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ABSTRACT

Accurate and responsive simulation of radio frequency (RF) signal

propagation is crucial for designing wireless systems operating

in dynamic environments. Conventional ray tracing approaches

struggle to accurately model the intricate geometries and material

properties of objects that impact propagation. Recently proposed

neural scene representations can learn such intricacies from RF

data, but they treat the entire scene as implicit neural networks,

necessitating retraining with a massive amount of RF data upon

any environmental changes. In this paper, we propose RFCanvas,

which fuses visual priors and RF measurements to achieve high

accuracy for realistic scenes and be responsive to environmental

changes. To ensure compatibility between visual priors and RF

measurements, we introduce RFCanvas scene representations that

model shapes and materials of substantial objects with tensorial

�elds and signed distance �elds. We further extract motion infor-

mation from visual priors to adapt RFCanvas scene representations

to scene dynamics. RFCanvas is built upon an end-to-end opti-

mization framework with di�erentiable RF simulation. Extensive

evaluations across real-world wireless communication and sens-

ing environments demonstrate RFCanvas’s superiority over both

existing methods.
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1 INTRODUCTION

Simulations at the radio frequency (RF) bands have been driving

the design and deployment of diverse wireless systems. Precise

characterization of the RF propagation environment is pivotal for

optimizing the deployment of wireless network infrastructures

[43, 49] and planning the spatial protection zones for spectrum

sharing [44]. Explicit modeling of the intricate multipath e�ects

arising from signal interactions with the environment is also crit-

ical for enhancing the accuracy of wireless sensing applications,

such as object detection, localization, and imaging [15, 46, 50, 56].

In addition, RF simulations are indispensable for designing and

optimizing emerging electromagnetic (EM) structures [21, 27], such

as recon�gurable intelligent surfaces that can tailor the RF propaga-

tion towards programmable wireless environments. Despite recent

advancements in simulation accuracy [26, 57], the long simulation

time and slow response to environmental changes limit the use

of RF simulation in practice, especially for wireless systems with

stringent downtime. Achieving rapid updates of RF simulation with

su�cient accuracy has been a long-standing challenge, hindered

by the propagation environment’s inherent complexities and dy-

namics.
Table 1: Comparison of RF Simulation Approaches

RF Simulation Visual RF Accu- Dynamic

Approach Priors Measurements racy Scenes

Ray Tracing Complete 3D Meshes None Low ✓

Neural based None Dense High ×

RFCanvas Monocular Images Sparse High ✓

Ray tracing algorithms have been widely adopted by the wire-

less industry [35, 38, 49, 51] for RF simulation. These algorithms

model EM waves as numerous “rays” emanating from a transmitter,

interacting with objects in the environment (through scattering,

penetration, attenuation, etc.), and ultimately being captured by a

receiver. RF ray tracing mainly relies on visual priors to reconstruct

3D models of the environment as inputs, which can be explicitly

modi�ed to account for environmental changes. However, conven-

tional ray tracing methods su�er from the notorious sim-to-real gap

due to the imperfect representation of objects’ 3D structures andma-

terial properties. The visual models tend to overlook minute surface

features that signi�cantly impact RF propagation [40], especially
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Figure 1: RFCanvas Comparison with Existing Methods.

in a multipath-rich environment. Moreover, visual 3D models fail

to capture real-world objects’ internal structures and nonuniform

materials. The inherent vision-to-RF gap presents additional chal-

lenges, particularly in non-line-of-sight (NLOS) scenarios where

cameras cannot detect objects that may in�uence RF propagation.

This limitation can lead to inaccurate 3D structure generation and,

consequently, unreliable RF predictions based on these incomplete

models.

Recent data-driven approaches, such as NeRF2 [57], have pro-

posed using implicit neural representations to model the RF propa-

gation within a scene. While these neural approaches demonstrate

the capacity to learn intricate scene details and RF-object inter-

actions from data, they treat the substance and radiance of the

entire scene as implicit black boxes [28, 48], thereby sacri�cing

the �exibility inherent in conventional ray tracing methods. Addi-

tionally, these implicit neural models su�er from data ine�ciency,

requiring about 200 channel samples per square foot of environ-

ment. Adapting to environmental changes necessitates recollecting

training samples and retraining the entire neural model—an often

impractical burden.

In this paper, we introduce RFCanvas, a novel RF simulation

framework that is accurate for realistic scenes and responsive to

environmental changes. The core novelty of RFCanvas lies in its

approaches of rapid generation and update of high-�delity scene

representations by fusing visual priors (such as monocular images)

with RF channel samples of the scene, as shown in Table 1. RF-

Canvas leveraging the rich information of visual data to overcome

data scarcity problems. Initially, RFCanvas utilizes the visual pri-

ors to reconstruct coarse yet fairly accurate scene representations.

These representations are then further re�ned using a signi�cantly

reduced set of RF channel samples, in stark contrast to the exist-

ing scene-wise neural representation techniques [25, 57]. When

scene changes, RFCanvas can swiftly adapt to the new scene by

incorporating updated visual priors from camera inputs.

Realizing the full potential of RFCanvas entails three non-trivial

technical challenges:

How to design a better RF representation for visual prior integra-

tion? To facilitate the integration of visual priors and enhance the

RF sample e�ciency, we adopt tensorial �elds [5] in RFCanvas

to model scenes. Speci�cally, the RF �elds of scenes are explic-

itly represented by tensors, each of whose elements de�nes the

attenuation and radiance coe�cients at the corresponding physical

location. The use of tensorial �elds enables visual prior integra-

tion and improves RF data e�ciency in two ways. First, unlike

neural representations, tensorial representations decouple the RF

�elds at di�erent locations. This decoupling not only enables par-

tial editing with fewer RF measurements but also allows for the

seamless integration of visual priors at speci�c spatial locations.

Second, tensorial �elds can be factorized into low-rank vectors and

matrices via vector–matrix decomposition [5], which reduces the

number of parameters and hence the RF measurements required

for optimization.

How to generate scene representations from visual priors? An RF

scene usually has a few objects sparsely distributed, with the rest

of the space completely empty. While the interactions between ob-

jects and RF signals are complicated, RF signals in empty space can

be accurately modeled via simple free-space propagation. Hence,

RFCanvas utilizes visual priors to identify objects in the scene for

rapid initialization and optimization of tensorial representations.

Speci�cally, we use the depth information from camera images to

determine the boundaries of objects. These boundaries are repre-

sented using signed distance �elds (SDF) [32] in RFCanvas. An SDF

speci�es the distance from any point in space to the nearest surface

of a 3D object. With the SDF, RFCanvas can localize interactions by

tracking the distance between the front of a marching ray and the

object’s surface, known as sphere tracing [12]. The radiance tensors

are then initialized from SDF using inverse spherical harmonics [8].

