=4kN+1 a=1 4.32)
A N
Géa,y) (r) — E(“XQQ/;;(PI(H’Y)PEM’Y) Pfl(a,y) Pi(g(a,y)j\/jR/b\jPLI]r Q/;k HS).
0 estimate *77(r), we start with the following analogue o . we mostly omit (a,y) from the
To estimate G|’ ith the following analogue of (4.8) ( ly omi from th
notation):
=5
G (1) < €(a82) " Bx (1Y) B (1Z1375):
A
Y = kK QK PIOK pS PKI R RE P, (4.33)
A K10 SUIN(IK TN (KIS (KIS
Z::P?QX[K]]RE: ) P+] (IK1Y) Q(sk ) XI(V ) ]
Proceeding exactly as in (4.11)—(4.12), we get
r—(y+d,)-2
By (1Z05s) < (A1 m Oyt 4 ST gmom(rp=Get=3), ) (434
p=0
We estimate E||Y||® similarly to (4.20)—(4.28). We have
i< >0 1%l where Y, =xN0X PLOKPiPKI PEREN,. (4.35)

x€0inK

We consider first the case x = x; € 3;, ([K]) Ky, i € {1,2}, and i’ = {1, 2} \ {i}. Using (3.74), we can
further decompose Y, as

Yx,; = Z Yx,—,v, Yxi,v = prfi, (Rgi_,, ® ﬂk‘,)NX' (4.36)
vea (HX")n[1-1,00)
Note that
Y. || = max||Y,, < Y ol + max Y vl
Il = gl yeﬂHKw)mZ[l:—;,k(]—g))” ol vea(HKf'm[k(l—Ai),oo)” wlaa
Clearly, we can bound
Wl < [[P5 (R, © i A | < [P RE | (4.38)

Forv > 1- %, wehave E—v € I<4_; for E € I (recall (2.14)). Forv € o (HX")n[1- %, k(1- %)),
we use the induction hypothesis for Theorem 2.4 and the statistical independence of HX" and {w; },. K;
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to conclude that

A
BV, < B |PINREL NG| < CialKil e < Oy [yl Sen %t (4.39)

Forv € o(HX") N [k(1 - %), o), E-v<3 (1 - —) and in this case,

PSnK, R LN = PSmKl RE N
so it follows from (3.23) with k = O that
V]l < Coe™o%. (4.40)

Using (4.37), (4.39), (4.40) and (3.27), we get
B < Oy e Y gy g (HY) < Coyfior e e, (441)
Combining (4.35) and (4.41) and recalling |‘9i/>;Ki| < 4, we get
EIYII° < Cilylé#2k e < Cre 7, (442)
Combining (4.33), (4.34) and (4.42), we get

-
. , ,
61 < ufan’) e (WPR i S ).y
p=0

It follows from (4.32) and (4.43) that

- -~ ’ a ’
G3(r) < Ce (%) e (|APHes e 4 N AR A (). (4.44)
=0
Putting together (4.7), (4.13), (4.30) and (4.44), we obtain (4.6). m]

We can now prove Lemma 4.1.

Proof of Lemma 4.1. For A C Z finite, E € I<;, N € N, and r € N°, we set

130) = £ (k. E.) = max max B([2,02,NR2PT 7 02 ). (4.45)
Note that f/\} (r) is monotone increasing in A, and it follows from (3.33) that
A -57,8 2sk+1
max r) < CAK’|A .
max In(r) |A (4.46)
Moreover, if 8k N > r, it follows from (3.49) that
() < Crs|APERD g7monr (4.47)

If 8kN < r, we use Lemma 4.2. Since this lemma holds for arbitrary finite subsets of Z, it follows
from (4.6) that for 8k N < r, we have

-
-s
f]/\,\(r) < Cg |A|§ke_mkr +e N (/lAz) Z e_mk("—P)fs(p) , (4.48)
p:
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for all A C Z finite. Combining with (4.47), we get (with possibly slightly different constants C, m; > 0,
&k > 0)

