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Abstract—The introduction of transformers has been an important
breakthrough for Al research and application, as transformers are the
foundation behind Generative Al. Transformers are promising in cy-
bersecurity, especially malware analysis. The reason is the flexibility
of the transformer models in handling long sequential features and
understanding contextual relationships. However, as the use of trans-
formers for malware analysis is still in the infancy stage, it is critical
to evaluate, systematize, and contextualize existing literature to foster
future research. This Systematization of Knowledge (SoK) paper aims
to provide a comprehensive analysis of transformer-based approaches
designed for malware analysis. Based on our systematic analysis of
existing knowledge, we structure and propose taxonomies based on:
(a) how different transformers are adapted, organized, and modified
across various use cases; and (b) how diverse feature types and their
representation capabilities are reflected. We also provide an inventory
of datasets used to explore multiple research avenues in the use of
transformers for malware analysis and discuss open challenges with
future research directions. We believe that this SoK paper will assist the
research community in gaining detailed insights from existing work and
will serve as a foundational resource for implementing novel research
using transformers for malware analysis.

Index Terms—Malware Analysis, Transformers, Pre-trained Transform-
ers, Feature Representation, Cybersecurity

1 INTRODUCTION

He growing dependency on digital technology and con-
Tnectivity has led to an unprecedented surge in the gen-
eration and distribution of malicious software, also referred
to as malware [1]. Malware poses significant threats to cy-
bersecurity, targeting individuals, organizations, and critical
infrastructures in various forms, including viruses, worms,
ransomware, etc. As malware evolves in complexity [2], [3],
improving classification, detection, and mitigation methods
is critical. To address this growing challenge in malware
analysis, Artificial Intelligence (AI) and Machine learning
(ML) based solutions, including Deep Learning (DL) [4],
Computer Vision [5], [6], and Natural Language Process-
ing (NLP) [7], [8], have been recently proposed. These
techniques help automate feature extraction and improve
static and dynamic analysis for detection/classification
tasks against sophisticated and evasive malware. Among
various approaches, transformer-based models are recently
garnering significant attention. The transformer model in-
troduced by Vaswani et al. [9] has revolutionized a broad

range of tasks [10] in various domains including NLP [11],
[12] for text classification [13], machine translation, question
answering [14] and text generation [15]; computer vision for
image classification [16]-[18], object detection [19], image
and video generation [20], [21]; speech recognition [22], and
etc. with significant performance improvements.

In malware analysis, transformers have begun to emerge
as a versatile and powerful tool [23], [24]. Transformers
excel in capturing intricate patterns, such as spatial, tem-
poral, structural, etc., across high-dimensional data making
them well-suited for complex static and dynamic malware
analysis. These models analyze extensive datasets from
raw binary files, disassembled codes, graphs, images, and
many other feature representations of malware to uncover
malicious behavior and identify emerging threats. Further-
more, their application spans various malware analysis
sub-domains including detection [24]-[28] and classification
[29], [30], binary code similarity detection [31], evasion tech-
niques [32], as well as explanation and interpretation [23],
[33], underlining their capability to understand malicious
behavior accurately.

Although transformers were first introduced in 2017,
their integration into malware analysis is relatively at an
initial stage, presenting opportunities for future research
and advancements. Therefore, it is critical to organize the
existing knowledge based on its application, novel research
findings, empirical studies, and analysis, along with open
challenges to understand and foster future research lever-
aging transformers in malware analysis. In this paper, we
explore the evolution of transformers, their impact on mal-
ware analysis, and highlight various approaches and chal-
lenges encountered by the research community. Through
an extensive literature review, we examine and systematize
the knowledge based on the use cases of transformers,
their types, modeling aspects, representation techniques,
and different features employed in adapting transformer
architectures to address challenges in malware analysis.
Further, to solve the issue of the lack of a comprehensive
dataset repository, we compile an inventory of features,
representation techniques, and datasets to assist the com-
munity.

Methodology and Literature Search: We collected avail-
able literature from several sources that cover a broad range
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of research using transformer or its modified version for
malware analysis tasks. Along with relevant conference
venues and journals, we carried out searches on platforms
such as Google Scholar and Research Rabbit using keywords
like transformers in malware analysis, malware transformer,
transformer survey, transformer malware survey, sok transformer
malware, attention malware, etc. We collected 43 papers cover-
ing the period from 2017 to 2023, focusing on the application
of transformers for malware analysis. From the collected
articles, we extracted 30 different categories of information,
covering objectives, motivations, end goals, domains, fea-
tures, datasets, representation techniques, modeling, trans-
former type, need for transformer, weakness, challenges,
gaps, future scopes, etc. We assessed the extracted infor-
mation multiple times to critically analyze and structure the
knowledge.

We synthesized and structured the available knowledge
based on five major aspects by finding the answers to the
questions listed below:

« Purposes of use for transformers: Why are the transform-
ers used in malware analysis, and what are the similarities
in those use cases?

o End goals: Besides the purposes for using transformers,
what are the different objectives, such as malware detec-
tion, malware classification, detection evasion, etc.?

o Type of transformer: Which transformers architectures
are used to analyze malware? Are there custom enhance-
ments or modifications performed in the existing varia-
tions of transformer architectures?

o Features: What are the different features, representing
malware behaviors, used to accomplish the end goals that
align with the working mechanism of transformers?

o Datasets: What are the different datasets used in the
malware analysis community that provide the features to
model the representation using the transformers?

The remainder of this paper is organized as follows.
Section 2 introduces basic concepts about malware analysis,
and the transformer architecture and its evolution. Section 3
presents the systematization of transformers for malware
analysis followed by Section 4 discussing the limitations,
open challenges, and future directions. Section 5 summa-
rizes and concludes the paper. Appendix Section 6 presents
in-depth technical discussion on specific transformer ar-
chitectures and their modifications, a comparative analysis
of the performance of different transformer models across
various malware tasks, and practical insights on the imple-
mentation of transformer models in real-world systems.

2 BACKGROUND
2.1 Malware Analysis

In general, malware analysis techniques examine malicious
software and unwanted code in computer systems or net-
works. This analysis helps to understand behaviors, intents,
functions, and impacts of malicious code to assist in antici-
pating future activities and mitigating attacks. Traditionally,
malware analysis is divided into three approaches: static,
dynamic, and hybrid. Static analysis is performed without
actually executing a program, dynamic analysis requires
the program’s execution in an isolated virtual environment
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(i.e., a sandbox), and the hybrid approach combines both
approaches.

Static analysis is based on signature-based approach [34]
and offline code examination such as memory corruption
flaws [35]. However, maintaining the signatures database
is impractical because of exponentially increasing malware
volumes and the inability to recognize zero-day malware. In
addition, static techniques fail to detect evolving malware
that integrates evasive techniques such as obfuscation and
polymorphism. To mitigate such limitations, dynamic anal-
ysis is used, which examines malware interactions with the
operating system, memory, network, and applications, thus
tracking its actions, network communications, and modi-
fications to system files and the registry [36]. To leverage
both benefits, the hybrid approach combines static and
dynamic analysis to gather critical features for perform-
ing different malware analysis tasks. However, applying
conventional methods is less effective in detecting evolv-
ing and sophisticated zero-day malware [37]. In addition,
advanced malware typically can detect the presence of a
sandbox environment and, in turn, can evade behavior-
based detection approaches by ceasing or altering their true
malicious behavior. A significant limitation of conventional
approaches is their inability to generalize from the known
patterns to detect new, sophisticated threats that have not
been previously encountered, which results in a higher rate
of false negatives [38].

To address these issues, the application of ML in mal-
ware analysis has increased significantly to enhance real-
time detection and classification with high accuracy and low
false positives [23], [25], [39], [40]. ML and in particular deep
learning (DL) models can automate the detection of new and
evolving malware variants by learning and distinguishing
complex patterns from large datasets of benign and mali-
cious samples [41]. These practices enhance the detection
of patterns, anomalies, behaviors, and intents indicative
of malware, improving the speed and accuracy of detec-
tion and response. With the ML advancements, adopting
such models has offered significant possibilities for new
approaches and techniques to strengthen malware analysis
techniques. Among these advancements, the transformer
architecture stands out for its ability to handle sequential
data, making it particularly suitable for analyzing malware’s
complex and polymorphic nature.

2.2 Transformer

In this section we discuss the transformer architecture,
tracing its development and historical knowledge of its
evolution over time, and present how the development
progressed to solve contemporary issues.

2.2.1 Evolution of Transformer Architecture

The development of the transformer model showcases the
decades of progress in ML. As shown in Fig. 1, it can
all be traced back to the introduction of classical ML
algorithms like Logistic Regression, Decision Trees, and
SVMs [42], which laid the groundwork for understanding
structured data. However, these methods struggled with
representing sequential and temporal data, which were crit-
ical for machine translation tasks—the very solutions the re-
search community was eagerly seeking. As neural networks,
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Introduction of Classical ML Methods Advances in Sequential I/P Processing

Recurrent Neural Networks (RNNs) [44]
« Developed to handle sequential data inputs
« Suffers from vanishing and exploding gradients [45]
« Less effective for long-range dependencies
representations

Algorithms like Logistic Regression,
Decision Trees, SVM [42] etc.
« Used for classification tasks
« Struggled to capture complex patterns in
unstructured data like texts

Till Mid 1990s 1980s - Early 2000s Since 1990s Since 1997
Neural Networks (NN), Feedforward Networks
(FFN or MLPs) [43]

« Automatic Feature Learning

« Use of back-propagation

« Too simple to represent sequential data inputs

Intro to Deep Learning

data inputs

Long-short Term Memory (LSTM) [46]
« Introduced to tackle gradient issues
« Improved performance in sequential data inputs
« Stillinsufficient to process longer sequential

Development of Variant of RNNs

Intro to Encoder-Decoder [47] Introduction of Transformer Architecture [9]

Seq-to-seq model using encoder-decoder
+ Improvements in processing long-range
sequences
+ Struggled to handle individual entity's relevance
« Fixed-length representations

+ Able to maintain long sequence contexts

+ Able to process entire sequences simultaneously

« Highly scalable

« Highly versatile and effective for a broad range
of applications

2014 2014 2017 Beyond 2017
Addition of Attention Mechanism [48]
« Addressed the limitation of fixed length
representation in the encoder
« Ability to maintain context in long sequences
« Issues with parallelization and suffers training

. Development of LLMs

« Development of GenAl

« Extension of the architecture
in various domains

difficulties

Improvement on Seq2Seq model Radical Developments in Al

Fig. 1. Evolution of the Transformer Architecture: A Milestone in Advancing Machine Translation Task (Note: Texts in red highlight the shortcomings)

feed-forward networks, and Multi-Layer Perceptron (MLP)
equipped with backpropagation [43] were introduced, these
DL methods could learn complex and nonlinear relation-
ships. But, the models were too simple to represent con-
textual semantics. Thus, the Recurrent Neural Networks
(RNNs) [44] were developed to introduce memory in the
network but faced significant challenges in learning long-
term dependencies due to vanishing and exploding gradient
issues [45]. The introduction of Long Short-Term Memory
(LSTM) partially addressed this issue [46] with better mem-
ory mechanisms. Also, the encoder-decoder architecture [47]
and subsequent integration of the attention mechanism in
the seq2seq model [48] further enhanced the network’s
capabilities to improve attention to the relevant parts of the
input sequence. Later, in 2017, Vaswani et al. [9] proposed
the revolutionary transformer architecture, which offered
abilities like scalability, versatility, unprecedented paral-
lelization, and efficiency with performance improvements.