We further use camera images to obtain a coarse estimation of the

objects’ material composition, which helps initialize the scene’s

attenuation tensors. Thanks to the visual priors, the initial scene

representations help signi�cantly reduce the need for RF data and

the optimization cost.

How to adapt scene representations to environmental dynamics

using visual priors? A realistic scene often comprises dynamic ob-

jects. Adapting to a scene involves the detection and manipulation

of changing regions. Unlike neural representation, which requires

recollecting the real RF measurements and retraining the neural

model, RFCanvas detects environmental changes from visual priors

and directly modi�es the explicit tensorial �elds. Speci�cally, we

model environmental changes with object motion vectors and de-

velop a procedure to predict the corresponding change of dominant

multipath re�ection from these objects. The radiance coe�cients

in the dynamic regions are then recomputed via the inversion of

spherical harmonics. With additional RF measurements collected,

RFCanvas can further re�ne the tensorial �elds of the scene. This

design allows the rapid response of RFCanvas to environmental

dynamics.
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RFCanvas facilitates �exible editing of an RF simulation scene,

such as modi�cation of objects based on visual priors and con-

�guration of radio hardware. This �exibility is highly desirable

for designing and verifying wireless communication and sensing

systems. Moreover, RFCanvas paves the way towards a modular-

ized primitive library, analogous to the well-established practice of

curating libraries of 3Dmeshmodels in computer graphics. Such a li-

brary would enable large-scale, modularized RF simulation through

pre-trained object representations, primed for plug-and-play inte-

gration into the design process of wireless systems.

We have implemented RFCanvas and conducted a comprehen-

sive evaluation using variouswireless testbeds, includingWiFi/WiGig

radios. Our microbenchmark experiments demonstrate that the RF

signals generated by RFCanvas can accurately approximate the

ground truth, achieving approximately 4 dB higher accuracy in

RF-object characterization compared to conventional visual model

based ray tracing. With a sparse dataset of merely 0.5 samples/sq ft

of training data, RFCanvas surpasses the state-of-the-art (SOTA)

#4'� 2 by around 1.5 dB in COTSWiFi channel prediction, and even

higher for mmWave. In addition, RFCanvas exhibits robust adapt-

ability to changes in a scene with a small set of 5 to 20 additional

data samples.

Our contributions can be summarized as follows:

(i) We propose RFCanvas, a novel RF simulation framework

that achieves comparable accuracy to neural-based methods while

preserving the rapid responsiveness of conventional ray tracing.

(ii)We design a novel explicit representation capable of capturing

objects’ detailed structures and material properties. We develop an

initialization procedure leveraging visual priors, signi�cantly reduc-

ing the requirement for extensive RF measurements, and a few-shot

�ne-tuning scheme to e�ciently re�ne the scene representations

with limited RF measurements.

(iii) We conduct comprehensive evaluation of RFCanvas across

diverse wireless environments. Our experiments demonstrate the

e�ectiveness of RFCanvas and highlight its potential to foster new

applications of RF simulation.

2 PRELIMINARIES AND RELATEDWORKS

RF propagation and EM �eld simulation.Many wireless com-

munication and sensing designs necessitate simulating how the RF

signals from a source (transmitter) are distributed over space and

interact with the environment. Conventional full-wave simulation

approaches, such as Finite Element Method (FEM) [17] and Finite-

Di�erence Time-Domain (FDTD) [42], can generate highly accurate

simulation results. However, their substantial computational com-

plexities limit their usage to small-scale RF device simulations, such

as antenna design. Ray tracing approaches [6, 23, 35, 49, 51] enable

e�cient large-scale simulations by approximating electromagnetic

waves as geometrical optics. A typical ray tracing simulation con-

sists of transmitters (Tx), receivers (Rx), and mesh representation of

objects in the scene. A mesh consists of numerous small polygons

that delineate the contour of the object. The simulation starts by

emitting rays from each Tx in all directions, with the ray density

determined by prede�ned resolutions. Then the simulator detects

the intersections between the rays and object meshes. At each in-

tersection, the simulator replicates rays according to the number

of interactions, redirects the rays based on the interaction types

(e.g., re�ection, refraction, or di�raction). Additionally, it calculates

the directional radiance, representing the power radiated by the ray

along a speci�c direction after the interaction, which depends on

the object’s material properties (e.g., permittivity and conductivity).

The propagation of a ray terminates when it arrives at the Rx or

reaches a prede�ned maximum number of interactions. Finally,

all rays received by the Rx are coherently combined to obtain the

received signal, with the relative phases of di�erent rays calculated

based on their respective path lengths.

Ray tracing requires accurate models of objects’ geometries and

material properties, which can hardly be generated using common

sensors. Even for re�ective objects with simple geometries, visual

3D models of the objects cannot easily capture the �ne-grained

shape details, which may look trivial visually but may interact sig-

ni�cantly with RF signals. Recent work [49, 51] employed Lidar or

RF transceivers themselves to create a 3D view of the environment

as ray tracing input. However, these approaches still fall short of

granularity and cannot model sophisticated multipath channels.

Zero Plane

� � > �

� � < �

� � > �� � < �
Object StructureSigned Distance Function

Figure 2: The geometry boundary is de�ned via the zero-level

set of SDFs.

Neural representations for RF simulation. Neural scene rep-

resentations have emerged as a powerful paradigm in computer

graphics, gaining widespread adoption following the breakthrough

of Neural Radiance Fields (NeRF) [28]. NeRF employs neural net-

works to implicitly model two key properties of a 3D scene: the

volumetric density at any spatial location, and the radiance (color

and brightness) emitted along any viewing direction from that lo-

cation. By learning these view-dependent and location-dependent

radiance mappings from a set of input images, NeRF can e�ectively

render photorealistic images from unseen viewpoints, without re-

quiring explicit 3D geometry or surface models.

However, when NeRF-rendered scenes are used in RF simulation,

as in NeRF2 [57], the entire scene has to be modeled as a monolithic

blackbox, with no clearly de�ned boundaries of physical objects and

interactions between physical objects and RF signals. This results

in limited �exibility and high sensitivity to common environmental

changes. To demonstrate this issue, we train a NeRF2 model for the

room. The result shows that when the scene remains unchanged,

NeRF2 is more accurate than conventional ray tracing. However,

after moving some objects in the scene and recollecting RF mea-

surements, the RSS error of NeRF2 increases signi�cantly by 4.58

dB. Moreover, existing methods, such as WiNeRT [30], partially

integrate neural representations with conventional ray tracing by

using neural networks to model materials’ re�ection parameters,

which are then applied in ray tracing. However, these methods still

rely on conventional 3D mesh models, which struggle to capture

the �ne-grained structural details of real objects.
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Visual scene representation. To mitigate the shortcomings of

mesh models, which capture �ne details as well as internal and

implicit structures, and the black-box nature of NeRF models, alter-

native representations have been widely studied.