[A|

A < 3 ) < clIafe e + (/IAZ)_SZr:e"”k(”"’) . (4.49)
N=1

p=0

The proof can now be completed by a standard subharmonicity argument. Let h*(r) = f2(r) —
2C|A|%e ™% and take A > Ag and A > A such that

-5 0 p
2C(/1A2) et <, (4.50)
gq=—
Then (4.49) implies that
hM(r) < CIAJ% e ™" — 2C| Al ek

ce(a) " Y e (1) w2t 5
p=0 4.51)

) r
< CIAI (e =5 ) 4 C(an2) T Y P (),
p=0

for all r € NO. In addition, it follows from (4.46) that

R = sup h(r) < sup f2(r) < CIAI** < oo. (4.52)

reNo reNo

We claim that R < 0, which implies that (4.4) holds (with different constants), finishing the proof of
Lemma 4.1. Indeed, suppose that R > 0. Then it follows from (4.51) and (4.50) that

|A] o0
—s —s
R<c(an?) " sup| y e rllR < c(aa?) 7| 3 e ¥ R < AR, (4.53)
reNO p=0 g=—00
a contradiction. ]

The proof of Theorem 2.4 is complete.

5. Quasi-locality in expectation

In this section, we prove Corollary 2.6. To do so, we first extract from Theorem 2.4 a probabilistic
statement (cf. [20, Proposition 5.1] and [19, Lemma 7.2]).

We fix k € N and let s, 6, & be as in (2.17), slightly modified so (2.17) holds with pA(A,B)
substituted for disty (A, B€) (recall (3.6)).

We fix a finite subset A of Z. Given 0 # K C A, we let HX be the restriction of HX to Ran PX =
Ran yi(Nk), K¢ = A\ K (we allow K¢ = 0), and consider HX"K° = K" 4 gK° K.K® —
HA — HK' K< R’hfl’KC = (HX"K° _ E)~!, operators on Ran PX @ H .. Given an interval / and an
operator H, we set oy (H) = o (H) N I.

We start by proving Wegner-like estimates for the XXZ model.

Lemma 5.1. Let ) # K C A
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1. Consider the open interval I C Iy. Then

PK{O'I(HK"KC) " 0} < G AP, (5.1)

2. Let0 <6<t ( - %) Then (recall (2.14))

P{dist{a;k (HYK),op (HK")} < 5} < G S|A[HH. (5.2)
Proof. To prove Part (i), recall (3.27) (it applies to H (K.K)y and let E; < E; < ... be the at most
Ck|AI* eigenvalues of HX"-K in 1. <k, counted with multiplicity, which we cons1der as functlons of wg
for fixed wge<. Since Ng > 1, each E,(wg) is a monotone function on RIKI Lete = (L,1,...,1) €

RIKI. We have E,, (wk +te) — E,(wk) > At for all > 0 and all n by the min-max principle, so we can
apply Stollmann’s Lemma [46] to get

Px{E.(wk) € I} < C/I|A7YK]. (5.3)

In view of (3.27), (5.1) follows using (5.3) for eachione of the eigenvalues E,,.
Part (ii) follows from Part (i) and (3.27) for HX®, since the random variables wx and wge are
independent. O

LetEeR,m>0,reN, 0+ K cCA,and let H* denote either HX or HX-K°)_ Then the operator
HX* is said to be (m, E, r)-regular if

F,g(ﬁ <e™™" and dist(E,a(HKu)) >e ",

1K 5.4)
where FK* = max FE'(i) with FK*(i) = “M-RE”PL Ir
1€
In addition, consider the probabilistic event

.F,i\(K,m,r) = {E €I, = either H&"K) or HX is (m,E,r)-regular}. 5.5

Lemma 5.2. Let 0 # K C A, and letr €N, r > ]g—i. Then

A ¢ r %

Pl(ANK ) | < clalsie (5.6)

