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ABSTRACT

Accurate and responsive simulation of radio frequency (RF) signal
propagation is crucial for designing wireless systems operating
in dynamic environments. Conventional ray tracing approaches
struggle to accurately model the intricate geometries and material
properties of objects that impact propagation. Recently proposed
neural scene representations can learn such intricacies from RF
data, but they treat the entire scene as implicit neural networks,
necessitating retraining with a massive amount of RF data upon
any environmental changes. In this paper, we propose RFCanvas,
which fuses visual priors and RF measurements to achieve high
accuracy for realistic scenes and be responsive to environmental
changes. To ensure compatibility between visual priors and RF
measurements, we introduce RFCanvas scene representations that
model shapes and materials of substantial objects with tensorial
fields and signed distance fields. We further extract motion infor-
mation from visual priors to adapt RFCanvas scene representations
to scene dynamics. RFCanvas is built upon an end-to-end opti-
mization framework with differentiable RF simulation. Extensive
evaluations across real-world wireless communication and sens-
ing environments demonstrate RFCanvas’s superiority over both
existing methods.
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1 INTRODUCTION

Simulations at the radio frequency (RF) bands have been driving
the design and deployment of diverse wireless systems. Precise
characterization of the RF propagation environment is pivotal for
optimizing the deployment of wireless network infrastructures
[43, 49] and planning the spatial protection zones for spectrum
sharing [44]. Explicit modeling of the intricate multipath effects
arising from signal interactions with the environment is also crit-
ical for enhancing the accuracy of wireless sensing applications,
such as object detection, localization, and imaging [15, 46, 50, 56].
In addition, RF simulations are indispensable for designing and
optimizing emerging electromagnetic (EM) structures [21, 27], such
as reconfigurable intelligent surfaces that can tailor the RF propaga-
tion towards programmable wireless environments. Despite recent
advancements in simulation accuracy [26, 57], the long simulation
time and slow response to environmental changes limit the use
of RF simulation in practice, especially for wireless systems with
stringent downtime. Achieving rapid updates of RF simulation with
sufficient accuracy has been a long-standing challenge, hindered
by the propagation environment’s inherent complexities and dy-
namics.
Table 1: Comparison of RF Simulation Approaches

RF Simulation Visual RF Accu- | Dynamic
Approach Priors Measurements | racy Scenes
Ray Tracing Complete 3D Meshes None Low v
Neural based None Dense High X
RFCanvas ‘ Monocular Images ‘ Sparse ‘ High ‘ v

Ray tracing algorithms have been widely adopted by the wire-
less industry [35, 38, 49, 51] for RF simulation. These algorithms
model EM waves as numerous “rays” emanating from a transmitter,
interacting with objects in the environment (through scattering,
penetration, attenuation, etc.), and ultimately being captured by a
receiver. RF ray tracing mainly relies on visual priors to reconstruct
3D models of the environment as inputs, which can be explicitly
modified to account for environmental changes. However, conven-
tional ray tracing methods suffer from the notorious sim-to-real gap
due to the imperfect representation of objects’ 3D structures and ma-
terial properties. The visual models tend to overlook minute surface
features that significantly impact RF propagation [40], especially
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Figure 1: RFCanvas Comparison with Existing Methods.

in a multipath-rich environment. Moreover, visual 3D models fail
to capture real-world objects’ internal structures and nonuniform
materials. The inherent vision-to-RF gap presents additional chal-
lenges, particularly in non-line-of-sight (NLOS) scenarios where
cameras cannot detect objects that may influence RF propagation.
This limitation can lead to inaccurate 3D structure generation and,
consequently, unreliable RF predictions based on these incomplete
models.

Recent data-driven approaches, such as NeRF? [57], have pro-
posed using implicit neural representations to model the RF propa-
gation within a scene. While these neural approaches demonstrate
the capacity to learn intricate scene details and RF-object inter-
actions from data, they treat the substance and radiance of the
entire scene as implicit black boxes [28, 48], thereby sacrificing
the flexibility inherent in conventional ray tracing methods. Addi-
tionally, these implicit neural models suffer from data inefficiency,
requiring about 200 channel samples per square foot of environ-
ment. Adapting to environmental changes necessitates recollecting
training samples and retraining the entire neural model—an often
impractical burden.

In this paper, we introduce RFCanvas, a novel RF simulation
framework that is accurate for realistic scenes and responsive to
environmental changes. The core novelty of RFCanvas lies in its
approaches of rapid generation and update of high-fidelity scene
representations by fusing visual priors (such as monocular images)
with RF channel samples of the scene, as shown in Table 1. RF-
Canvas leveraging the rich information of visual data to overcome
data scarcity problems. Initially, RFCanvas utilizes the visual pri-
ors to reconstruct coarse yet fairly accurate scene representations.
These representations are then further refined using a significantly
reduced set of RF channel samples, in stark contrast to the exist-
ing scene-wise neural representation techniques [25, 57]. When
scene changes, RFCanvas can swiftly adapt to the new scene by
incorporating updated visual priors from camera inputs.

Realizing the full potential of RFCanvas entails three non-trivial
technical challenges:

How to design a better RF representation for visual prior integra-
tion? To facilitate the integration of visual priors and enhance the
RF sample efficiency, we adopt tensorial fields [5] in RFCanvas
to model scenes. Specifically, the RF fields of scenes are explic-
itly represented by tensors, each of whose elements defines the
attenuation and radiance coefficients at the corresponding physical
location. The use of tensorial fields enables visual prior integra-
tion and improves RF data efficiency in two ways. First, unlike
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neural representations, tensorial representations decouple the RF
fields at different locations. This decoupling not only enables par-
tial editing with fewer RF measurements but also allows for the
seamless integration of visual priors at specific spatial locations.
Second, tensorial fields can be factorized into low-rank vectors and
matrices via vector-matrix decomposition [5], which reduces the
number of parameters and hence the RF measurements required
for optimization.

How to generate scene representations from visual priors? An RF
scene usually has a few objects sparsely distributed, with the rest
of the space completely empty. While the interactions between ob-
jects and RF signals are complicated, RF signals in empty space can
be accurately modeled via simple free-space propagation. Hence,
RFCanvas utilizes visual priors to identify objects in the scene for
rapid initialization and optimization of tensorial representations.
Specifically, we use the depth information from camera images to
determine the boundaries of objects. These boundaries are repre-
sented using signed distance fields (SDF) [32] in RFCanvas. An SDF
specifies the distance from any point in space to the nearest surface
of a 3D object. With the SDF, RFCanvas can localize interactions by
tracking the distance between the front of a marching ray and the
object’s surface, known as sphere tracing [12]. The radiance tensors
are then initialized from SDF using inverse spherical harmonics [8].
We further use camera images to obtain a coarse estimation of the
objects’ material composition, which helps initialize the scene’s
attenuation tensors. Thanks to the visual priors, the initial scene
representations help significantly reduce the need for RF data and
the optimization cost.

How to adapt scene representations to environmental dynamics
using visual priors? A realistic scene often comprises dynamic ob-
jects. Adapting to a scene involves the detection and manipulation
of changing regions. Unlike neural representation, which requires
recollecting the real RF measurements and retraining the neural
model, RFCanvas detects environmental changes from visual priors
and directly modifies the explicit tensorial fields. Specifically, we
model environmental changes with object motion vectors and de-
velop a procedure to predict the corresponding change of dominant
multipath reflection from these objects. The radiance coefficients
in the dynamic regions are then recomputed via the inversion of
spherical harmonics. With additional RF measurements collected,
RFCanvas can further refine the tensorial fields of the scene. This
design allows the rapid response of RFCanvas to environmental
dynamics.
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RFCanvas facilitates flexible editing of an RF simulation scene,
such as modification of objects based on visual priors and con-
figuration of radio hardware. This flexibility is highly desirable
for designing and verifying wireless communication and sensing
systems. Moreover, RFCanvas paves the way towards a modular-
ized primitive library, analogous to the well-established practice of
curating libraries of 3D mesh models in computer graphics. Such a li-
brary would enable large-scale, modularized RF simulation through
pre-trained object representations, primed for plug-and-play inte-
gration into the design process of wireless systems.

We have implemented RFCanvas and conducted a comprehen-
sive evaluation using various wireless testbeds, including WiFi/WiGig
radios. Our microbenchmark experiments demonstrate that the RF
signals generated by RFCanvas can accurately approximate the
ground truth, achieving approximately 4 dB higher accuracy in
RF-object characterization compared to conventional visual model
based ray tracing. With a sparse dataset of merely 0.5 samples/sq ft
of training data, RFCanvas surpasses the state-of-the-art (SOTA)
NeRF? by around 1.5 dB in COTS WiFi channel prediction, and even
higher for mmWave. In addition, RFCanvas exhibits robust adapt-
ability to changes in a scene with a small set of 5 to 20 additional
data samples.

Our contributions can be summarized as follows:

(i) We propose RFCanvas, a novel RF simulation framework
that achieves comparable accuracy to neural-based methods while
preserving the rapid responsiveness of conventional ray tracing.

(i) We design a novel explicit representation capable of capturing
objects’ detailed structures and material properties. We develop an
initialization procedure leveraging visual priors, significantly reduc-
ing the requirement for extensive RF measurements, and a few-shot
fine-tuning scheme to efficiently refine the scene representations
with limited RF measurements.

(iif) We conduct comprehensive evaluation of RFCanvas across
diverse wireless environments. Our experiments demonstrate the
effectiveness of RFCanvas and highlight its potential to foster new
applications of RF simulation.

2 PRELIMINARIES AND RELATED WORKS

RF propagation and EM field simulation. