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Abstract 

The interaction between cavity photons and molecular vibrations leads to the formation of 

vibrational polaritons, which have demonstrated the ability to influence chemical reactivity and 

change material characteristics. Although ultrafast spectroscopy has been extensively applied to 

study vibrational polaritons, the nonlinear relationship between signal and quantum state 

population complicates the analysis of their kinetics. Here, we employ a second-order kinetic 

model and transform matrix method (TMM), to develop an effective model to capture the nonlinear 

relationship between the 2D IR (or pump-probe) signal and excited state populations. We test this 

method on two types of kinetics: a sequential relaxation from the first to the second excited states 

of dark modes, and a Raman state relaxing into the first excited state. By globally fitting the 

simulated data, we demonstrate accurate extraction of relaxation rates and ability to identify 

intermediate species by comparing the species spectra with theoretical ground truth, validating our 
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method. This study demonstrates the efficacy of a second-order TMM approximation in capturing 

essential spectral features with up to 10% excited state population, simplifying global analysis and 

enabling straightforward extraction of kinetic parameters, thus empowering our methodology in 

understanding of excited-state dynamics in polariton systems. 

Introduction 

Vibrational polaritons are quasiparticles that emerge from the collective strong coupling between 

molecular vibrations and cavity modes, which exhibit characteristics of both matter and light. 1-4 

These entities have received significant interests from the chemistry community due to their 

potential to modify ground-state chemical reactions,5-8 influence photophysical processes within 

vibrational excited states9-13 and serve as platforms for quantum information science.14-16 Despite 

their promising applications, a few key questions remain unanswered. For instance, it is unclear 

how polariton states, with lifetimes spanning only several picoseconds, can influence reactions 

that unfold over minutes to hours,17-20 or what role is played by the dark states that predominate in 

most systems.21, 22 

To understand energy redistributions inside of polaritons and their associated dark states, ultrafast 

spectroscopy, including pump-probe and two-dimensional (2D) spectroscopy, across visible or 

infrared spectra,7, 10, 11, 22-29 has been developed for investigating these processes in polaritonic 

systems. Using these techniques, it has been demonstrated that vibrational polaritons could alter 

ultrafast processes in the excited states with time scales of several picoseconds, such as energy 

relaxation9, 10 and transfer,12 polariton propagation, and ultrafast structural isomerization.13 In these 

investigations, the primary utility of these techniques is to delineate the population dynamics of 

intermediate states following photoexcitation, providing insights into how polaritons may alter 

photophysical behaviors. 
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Data from pump-probe and 2D spectroscopy are often depicted as two- or three-dimensional arrays, 

∆𝑆(𝝎, 𝑡), capturing spectral evolution over time at various frequencies ω. This format allows for 

one-dimensional representation in pump-probe experiments and two-dimensional in 2D 

spectroscopy at each time delay t. For regular molecular species, the various spectral features can 

be directly related to the population of intermediate states, such as ground state bleach, stimulated 

emission and excited state/photoinduced absorptions, whose spectral amplitudes are used to track 

the population dynamics, e.g. following Beer’s law.30 In this case, the decay time constants extract 

from multi-exponential fitting directly represent the population dynamics of these states.  

This approach encounters some challenges when quantifying polariton dynamics. For example, 

Figure 1 shows the calculated pump-probe spectra and their intensity as a function of the 

population at given frequencies. If we only consider Rabi-splitting contraction – the reduction of 

the collective coupling strength due to a decrease of the ground-state population of the molecular 

modes,9, 11, 23 the pump-probe spectra are reminiscent of a pair of out-of-phase derivatives of  the 

Lorentzian functions whose line shape remains unchanged but amplitude varies when the change 

of the ground state population is perturbative (Figure 1a and 1b). Moreover, pump-probe intensities 

of the derivative spectra and ground state population follow a linear relationship, allowing for the 

use of peak intensity to represent the ground state population changes (Figure 1c).  

Alternatively, to follow the dynamics of the excited states  of the dark modes,  it is a common 

practice to follow its absorptive feature , due to its large spectral intensity.11, 31 In vibrational strong 

coupling (VSC) systems, after polariton relax to the excited states of dark reservoir modes, the 

absorption of the excited states of dark modes (in particular the first excited states) often overlaps 

with the LP transmission window – rendering a large signal amplitude in the pump-probe spectra 

(Figure 1d and 1e). However, this is where a potential issue lies.  As shown in Figure 1f, the 
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negative feature at the LP region only exhibits a linear increase when the excited state population 

is below 4%, and overall increases nonlinearly as the population of the first-excited state increases. 