Proof. Let0 # K C A, r > 18 ,and set m = 9 so e™ > 4. Let S denote either the pair K’, K¢ or K¢,
andlet S’ = K if S = K’, K€, or S’ = K€ if § = K¢. Consider the (random) energy sets

Ds={Eecl: Fp>e™} and Js={Eel: Fp>e >}, (5.7)
and the event
Ts = {lJs| > ™™} (5.8)
Using (2.17), we get
P{Ts} < e B{|Js|} < & E{/ 25T (Fg)s dE}
& (5.9)

7mr/ FS(l ) }dE < Ck|A|§k+le_2mr.
I jes
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We now consider the (random) energy set
Ys = {E € I : dist(E, o (HS)) <e™™} (5.10)

and claim that D C Y5 on the complementary event Jg = {|J5| < e‘s’”’}.
To see this, suppose |Js| < e™™" and E € Dg \ Ys. Since E € Dg, there exists i € S such that
F3(i) > e™™ . Let E’ € Iy such that |[E’ — E| < 2¢7>™". Using E € Ys, we get dist(E’, o (H®) >

e _DeSmr > %e‘m’. Thus, using the resolvent identity and r > 18

o We have

F3,(i) 2 Fo(i) - |[E' - E||[RE||IR3 || > e™ = (2¢™5™ )™ (2¢™) = ™2™ (5.11)

It follows that [E — 2e™>™" E +2¢™>" ] N I c Js. Since |I;| = 2¢™>™ as r > %, we conclude that
[Js| = 2e™™" > ¢7>™" 4 contradiction.

We proved that |Jg| < e™>™" implies Dg C Yg, so ?5 = I \ Ys C Iy \ Dgs. In particular, outside the
event Js, E € 175 implies that HS is (m, E, r)-regular.

We now consider the event

Ex = {Ik \ (?K’,KC U’Y\Kc) * 0} = {Ik NYgr ke NYke # 0}

(5.12)
C {dist{(r;k (HK"KC),G'IAk (HKC)} < 2e‘mr}
and note that it follows from Lemma 5.1(ii) that
P{Ek} < Ci|A[*H e, (5.13)
Since
P{Ek U Tk ke U Jxe} < Crl A e™ £ 20 [A[5+H e ™2™ < C|A|Ske™, (5.14)

and on the complementary event, we have I; = Yg/ xe U Y, so for E € I, either HX X or HK is
(m, E, r)-regular, the lemma is proved. O

Proof of Corollary 2.6. Let A ¢ B < A, A connected in A, let » = p*(A,B), and recall
A
|PAf(HMPE|| < |)Pf\f(HA)P£A]r

We set
A
OMNA,r) = sup ‘Pf rEM P <1
feB(l): v (.15
[1f llo <1
To estimate E{(E)A(A, r)}, note that
A A
O"M(A,r) < Z HPfP{E}PJ[r J’”, where  Pig) =X{E}(HA). (5.16)

Eeop (H)

The spectrum of HA s simple almost surely, as commented in [19, Section 3], so we assume this
on what follows for simplicity. (Otherwise, we just need to label the eigenvalues taking into account
multiplicity.) For E € o(H"), we let ¢ denote the corresponding eigenfunction, and let Nr € N be
given by Nadr = Neodk.
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For E € I;., we have