Signed Distance Functions (SDF) [11, 13, 31, 32], o�er an implicit

surface representation, de�ning a �eld function 5 (G,~, I) that re-

turns the signed distance to the nearest surface point for any given

3D coordinate. The surface itself is represented by the zero-level

set of this function, as shown in Fig 2. SDFs provide a compact rep-

resentation suitable for ray tracing techniques and enable e�cient

collision detection. They also facilitate smooth blending between

objects and support analytical operations like unions and intersec-

tions. Recent advancements in neural SDFs have shown promise in

representing complex scenes with high �delity. However, although

SDF is e�cient at capturing �ne-grained geometric surfaces, it can-

not capture the internal and multilayer structures common in RF

simulation.

3D Gaussian Splatting (3DGS) [18] has emerged as a powerful

technique for representing and rendering complex scenes. This

method represents a scene as a set of 3D Gaussian primitives, each

de�ned by parameters such as position, covariance matrix, and

appearance attributes. A key feature of 3DGS is its use of spherical

harmonics [29] to capture view-dependent appearance, allowing

for e�cient modeling of complex lighting interactions and material

properties. 3DGS cannot explicitly represent object boundaries that

are necessary for accurate multipath simulation; it can only model

the Gaussian distribution of probabilities. RFCanvas adopts the

idea of the spherical harmonic function to capture the sensitive

view-dependent radiance attributes.

Tensorial Fields discretize 3D space into a regular grid of volumet-

ric elements (voxels), each storing information such as occupancy

or color. This representation allows for e�cient spatial queries and

is particularly suited for volumetric data RF �elds. TensoRF [5] rep-

resenting scenes using a compact factorized tensor representation.

It decomposes 3D space into vector components along each dimen-

sion, enabling e�cient modeling of view-dependent e�ects and �ne

geometric details. This factorized approach allows for faster train-

ing and rendering compared to traditional neural radiance �elds

while maintaining �delity. However, the application of tensorial

�elds in RF simulation, as well as their dynamic adaptation and

initialization, remains unexplored.

Summary: RFCanvas leverages the strengths of both neural-

based and conventional RF simulation approaches, as illustrated in

Fig. 1. It employs explicit tensorial grids of radiance and attenua-

tion �elds and SDFs from visual priors to capture the intricacies

of RF signal propagation, similar to neural-based methods while

maintaining the interpretability and adaptability characteristic of

conventional techniques.

3 SYSTEM DESIGN
RFCanvas is a novel data-driven RF simulation system that lever-

ages visual priors to reconstruct scenes and adapt to scene dynamics

e�ciently. The end-to-end work�ow is shown in Fig. 3. The design

components can be summarized into three parts:

(i) RFCanvas representation is a novel explicit scene repre-

sentation for RF simulation based on tensorial �elds and boundary-

aware signed distance functions (SDFs).

(ii) RFCanvas reconstruction module initializes the RFCanvas

scene from visual priors by inferring depth and material informa-

tion, with no need for real RF samples.

(iii) Dynamics adaptation module adapts to scene changes by

monitoring motion vectors derived from visual priors.

RFCanvas’s work�ow begins with its novel scene representation,

combining tensorial �elds and SDFs for an explicit, editable RF

scene model. The reconstruction module then initializes this scene

using visual priors from cameras, extracting depth and material

information to set up SDFs and attenuation tensors, while using

multipath tracing to initialize radiance tensors. As the environment

changes, the dynamics adaptation module detects and classi�es

changes by estimating motion vectors from camera frames. It then

updates the scene representation accordingly, using ray sample

redirection for moving objects or partial reinitialization for new

additions.

3.1 RFCanvas Scene Representation

RFCanvas scene represents a collection of objects to be simulated

to estimate RF �elds. To achieve rapid scene reconstruction and

467



RFCanvas SenSys ’24, November 4–7, 2024, Hangzhou, China

adaptation from visual priors, the scene representation must meet

two requirements: 1) Optimizability: The scene representation

needs to be di�erentiable to support e�cient gradient-based opti-

mization. 2) Editability: The scene representation needed to be

partially editable to integrate prior knowledge of object geome-

try, surface material types, and dynamic changes to corresponding

regions of the scene. Mesh representations used in conventional

ray tracing methods fail to meet the �rst requirement. Despite

numerous studies on the di�erentiability of meshes in rendering,

this does not transfer well to RF simulation. Additionally, mesh

representations have low precision, as they can only model surface

re�ections and lack the ability to characterize complex scattering

inside objects. In contrast, trainable neural representations, such

as NeRF2 and NeWRF, ful�ll the �rst requirement. However, they

are purely based on implicit neural networks, where assigning and

updating material properties and geometrical boundaries to speci�c

regions is infeasible. Further, they require complete retraining with

massive RF measurements for updating.

Explicit and Editable Tensorial RF Field. Inspired by recent

advances in computer graphics, we employ tensorial �elds [5] to

represent the geometric structures in RF simulation. Unlike MLPs

in NeRF that implicitly map locations to RF radiance, we represent

RF radiance �elds as an explicit voxel grid of features. Given a 3D

tensor T ∈ R
ą× Ć ×ć for a 3D cuboid space, each element Tğ Ġġ ex-

plicitly stores the directional radiance coe�cients and attenuation

coe�cient of the corresponding voxel. Voxel-based data allows for

high interpretability and editability, enabling users to manipulate

individual voxel values similarly to editing image-like data. This

includes operations such as cropping, deleting, and adding voxels,

facilitating precise modi�cations.

Di�erent from conventional voxel-based representations that

have high memory costs and require long reconstruction times, ten-

sorial representations use Vector-Matrix Decomposition (VM) [5] to

factorize the high-dimensional tensors into multiple compact low-

dimensional components as shown in Fig. 4. This can be expressed

as:

T =

Ď∑
Ĩ=1

v
Ĕ
Ĩ ◦M

ĕ,Ė
Ĩ + v

ĕ
Ĩ ◦M

Ĕ,Ė
Ĩ + v

Ė
Ĩ ◦M

Ĕ,ĕ
Ĩ , (1)

where M
ĕ,Ė
Ĩ ∈ R

ĕ×Ė ,MĔ,Ė
Ĩ ∈ R

Ĕ×Ė ,MĔ,ĕ
Ĩ ∈ R

Ĕ×ĕ are matrix

factors. vĔĨ , v
ĕ
Ĩ , v

Ė
Ĩ are vector factors. ' is the resolution of the

cubic scene tensor.

Therefore, the query the tensor element is:

Tğ Ġġ =

Ď∑
Ĩ=1

∑
ģ

�ģ
Ĩ,ğ Ġġ

,< ∈ -./, (2)

AĔ
Ĩ,ğ Ġġ

= v
Ĕ
Ĩ,ğM

ĕĖ
Ĩ,Ġġ

;Aĕ
Ĩ,ğ Ġġ

= v
ĕ
Ĩ,ĠM

ĔĖ
Ĩ,ğġ

;AĖ
Ĩ,ğ Ġġ

= v
Ė
Ĩ,ġ

M
Ĕĕ
Ĩ,ğ Ġ . (3)

Explicit Boundaries of Objects. Existing neural representa-

tions do not explicitly de�ne object boundaries but point-wise

samples of attenuation and radiance �elds. Such dense representa-

tions waste model representability and computing resources, due to

the imbalanced complexity of RF propagation inside and outside of

objects. Speci�cally, in empty space, which usually occupies a large

portion of a scene, RF signals simply follow free-space propagation.

In contrast, complex RF interactions only happen at the boundary

of and inside the substantial objects. However, these objects are

usually just sparsely distributed in a scene.

To integrate the information on object boundaries in the scene

representations, we model the object boundaries with SDF. Given

a group of geometry ¬ and its boundary m¬, each element in the

SDF (¬ stores the signed distance to the nearest surface:

(¬Ħ = B (?,¬) · 3 (?, m¬), (4)

where 3 (?, m¬) = infħ∈ĉ¬ 3 (?, @) denotes the minimal distance

between the point ? and any point @ on the object’s surface m¬. In

addition, the sign B (?,¬) indicates the containing relation between

the point ? and the object ¬, where a positive sign means that the

point ? is outside the object, i.e., ? ∉ ¬ while a negative sign means

? ∈ ¬.

An SDF can serve as a mask of tensorial �elds, where only the

tensorial �elds with (¬Ħ <= 0, i.e., the boundary and inside region

of the object, are sampled. The SDF is �rst initialized from visual

priors and then optimized progressively along with tensorial �elds,

detailed in Section 3.2.3.

Trilinear Interpolation. RFCanvas represents the scene via

tensorial �elds. Although the tensor elements are discrete, they

can represent continuous surfaces and geometry through trilinear

interpolation.

For each sampling position, we calculate the weighted average

of the 8 voxels surrounding the sampling position. The weights are

determined by the distances between the voxel centers and the sam-

pling position. However, evaluating 8 voxels for each sample can

be costly. Utilizing VM decomposition, trilinear interpolation can

be decomposed into a linear decomposition on vectors and bilinear

interpolation on matrices, which further reduces the computational

cost.

SimulationwithRFCanvas scene representations. The prop-

agation of an RF signal ( from a transmitter (TX) to a receiver (RX)

is characterized by the following equation:

(RX = 0 · (TX · 4− Ġ2ÿ Ĝęă (5)

where (RX denotes the received signal, and (TX represents the

transmitted signal. The complex factor 0 = |0 |4 ĠĂ accounts for

both amplitude attenuation |0 | and phase shift \ introduced by the

channel. The term 4− Ġ2ÿ Ĝęă describes the additional phase shift due

to the propagation delay, where 5ę is the carrier frequency and g is

the time delay. This formulation e�ectively captures the combined

e�ects of attenuation and phase alteration as the signal traverses

the distance from TX to RX.

We use di�erentiable volumetric ray marching to simulate the

RF signal propagation. The 3D position along a ray from receiver

location ?0 at direction l is de�ned as % (C, l) = ?0 + lC ., where C

is the distance from the transmitter. The total attenuation between

the point % (C, l) and the receiver %ĎĔ is

ýČ (Ī,Ĉ )→ČĎĔ
= exp

(∫ Ī

0

[
FSPL(Ī̃ ) · (1 − Ĝ (Ī̃ ) ) + TĂ

Č (Ī̃ ,Ĉ )
· Ĝ (Ī̃ )

]
ĚĪ̃

)

≈ exp
©­«
Ċ∑
ğ=1

[
FSPL(Īğ ) · (1 − Ĝ (Īğ ) ) + TĂ

Č (Ī̃ ,Ĉ )
· Ĝ (Īğ )

]
�Ī

ª®¬
,

(6)

where FSPL(C) is the free space path loss at distance C , TĂ (C, l) is

the tensorial �eld sample for attenuation along the ray at distance
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Figure 4: RFCanvas Tensorial RF Fields.

C , 5 (C) is a binary function based on SDF sample that determines

whether the signal is in a medium (1) or in free space (0) at position

C , �C is the sampling step size, and # is the number of sampling

points along the ray. The resulting received signal '(l) of the ray

is computed as:

'(l) =

∫ Ď

0
�Č (Ī,Ĉ )→ČĎĔ︸          ︷︷          ︸
Attenuation

· T ĩ
Č (Ī,Ĉ )

· .ģ4 (−lĂ ,−lč )︸                          ︷︷                          ︸
Radiance

3C (7)

Spherical Harmonics .ģ4 (·) are naturally adept at representing di-

rectional data. Their completeness and rotational invariance enable

them to accurately capture the sensitivity of mmWave signals to

minute directional changes while providing the ability to analyze

signals across di�erent frequency scales. The Spherical Harmonic

function is de�ned as:

.ģ4 (\, q) =

√
(2; + 1)

4c

(; −<)!

(; +<)!
%ģ
Ģ
(cos\ )4ğģč (8)

where .ģ4 represents the spherical harmonic function, \ and q are

the spherical coordinates, %ģ
Ģ

is the associated Legendre polynomial,

and ; and< are the degree and order of the harmonic, respectively.

T ĩ stores the spherical harmonics coe�cients of the radiances.

To query the radiance of a voxel from a given direction, one multi-

plies the coe�cients from the tensor with the spherical harmonics

for the querying direction. In other words, the surface re�ection

pattern is modeled by spherical harmonics along with its coe�-

cients. Since spherical harmonics are used in a linear system, we

�nd that they can be inverted for a given re�ection pattern to pre-

dict the coe�cients. This is particularly helpful for initializing the

radiance tensor when the voxel re�ection patterns are recalculated

via multipath tracing (detailed in Section 3.2.2).

3.2 RFCanvas Scene Reconstruction

RFCanvas initializes the scene using visual priors to reduce the

required RF measurements. Cameras can provide rich knowledge

about the environment in terms of geometry, distance, andmaterials.

RFCanvas does not require precise visual scanning of each object

by moving the camera in the scene and synthesizing images from

multiple views. Instead, RFCanvas only relies on a few static visual

sensors (e.g., from several distributed surveillance cameras and IoT

cameras) to reconstruct partial scene representations, which are

then progressively re�ned. This makes RFCanvas more adaptable

and e�cient.