This nonlinear dependence shows not only in pump-probe transmission spectra, but also in 

reflection and absorption spectra (Figure 2), which poses challenges to obtain correct time 

constants from the raw data using simple exponential fitting. 
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Figure 1: Simulated pump-probe spectra of a Lorentzian oscillator with ground-state 

frequency of 1983 cm−1 that is coupled to the cavity mode. (a) schematic of a two-level system 

showing Rabi splitting under VSC, and Rabi contraction (red dotted levels). (b) pump probe 

spectra of a two-level system. (c) population dependence of the signal intensities at given 

frequencies for (b). (d) schematic of a three-level system with 21 overlapping with LP. (e) 

pump probe spectra of a three-level system with the excited state absorption of 21 at 1968 

cm−1. (f) Population dependence of the signal intensities at given frequencies for (e)  
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To resolve this challenge, researchers often apply the model derived from the transform matrix 

method (TMM) to extract population of the excited and ground states.9, 32, 33 In this method, the 

linear polariton spectra at ground and excited states are simulated by TMM, respectively, whose 

difference is used to fit the pump-probe spectra at a specific time t.  The populations at t can be 

extracted from the fitting; then the same procedure is repeated at other time delays to obtain the 

dynamics. Finally, the lifetime of the excited and ground states can be attained by multiexponential 

fittings. Although widely used,9, 32, 34 due to its two-step nature, the accuracy of the time constants 

heavily depends on the quality of the spectral fitting and thereby often requires high quality spectra, 

in order to retrieve subtle features.  
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Alternatively, global fitting,30 a method widely adopted in transient absorption spectroscopy35-40 

to accurately extract kinetics has not been implemented for polariton studies, due to the challenges 

of non-intuitive correspondence between spectra and states, and the nonlinear population-spectral 

signal relationship as shown in Figure 1f.  

In this article, we address these issues by developing a model of global fitting that describes the 

transient spectra using the first and second order perturbative expansions, i.e. Hessian. To elucidate 

1940 1960 1980 2000 2020
−0.1

0.0

0.1

0.2

Δ
R

 (
a

rb
.)

Frequency (cm−1)

Population of The 1st Excited State (%)

 1  6

 2   7

 3  8

 4  9

 5  10

1940 1960 1980 2000 2020
−0.1

0.0

0.1

Δ
A

 (
a

rb
.)

Frequency (cm−1)

Population of The 1st Excited State (%)

 1  6

 2  7

 3  8

 4  9

 5  10

0 2 4 6 8 10

−0.10

−0.05

0.00

0.05

0.10

Δ
A

 (
a

rb
.)

Population of 1st Excited State  (%)

Frequency (cm−1)

 1965  2000.

 1967  2004

 1971

0 2 4 6 8 10

−0.05

0.00

0.05

0.10

0.15

Δ
R

 (
a

rb
.)

Population of 1st Excited State  (%)

Frequency (cm−1)

 1965

 1967

 1971

 2000

 2004

a) b) 

c) d) 

Figure 2. Simulated pump-probe reflection and absorption spectra of a Lorentzian oscillator 

with ground-state frequency of 1983 cm
−1

 that is coupled to the cavity mode. (a) Pump probe 

reflection spectra of a three-level system with the excited state absorption of 21 at 1968 

cm
−1

. (b) Population dependence of the signal intensities at given frequencies for (a). (c) Pump 

probe absorption spectra of a three-level system with the excited state absorption of 21 at 

1968 cm
−1

. (d) Population dependence of the signal intensities at given frequencies for (c). 
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complexity the nonlinear correspondence issue, we employ numerical simulations to show that the 

nonlinear behavior originates from the second derivatives of the polariton signals with respect to 

excited-state populations, i.e. the Hessian term.  We thereby introduced a second-order kinetic 

model by including the Hessian to describe the transient spectra. This model accommodates the 

nonlinear characteristics. Furthermore, it provides a robust framework for accurately extracting 

rate constants and identifying the species spectra associated with the corresponding excited states 

through global fitting, without the need of fitting each pump-probe spectra using TMM. 