Fig. 1 illustrates the evolution of transformer archi-
tecture through a series of enhancements to existing ma-
chine translation solutions. However, this groundbreaking
development not only revolutionized machine translation
tasks but also extended its application to a wide range of
sequential tasks across various fields, including NLP [11],
[12], computer vision [17]-[19], and cybersecurity [23], [24].
While the timeline depicted in the figure extends only until
2017, it is important to note that there have been significant
developments since then. In the fields of Generative Al
and Large Language Models, the expanded applications
of transformers, groundbreaking innovations, such as GPT-
4 Chatbot [15], Sora video generator model [21], DALL-E
image generator [20] and beyond, highlight their continued
impact and versatility in shaping AL

2.2.2 Transformer Architecture

A standard transformer architecture, also known as ‘Vanilla
transformer’, consists of two sub-networks called encoder
and decoder, as shown in Fig. 2. In general, the encoder
network maps the input sequence into contextual represen-
tations which are further processed by the decoder network
to generate an output sequence one at a time in an auto-
regressive manner i.e. the current value in a sequence is
processed as a function of its all previous values.

Input Sequence: For a machine-translation task, the en-
coder’s input sequence is the language to be translated and
the first input token for the decoder is the null character,
which starts the translation of the language. Once the first
token is generated, the output token is shifted right and
amended to the existing input sequence and sent to the

decoder in an autoregressive manner. These inputs are then
embedded (as shown in Fig. 2) with dimension d before
being passed to the positional encoding layer. With these
different inputs for the two sub-networks, as a whole, the
architecture produces the predictions and continues learn-
ing through training.

Positional Encoding: It includes the sequence order of
the input in the embedding values by adding positional
values. The positional encoding values also share the same
dimension d as the input embedding. The encodings are
added using sine and cosine functions of different fre-
quencies. The equations 1 and 2 show one of the many
approaches to embed positional encoding, as mentioned by
Vaswani et al. [9].

PE (s 2i) = sin(pos/10000%"/) 1)

PE(pos,2i+1) = COS(p05/100002i/d) @

where pos is the position of the element in the sequence and
i is the th dimension.

2.2.3 Encoder Network

The encoder network consists of two sublayers. The first
is the Self-Attention layer where the input dimensions are
divided into N number of identical sublayers, thus as-
sembled to create a Multi-head Self-Attention mechanism
described below. The second sublayer is a position-wise
fully connected feed-forward network.

Self-Attention Mechanism: Attention values are the
weights of each input entity concerning other input entities.
They are quantified as the percentage of attention provided
while encoding all the input sequences. The attention func-
tion is the mapping of Key(K), Query(Q), and Value(V) where
K, @), and V originate from the identical input sequences
after positional encoding as shown in Fig. 2. The dimensions
of both K and @ are di, and the dimension of V' is d,. The
setup allows each position in the input sequence to attend
all positions in the same sequence to dynamically weigh and
integrate information across the entire sequence, as shown
in the steps below [18].

o Step 1: Calculate the similarity between Query and Key
vectors using the dot product Q.KT; K7 here is the
transposition of the matrix K.

e Step 2: Normalize the score to maintain the stability in
QKT
d

the gradient by dividing the similarity score as -
o Step 3: Translate the scores into probabilities using the
softmax as: softmax( Q\'/%T )
o Step 4: Obtain the Value matrix by multiplying V' with
the probabilities, which gives the attention weight of

each input entity as given in equation 3:
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Fig. 2. Transformer architecture as proposed by Vaswani et al. [9]
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Multihead Attention Mechanism: The three identical
input values as @), K, V' are multiplied with their respective
weights. The resultant matrices are divided into multi-
ple chunks (basically, the d_model is broken into smaller
chunks), and self-attention values are calculated. They are
called heads (h) and are concatenated and multiplied with
an attention weight to form multi-head attention values.

Residual Connection and Normalization: In both en-
coder and decoder networks, the layer normalization is
followed by residual connections around each of the two
sublayers in the encoder and around each of the three
sublayers in the decoder. The residual connection, which
is also called skip connection, allows the input to a par-
ticular layer to be added to its output by skipping a layer
in between. This helps to alleviate the vanishing gradient
problem, facilitate deeper networks, and improve learning
capability.

The Layer Normalization technique [49] in DL is used to
improve the training speed and help the network learn more
effectively by improving internal covariate shifts (shifts
in the distribution of activations as data moves through
the network during training). With normalization, for each
training sample, the mean and variance are computed across
all neurons in a layer. The output from residual connection
and normalization is given as equation 4:

Layer Norm(X + Sublayer(X)) 4)

Attention(Q, K, V) = softmax( 4 3)

where X is the input sequence after positional encoding
and Sublayer(X) is the function of the layer preceding the
residual connection (e.g., Attention layer, FFN layer, etc.)
Position-wise Feed Forward Network (FFN): In the
encoder and decoder network, there is one sublayer of FFN,

4

which operates independently on each position to capture
local and positional non-linear relationships. It consists of
two linear transformations and one non-linear activation
function, denoted as the following function below as equa-

tion 5. FFN(X) = o(W1.X + b)) W + bs ©)

where X is the input to the FEN layer, W; and W5 are the
two linear transformations and b; and b» are the correspond-

ing biases and o is the non-linear activation function like
RELU [50], GELU [51], etc.

2.2.4 Decoder Network

The decoder network maintains the same structural stack as
the encoder but incorporates two distinct modifications. The
first one is the added sublayer called Masked Multi-Head
Self-Attention, which takes input elements (mentioned as
output in Fig. 2), which are shifted right, and future to-
kens are masked (this is because each token can only be
influenced by previous tokens but not future ones). The
second one is the Multi-Head Self-Attention mechanism
implemented in the sublayer, followed by the masked self-
attention sublayer, where the key and value pairs are passed
from the output of the encoder network. This allows every
position in the decoder to extract the attention of all posi-
tions in the input sequences at the encoder network.

Linear, Softmax and Output: The output of the whole
network is a linear vector of predictions of the next element
produced after processing the input and output sequences,
along with attention values and FFN processing. Using
the Softmax function in the transformer architecture helps
determine the percentage for considering each entity. Thus,
it is used to normalize the vector numbers into probabilities
and ensure that the output is a valid probability distribution
summing up to one.

2.3 Pre-Trained Transformers

Pre-trained transformers are advanced ML models initially
trained into a large corpus of data to learn the general rep-
resentations. The concept of pre-trained models came into
existence because DL models with many parameters need a
much larger dataset to fully train the parameters. However,
creating large-scale labeled datasets is a great challenge and
costly. On the other hand, large-scale unlabeled datasets are
relatively easier to create. Therefore to leverage this, pre-
training approaches are typically applied to unlabeled data,
known as self-supervised learning, which enables models to
first learn the general representation from a large volume of
data and use the learned representation to perform domain-
specific downstream tasks by fine-tuning it. Various pre-
trained models have been developed in recent years. Here,
we discuss only the models that are used in the malware
analysis domain.

Bidirectional Encoder Representation from Transformer
(BERT): BERT is a groundbreaking pre-trained encoder-only
transformer model introduced by Devlin et al. [14], which
revolutionized the NLP domain. It can understand the con-
text of a word based on all its surroundings (both in left
and right directions) in all model layers. Fine-tuning BERT
adapts BERT to specific downstream tasks by continuing the
training process on a task-specific dataset, which is a part of
the transfer learning approach. Based on various aspects like
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size, speed, efficiency, and data requirements, there are a lot
of variants of BERT, such as DistilBERT [52], RoBERTa [53],
AIBERT [54], etc.

CANINE: CANINE [55] is a pre-trained transformer-
based tokenization-free neural encoder trained on character-
level sequences for language representation. Unlike other
pre-trained models trained on tokenization approaches like
words, sentences, or other forms of tokenizations, CANINE
is pre-trained using character sequences without explicit
tokenization or vocabulary. There are two pre-trained CA-
NINE models - CANINE-s (pre-trained using subword loss)
and CANINE-c (pre-trained on characters with autoregres-
sive character loss).

Vision Transformer (ViT): ViT [16] applies the trans-
former architecture based encoder directly to sequences of
image patches, treating each patch as a token. It introduced
a new way to handle 2D images by flattening and projecting
them into an embedding space like word embedding in text
processing.

Generative Pre-trained Transformer (GPT2): GPT-2 [56]
significantly expanded the original transformer architecture
by adding many parameters and training data. It uses a
stacked decoder-only architecture to generate text by pre-
dicting the next word. As GPT-2 was trained with extensive
and diverse data from Internet, it is able to generate more
coherent and contextual text across multiple domains.