3.2.1 Visual Knowledge Extraction from Cameras. RFCanvas ex-

tracts two types of information from camera images, depth and

material of objects’ surfaces, and uses them as visual priors to

initialize the RF scene. By default, neither type of information is

provided by common monocular cameras. Fortunately, recent ad-

vances in for computer vision [1, 52] have enabled the extraction of

them from camera images. With the depth information, i.e., the dis-

tance of each pixel to the camera, RFCanvas can estimate the shapes

and locations of objects in the scene, which are used to initialize

SDF [47]. Meanwhile, objects’ materials can be classi�ed by ana-

lyzing visual cues such as texture, color, and re�ectance recorded

in images [14, 41]. This information is then used to initialize the

attenuation tensors of RFCanvas scene representations. Despite

not being perfect, the initialization with visual priors helps reduce

the search space of scene parameters, leading to more accurate

simulations and faster optimization in the re�nement process.

In practice, given multiple cameras, RFCanvas needs their global

poses to fuse their data to reconstruct the scene. We use an au-

tomatic progress to determine the pose based on shared spatial

features [22]. The calibration for the poses of static cameras only

needs to be conducted once.

3.2.2 RF Field Reconstruction from Visual Knowledge. With the

visual knowledge, RFCanvas initializes three elements of the scene

representations, i.e., SDF, attenuation tensor, and radiance tensor.

To initialize SDF, we �rst transform the depth image into 3D

space using a calibrated camera pose and the camera’s intrinsic

matrix. The point clouds are then mapped to voxels. The SDF is

calculated by checking each voxel within the space to determine the

distance to the nearest surface, completing the SDF initialization.

While occluded regions may exist, they are acceptable as the SDF

will be further re�ned with RF measurements.

The attenuation tensor of RFCanvas tensorial �elds is physically

related to the properties of surface materials. With the material

types extracted from camera images,RFCanvas can query amaterial

database to obtain the materials’ average dielectric constants and

conductivity coe�cients from literature [20, 39]. For unrecognized

materials, RFCanvas uses the material properties of neighboring

voxels for initialization.

The radiance tensor captures the multipath propagation of RF

signals. Each voxel is considered as an e�ective emitter that retrans-

mits the signal it receives in desired directions. Unlike neural-based

methods where radiance �elds are randomly initialized, RFCanvas

uses a physically-based initialization through multipath tracing. As
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Figure 5: RFCanvas Multipath Exploration for Radiance ini-

tialization and adaptation.

shown in Fig. 5, RFCanvas explicitly calculates the dominant mul-

tipath components with less than three re�ections. Beyond three

re�ections, RF signals become very weak and thus negligible. RF-

Canvas uses a modi�ed ray tracing algorithm to calculate all paths

received and re�ected by each voxel, creating a re�ection pattern.

Speci�cally, view-dependent re�ection is calculated by multiplying

the radiance coe�cient by the spherical harmonics. RFCanvas in-

versely calculates and assigns the radiance coe�cient by dividing

the path-traced re�ection pattern by the spherical harmonics, as

illustrated in Fig 6.

Although visual priors only provide a rough initialization, they

provide a fairly good initialization of the scene. Compared with

random initialization, the initialization with visual priors is much

closer to the realistic physical scene, making RFCanvas easier to

re�ne progressively using few-shot RF measurements.

3.2.3 Refinement with real RF measurements. The scene represen-

tations created from visual priors still have sim-to-real gaps due to

visual inaccuracy and occlusions. Therefore, RFCanvas further �ne-

tunes the scene representations using few-shot RF measurements

from real users. Compared to conventional ray tracing with 3D

meshes, RFCanvas is end-to-end trainable, thanks to the di�eren-

tiable components, including SDF, attenuation, and radiance tensors.

Additionally, unlike neural-based methods, RFCanvas ’s explicit

representation and fairly accurate initialization signi�cantly reduce

the amount of RF measurements required for training. With the

rapid optimization process, RFCanvas can be progressively updated

on the �y, making it more practical for real-world applications.

Re�nement procedure. RFCanvas exploits RF measurements

from mobile users in the scene. Nowadays, mobile devices are com-

monly equipped with communication modules and IMUs. We as-

sume users with mobile devices move around freely in the scene.

They are the source of major environmental changes in the scene,

but simultaneously provide RF measurements, such as RSS and CSI,

and their trajectories can be calculated from onboard IMUs. The

combination of RF measurements and trajectories is referred to as

"RF Spatial Measurements." The paired RF Spatial Measurements

can then be used to evaluate the real-time accuracy of RFCanvas,

and guide the subsequent optimization of RFCanvas scene repre-

sentations through backpropagation.

Attenuation Tensor

Radiance Tensor

Tx
Rx

Spherical Harmonics

Radiance Coefficient

Multipath Tracing

Figure 6: RFCanvas initialize the radiance tensor using re�ec-

tion patterns obtained from multipath tracing by inverting

spherical harmonics.

Boundary con�dence-guided optimization. To capture the real

structure and material properties of the objects and minimize the

sim-to-real discrepancy, RFCanvas needs to keep optimizing the

attenuation tensor Tė, radiance tensor T ĩ , and SDF ď¬ , i.e.,

(Tė,T ĩ , ď¬)∗ = argmin
Tė,Tĩ ,ď¬

ĉ∑

ğ=0

L(ĩ̂ğ , ĩğ ), (9)

where ĩ̂ are RF measurements in the scene andĉ is the number of

measurements.L is the loss that quanti�es the discrepancy between

real measurements ĩ̂ and RFCanvas’s RF simulation output ĩ .

Joint optimization of SDF and tensorial �elds may lead to sub-

optimal solutions due to their complexity and non-convexity. To

address this issue, we propose a boundary con�dence-guided op-

timization strategy. In surface regions covered by visual priors,

we reduce the granularity (i.e., resolution of SDF gradients) and

learning rates because these regions have higher boundary con�-

dence. For occluded regions with lower con�dence, we enable joint

optimization with tensorial �elds.

It is expected that a few shots of RF measurements, i.e., a small

ĉ , are su�cient for scene re�nement since RFCanvas obviates

the need to capture expansive empty regions and only focuses on

objects with the fairly accurate initialization based on visual priors.

3.3 Dynamics Adaptation

Rapidly adapting to dynamic environments is crucial for respon-

sive RF simulation. Existing neural-based methods [53, 57] treat

the entire scene as an implicit model and hence cannot adapt to

environmental changes easily. While some recent works [16, 33]

generate dynamic neural radiance �elds, they are optimized from

scratch using a complete sequence of images, but cannot adapt to

any new images. In contrast, thanks to the editability of RFCan-

vas scene representations, RFCanvas supports rapid adaptation to

environmental changes.

First, RFCanvas detects and models environmental changes by

exploiting visual priors from cameras. To model the changes, RF-

Canvas estimates the motion vector in image coordinates by match-

ing the spatial features across images, based on the Horn-Schunck

Method[4]. After obtaining the screen space motion vector along

with depth information, RFCanvas transforms the motion vector to

3D space using the camera’s intrinsic matrix ć , the 3D position of

a pixel (ī, Ĭ) with depth İ can be computed as Ħ = İ ·ć−1 (ī, Ĭ, 1)¦.