Theory 

Experimentally, the pump-probe transmission spectra are recorded as the difference between the 

transmission spectra of the sample with and without pump excitation. The differential signal ΔT(ω, 

t), dependent on frequency (ω) and time (t), is represented by 

𝛥𝑇(𝜔, 𝑡) =  𝑇𝑀𝑀(𝜔, 𝑨(𝑡)) −  𝑇𝑀𝑀(𝜔, 𝑨(𝑡 = 0)), (1)  

𝐿𝑖(𝜔) = 𝛢𝑖𝑒
−𝑖𝜔𝑡/(𝜔𝑖

2 − 𝜔2 − 𝑖𝜔𝛤𝑖), (2) 

Where 𝑇𝑀𝑀(𝜔, 𝑨(𝑡)) is the function derived from TMM to compute the polariton transmission 

spectra. Here, 𝑨(𝑡) = (A1(t), A2(t)) are the amplitudes of transition for 21 and 32 anharmonic 

transitions described by Lorentzian functions (equation 2, where Ai is the amplitude, ωi is the center 

frequency and Γi is the linewidth), which are proportional to the population of the corresponding 

excited states at time t. In general, 𝛥𝑇(𝜔, 𝑡) can be effectively expanded into a Taylor series with 

respect to the amplitude vector 𝑨(𝑡), as shown in equation (3).41     

𝛥𝑇(𝜔, 𝑡) =  
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

𝐴1(𝑡) +
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

𝐴2(𝑡) +
1

2
𝑨𝑻(𝑡)𝑯𝑨(𝑡)… ..  (3) 

where 𝑯 is the Hessian matrix.41 
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𝑯 =

[
 
 
 
 
𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0

𝜕2𝑇𝑀𝑀

𝜕𝐴1𝜕𝐴2
|
𝑡=0

𝜕2𝑇𝑀𝑀

𝜕𝐴2𝜕𝐴1
|
𝑡=0

𝜕2𝑇𝑀𝑀

𝜕𝐴2
2 |

𝑡=0]
 
 
 
 

, (4) 

The 10 transition, or the ground state population, is not included as an independent variable, due 

to the conservation of total population. In most of ultrafast studies, this series can be truncated at 

the first order, e.g. 
𝜕𝑇𝑀𝑀

𝜕𝐴𝑖
|
𝑡=0

 , suggesting a linear relationship between the transient spectra 

intensity and the corresponding excited state populations. However, as shown in Figure 1f, such a 

linear relationship breaks easily for the large absorptive (negative) feature in polariton transient 

spectra. Thus, we consider the second order in the expansion. Later, we will demonstrate 

numerically, this expansion is sufficient to address the nonlinear issue presented above, due to the 

typically small population of excited states induced by the finite pump fluence. 

To validate the feasibility of the second-order Taylor expansion approximation, we simulated the 

pump-probe spectrum of a polariton formed by strong coupling the T1u mode of C-O stretching in 

W(CO)6 to the cavity mode9 by subtracting the pump-on spectrum (with excited state transitions) 

from the pump-off spectrum (without excited state transitions), and used it as the ‘ground truth’. 

The amplitudes, linewidths and the central frequency of the Lorentzian functions used to calculate 

the ‘ground truth’ in Figure 3 are summarized in Table 1. The amplitude for the ground state 

transition was attained from fitting the experimental linear transmission spectrum to reach Rabi 

splitting of 38 cm−1 at zero detuning.  

Table 1: Parameters of the Lorentzian Functions Used in the Study 

Center Frequency (cm−1) 1983 1968 1953 

Amplitude (cm−2) 2309 243 53 

Linewidth (cm−1) 8 11 14 
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In Figure 3, we compare the ground truth to the outcome from Equation 2 under various 

approximations. We find that neglecting the second derivative contributions significantly 

overestimates the negative signal in the LP region (1960 cm−1 to 1970 cm−1, Figure 2a). However, 

when including second derivatives, the approximated spectra align closely with ground truth 

(Figure 3b), validating the approximation of truncating at second order.  

Yet not all elements of the Hessian matrix significantly impact the second-order corrections. Given 

that the pump excitation predominantly promotes the first excited state population rather than the 

second, elements concerning the population of the second excited state should show negligible 

effects. This observation is supported by the calculated spectra in Figure 3c, where the Hessian is 

approximated to be 𝑯 = [
𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0
0

0 0
]. In Figure 3c, the theoretical spectrum closely resembles 

the ground truth, with only the LP negative peak to be slightly smaller than the one of ground truth. 