3 SYSTEMATIZATION: TRANSFORMERS
WARE ANALYSIS

IN MAL-

In this section, we introduce taxonomies based on the
comprehensive application of transformers, the use of trans-
formers to solve challenges, variations of transformers ap-
plied to malware analysis, and the diverse feature represen-
tations and correlations processed with the transformers.

In Fig. 3 we show the different types of malware anal-
ysis tasks performed using transformers and in Fig. 4 a
detailed taxonomic structure diagram. The taxonomy dia-
gram consolidates and illustrates various modules and cus-
tom architectural enhancements used to represent different
feature correlations. The visual structure maps out how
diverse transformer architectures, from standard to custom-
enhanced models, are tailored to capture and process a wide
array of intricate patterns and correlations across different
applications. We also present the extended in-depth scope
of this topic in Appendix section 6 where we discuss in
detail about how different transformers are adapted, en-
hanced and fine tuned for malware anaylsis tasks, along
with evaluation and practical implementation insights.

The rest of this section is organized as follows. In
Subsection 3.1 we discuss the application of transformer
models to perform various malware analysis-based end
tasks like detection, classification, etc. In Subsection 3.2 we
discuss how the application of transformers is incorporated
to address certain challenges in malware analysis. Then, in
Subsection 3.3 we categorize different types of transformers
applied to address specific tasks in malware analysis, and in
Subsection 3.4 we discuss and categorize feature input types
and representation techniques. Finally, in Subsection 3.5 we
present the dataset inventory.

—[ Malicious Domain Name Detection [80, 81] ]

—(Anomaly System Calls Detection [82] ]

——— Malware Text Detection [83]

—(Cross Architecture Malware Detection [85] J

—( Malware Variant Detection [26] ]

—[ Malware Assembly Sentence Detection [84] ]

Malware Detection
[57, 64,59, 23, 61, 63, 68]
[27, 62, 67, 60, 24, 28]
[66, 58, 33, 72, 69]
[70, 71, 65]

Binary Code Similarity Detection [31] ]

Types of Malware

. Malware Detection Evasion [32]
Analysis Tasks

Explanation and Interpretation [58, 23, 33, 70] ]

v Multiple Class Classification [29, 75, 76]
I [78,79, 76, 30,77, 73, 68,72, 69, 70, 65]

Malware Classification I
L[ Few Shot Malware Classification [86] ]

Fig. 3. Types of Malware Analysis Tasks performed using Transformers

3.1 Applications of Transformers in Malware Analysis

Our analysis shows that the adoption of transformer ar-
chitectures, within the malware analysis domain, supports
and enhances the conventional security tasks (see Fig. 3).
From the figure, we can notice that a significant portion
of the research has focused on malware detection [23]-
[25], [27], [28], [33], [57]-[72] as an end goal while harness-
ing the transformers. These approaches vary significantly
employing different methodologies, feature representation
techniques, and model combinations which are discussed
in further sections. Additionally, some of these detection
tasks have been extended not only to perform classifica-
tion [29], [30], [65], [66], [69], [70], [72]-[79] but also to
provide explanation and interpretation [23], [33], [58], [70],
thereby enhancing the transformer’s application to security
analysis. Beyond malware-specific detection objectives, we
uncovered a range of other detection-focused approaches
in the field of malware analysis. These include malicious
domain name detection [80] [81], anomaly system call
detection [82], malware-related text detection from threat
reports [83], malware variant detection [26], malware as-
sembly sentence detection [84], and cross-architecture based
malware detection in IoT systems [85]. Moreover, a few
unique approaches have addressed more complex aspects
such as evasion techniques [32] and binary code similarity
detection [31], further demonstrating the broad spectrum
of applications for transformer technology in addressing a
variety of malware threats.

Building upon the diverse end goals achieved through
transformer architecture, most researchers have primarily
utilized transformers for generating contextual represen-
tations or embeddings for input sequences (see Section
3.4.4 for additional discussion). This method utilizes the
transformer’s proficiency in capturing both local and long-
range dependencies, crucial for processing complex data
formats effectively. In addition to generating embeddings,
numerous approaches have been proposed focusing on
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other innovative applications of transformers. For instance,
Hu et al. [32] developed MalGPT, fine-tuned on benign files,
to generate benign-looking perturbations that could evade
detection systems. This approach represents a strategic shift
towards using transformers not just for detection, but for
enhancing evasion techniques. Similarly, Shahid et al. [83]
leveraged the transfer learning approach to extract critical
cybersecurity terms from malware reports, thereby improv-
ing automated forensic analysis. Furthermore, Demirkiran
et al. [77] introduced an ensemble of pre-trained transform-
ers, BERT and CANINE (applied CANINE for the first time
in the malware analysis domain), configured as a bagging-
based Random Transformer Forest (RTF) to showcase the
applicability of transformer forest which could outperform
state-of-the-art models (performing multi-class classifica-
tion) even with highly imbalanced datasets.

The transformative applications of transformers within
the realm of malware analysis are profound and diverse
which demonstrates their evolving role in advancing Cy-
bersecurity defenses.

Takeaway: Transformers’ versatility across multiple analysis
tasks—ranging from detection and classification to evasion and
interpretation—demonstrates their evolving role in enhancing
cybersecurity defenses.

3.2 Transformers Addressing Challenges in Malware
Analysis: Efficiency, Effectiveness, and Adaptability

To tackle the challenge of emerging malware variants and
various obfuscation techniques, Lu et al. [26] developed
a comprehensive approach for creating malware variant
datasets. With that new dataset, they perform adversarial
training of the BERT-based detection model to enhance
the robustness and generalization abilities to work under
obfuscation conditions. They disassembled samples into the
assembly language and inserted API call sequences while
maintaining the original code execution structure. This ob-
fuscation technique involves inserting code and then ex-
tracting API so that the obfuscated malware can be used as
a variant of the original malware. This technique helped to
create an adversarial data set and retrain the model to make
it more aware and robust against obfuscation techniques.
To address the processing efficiency challenges posed by
the transformer processing requirements, Li et al. [27] im-
proved the training time efficiency and detection accuracy of
the transformer-based malware detector by improving the
standard transformer architecture. They introduced an addi-
tive attention mechanism - an improved version of the self-
attention mechanism. Unlike the standard encoder, instead
of calculating the dot product among Query(Q), Key(X),
and Value(V), which has a computational complexity of
O(N?), they introduced a linear method to capture the
context. Initially, the context information in () is compressed
and summarized into a global query vector g and it interacts
with the matrix K to produce the global matrix k. The
resultant global context holding £ is multiplied by the value
matrix V' to produce the attention values. In addition, they
also replaced the standard residual connection and layer
normalization with residual weight parameters «;. This
adjustment also alleviates the gradient problem by allowing
the model to dynamically adjust the residual contribution
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during training. These modifications collectively reduce the
computational complexity by 5 times and accelerate the
convergence of the network.

Furthermore, Ravi et al. [28] addressed the limitation
of adaptability of transformers in resource-constraint en-
vironments such as IoT. They developed a lightweight,
resource-efficient Vision Transformer (ViT) based model,
ViT4Mal, for IoT malware detection, optimizing it for edge
devices by simplifying its architecture. The limitation was
addressed by reducing the computational complexity and
memory requirements of the model. They reduced the
dimensionality of image patch vectors through a linear
projection in the patch embedding layer, used a learnable
position embedding to the patch embedding, streamlined
fine-tuned transformer encoder blocks, and simplified the
decoder network without using an extra class token, unlike
the original ViT architecture. After deploying the proposed
lightweight model on the FPGA board (applying specialized
hardware optimizations as well), they were able to speed up
the processing by 41 times while maintaining the detection
accuracy as compared to the original ViT.

To evaluate the cost-effectiveness of a transformer-based
model for varying sequence lengths, Or-Meir et al. [29] com-
pared it with various architectures, including LSTM, LSTM
with Attention, Bi-LSTM and Bi-LSTM with Attention. They
evaluated each model’s time-cost effectiveness to accurately
classify unseen malware with 22 varying input sequence
lengths (ranging from 10 to 4000). Based on their obser-
vation, they found that the transformer’s performance was
costly and less effective for lower sequence lengths, whereas
it performed exceptionally better with the increasing se-
quence length. This pattern highlights the transformer’s
suitability for handling larger data sequences.

Bu et al. [86] tackled the challenge of enabling deep
neural networks to cope with an increasing number of
unknown malware samples and the reliance on large labeled
datasets for new malware. To address this, they developed
a few-shot malware classification solution using a graph
transformer trained with triplet loss [87]. This approach
strategically applies transformers to handle novel malware
samples in a few-shot scenarios, which are likely to be
in real-world scenarios. Their method involves generating
a control flow graph (CFG) from the malware’s assembly
code. The graph transformer selectively weights the correla-
tions between nodes to capture the functional characteristics
of the malware. The triplet loss function forces the network
to learn a disentangled representation by minimizing the
distance between similar malware samples and maximiz-
ing the distance between dissimilar ones. This approach
enhances the transformer’s ability to distinguish between
malware types with minimal training data, improving the
robustness of malware detection systems against obfusca-
tion and variability in malware signatures.

Takeaway: Transformers are potentially capable of overcoming
key challenges concerning computational efficiency, adaptation to
obfuscation techniques, and resource usage reduction.

3.3 Transformer Variants Used in Malware Analysis

Transformer architectures have been widely customized to
tailor them to specific malware analysis tasks. We have

Authorized licensed use limited to: Tennessee Technological University. Downloaded on July 29,2025 at 03:21:34 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3576708

developed the taxonomy, shown in Fig. 4 to systematically
organize all the resulting variations and their applications
in capturing various intricate patterns and correlations. We
have also consolidated information about the varieties of
pre-trained and custom-enhanced transformers that were
applied to malware analysis in Table 1.

3.3.1 Standard (Vanilla) Transformer Architecture

Our analysis shows that the use of modular components is
more ubiquitous than the use of the transformer architecture
as a whole. As we did not find the use of a decoder-
only module, we discuss only the attention mechanism and
encoder-only modules in the section below.

Attention Mechanism: This mechanism mathematically
quantifies the importance of different segments of the input
data and allows the model to learn intricate patterns and
relationships within the sequences. In malware analysis, this
allows the network to prioritize critical elements of input
sequences, and dynamically adjust weights based on their
relevance. A key aspect of the application of attention to
malware analysis is the incorporation of positional encod-
ing, which is vital for understanding the order and context
of operations within the code. Positional encoding adds the
necessary context to the model, helping it recognize the
importance of sequence positioning in detecting malicious
patterns. Thus, numerous approaches leverage the capabil-
ities of attention mechanism, to learn intricate relationships
within the input sequences and analyze them to make the
decisions [29], [57], [59], [61], [63], [68]. In the context of
transformer architectures, positional encoding typically uses
1D values to maintain the order of data sequences. However,
to analyze network traffic bytes, Barut et al. [66] innovated
within this framework by employing both 1D positional
encoding and 2D convolutional feature embedding in their
Residual 1-D Image Transformer (R1DIT) model. The term
1-D Image in R1DIT refers to the conceptual treatment of
traffic byte sequences as one-dimensional data arrays that
are processed using methods associated with image data us-
ing convolutional neural networks. Thus, the 1D positional
encoding extracts the temporal sequence, ensuring that the
model recognizes the order in which network events occur
whereas the 2D convolutional feature embedding extracts
and learns spatial features. This dual approach significantly
improves the model’s capability to detect malware based on
network traffic behaviors.

Encoder Only: The encoder-only module consists of an
attention mechanism and the position-wise feed-forward
network sublayer. This setup is crucial in emphasizing
significant input parts and capturing complex non-linear
relationships, making it suitable for malware analysis. It
leverages the attention mechanism to emphasize significant
parts of the input and feed-forward network to capture local
and positional non-linear relationships. While it is consis-
tently used across various studies, its application is uniquely
tailored to address specific challenges in malware analysis.
For example, Oliveira et al. [25] utilize the encoder’s ability
to enhance malware detection through advanced feature
representation, while Li et al. [31] focus on decoding as-
sembly instructions’ syntactical and semantic nuances. Hu
et al. [58] leverage the encoder to efficiently analyze IoT
malware by harnessing self-attention from the encoder, and
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Trizna et al. [72] utilize the encoder for processing dynamic
behavior patterns in varying sequence lengths. Similarly,
Li et al. [75] and Guan et al. [82] highlight the encoder’s
role in understanding complex patterns in API call data and
system call sequences, respectively. Moon et al. [73] empha-
size the encoder’s proficiency in managing long sequences,
using its self-attention mechanism to capture the complex
dependencies and structural nuances within Control Flow
Graphs (CFGs). These varied applications demonstrate the
encoder’s versatility in advancing malware analysis.

Takeaway: The attention mechanism and encoder-only modular
components are widely utilized in malware analysis. These com-
ponents play a crucial role in capturing long-term dependencies
and relationships within malware data, making them effective for
various malware tasks.

3.3.2 Pre-Trained Transformers

In malware analysis, there is a broad use of pre-trained
models as shown in Table 1, focusing on encoder-only and
decoder-only architectures, alongside a mix of various atten-
tion mechanisms and embeddings. Here are the different
types of pre-trained transformers used in the malware field.

BERT and BERT Variants: BERT is used to generate
robust embeddings by providing more nuanced indications
of malware text [83], focusing on deep contextual charac-
teristics from an NLP perspective to detect malware [30],
[69], [74], addressing the challenge of detecting IoT malware
with limited training data [62], and processing contextual
understanding to analyze network traffic [33], [64]. Pandya
et al. [67] compared the embeddings generated from BERT,
DistillBERT, RoBERTa, and AIBERT using opcode sequences
to classify malware classes, demonstrating superior accu-
racy over context-free embeddings.

Fine-Tuned BERT: BERT has also been fine-tuned with
specific data, like opcode sequences extracted from exe-
cutable files [85] and by constructing obfuscated and un-
obfuscated malware variants [26], which reflect the real-
world malware behavior post-obfuscation, to perform the
downstream tasks of malware detection and classification.

CANINE: The character-level processing ability of
CANINE-c is leveraged by Gogoi et al. [81] to effectively
analyze malicious domain names without tokenization.
Demirkiran et al. [77] experimented on an ensemble of
BERT and CANINE leveraging BERT’s deep contextualized
representations and CANINE'’s flexibility in handling raw
text data without tokenization and also addressed the issue
of imbalanced malware datasets for malware classification.

GPT-2: GPT’s advanced natural language processing ca-
pabilities with its attention mechanism have been leveraged
to understand the context and relationship within opcode
sequences [60] for malware detection. Assembly instructions
extracted from . text sections of PE files are treated as sen-
tences and documents to label as benign or malicious [84]
using GPT-2. In contrast, Hu et al. [32] used GPT-2 to gener-
ate adversarial malware examples in a single-shot black-box
setting by adding benign-looking perturbations in malwares.

Vision Transformer (ViT) and Variants: There are inno-
vative approaches that utilize the abilities of Vision trans-
former (ViT) [16] to capture long-range dependencies across
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TABLE 1

Application of Pre-trained Transformers and Custom Enhancements/Improvements on Transformer Architecture for Malware Analysis

Date Transformer Type Transformer Module Objective of the Study Objective of Integrating Transformer
Pre-Trained Transformers
2020 BERT [83] Encoder Only Forensic Analysis of Threat Reports Semantic Extraction of Malicious terms
2021 BERT [62] Encoder Only ﬁeotsg) [CIigt ol it Ciitediglieinin cR(EXpICIRBERT] Enhance Detection with Robust Embeddings
2021 BERT [74] Encoder Only Classify Android Malware Enhance Classification with Robust Embeddings
2021 Fine Tuned BERT [85] Encoder Only Cirospendiiiditiie 1ol mallwene DEiEem (e e Enhance Detection with Robust Embeddings
of BERT Model)
2021 GPT-2 [60] Decoder Only Explore GPT2 for Malware Detection Enhance Detection with Robust Embeddings
2021 GPT-2 [32] Decoder Only Malware Detection Evasion using Benign Looking Perturbations }(strsster;icl:;dversanal RlelpergEramplesinhibinshotblcky
2021 BERT [64] Encoder Only Detect IoT Network Intrusion (Explore BERT Model) Enhance Detection with Robust Embeddings
2021 BERT [33] Encoder Only Interpret IoT Malware Detection Enhance Detection by Integrating with Multi-modal System
2022 Fine Tuned BERT [26] Encoder Only Construct Malware variants and Robustify Malware Detection Enhance Robustness against Obfuscated Techniques
Ensemble of BERT and Explore Random Transformer Forest for Highly Imbalanced - q . q
2022 CANINE [77] Encoder Only Class Dataset for Malware Classification Enhance Classification with Robust Embeddings
2022 GPT-2 [84] Decoder Only Explore GPT-2 as Natural Langugage Model to Detect Malicious Enhance Detection by Integrating with Multi-modal System
Assembly Sentences
2022 ViT [76] E_ncoder + Lambda Atten- Malware Classification w1'th Reduced Compt_ltahonal Complex- Enhance Malware Classification with Robust Embedding
tion ity and Memory usage using Lambda Attention
2022 ViT [78] Encpder Only + Patch En- Malware Cl;f\ssmcahon with Enhanced Existing Model using Enhance Malware Classification with Robust Embedding
coding Patch Encoding
2023 ViT [65] Encoder Only Dyl EelliSipervied] Lty an d 'I_‘ransfer Learinagion Enhance Malware Classification with Robust Embedding
Downstream Tasks of Malware Classification
2022 BERT [30] Encoder Only Classify Android Malware Enhance Classification with Robust Embeddings
2022 BERT [69] Encoder Only Detect and Classify Android Malware Enhar}ce Detectlpn and Classification of Android Malware with
Robust Embeddings
BERT, DistilBERT, ) ) ' N L
2023 RoBERTa, ALBERT [67] Encoder Only Comparison of BERT based Models to Detect Malware Enhance Detection with Robust Embeddings
2023 CANINE-c [81] Encoder Only Explore CANINE Model in Malicious Domain Name Detection ~ Enhance Malicious Domain Detection with Robust Embedding
2023 ViT [70] Encoder Only + Attention ﬁ;ﬁsmt Malware Detection and Classification using Attention Enhance Malware Classification with Robust Embedding
Custom Enhancement and Improvements
Explore Unique Arrangement of Star Transformers to Enhance
2021 Novel Transformer [23] ~ Galaxy Transformer Malware Detection and Interpretation against Obfuscations ~Complex Sequence Processing and Generate Robust Embedding
Techniques
. Heterogeneous ~ Temporal — Explore Combination of Transformers to Model Malware Evolu- . . . .
2023 Novel Transformer [24] Graph Transformer (HIGT)  tion and Propagation Pattern Enhance Malware Detection with Robust Embedding
2023 Novel Transformer [86]  Graph Transformer Enhance Few-shot Classification with Less Volume of Data gl Effech\{eness of Few-shot Malware Classification with
Robust Embeddings
2023 Improved Vanilla ~ Additive Attention + Resid- Explore Custom Improvements to Enhance Detection Increase Efficiency of Model by Reducing Computational Com-
Transformer [27] ual weight parameters plexity
2023 Improved Vanilla AdaTrans Integrz?te Inter-component Communication (ICC) to Enhance Enhance Malware Detection with Robust Embedding
Transformer [71] Detection
Improved ViT Trans- . Explore Global-local Attention to Enhance Malware Classifica- P . . .
2023 former [79] B_ViT tion and Resilience to Polymorphic Obfuscation Enhance Classification by Integrating with Multi-modal system
Improved ViT Trans- q q o Explore Adaptability in Resource-constrained Environment by  Enhance Detection with Robust Embedding and Explore Adapt-
2025 former [28] I ot WL Wl Developing Lightweight Vision Transformer ability of Transformer in Low-Resource Environment

the entire image without being limited by the local receptive
fields as that in Convolutional Neural Networks (CNNs).