Applying this transformation to consecutive frames yields the 3D
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Figure 7: Motion Vectors and Scene Dynamics Adaptations.

positions ĦĪ and ĦĪ+1, from which the 3D motion vector is calcu-

lated.

After obtaining the motion vectors, we classify the scene changes

into four categories, as illustrated in Fig. 7. Each category is handled

di�erently:

(i) Translation & rotation. The translation T ∈ R
3 and rotation

R ∈ R
3×3 of dynamic voxel groups are determined either by cluster-

ing the motion vectors directly or by using vision-based 3D bound-

ing box systems. We employ ray sample redirection to sample the

tensorial �eld before transformation. Consider an original tensorial

�eld T Ī0 and a transformed tensorial �eld T Ī1. For each query

position and direction Č (Ī, Ĉ) on T Ī1, we can redirect the sample

by the motion’s translation and rotation. This is represented as

Č ′ (Ī, Ĉ′) = Ħ′′0 +Ĉ ′Ī , where Ħ′′0 = R
Đ (Ħ0−T) andĈ ′

= R
ĐĈ . There-

fore, sampling Č (Ī, Ĉ) on T Ī1 is equivalent to sampling Č ′ (Ī, Ĉ′)

on T Ī0.

(ii) Deformation. Deformation involves changes in the shape of

the object rather than just its position or orientation. We model

deformation as a combination of small translations and rotations

applied to individual parts of the object. This can be mathemati-

cally represented by a set of local transformations, each described

by a translation vector Ti and a rotation matrix Ri. These local

transformations are applied to each voxel in the object, e�ectively

capturing the deformation process. The cumulative e�ect of these

local transformations results in a complex deformation that can be

analyzed and visualized in the tensorial �eld.

(iii) Addition. Addition refers to the appearance of new objects

or regions within the scene. This is determined by comparing the

current voxel frame with the subsequent voxel frame to identify

regions that were previously unseen. Since new additions do not

have corresponding motion vectors from the previous frame, we

identify these regions by detecting spatial features that appear in

the subsequent frame but are absent in the previous one.

The manipulation of the tensorial �eld for addition is similar to

the partial initialization from visual priors, as discussed in Section

3.2. Speci�cally, the SDF and the appearance region of the new

voxels are recalculated. The attenuation �elds are �lled with the

re�ection coe�cients obtained from material identi�cation. The

radiance �eld is initialized using multipath tracing through our

custom-designed Ray Tracing simulator, which is speci�cally opti-

mized for calculating multipath e�ects.

(d) Deletion. Deletion refers to the disappearance of objects or

regions from the scene. Similar to addition, deletion is determined

by comparing the current voxel frame with the subsequent voxel

frame. Regions that were present in the previous frame but are

missing in the subsequent frame are identi�ed as deletions. This

involves detecting spatial features that vanish and clustering the dis-

appearing voxels to recognize coherent objects or regions that have

been removed. By analyzing these deletions, we can understand

changes in the scene’s structure over time.

The manipulation of the tensorial �eld for deletion involves

recalculating the SDF for the disappearing regions. The attenuation

�elds and radiance �eld are reset to zero to re�ect the removal of

the objects or regions.

4 IMPLEMENTATION

4.1 Software

We implement the RFCanvas framework using PyTorch. However,

since PyTorch is designed for data parallelism and model paral-

lelism, it may encounter performance bottlenecks when dealing

with complex operations like ray tracing. Hence, we use custom

CUDA kernels based on TinyCudaNN and the Slang Shader Lan-

guage [2] for GPU computation to improve e�ciency. The Adam

optimizer is used for gradient descent. The training of our system

is conducted on a server equipped with two NVIDIA RTX A6000

GPUs.

We train the RFCanvas scene using the Adam optimizer, starting

with a learning rate of 1 × 10−3 that decays to 1 × 10−5 over 10,000

iterations. Both the tensorial and SDF �elds are trained using a

multi-resolution approach. Initially, the resolution for both �elds is

set to 128. During training, we upsample the vectors and matrices

linearly and bilinearly at iterations 2000, 3000, 4000, 5500, and

7000. The upsampling process involves interpolating the number

of voxels between the initial resolution and the �nal resolution in

logarithmic space. The �nal resolution is determined by the size of

the scene’s bounding box divided by half the wavelength.

For interpreting visual priors, we employ the pre-trainedDepthAny-

thingV2 [52]model to extract depth information. Formaterial identi-

�cation, we use a modi�ed ViT-based semantic segmentation model

[55] trained on Apple’s Dense Material Segmentation Dataset [45].

The dielectric constants of the corresponding material are refer-

enced from the Wireless InSite database [37]. The scene dynamics

are estimated by monitoring the 3D bounding box of the objects.

The human body dynamics is speci�cally modeled via SMPL model

[19, 24].

4.2 Evaluation Setup

Mobile Platform. As shown in Fig. 9, we employ Turtlebot4 to

collect ground truth RF scene data. The robot is equipped with

integrated Light Detection and Ranging (LiDAR) sensor and a Si-

multaneous Localization and Mapping (SLAM) system. The robot

can navigate the target space by following a prede�ned trajectory
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Figure 8: RF Channel Estimation for four indoor scenarios. RFCanvas outperforms all baselines in accuracy.

with designated waypoints, ensuring precise positioning within the

�oor plan. Furthermore, the adjustable height of wireless devices

mounted on the Turtlebot4 facilitates more accurate data collection.

Leveraging this platform, we a�xed a smartphone and a mmWave

router speci�cally con�gured for 2.4/5 GHzWiFi and 60 GHzWiGig

Received Signal Strength Indicator (RSSI) acquisition.

60GHz Router

2.4/5GHz AP

2.4/5GHz Receiver

TurtleBot

Adjustable HeightData Collection Testbed

Figure 9: RFCanvas Wireless Channel Collection Setup.

Wireless Devices. For our Wi-Fi setup, we deploy an ASUS RT-

AC86U router supporting 802.11ac as our access point (AP), and an

iPhone 14 Pro as the client device, functioning as the transmitter

and receiver, respectively. The RT-AC86U operates in concurrent

dual-band mode (2.4 GHz and 5 GHz). On the client side, we utilize

the “Wi-Fi Scan” feature of the AirPort Utility application to record

real-time RSSI values for both frequency bands. For the WiGig

setup, we employ two 802.11ad-compliant MikroTik wAP 60G×3

routers [3], with one functioning as the transmitter and the other

as the receiver. To overcome the limitations of the proprietary

operating system, we opt for the open-source OpenWrt operating

system in combination with the Mikrotik Researcher Tools [10],

a specialized OpenWrt system designed for research purposes, to

facilitate e�cient RSSI collection. Both setups are illustrated in Fig.

9.