Thus, the pump-probe signal for vibrational polaritons can be simplified to: 

𝛥𝑇(𝜔, 𝑡) =  
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

𝐴1(𝑡) +
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

𝐴2(𝑡) +
1

2
∗

𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0

𝐴1
2(𝑡) , (5) 
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This simplification significantly streamlines the kinetic model for vibrational polaritons, as the 

second-order correction comprises only a single dynamic component. 

 

Experimentally, the pump-probe data ΔT(ω, t) is captured as a two-dimensional matrix. The 

primary goal of the data analysis is to extract the dynamics of the intermediate states and the 

corresponding basis spectra in order to identify the intermediate states. Using W(CO)6 as an 

example, the overall dynamics involves the relaxation of the first and second excited states,42 

which can be described by the following matrix equation: 

𝑑

𝑑𝑡
[(

𝐴2

𝐴1
)]  = (

−𝑘2 0
𝑘2 −𝑘1

) (
𝐴2

𝐴1
),  (6) 
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Figure 3: Comparison between the ground truth pump-probe spectrum and the 

approximated spectra calculated using equation 2. (a) only first order derivatives are 
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where 𝑘1 and 𝑘2 represent the relaxation rates of the first and second excited states, respectively. 

By incorporating second-order kinetics into our analysis, the kinetic model changes into the 

following: 

𝑑

𝑑𝑡
[(

𝐴2

𝐴1

𝐴3

)]  = (
−𝑘2 0 0
𝑘2 −𝑘1 0
0 𝑘2𝐴2−𝑘1𝐴1 0

)(
𝐴2

𝐴1

𝐴3

), (7) 

Here, we simply define 𝐴3 = 𝐴1
2/2 based on equation (5) and used the chain rule for derivatives.41  

We can obtain these relaxation rates from globally fitting the time-resolved spectra to our kinetic 

model. This fitting should not only produce the population dynamics but also the spectra associated 

with each state.  

To validate specific kinetic processes further, we also need to compare the species-associated 

spectra with the derivative spectra 
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

 , 
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

  and 
𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0
 . This comparison is an 

approach to identify the corresponding states from the spectra.  For example, according to Eq.(4), 

if one species spectrum resembles 
𝜕𝑇𝑀𝑀

𝜕𝐴𝑖
|
𝑡=0

, it indicates that state i is excited. Thus, it is necessary 

to calculate these derivative spectra as references.  

Figure 4 presents the derivative spectra for the first and second excited states of a polariton system. 

Figure 4a clearly demonstrates that the second excited state spectrum (
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

) is red-shifted 

compared to the first excited state (
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

) and is characterized by a broader linewidth in the 

lower polariton (LP) region. Despite these differences, both states share a nearly identical line 

shape in the upper polariton (UP) region. This is reflective of the fact that the UP region is sensitive 

only to changes in the ground state population, while the LP region is affected by the excited state 

absorption (ESA). 
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Moreover, the second derivative spectrum (
𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0
) of the first excited state exhibits a positive 

contribution to the LP region (Figure 4b). This observation is in line with calculations in Figure 

3a, confirming that a first-order approximation would likely lead to an overestimation of LP 

intensity. In contrast, the second derivative spectrum exerts a negligible effect on the UP region. 

This agrees with that the UP region maintains a linear relationship between the signal and 

population, as concluded in Figure 1c. In the next sections, to validate and test the sensitivity of 

the global analysis method, two model data sets with different kinetics are produced by TMM 

which are analyzed globally with the second-order kinetic model. 

 

Model 1.  Vibrational relaxation of second and first excited states 

Figure 4: Derivative spectra calculated from TMM. (a) First and (b) second derivative 

spectra of the linear spectrum calculated by numerically differentiating the TMM equation 

with respect to the first and second excited state population. 
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Our first test model involves an ensemble of W(CO)6 whose ground-state T1u modes of C-O 

stretching are coupled to the cavity mode to reach VSC.9, 23, 32 In our previous work, we showed 

spectral dynamic signatures that were attributed to the population of second excited states,31 which 

were further supported by analytical theory43 and numerical simulations.44 Here we simulate this 

dynamics by describing it as that at time zero (t = 0), polariton instantaneously promote ten percent 

of the ground-state vibrations to the first and second excited states, whose characteristic relaxation 

rates remain the same as those of free-space W(CO)6 molecules, which are (70 ps)−1 for the second 

excited state and (140 ps) −1 for the first excited state (Figure 5a).9, 42 The pump-probe spectra from 

t = 0 ps to t = 250 ps are simulated using TMM, and the progression of the populations yields a 

series of pump-probe spectra at different time delays.  