Seneviratne et al. [65] employed a self-supervised ap-
proach using a ViT-based Masked Auto Encoder, SHER-
LOCK, where the input image patches are masked and the
model is trained to reconstruct the masked patches. Once
the self-supervised training of SHERLOCK is completed,
the learned representations are then transferred to fine-tune
3 different downstream models performing binary classifi-
cation, multi-class (47 categories), and family classification
(696 categories). The model achieved high accuracy in all
3 classification tasks outperforming models like ResNet,
DenseNet, and MobileNetV2. In this study, the transfer
learning approach using learned representations for down-
stream tasks appears faster, more convenient, and less data-
heavy as compared to training those models from scratch.

Chen et al. [76] introduced Lambda attention in the
Encoder, which reduced the computational complexity from
quadratic to linear by abstracting the interaction between
query, key, and value into lambda functions and effectively
aggregating the context from the input sequence. Thus,
they simplified the complexity from O(N?) to O(N). Park
et al. [78] also introduced a technique distinct from the

standard ViT. By adding patch by embedding along with
the encoder which splits the input into patches and applies
a transformer encoder directly, the approach adds an extra
encoding step for each patch, which enriches the input data
with more focused local features and positional information.
Furthermore, Jo et al. [70] used ViT to enhance malware
detection and interpretability. The input images are passed
through ViT to interpret the attention-based focus on differ-
ent parts of the images and find the most relevant features
for detection using the attention map from the ViT model.

Takeaway: The integration of pre-trained models provides a
powerful foundation for malware detection workflows, reducing
the need for large-scale labeled datasets while at the same time im-
proving accuracy with fine-tuning, making them highly practical
for real-world applications.

3.3.3 Custom Enhancements to Standard Architecture

Many researchers have focused on enhancing the existing
transformer architecture by introducing novel architectural
changes and unique arrangements as shown in Table 1. Li et
al. [23] proposed a novel Galaxy transformer based on the
arrangements of star transformers [88] at the fundamental
level, inspired from the heavenly bodies, creating three
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components based on the organization of star transformers:
satellite-planet (to understand the basic blocks), planet-star
(to understand assembly functions), and star-galaxy trans-
former (to understand the comprehensive semantics).

Bu et al. [86] proposed a novel graph transformer de-
signed to handle control flow graphs. It incorporates a direc-
tional embedding mechanism to capture sequential nature
of control flow within the graph. It also adapts multi-head
attention to prioritize critical attack paths and functional
characters of malware samples. It integrates triplet loss
function to learn a disentangled representation which en-
sures similar malware samples are embedded closely. With
these integrations, they propose few-shot based malware
classifier that mitigates the dependency on sample volume
and performs distance-based malware classification.

In Android malware analysis, Fan et al. [24] proposed a
novel Heterogeneous Temporal Graph transformer (HTGT),
a combination of novel heterogeneous spatial transformer
(to capture heterogeneity attention over each node and
edge) and novel heterogeneous temporal transformer (to
aggregate its historical sequences of a given node atten-
tively), specifically designed to model malware’s evolution
and propagation pattern to learn their latent representation.
HTGT (or called Dr. Droid) outperformed multiple state-of-
the-art comparable models and showcases more than 98%
true positive rate in detecting novel malware samples. The
model was deployed in the anti-malware industry to serve
over 700 million mobile users worldwide against evolving
android malware attacks.

Besides custom architectures and unique arrangements,
there are several improvements made to the existing Vanilla
transformer as well. In IoT malware analysis, to address the
issue of computational complexity, Li et al. [27] introduced
additive attention, which converts the quadratic complexity
into a linear, as discussed in Section 3.2. The authors claim
that their approach decreases the complexity five times
as compared to the standard architecture. Similarly, Pi et
al. [71] proposed AdaTrans, an adaptive transformer based
on adaptive multi-head attention network to detect mal-
ware that uses inter-component communication. Adaptive
attention modifies how attention scores are computed by
adjusting the weights based on relevance offering a more
flexible way to focus only on the most informative parts.

Furthermore, several approaches optimize the Vision
transformer (ViT) [16]. Belal et al. [79] proposed Butter-
fly_ViT, which incorporates a global-local attention mecha-
nism, arranging the multiple-attention mechanism in such
a way that it partitions images into segments to capture
detailed local features and uses an entire image to extract
global details in contrast to the standard ViT, which focuses
uniformly across the whole image. However, Butterfly is
computationally expensive, but harnessing parallel process-
ing and leveraging the local-global representation seems
to be a good approach. Ravi et al. [28], to cope with the
limited resource constraints in IoT systems, proposed a
ViT4Mal (a lightweight vision transformer) for edge devices
by improving several aspects of standard ViT. They reduced
the dimension in the patch embedding layer by projecting
image segments linearly, streamlined the encoder by ad-
justing the number and complexity of the block used, and
optimized hardware through quantization of model weights

and activation, loop pipe-lining, and array partitioning.

Conclusively, from a higher level perspective, we ob-
served that overall performance measures highlight the
exceptional accuracy of transformer models in malware de-
tection, often achieving accuracy greater than 95%. Custom
architectures that blend transformers with task-specific com-
ponents have shown significant improvements. While high
accuracy is common, there is often a trade-off regarding
computational cost. Complex models, although requiring
more resources, yield superior accuracy, demonstrating that
the selection of a model should balance accuracy with
available computational resources. For a more comprehen-
sive understanding of transformer adaptations, their effec-
tiveness, and performance measures, refer to the detailed
insights in Appendix Sections 6.1 and 6.2.

Takeaway: Custom enhancements to transformer architectures
provide a significant leap in their application to malware analysis,
making them more effective, scalable, and adaptable.

3.4 Feature Representations using Transformers

When applying Al techniques to malware analysis, proper
feature representation is a critical design choice, as it di-
rectly impacts the model’s ability to accurately analyze ma-
licious software. Using appropriate feature representations,
transformers can better understand and interpret complex
malware behaviors.

This section focuses on different types of feature and
correlation representations using transformer models, as
outlined in Table 2, demonstrating their flexibility in an-
alyzing malware through diverse combination of features.
We first categorize the features into 11 types as listed below,
examining how these are extracted, generated, and trans-
formed. Next, we discuss the integration of transformers
in multi-modal systems, highlighting how combining tex-
tual, visual, and structural data representations can enhance
malware analysis. Then, we categorize correlations into 7
different representation types and discuss how different
studies harness transformers to generate robust embeddings
for the different input features.

3.4.1 Feature and Input Types

As shown in Table 2, we have categorized features into 11
feature types focusing on how they are used as the medium
of representation. We also analyze approaches for extracting,
generating, or transforming features.

Binary Sequences: These are the sequence of 0Os and
1s, representing the executable codes. In malware analysis,
using streams of binaries from the executables, the streams
are transformed into images and patches of images [28], [65],
[70], [78], [79] to visualize unseen aspects of malware.

Opcode Sequences: Opcodes are the low-level instruction
sets executed by the CPU (hexadecimal form). In malware
analysis, these sequences allow one to identify patterns of
malware by analyzing the contextual relationship between
the sequence of opcodes. The sequences are employed in
diverse ways: as n-gram words for textual analysis [27],
to represent code blocks [57], converted into images for
visual analysis [76], mapped to functions for structural
insights [58], and utilized as text sequences [32], [67], [85].
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TABLE 2
A Comprehension of Feature Representation Techniques Utilizing Various Transformer Models for Diverse Analytical Objectives

I Feature Types Input Types | Feature Co-relations Types Transformer Modules [ Analysis Objectives | Analysis Methods
y
= 5 = g £ =
Surveyed Works | Year & 5 £ I % AT E ¢ E %o ot|E S 2 £ E I = g g £ . g % | Transformer
Bl 232258620882k 8E2|2 24884883830 F 8|24 2
A a6 F o ¥ N 8 & S Fl2 a6 & od o6 o+ B 8 NS a6 & 1B 6 N &S & = d o F < & o
Chen et. al. [57] | 2020 7 v v v v v Vanilla Transformer
Shahid et. al. [83] | 2020 v v v v v v BERT
Hueet. al. [58] | 2020 v v v v v v v Vanilla Transformer
Moon et. al. [73] | 2021 v v v v v v v Vanilla Transformer
Hamad et. al. [85] | 2021 v v v v v v Fine Tuned BERT
Longet.al. [59] | 2021 v v v v v v Vanilla Transformer
Guanet.al. [82] | 2021 / v v v v v Vanilla Transformer
Or-Meir et.al. [29] | 2021 / v J v v v Vanilla Transformer
Liet.al [23] | 2021 v v v v v v v v v v v v Galaxy Transformer
Rahali et. al. [74] | 2021 W v v Vv v J v . BERT
Sahin et. al. [60] | 2021 v v v v v v v GPT-2
Huet al. [32] | 2021 v v v v v | v GPT2
Oliveira et. al. [25] | 2021 / v v v v v v v Vanilla Transformer
Wangwang et al. [61] | 2021 v v v Y v Vanilla Transformer
Bellante et. al. [62] | 2021 v v v v v v v v v BERT
Fanetal [24] | 2021 / N viv v J v v v v v HTGT
Ullah et. al. [33] | 2022 v V; v v v v BERT
Lietal [75] | 2022/ v J v v v v Vanilla Transformer
Chen et. al. [76] | 2022 v v v v v v v ViT (Vision Transformer)
Luetal [26] | 2022/ v v Vv v v v Fine Tuned BERT
Qiet.al [63] | 2022/ v v Vv v Vanilla Transformer
Demirci et. al. [84] | 2022 v v v v v v GPT-2
Ghourabi et. al. [64] | 2022 v v v v v v v v v BERT
Demirkiran et. al. [77] | 2022/ v v v v v v Random Transformer Forest
Seneviratne et. al. [65] | 2022 v Vv v v v Vv v vit
Park et. al. [78] | 2022 v v v v v v v v ViT
Yang et.al. [80] | 2022 v v v v v v v Vanilla Transformer
Barut et. al. [66] | 2022 v v v viv v v Vanilla Transformer
Rahali et. al. [30] | 2023 J v v J v v BERT
Gogoi et. al. [81] | 2023 v v v v v v CANINE Transformer
Liet al. [31] | 2023 v v v J v J Vanilla Transformer
Pandya et. al. [67] | 2023 v v v v v v BERT, DistilBERT, RoBERTa, AIBERT
Denget.al. [68] | 2023/ v v v v v v Vanilla Transformer
Lietal [27] | 2023 / v v v v v v v Improved Vanilla Transformer
Belal et. al. [79] | 2023 v o v v v v v Butterfly ViT
Saracino et. al. [69] | 2023/ v v v v v v BERT
Ravi et. al. [28] | 2023 v o v v v N Lightweight ViT
Joetal. [70] | 2023 v v v v v v v v v v ViT
Pietal. [71] | 2023 v v v v v v Improved Vanilla Transformer
Triznaetal. [72] | 2023/ v v v v v v v v v Vanilla Transformer
Buetal. [86] | 2023 v v v v v v v Proposed Transformer

Assembly Codes: Assembly codes are expressed in low-
level programming languages, closely related to the ma-
chine code and are readable by humans. In malware anal-
ysis, such readable assembly codes are usually obtained
from executable files using disassembling tools and used
as a sequence of text [31], [60], [84]. The goal of such
transformation is to extract contextual relationships among
the opcodes and operands in the codes. Assembly codes
can also be combined with other features extracted from
different dynamic analyses [23], [62] to enrich the set of
features. Moreover, Moon et al. [73] used Control Flow
Graphs (CFGs) generated from assembly codes to represent
jumps and function calls. Bu et al. [86] extracted CFGs from
assembly to simulate malware attack paths & propagation.