Baselines.We use the following classical and state-of-the-art meth-

ods for baseline comparison:

(i) Ray tracing. We utilize AutoMS [27] for the ray tracing base-

line as its implementation supports optimizing surface material

re�ectance with few-shot RF measurements, which aligns with RF-

Canvas. The 3D mesh required by ray tracing is scaned via Polycam

[34].

(ii) NeRF2. We use ĊěĎĂ 2 [57] as one of the neural methods

baselines. ĊěĎĂ 2 represents the state-of-the-art (SOTA) in neural

channel prediction. Our implementation for ĊěĎĂ 2 adheres to the

default con�guration provided in the publicly available code archive.

We train the models for 30,000 epochs using the cosine annealing

scheduler to avoid over�tting. The reproduced results demonstrate

a performance of 2.90 dB on BLE RSSI, 22.24 dB on WiFi SNR, and

0.82 SSIM for the RFID spectrum, which aligns with the original

paper.

(iii) NeWRF. NeWRF [25] is used as the second neural method

baseline, as it is an improved version of ĊěĎĂ 2 tailored for station-

ary Tx, consistent with our experimental setup.

(iv) Linear Interpolation. We employ linear interpolation from

the scipy package as a pure signal processing baseline.

Vision Prior Granularity. We use two metrics to qualify the

granularity of vision priors required by RFCanvas.

i). Camera Coverage Quanti�cation. As di�erent cameras in the

scene come in di�erent models and usually with di�erent resolu-

tions and �elds of view (FoV), we quantify and unify the contri-

bution of camera sensors by employing the Voxelization method

(when 3D ground truth is available), which divides the 3D space

into voxels and calculates the ratio of voxels observed by cameras

to the total number of voxels in the scene.

ii). Scene Dynamics Quanti�cation. The measurements of scene

changes involve the number of voxels (volumes) of changes �Ĭ and

the distance (e.g., displacement) of changes �Ě . We quantify the

measurements as a uni�ed metric �ę = �Ĭ × �Ě .

5 EVALUATION

5.1 System Performance Evaluation

5.1.1 RF Channel Modeling Accuracy. As illustrated in Fig. 8, we

evaluate RFCanvas in four real-world indoor scenes comprising

multiple types of objects and materials. For each scene, we collected

2.4 GHz, 5 GHz WiFi, and 60 GHz WiGig RSSI using the mobile

platform. Formeeting rooms, two images are captured from ceiling-

mounted cameras angled downward. For hallways and kitchens,

two panoramic images are taken from the center of each region. A

total of roughly 200 RF samples are collected for each scene under

each frequency band, of which 80% of the samples are used for
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reconstructing RFCanvas and the baselines scene. The CDFs for

each room are shown in Fig. 8. The median errors of RFCanvas

and baselines across di�erent frequency bands are shown in Fig. 13.

RFCanvas outperforms all baselines in all scenarios and frequency

bands, with an overall median error of 2.2 dB. The results con�rm

that RFCanvas is capable of modeling indoor RF channels accurately

using few-shot measurements and visual priors.

5.1.2 Impact of RF Samples Density. We evaluate RFCanvas and

baselines in optimization performance with respect to RF sampling

density. The results are shown in Fig. 11. Ray tracing precisely pre-

dicts the channel structure; however, it only achieves a 13 dB error

without real RF measurements and converges to 7 dB when re�ning

solely the surface material, due to its inability to optimize internal

and complex propagation e�ects. The neural methods reached a 3.5

dB error in overall numerical accuracy; however, they struggle to

capture the channel structure adequately because they do not repre-

sent and de�ne the boundaries of objects. We further augment the

training data for neural methods with RFCanvas simulated results.

However, they remain unable to capture the scene structure even

at high sampling density. Surprisingly, linear interpolation demon-

strates better structural characterization of the scene compared to

neural methods, achieving median errors of 3.75 dB. This is because

most of the propagation simply follows the FSPL, which is linear

in logarithmic space. We found linear interpolation fails in regions

heavily a�ected by occlusion, multipath, or a lack of su�cient train-

ing samples. In comparison, RFCanvas can characterize the scene

with extremely sparse samples (i.e., 0.05 sp/ft2) and achieves high

numerical accuracy with a 1.92 dB median error due to the initial-

ization from visual priors while maintaining superior structural

prediction due to the clear de�nitions of object boundaries.

Panoramic CameraSurveillance Camera

a

b

c

Figure 10: The camera setup for obtaining visual priors.

5.1.3 Impact of Scene Dynamics. We evaluate RFCanvas’s perfor-

mance in adapting to scene dynamics. RFCanvas is initialized on

the original scene and subsequently tested in three scenarios, each

incorporating varying degrees of transition, rotation, deformation,

addition, and deletion. The extent of dynamic changes increases

across the three cases as shown in Fig. 12. The results are shown in

Fig. 14. RFCanvas accurately predicted scenes (D1) and (D2) with a

median error of 2.2 and 2.2 dB, respectively, compared to the base-

line (without motion vector) error of 3.5 dB. In scene (D3), which

exhibits the most signi�cant scene changes, RFCanvas achieves a

median error of 3.2 dB while the baseline demonstrates a 5.7 dB

median error. We further re�ne RFCanvas using �ve additional real-

world measurements around the changed object. The re�nement

reduces the error to a mere 1.9 dB.

5.2 Generalization Across Di�erent Visual
Priors

5.2.1 Impact of Camera Coverage and NLOS Scenarios. We evaluate

RFCanvas’s performance across varying levels of camera coverage,

including scenarios with NLOS conditions due to occlusions. The

setup, as shown in Fig. 10, consists of two cameras with 100-degree

�elds of view (FOV) and one panoramic camera at the room’s cen-

ter. The calculated camera coverage for a single corner camera,

two cameras, and the panoramic camera are approximately 30%,

60%, and 90% of the total area, respectively. We also include a sce-

nario with 0% scene coverage (i.e., no cameras) for comparison. The

results are presented in Fig. 15. RFCanvas demonstrates robust per-

formance even in NLOS scenarios, achieving a median error of 3.2

dB. In regions with camera coverage, the visual priors signi�cantly

enhance optimization and convergence. In occluded regions, RF-

Canvas requires additional samples and processing time to reduce

uncertainty; however, it ultimately achieves satisfactory results

with a median error of 2.0 dB.

5.2.2 Visual Prior Sensitivity Analysis. While SOTA computer vi-

sion techniques can e�ectively extract visual information, the pre-

cision of object localization and boundary detection may be subject

to errors. To evaluate the robustness and sensitivity of RFCanvas in

the presence of visual prior inaccuracies, our experiment involved

systematically introducing random o�sets to object boundaries

within the hallway scene. As shown in Fig. 16, RFCanvas demon-

strates resilience to moderate levels of visual prior errors, maintain-

ing satisfactory performance with a median error of 2.1 to 3.5 dB

when the geometric discrepancies remain below 10 cm. Notably,

the system’s utilization of the real RF measurements facilitates

automatic geometrical error calibration.