Figure 5b shows the 2D-contour of the pump-probe spectra and the spectral cut (normalized) in 

the early and late time to represent the spectral evolution. The ESA of first and second excited state 

is denoted by a prominent negative peak in the LP region, with the second-excited state's ESA 

broadening this peak, complicating the distinction from the first-excited state.  

Performing the global fitting using the second-order kinetic model not only allows us to retrieve 

the rate constants accurately (Figure 5c and d), we obtained (69.7 ps) −1 and (139.9 ps) −1 for the 

second and first excited state relaxations respectively.  The component spectra reach good 

agreement with the calculated derivative spectra: the first species (Species 1 in Figure 5d) shows 

a broad and red shifted peak in the LP region, which agrees with the 
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

 spectra (black dots), 

indicating this spectral feature represents the 2nd excited state; in contrast, the second species 

(Species 2) is narrow and blue shifted, agreeing with characters of the 
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

 spectrum (red 

dots). Thus, its dynamics describe the first excited state. It is noticeable that a discrepancy is 
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presented on the UP spectral side between Species 1 and its ground truth 
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

. This is because 

the negligence of Hessian terms of A2, i.e. 
𝜕2𝑇𝑀𝑀

𝜕𝐴2
2 |

𝑡=0
in the global fitting model. As a result, it 

reduces the bleach at LP side of the Species 1 spectrum, making the derivative spectra on the UP 

side larger than the ground truth after the spectrum being normalized to the bleach peak at LP 

region. It is worth noting that, while the kinetic model did not a priori identify the two states, this 
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information is attained from the species-associated spectra. 

 

Model 2. Involvement of a Raman state in vibrational relaxation. 

The second model involves population relaxation of a Raman state to the first excited states with 

the relaxation rate mirroring that of the second-excited states of the free-space W(CO)6 molecules 

as described in Model 1 (Figure 6a). This is a mechanism our group recently proposed to explain 

Figure 5: A sequential relaxation model. (a) Jablonski diagram describing the vibrational 

relaxation of the model. |0>, |1> and |2> are the ground state, first and second excited state of 

the vibration respectively. (b) Modeled pump-probe spectra of vibrational polariton that 

involves relaxation of first and second excited vibrational states of the molecular reservoir. 

Early and late time normalized spectral cuts are shown at the bottom. (c) The population 

dynamics of the species 1 and species 2. (d) Species spectra extracted from (b) using the 

second-order kinetic model. By comparing with derivatives of the linear spectra (dots), the 

specie spectra 1 and 2 can be related to the 2nd and 1st excited states respectively. 
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the early time dynamics of polariton systems.34 This initial population of the Raman state can come 

from scattering of excited vibrational states with the aid of low frequency phonon or vibration 

modes, which was observed experimentally.42, 45, 46 

 

Due to the presence of an inversion center of W(CO)6, no vibrational modes in the W(CO)6 

molecule can be both Raman and IR active, preventing the population of the Raman state from 
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Figure 6: A polariton dynamic involving Raman states. (a) Jablonski diagram describing the 
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the Raman state of the vibration. (b) respectively Model pump-probe spectra of vibrational 
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species 1 and species 2.   (d) The species spectra extracted from (b) using the second-order 
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being probed by directly by IR spectroscopy. However, population conservation indicates that the 

Raman population results in the reduction of the ground state population, which can cause Rabi 

splitting contraction. As a result, the first derivative spectrum arises from the Raman population in 

polaritons only contains a pair of derivative features (like Figure 6b), which is different from that 

of the first or second excited states. As seen in Figure 6b, the simulated spectral dynamics appear 

to be very similar to the one of Model 1 (Figure 5a). However, the LP region of the early and late 

time pump-probe spectra looks almost identical, making it hard to assign the intermediate state. In 

contrast, the species associated spectra in Figure 6d clearly shows species 1 as the derivative of a 

Lorentzian at both UP and LP regions, indicating the first intermediate state comes from an IR 

inactive population, which can be a Raman state. Species 2 and 3 exhibit the signature large bleach 

and positive signals respectively, matching the 
𝜕𝑇𝑀𝑀

𝜕𝐴1
|
𝑡=0

 and 
𝜕2𝑇𝑀𝑀

𝜕𝐴1
2 |

𝑡=0
  respectively, indicating 

the dynamics of species 2 reflect the one of first excited state. Notably, the population dynamics 

were accurately extracted (Figure 6c), agreeing the fact that Model 2 and 1 have the same dynamic 

rate, with the only difference to be the initial excited states which relax and populate the first 

excited and ground states. 