API and System Call Sequences: API calls are requests
made by programs to external libraries or services, and
the system calls are requests made directly to the oper-
ating system (OS), which also represent interactions with
the hardware. Several approaches have used API call se-
quences [26], [63], [75], [77] and system call sequences [25],
[29], [82] that are usually extracted from sandbox (dynamic
analysis) environments. API and system call sequences can
also be combined with other features [27], [59], [62], [72] to
construct long call sequences and extract insights about the
malware’s actions and intentions. On the other hand, Fan et
al [24] and Deng et al. [68] proposed approaches to convert
API call sequences into graphs as feature representations,
and conversely, Saracino et al. [69] proposed an approach
to generate API call sequences from the API call graphs.

These contrasting approaches highlight different analytical
perspectives. In contrast, generating sequences from graphs
can simplify the analysis by linearizing the relationships,
making it easier to apply sequence-based machine learning
models.

Function Calls: To uncover hidden or latent malware
behaviors, sub-graphs generated from critical function calls
(API calls that indicate potentially malicious behaviors) are
used in the approach by Deng et al. [68], whereas Pi et
al. [71] integrated Inter-component communication in the
sensitive function call sub-graphs.

File System Information: A few approaches use file
system information and other features to enrich the features’
strength. Relevant features of file system include a large
variety of static information, such as file metadata (size,
creation date, and format) [62], file operation path [72],
header information [64], and file properties such as name,
size, and list of strings [64], as well as dynamic information,
such as file operation type [72], imported and exported
functions, and properties sections [64].

Manifest File Information: In Android systems, manifest
files play an important role as they provide essential infor-
mation about the OS, permissions the app requires, activ-
ities used, services used, broadcast receivers used, content
providers used, version supported, etc. In malware analysis,
Rahali et al. [30], [74] proposed an approach using man-
ifest files to reveal suspicious permissions or uncommon
features, and Fan et al. [24] proposed an approach using
manifest files as one of the features to map the malware
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propagation and reveal attack path.

Network Behaviors: Malware analysis may also analyze
network-based patterns or actions related to how malware
communicates or behaves over the network. Network prop-
erties used in malware analysis include protocol informa-
tion, data in transfer, network addresses [62], connection
ports and server names [72], dynamic feature items (ex-
tracted with strace and tcdump from system calls and IP
activities) [59], traffic data (IP, HTTP, DNS, unencrypted TLS
record headers) [66] and packet files (.pcap) [33], [61], [64].

System Behaviors: In malware analysis, the behavior
of malware that showcases the interactions and activities
on the OS level are tracked as system behaviors to detect
malicious activities. System behaviors like processes (ex-
ecution, termination, manipulation) [62], file modification
(creation, deletion, or alteration) [62], registry key accesses,
access type and key-value [62], [72], monitoring logs and
behaviors (sensor data, OS logs) [64] are used to map the
system behaviors. These behaviors are used as one of the
features rather than using them as a standalone feature set.

Domain Names: Domain names play a crucial role in
network malware analysis as they can be used to identify
command-and-control servers, phishing sites, and other ma-
licious destinations. Features, such as domain names and
n-gram location, are often used to classify the semantic
patterns into benign and malicious categories. Gogoi et
al. [81] leverage character-level analysis using the CANINE
transformer to analyze domain names without tokenization,
enhancing the detection accuracy for malicious domains.
Similarly, Yang et al. [80] utilize n-gram features to capture
the contextual information within domain names, further
improving the classification of malicious domains.

Others: In addition to the commonly used features,
some approaches incorporate unique features for malware
analysis. Static features, like printable string, PE imports,
and PE header numerical, were used by Li et al. [23] to
observe the behavior, purpose, and origin of a file. Fan
et al. [24] used Android-based dynamic features such as
loaded dex files, connected URLSs, generated texts, and the
application’s social information (application name, affilia-
tion, market, signature) to map the malware propagation
behaviors. Shahid et al. [83] used natural language features
obtained from malware threat report sentences to automate
the detection of malicious terms from the NLP reports.

Takeaway: The ability of transformers to process a wide range of
feature types enhances their capability to analyze malware from
multiple angles, providing a holistic understanding of malicious
behaviors. This flexibility allows for a combination of static,
dynamic, and network-based analysis within a single framework.

3.4.2 Transformers Integration in Multi-Modal System

Multi-modal ML refers to the integration and processing
of data from multiple modalities, such as text, images, and
graphs, to enhance the analysis and understanding of com-
plex information. In the context of malware analysis, this
approach is intriguing as it allows for a more comprehensive
understanding of malware behavior by leveraging different
types of data, which can reveal various aspects of malicious
activities that might be missed when considering a single
modality. In malware analysis, integrating transformers or
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modules of transformers with multi-modal data opens up
new possibilities for exploring the synergistic potential of
multi-modal combinations from multiple perspectives.

Recent approaches for windows malware detection show
that integrating transformers in multi-modal systems is
effective. The MDFA framework proposed by Qi et al. [63]
leverages the Bi-LSTM and attention mechanisms to analyze
API call sequences, capturing both temporal dependencies
and critical sequence patterns. Demirci et al. [84] enhanced
static malware detection by combining stacked BiLSTM
and GPT-2 models, treating assembly instructions(as word,
sentence, and document) as textual data to extract syntac-
tic and semantic features. The Belal et al.’s [79] Global-
Local Attention-Based Butterfly Vision Transformer model
employs global and local attention mechanisms to process
image and textual data, enabling the detection of complex
malware patterns through a comprehensive analysis and
offering resilience to polymorphic obfuscation.

In the IoT malware analysis domain, Ullah et al. [33]
developed an explainable malware detection system that
employs transformers-based transfer learning and multi-
modal visual representation, combining BERT (with a self-
developed FAST extractor) extracted textual features with
malware-to-image conversions (using self-developed BRIEF
descriptor) for visual analysis. Their approach, which also
incorporates CNN for deep feature extraction, emphasizes
the importance of explainable Al in making detection pro-
cesses transparent and reliable. To detect android malware,
Oliveira et al. [25] proposed a multi-modal deep learning
network, called Chimera. The multi-network processes three
different feature types - permission and intents, API call se-
quences, and apk images, individually fed into Deep Neural
Network (DNN), Transformer Encoder Network (TN), and
Convolutional Neural Network (CNN), respectively. Fur-
ther, at the fusion layer, the collected representations from
each sub-networks are concatenated as an ensemble of those
subnetworks thus outperforming the classical ML methods.

Additionally, to analyse linux malware, Guan et al. [82]
proposed a hybrid LSTM-Transformer model for system call
anomalies detection. This hybrid approach highlights the
value of combining LSTM’s capability to handle sequential
data with transformers’ strength in learning global depen-
dencies. Furthermore, Barut et al. [66] introduced the Resid-
ual 1-D Image Transformer (R1DIT) for privacy-preserving
malware traffic classification. This model leverages raw data
transformation and attention-based modules to classify dif-
ferent malware types and benign traffic without interfering
with IP addresses, port numbers, and the payload. Their
results demonstrate superior accuracy and generalization,
especially for handling new traffic types like TLS 1.3.

Takeaway: Transformers integrated into multi-modal systems
offer a powerful approach to malware analysis, as they can draw
on diverse data types to provide an holistic view of malicious
behaviors, particularly in handling complex, polymorphic, or
evasive malware.

3.4.3 Transforming Feature Correlations Through
Transformer Integration

Representing feature correlations involves capturing the re-
lationships and dependencies between different data inputs.
This is crucial because understanding these relationships
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Fig. 4. Taxonomy of transformers that are applied in malware analysis to capture various correlations and relationships from the input features

helps in accurately analyzing malware behaviors. Trans-
formers are particularly well-suited for this task due to their
ability to model complex interactions within the data. As
detailed in Table 2, we have categorized the correlations,
studied in the malware domain, into seven types. This cat-
egorization provides a structured overview of how various
studies address the representation of features correlations
in their analyses. Additionally, Fig. 4 shows how different
feature correlation representation techniques are captured
with the integration of various transformer types.

Functional Correlation: It refers to the relationship be-
tween different parts of the code that perform specific tasks
or functions. In malware analysis, research has focused on
functional relationship extraction by using assembly codes
converted as control flow graphs [73], [86], API and system
call sequences [26], manifest files [74], and basic blocks as
hierarchical structure (organization of data or entities in
layers of increasing complexity or specificity) [23] to map
malware intents and activities.

Semantic Correlation: It refers to the meaningful rela-
tionship between data based on their meaning or context.
Most of the reviewed literature [23], [25]-[27], [30]-[33], [57],
[58], [60]-[65], [67]-{72], [74], [77], [78], [80], [81], [83]-[85]
extracts the semantic relationship using a variety of features.
Semantic representations are widely used to observe mal-
ware behaviors, complex patterns, hierarchical structure,
long-range dependencies, malware intents & activities, etc.