Piey = Rep (Y = E)Piey = RYp (Y - HY + (H™ - B)) Py

(5.17)
—k(l ) kEQ<kP{E}
Letr > Ry = 6k((;—f1 +2). Using (A.7) and (3.23), we obtain
AlA ~ AlA
HPf‘P{E}PL ! H = k(l - %)HPéRQ,E 0%, Py P
- k(l - %)pr\@,lsf’@& 0Py P
& 5, [Aly [A]A
<k Z PARY P p "Q Py P
a=-lAl (5.18)
[A|
< CO Z —Wlo(q)+ qQA P{E}P[ ] H
q=—|A|
r—l—Rk [ ]
< 2Cy Z e mo(@)s Z Q<kN Py P, | Cr|Ale™™".
q=—1A| uelAlh
Letu € Aand p > R;. If 8kNg > p, it follows from (3.53)—(3.55) that
[ulp
XNEQ<kN P{E}P S XBNE,
k (5.19)
PA(BY¥) < CulAPhemnNe < ClAPre 7.
If p > 8kNEg, we set (cf. (4.14))
K(0) = [u]g, and K(a) = [u]® a2 for a=1,2,...,3k—1,
A (5.20)
S(a) =[0 K(a)]LEJ for a=0,1,...,3k-1.
k
Using Lemma 3.8, we get
Wd) (]}
[ehe 02N P P < Y ek, b N (@) P (5.21)
a=0
A\[ul)y st i
where Y(0) = P, 2 and Y(a) = P,;'“ PK(@ pK“ (@) for ¢ > 0.
We now consider the event (see (5.5))
3k-1 R _
Tk (u, p) = ﬂ }“,?(K(a),@k,ﬁ), where 0 = % and p = L&J -1 (l,—i (5.22)
a=0
and note that it follows from Lemma 5.2 that
P{(Jk (1, p))°} < 3kC|A| S0P, (5.23)
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For w € Ji(u,p) and a € {0,1,...,3k — 1}, either HK (@)K (@) op gK©(a) jg (é;C,E,ﬁ)—regular
(K€(a) = (K(a))°). If HX*(@) is (6, E, p)-regular, we note that

A

¢ c A
PipyPLY = Py (HE( 4+ B — ) RET P

+

5.24
(K (a),K€ (@) pdi.K (a) pK (@) pK€ (a) plulp 424
=-Pg\ ’ PPex PRy pP.",
c A c A
where we have used Rg (“)Piu]p = Pf(“)Rg (@) PJ[ru]" due to K(a) C [u]I/,‘ We deduce that
[ulp [ulp A “(a) plulpN(KE (@) -0cp
N QUNGY ()P P17 | < Py PP || < || PORK @ RGO p SR < 200t
(5.25)
using (A.3), (5.4) and the definition of K (a). If HK(@)-K“(@) is (9, E, p)-regular, we use
ull (K (@).K¢(a)) ( 17(K (a),K< (a)) [l
NuPEy Py " = NyRy, H —E|)Pg)P, 526)
c ¢ A :
= _N,RK (@K (@) po*K (@) p(K (a).K @) p PP,
Thus,
(1]} [u]5 c A
X, O NLY (@) Py P, "H < 'NMY(a)P{E}P+M Pl < %”NMY(a)RgK(a)’K (@) po*K (a)
(5.27)
s K(a).K® A —op
< §|P+(“)Rf€ (@K @) poK (@) < 2-0kF

using (A.3), (5.4) and the definition of S(a).
Combining (5.21), (5.25) and (5.27), we conclude that for p > 8k Ng and w € Ji (u, p), we have

A —
o QL NP oy PLP|| < 12k iP, (5.28)

[ul}

Since )(]/\\,E Q/;k/\/'uP{E}PJr < 1, it follows that for p > 8k N, we have

[wl}

XQEQ/s\kNuP{E}]’u = li_ke_gkp X Tk (u.p)© - (5:29)

It follows that for u € A and p > Ry, using (5.19), (5.29) and (3.27), we conclude that

[w]5
E( Z “Q/;kNuP{E}P+ P

) < Cp|A[ke %P,

(5.30)
EEO’Ik (HA)
Combining with (5.16), (5.18) and (3.27), we obtain
E{©"(A,r)} < ClAlSke %", (5.31)

The estimate (5.31) holds for r > Ry. Since E{®"(A,r)} < 1 forall r > 0, it holds for all r > 0 if the

constant Cy is replaced by the constant G k= CkegiRk. m|
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A. Useful identities

In this appendix, we list some useful identities. Their derivations are straightforward, so we leave out
the proofs.
We fix A C Z finite,
o Foralli,j € A, we have (recall (2.15))
P = N,
{i.j} {h (A1)
PIY = N+ Nj = Ny = N (1= A7)+ = PLUDNG + ;.