Experimental Data 

Lastly, having numerically verified the accuracy of this method, we apply the second-order kinetic 

model to the experimental pump-probe spectra (Figure 7a) and compare the species spectra with 

the calculated derivative spectra by TMM. The experimental detail and the layout of the laser table 

was described previously.47 Briefly, the sample consists of saturated W(CO)6 in hexane solution 

inside a cavity that is assembled with a pair of distributed Bragg reflector with 92% reflectance at 

5 μm wavelength, the cavity spacing is around 12 μm to reach zero detuning.  The achieved Rabi 
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splitting is 38 cm−1. The pump and probe beam have the same incident angle (~ 1o ) to the norm of 

the cavity assembly.  

Without any assumption of the identities of the intermediate states, the species spectra extracted 

from the raw data show clear resemblance to the derivative spectra of the first and second excited 

states (Figure 7b), as large negative peaks appear on the LP region. This result indicates that, 

without considering the coherent dynamics occurs during polariton lifetime (typically < 5 ps),48, 49 

the experimental pump-probe spectra of W(CO)6 polariton can be explained by the response of 

molecular reservoir, whose second excited state decays to the first excited state with a rate constant 

of (59.8 ps)−1, and the first excited state decays to the ground state with rate constant of (153 ps)−1.9, 

42 Such an excitation of second excited states can be controlled by pump fluences. For example, at 

higher fluence the second excited states can be further populated while the opposite is true at lower 

fluence conditions. We note that the species spectra suggests that there is no Raman mode 

necessary to be involved to account the observed dynamics here, suggesting that at least the Raman 

population, should it be excited in the polariton systems, is too small to be noticed by this method. 

This missing of Raman population could be due to the mismatch between the energy gap of 

Raman-polariton and the relevant phonon modes. Future experiments involving direct probing of 

the Raman population are warranted to provide definitive evident of the involvement of Raman 
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states in polariton dynamics. 

 

Conclusion 

We demonstrated the nonlinear signal-to-population relationship of pump-probe transmission 

spectra in the system with VSC and proposed a solution to the problem by expanding the TMM 

solution to its second order. The second order approximation allows us to derive the second-order 

kinetic equations, which can be used to globally fit the pump-probe data to extract both the rate 

constants and species-associated spectra. This approach can help identify the nature of the 

intermediate states associated with the kinetics through comparison with the calculated spectral 

derivatives.  Although the two models used in this study involves up to 10% population of the 

excited states, such that the second-order approximation of the TMM equation can accurately 

capture the spectral feature, further expansion to higher orders is conceivable without additional 

parameters even if higher percentage of the excited-state population is present. However, because 

most of the samples of interest do not have as high of a nonlinearity as W(CO)6, such that the 

Figure 7: Experimental global analysis result. (a) Experimental pump-probe spectra of 

vibrational polariton that involves excited-state relaxation (b) The species spectra extracted 

from (a) using the second-order kinetic model. The deviation on the UP side (near 2000 cm-

1 between Species 1 and 
𝜕𝑇𝑀𝑀

𝜕𝐴2
|
𝑡=0

 share the same origin of the one of Figure 4d.  
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amount of population of the excited states fall into the linear signal-to-population regime, the use 

of conventional global analysis with first-order kinetic equations could become sufficient after 

validation of the linear relationship with the pump fluence. We note that the fitted dynamic constant 

should be accurate by itself regardless of the specific kinetic model being employed, whereas the 

accuracy of the extracted speciation spectra heavily relies on quality of the raw transient or 2D 

spectra. Thus, it requires caution to assign intermediates based on the extracted speciation spectra.   

The use of conventional global analysis would require an initial fitting of one single pump-probe 

spectrum at the early time delay to establish the excited state population's upper bound, followed 

by simulations to confirm linearity with decreasing populations, streamlining the kinetic analysis 

that addresses scientific questions that do not involve large amount of excited state population. 
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