Sequential Correlation: It refers to the relationships
between the data points that depend on their order or
sequence. In the malware domain, mainly the system and
API call sequences [25], [29], [59], [62], [75], [82] as text along

with the domain as n-gram words [80] and the assembly
codes as graphs [86] are used to investigate the position-
dependent malicious nature of malware.

Spatial Correlation: It refers to the physical or logical
relationship between data entities based on their spatial
arrangement or proximity. In malware analysis, features
are converted to images [28], [76], [79] to observe spatial
patterns, graphs [24] are used to map dependencies, and
texts [66] are used to map the hierarchical structure [23].

Structural correlation: Unlike spatial correlation, struc-
tural correlation deals with the arrangement and connec-
tions between components, defining how they are put to-
gether to form a larger system. In the malware domain, there
is the use of features as images [70], [78], as graphs [73],
features as texts to map the hierarchical structure [23], [58]
and malware intents & activities [74].

Syntactic Correlation: It is based on the structural rules
i.e. syntax of data. In malware analysis, these correlations
are observed in long text sequence analysis [25], [60].

Temporal Correlation: It refers to relationships between
data entities that change over time. In the malware domain,
capturing malware behaviors that evolve with time [24],
tracking of the timing of API calls [63], and network be-
haviors [66] using timestamps are experimented.

Takeaway: The ability of transformers to capture a wide array
of feature correlations enables them to detect more complex and
sophisticated malware, as well as pave the way to model malware
behaviors using multi-correlations. This makes them invaluable
for defending against evolving security threats.
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3.4.4 Generating Robust Embedding Representations
using Transformers

In this subsection, we cover approaches that use modules of
standard or improved transformer architectures for robust
embedding representations as high-dimensional data from
different input types: images, graphs, and texts. These em-
beddings aim to capture critical information and relation-
ships into a more manageable, higher-dimensional space.
Images to Represent Features:

When processing images as input, the vision transformer
(ViT) [16] is most commonly used. As mentioned in Sec-
tion 2.3, the ViT is based on an encoder-only module. It
processes patches from input images as tokens and gener-
ates the embedding representation in higher-dimensional
space. The embeddings are further used as per the goal
of the project. Utilizing ViT for feature representation from
images is increasingly common. Such an approach, detailed
in the Survey on Vision transformer by Han et al. [18] and in
the Survey of transformer in Vision by Khan et al. [17], ie.,
representing features with ViT for robust embeddings are
found in malware analysis as well. Though there are several
approaches for generating images to represent malware
samples, the role of ViT usually appears once the input
images are converted into patches and they are provided
to ViT as input tokens to generate and represent the im-
ages into higher dimensional embeddings. Park et al. [78]
used ViT to encode positional information of image patches
and sequential information between the local features of
the malware image. Unlike Park’s classification objective,
Seneviratne et al.’s [65] goal is to learn malware image
reconstruction and classify malware samples, but the core
use of ViT is similar in both cases - to generate feature
representations. In addition to the detection and classifi-
cation task using the embeddings from ViT, Jo et al. [70]
propose to use a ViT attention map to provide explanations
about the evaluation of malware samples. While such ap-
proaches use the standard ViT architecture, Chen et al. [76]
proposed an improved ViT by introducing a Lambda layer.
The Lambda layer in the ViT enhances its ability to learn
positional relationships dynamically during training, unlike
the original ViT which relies on static positional encodings.
It also replaces the traditional self-attention mechanism with
a more efficient linear function, reducing computational
complexity and memory usage.

Graphs to Represent Features:

In malware analysis, graphs are usually generated from
different ways to map structural aspects of malware sam-
ples. Among the various approaches, the one by Saracino et
al. [69] generates API call graphs from the Android APKs
and converts them into API call sequences. Similarly, the
approach by Deng et al. [68] generates graphs from sensitive
API and function calls to reflect latent behavioral patterns.
The approach by Feng et al. [71] utilizes the features used
in the approach by Deng et al. [68] and also incorporates
Inter-component communication (ICC) features to generate
graphs based embeddings. Since API calls are often used
to represent malicious patterns, in real-world instances,
malware often exploits existing APIs in the system to mimic
the normal behavior of benign apps to evade detection.
So, by incorporating ICC patterns in addition to API call
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graphs, malware detection becomes more robust to model
evasion due to the integral nature of component inter-
action within an application which is less susceptible to
modification or removal by malicious intentions. Besides,
the limitations of using only traditional CFG to generate
embeddings are also highlighted by Moon et al. [73]. They
proposed a new method to incorporate edge information to
preserve opcode semantics and add functional characteris-
tics to the existing structural representations from CFG. This
is achieved through a method that transforms opcodes into
nodes. In addition, they utilize the DeepWalk algorithm [89]
to traverse the CFG and create sequences that reflect the
comprehensive relationships within the graph, including the
newly added edge information. The sequences generated by
DeepWalk are then embedded using a transformer encoder
model, handling long sequences and capturing complex de-
pendencies between nodes more effectively than traditional
LSTM-based methods.

Texts to Represent Features:

Like in NLP, in malware analysis, the transformer models
are applied to sequences of textual features for detecting
and classifying malicious behaviors. The approaches men-
tioned in this section primarily use transformers to focus
on generating robust representation embeddings using dif-
ferent types of textual features. Using opcode sequences
generated from disassembly, several approaches have been
proposed [57], [58], [60], [67], [85] that extract syntactic
and semantic co-relation represented embeddings. Similarly,
approaches have been proposed [30], [72], [75] that use
API call sequences along with Manifest Files, Permissions,
Services, and Intents [30], network connection data and reg-
istry access information [72] to generate robust embeddings.
To detect malicious domain names, the approach by Yang
et al. [80] uses n-gram location and text information, and
the one by Gogoi et al. [81] that uses domain names. The
approach by Ghourabi et al [64] combines file information,
header information, imported and exported functions, .pcap
network files, sensor data, and OS logs to generate embed-
dings in the IoT domain. The approach by Bellante et al. [62]
uses file metadata, binary code, network behavior, system
behavior, and API call sequences to generate embeddings
and also addresses the problem of fewer samples by using
BERT in IoT malware analysis. Li et al. [31] introduced Gen-
TAL, a generative denoising skip-gram (aimed to predict
context words given a target word) transformer [90] for
binary code similarity detection by learning compact and
meaningful representations from assembly codes.

Takeaway: Transformer models are effectively used to gener-
ate robust embeddings from diverse input types—images, text,
and graphs—in malware analysis. This enables transformers to
capture complex relationships, enhancing malware detection and
classification across multiple data modalities.

3.5 Datasets Inventory

We tried our best to access and verify all the datasets that
are included in the Table 3. Android malware Genome
(marked! in Table 3) dataset is available but the efforts
to update it is stopped as mentioned in the source of
the dataset. The reference provided for the ICE Dataset
(marked?), Oliviera Dataset (marked?), and Mallmg Dataset
(marked*) are the references of work where the datasets
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TABLE 3
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Inventory of datasets that are used in malware analysis leveraging transformer architecture. Labels mentioned as* to ™ are further explained in Section 3.5

Dataset Name

Dataset Contents Information

Malware Analysis End-Goal Task

Omnidroid [91]
Tencent Security Lab
MalNet [92]

IoTPOT [93], [94]
[0T-23 [95]

Android Genome'
CICInvesAndMal2019
ECU-IoHT [98]
ToN-IoT [99]
Edge_IloTset [100]
EMBER [101]

ICE [102]2

IMG_DS [103]

Drebin [104]
Androzoo [105]

CICMalDroid2020 or
Maldroid [106]

Malshare

Catak [107]
Sorel-20m [108]
Oliveira [109]3
Mallmg [110]4
BIG2015

Top-1000 [111]
Speakeasy Dataset
Avast-CTU Dataset
Malicious Code [114]

Alexa [115], [116]®
360 Network Security
Stratosphere IPS
CICIDS2017 [119]
Netlab Open Data”

SecureNLP
Challenge [121]

VirusTotal [122]

VirusShare [123]

MalwareBazaar [124]
Malpedia [125]

Kaggle Microsoft
Challenge [126]

Self-Collected Data

Android Environment Compatible
22,000 real malware and benign Android applications
Real-world data that contains 82,831 Android apps collected from 55 app stores/marketplaces/websites
1,262,024 malware images extracted from real-world Android applications in AndroZoo
IoT Environment Compatible
124,799 executables captured by IoTPOT honeypot
20 malicious and 3 benign traffic files created by AIC Lab by Avast Software
[96] Android malware samples and associated metadata
[97] Data from 5000 Android samples, including 5065 benign apps and 426 malware apps
Traces of several types of attacks launched to target medical devices
ToT network intrusion that combines information from pcap files, Bro logs, sensor data, and OS logs
Data from IoT devices such as temperature and humidity sensors, heart rate sensors, flame sensors, etc
Features extracted from 1.1M binary files distributed as malicious and benign
Network analysis of set of ransomware attacks performed in an Integrated Clinical Environment (ICE)
14733 benign and 2486 malicious Android IoT image representation
Android and IoT Environment Compatible

Malware and Benign Android apps collected from Android Malware Genome Project, Google Playstore, Chinese
Markets, Russian Markets, Android websites, Malware forums and security blogs

1046190 malware samples with 37 malware classes
17,341 Android samples from VirusTotal, Contagio, AMD, and MalDozer

Windows Environment Compatible
Self Collected data that contains 38,427,440 basic blocks of 5 to 250 instructions on each
Windows API call sequences obtained within Cuckoo Sandbox and the malware classes of 7107 records
672 benign and 822 malware samples
42,797 malware and 1,079 benign API call sequences analysed dynamically
Mallmg by Vision Research Lab contains 9339 malware byteplot images
BIG2015 by Microsoft contains 21,741 malware samples images
Cotains over 47,000 portable executable both malware and benign imports
[112] Contains 93500 behavioral JSON format malware and benign data
[113] Contains 400,000 samples in JSON format
Malicious Code Dataset (MCD) contains labeled 30,000 samples containing API sequences in XML format
Network Dataset
Alexa contains top 1 million legitimate domain names
[117]% Contains malicious domain names publicly collected from different DGA families of malicious domains
[118]Contains large public network capture data in .pacp format
Contains raw capture data with the whole trace record throughout the day
[120] Contains 1 million DGA generated malicious domains along with the malware family which generated them

SubTask1, Semeval Task 8 from SecureNLP challenge dataset contains 11250 sentences from Advanced Persistent
Threat (APT) reports

Others

Dataset for Android and Windows Environments

PE format malicious code sample binaries - Dataset for Android, IoT and Windows Environments

86225 malware binary files - Dataset for Linux and Windows Environments
3158 malware binary files - Dataset for Linux and Windows Environments

Kaggle Microsoft Malware Classification Challenge contains 10868 assembly codes and binary codes (9 malware
families) - Dataset for Windows and Other Environments

Work [58] - Malware samples from Honeypot and Benign Linux ARM samples, Work [85] - Previously used by
HaddadPajouh et al. [127], Work [82] - Lab-generated dataset by Dymshits et al. [128] (Stream of Vectors of integers
of 300 length system call sequences), Work [23] - Benign executable collected from installation paths of software
programs, Works [60], [84] - Benign files from Windows OS and Commando VM, Work [32], [63] - Benign files from
Windows System files, Works [30], [68], [69] - Benign files collected from Google Play Store [129], Work [31] - Benign
files collected from Software programs from Linux and Windows, Work [67] - 2793 malware families with one or
more samples per family [130], Work [27] - 30,000 API Calls, including 14,302 malicious samples and 15,698 benign
samples. 9000 Opcodes samples of which 3500 samples are malicious and 5500 samples are benign - Dataset for
Android, Windows, IoT and Other Environments

Malware Detection [25]
Malware Detection [24]
Malware Detection & Classification [65]

Malware Detection [28], [58] & Explanation [58]
Malware Detection [61]

Malware Detection [62]

Malware Detection & Explanation [33]
Intrusion Detection [64]

Intrusion Detection [64]

Intrusion Detection [64]

Intrusion Detection [64]

Intrusion Detection [64]

Malware Detection [28]

Malware Detection [68], [69], [71] & Classification
[301, [571, [69]

Malware Detection [25], [59], [68], [70],
Classification [30], [70], [74] & Explanation [70]

Malware Detection [33], [68]-[71], Classification
[69], [70] & Explanation [33], [70]

Malware Detection & Explanation [23]
Malware Classification [75], [77]

Malware Assembly Sentence Detection [84]
Malware Classification [77]

Malware Classification [79]

Malware Classification [79]

Malware Classification [79]

Malware Detection & Classification [72]
Malware Detection & Classification [72]
Malware Detection & Classification [72]

Malicious Domain Name Detection [80], [81]
Malicious Domain Name Detection [80]
Malware Detection & Classification [66]
Malware Detection & Classification [66]
Malicious Domain Name Detection [81]
Malware Texts Detection [83]

Malware Detection [59], Classification [29], [77],
Detection Evasion [32]

Cross Architecture Malware Detection [85],
Malware Detection [23], [28], [60], [63], [68], [71],
Malware Classification [30], [76], [77], Explanation
[23], Malware Variant Detection [26], Malware
Assembly Sentence Detection [84]

Binary Code Similarity Detection [31]
Binary Code Similarity Detection [31]

Malware Classification [73], [76], [78], [79], Few
Shot Malware Classification [86]

Malware Detection [23], [27], [58], [60], [63],
[67]-[69], [82], Malware Classification [30], [69],
Explanation [23], [58], Cross Architecture Malware
Detection [85], Malware Assembly Sentence
Detection [84], Malware Detection Evasion [32],
Binary Code Similarity Detection [31]

are first used or introduced. For Alexa Dataset (marked?),
the provided link did not work, so we found another

link and added it to the reference. Furthermore, for 360

Network Security Lab Dataset (marked®) and Netlab Open

Data Project Dataset (marked7), the provided links were

unreachable when we tried to access them. Besides the
access concerns, we observed a few datasets that are widely
used, such as the Drebin, Androzoo, Maldroid, VirusTotal,
VirusShare, and Kaggle Microsoft Challenge datasets. In

addition, researchers have created variations of the data sets
according to their requirements for the experiments.

4 CHALLENGES AND FUTURE PROSPECTS

Based on our analysis of the state of the art, we identify and
categorize the limitations and future research directions into
five broad categories, discussed below:
Model and Architecture Limitations:
as [66], [78], [83], [85] present initial analyses of transformer

Studies such
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architecture and attention mechanisms. As observed, with
the increase in input sequence size (e.g., high-resolution im-
ages), the multi-head attention mechanism performance de-
creases, hindering the overall performance, so fewer multi-
heads are used. Thus, a relevant research direction is the
design of techniques for optimizing the multi-head attention
to improve processing and inference time for specific tasks.

Inadequate Data and Feature Representation: The
problem of imbalanced datasets and the need for diverse
malware samples [57], [73], [81], [83], [84], [86] is also a
critical issue in the field of malware analysis especially
given the rise of sophisticated malware types. Therefore,
the generation of synthetic malware exhibiting unseen char-
acteristics would be critical. Work by Lu et al. focuses
on the construction of malware variants by inserting API
calls into the assembly code [26]. However, more work is
needed focusing on generating synthetic malware samples
using Generative Al, GANs, Auto-encoders, etc., opting for
various obfuscation techniques, unseen characteristics, and
intents of malware.

Multi-modality, Cross-Attention and RL: In malware
analysis, most of the approaches use single feature types
with inadequate pre-processing techniques [28], [29], [32],
[59], [65], [68], [69], [71], [73], [75], [82], [85]. Addressing
such a challenge requires advanced feature engineering
efforts. However, as an initial step toward such a direction,
we observed a good focus on feature engineering, such
as efficiently reducing the dimension of opcodes by con-
verting them into decimal representation [57], preserving
edge/opcode information (which is usually lost) [73], slicing
system call sequences into various lengths of subsequences
to experiment with effective sequential processing [29], and
using multiple feature sets [23], [64].

Besides the existing efforts, there is still scope for future
research on combining efficient and novel feature engineer-
ing techniques for multi-perspective representation of input
samples. One of the directions is the design of multi-feature
representation based multi-modal transformer network for
malware analysis. Oliveira et al. [25] experimented with
multiple features like text and images, with multi-modal
Deep Neural Network, CNN, and Transformer. However,
they do not provide a combined perspective, in that they
use an ensemble method at the fusion layer, which does not
combine the multiple perspectives from the input. It rather
uses a voting mechanism for the detection decision. There
are fusion techniques, like cross-attention, fused attention,
etc., investigated in other domains like vision [131], [132],
which can be extended to the field of malware analysis. This
can help explore multiple perspectives using multi-feature
representations (such as generating graph, image and text
data from the same input sample or different samples) using
multi-modal transformer networks.

Also, experiments combining transformer attention
mechanism and reinforcement learning as suggested by
Ullah et al. [33] for more robust malware detection can
be an interesting avenue to explore. In malware analysis,
the state representations can be a sequence of actions taken
by the malware which could be features like visual, tex-
tual or graphs sequences extracted from feature types like
API calls, file system changes, network activities, registry
modifications, etc. The definition of actions could involve
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identifying malicious behavior, flagging suspicious flags,
etc. On top of it, the reward function could be designed as
the incentives when RL agent correctly identifies malicious
intents. Studies in other domains [133], [134] have shown
that this integration through memory-based reasoning and
sequential behavior modeling, is effective for scalability and
efficiency, which could be leveraged for malware analysis.

Robustness and Security: The vulnerabilities of DL
models have been widely investigated because of their
popularity. Similarly, there are investigations that demon-
strate threats and vulnerabilities in transformer-based mod-
els. Some of the attacks are as follows: BAE [135], a
black box attack to generate adversarial examples using
contextual perturbations from BERT; GBDA [136], the first
general purpose framework for gradient-based white-box
attacks against text transformers; CWBA [137], a character-
level white-box adversarial attack; Vision Transformer based
attack [138], a dual attack framework, which contains a
Pay No Attention (PNA) attack and a PatchOut attack, to
improve the transferability of adversarial samples across
different ViTs; Positional Encoding based attack [139], an ad-
versarial attack that manipulates the model by providing it
with incorrect positional information enabling an evasion at-
tack. These attacks demonstrate the inherent vulnerabilities
of transformer-based models regardless of their application,
which also impacts the malware analysis domain.

In malware analysis, the vulnerabilities of transformers
based on adversarial attacks have not been well analyzed;
however, the need for robustness has been highlighted [23],
[61], [72]. So, future research should focus on adversarial
training, defensive mechanisms, evaluation of models” re-
silience against sophisticated attacks. In addition, the po-
tential for malware evasion using obfuscation techniques,
as well as its evolving nature [24], [58], [70] highlight the
need for models that can effectively detect obfuscation
techniques. Research is needed to design models capable
of understanding complex obfuscation patterns.

Deployment and Real-world Application:  Since
transformer-based models are computationally intensive,
there are challenges related to the deployment of these mod-
els in practical settings, particularly on-edge devices [28],
[61], [64], [79]. Thus, an important direction is the optimiza-
tion of transformer models for various deployment environ-
ments like cloud, edge computing, and mobile platforms.
Also, creating APIs that leverage transformer models for
easy integration into security systems and tools, allowing
for real-time malware detection and response in applica-
tions, is an interesting avenue for future research.

5 CONCLUSIONS

In this paper, we provide a comprehensive systematization
of knowledge (SoK) on the use of transformers in malware
analysis. Our analysis shows that transformers excel in
capturing intricate patterns such as spatial, temporal, struc-
tural correlations, etc. across high-dimensional data, making
them well-suited for detecting and classifying malware,
analyzing binary code similarity, understanding evasion
techniques etc. We also discuss the challenges associated
with the application of transformers in malware analysis
and present an inventory of datasets used in the domain to
facilitate future research and development.
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