o Consider the self-adjoint operator 4; ;41 (recall (2.8)) on the four-dimensional Hilbert space H ; ;41) =
C? ® CL?H. An explicit calculation shows that £; ;41 has eigenvalues —1,0, i%. It follows that if
{i,i+ 1} C A, we have

|riin]|=1 on Ha. (A2)
o The following identities hold on H for {i,i + 1} C A:

hi,1+1P{l J+1} P{l 1+1}hl 1 =0,

| | k3 | (A3)
PUD 1y pUD = pUEI plist)

hi it NiNiwt = NiNiethi i = NiNosihi it NilNis

P+l}hi,i+1 P{l+1}hl i+1

In particular, the first identity above implies
Riist = hi g P = pUstip, = pUSED o U (A4)
o Let K C A, and recall (3.10). It follows from (A.4) that
K = p?"K[K po*K, (A.5)
If K is connected in A, it follows from (A.5) that
|PETX|| <+ and ||PETK| <1 (A.6)

o The following identities hold for any nonempty M C A (recall (2.16)):

|A|
P£M]ooPM Z PlML/;P_M lA Z P}-MJ;I\P(_%\X [M]d ,

q=0
A

pM - Z P[M]q pM Z P! (M15 ponM] a1 (A7)

q=—|M| q=—|M |

A
[M]A S (Mm15
pis = N pMlpl
q=—|M|

B. Many-body quasi-locality

In this appendix, we prove (1.6). Recall we only consider finite subsets of Z. We fix A C Z and consider
the Hilbert space H .
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Lemma B.1. Suppose that H € A, satisfies

A
1. Forall K c A, we have [Pf,H]PJ[rK]l =0.
2. For all connected K C A, we have H[Pf, H]|| <.

Then for all A C B C A, A connected in A\, we have
A JitH pB Al . c
||P_ e P+|| <Y = where r =distA(A,B°) > 1. (B.1)
r!
Proof. We note that [A]} c Bfors=0,1,...,r — 1. We have

t
PA et pB — jpitH / K(s) PBds, (B.2)
0

where K(s) = e ™" [PA H]e™H". If r > 2, condition (i) of the Lemma yields K(s) =

. A
e isH [Pﬁ‘,H]PEA]l e"H  Proceeding recursively, we get

. t 1 sr-1 -
PéeltH Pf:l.r HKJ*I(S])dsJPf’
0 0 0
j=1

(B.3)
KJ(S) - e—isH [PLA]J" H] eisH.
Using assumption (ii), we get
. "
|PA e PB| < y"r—|‘. (B.4)
O

Lemma B.2. Let f € C{f (i.e., f is compactly supported and n times differentiable function on R (with
n > 2)). Then for A, B, H as in Lemma B.1 and r = distp (A, B€), we have

|PA f(H) PE|| < C(f,n)r=(m=Dmin) < C(f,n)r™. (B.5)
Proof. Let f denote the Fourier transform of f. Then we have ’ f (t)’ < C(f,n)(t)y " fort € R (we recall

that (z) := V1 + t2). We can bound

|1P? £ (H) PP|| < / P4 &M PB||F(r)|di + / 1Foar, (B.6)
R R€

where R := [-R, R], where R > 0 will be chosen later.
We can bound the first integral on the right-hand side of (B.6) using (B.1) as

A itH pB||| yal R y R
[P2 ™™ PE(f(0)]dr < C(f,m) 5 | 11" (7"dt < CaC(f 1) ————
R rt Jr r! (B.7)

< Cr’lc(f’ n)(e_y)rR1+(r—n)+’
r

where we used r! > e!~"r".

We can bound the second integral in (B.6) as

/ |f()]dt < C(f, n)/ (y™"dt < C,C(f,n)(1+R)'™ < C,C(f,n)R'™. (B.8)
RC RC
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)M(HW , we get (B.5). o

Choosing R = (%
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