5.3 System Consumption

RFCanvas employs vector-matrix multiplication with a computa-

tional complexity of ċ (Ċ 2), where Ċ is the tensorial �elds’ resolu-

tion. This method reduces space complexity fromċ (Ċ 3) toċ (Ċ 2).

Neural-based methods using MLPs have a comparable computa-

tional complexity of ċ (Ā ×ē 2), with Ā as the number of layers

andē as the layer dimension. Conventional ray tracing has a com-

putational complexity of ċ (đ ×Ē 2), optimized to ċ (đ ×Ē logĒ )

with accelerated structures, where Ē is the number of scene tri-

angles and đ is the number of rays. Notably, Ē > đ k Ċ ≈ ē .

In practice, RFCanvas is highly e�cient, predicting RF channels

in sub-millisecond time and supporting parallelization. Unlike ray

tracing, its performance is independent of scene complexity. The

simplicity of the vector-matrix operations allows deployment on

edge devices without GPU acceleration, making RFCanvas an e�-

cient solution for RF channel prediction across various computing

environments.

RFCanvas’s scene representation exhibits remarkable e�ciency

in training. Training a room-sized scene is accomplished in approxi-

mately �ve minutes using a single RTX A6000 GPU. When adapting

to scene dynamics, operations such as translation, rotation, and

deletion are performed instantaneously. However, for additions and

signi�cant scene alterations, such as furniture rearrangements, the

process necessitates initiating multipath tracing, which requires

approximately 5 seconds.
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Figure 11: RF channel estimation performance under varying sampling densities. RFCanvas outperforms neural-based

methods and ray tracing in both structural and numerical accuracy, especially with sparse samples.

6 CASE STUDY: METASURFACE
REDEPLOYMENT

Metasurfaces (MS) have emerged as promising techniques to manip-

ulate RF channels and coverage with �ne granularity [7, 21, 27, 36].

Passive metasurfaces are typically optimized through simulations

of static environments and fabricated via 3D printing, hot stamp-

ing, etc. Consequently, they are unable to adapt to scene changes

such as furniture rearrangement. Although fabrication costs of new

metasurfaces are trending downward, adapting to scene changes

inevitably incurs additional expenses.

RFCanvas enables the redeployment of existing metasurfaces to

new locations, facilitating adaptation to dynamic scenes without

the need for new metasurfaces. We demonstrate this through a

case study in which we enable RFCanvas to support metasurface

(MS) optimization. This is achieved by representing the MS as a

thin quad using SDF with an assigned phase texture. When a ray

hits and re�ects o� the MS, its phase is shifted according to the

texture’s phase pro�le, while penetrations are discarded for the

MS. We set the experiment in a typical indoor environment as

illustrated in Fig. 17. The 60 GHz WiGig router is positioned at

the end of the hallway, and the user’s receiver is placed on the

table. The direct path between the transmitter and the receiver

is blocked by the wall. We initially optimize the MS in the scene

using conventional methods [27] and fabricate an MS using 3D

printing [36]. Then we alter the scene by introducing new obstacles.

When a new object is introduced, obstructing the path between

the target region and the metasurface, the RSSI decreases by 7 dB.

We optimize the new deployment location and orientation of the

metasurface by extending existing optimization methods [27] with

RFCanvas simulation while maintaining the original metasurface

pattern. The optimized new deployment location and rotation yield

a 5 dB signal gain.

7 DISCUSSION AND FUTUREWORKS

Real-time channel modeling. RFCanvas is highly e�cient for

inference and training, taking under one millisecond for RF channel

inference and about 20 ms per training iteration. The current imple-

mentation achieves a 5 Hz update rate for dynamic scenes, with the

main bottleneck being the camera-based depth and motion vector

estimation. As a framework for RF simulation, RFCanvas is poised

to achieve real-time RF scene adaptation with advancements in

computer vision, broadening its applicability to various real-world

scenarios.
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case study.

Complex tasks and dynamic transmitters. Beyond RSSI pre-

diction, RFCanvas supports various complex tasks such as CSI

prediction, RFID spectrum prediction, and dynamic transmitters.

Following existing methods, high-dimensional inputs and outputs,

such as Tx location, CSI subcarriers, and angle spectrum, are man-

aged by combining them with additional MLPs. RFCanvas demon-

strated performance comparable to NeRF2 (24 dB SNR for CSI and

0.8 SSIM for RF spectrum prediction) on its public dataset.

Outdoor environment. RFCanvas can be applied to large outdoor

environments, where visual priors can be obtained from widely

available street view or satellite images. In these environments,

objects such as buildings and terrains are often sparsely distributed

across vast areas. As a result, tensorial �elds can be optimized using

hierarchical acceleration structures like octrees [9] or by partition-

ing the space into chunks for improved e�ciency. Furthermore,

RFCanvas can be integrated with existing neural methods to im-

plicitly characterize objects with highly complex shapes, such as

vegetation, which are commonly found in outdoor settings.

Visual and RF disparities. RFCanvas is evaluated on common

indoor materials such as concrete, wood, plastic, and metal and

under the assumption that the visual and RF properties are coherent.

It may su�er incorrect initialization when encountering visually

disrupting material such as glass (transparent) and highly specular

re�ection such as mirror and unseen material from the material

library. A potential solution is to incorporate a more advanced

graphical 3D estimation model for initialization [54] and increase

the weight on material optimized from RF signal rather than solely

relying on visual material identi�cation [30].

Beyond novel view synthesis for RF. Recent advancements, such

as 3DGS [18], can also be used to achieve similar tasks as RFCanvas,

such as creating a visual 3DGS from cameras and then optimizing

additional spherical harmonics coe�cients for RF. However, we

believe it is important to go beyond simply adopting Novel View

Synthesis methods from computer graphics, where scene represen-

tations are speci�cally designed for only generating new sensor

views. We believe that to build a true digital twin for RF, the scene

geometries and materials must be explicitly de�ned and physically

grounded, rather than relying solely on neural and probabilistic

models. RFCanvas represents a step toward explicit scene represen-

tations for next-generation RF digital twin simulation.

8 CONCLUSION

We have presented RFCanvas, a novel system for generating neural-

free and explicit RF representations, ensuring accurate and �exible

RF simulations. RFCanvas surpasses conventional ray tracing and

neural scene models by utilizing visual priors and re�ning with

few-shot RF samples. Featuring RFCanvas Scene based on tenso-

rial �elds, it o�ers editability and precision in modeling complex

geometries and materials. Its adaptability to scene dynamics via

motion vectors and its end-to-end optimization framework with

di�erentiable simulation provide notable advantages. We envision

RFCanvas as a powerful tool for wireless applications like network

planning and 3D reconstruction, with further exploration left for

future work.
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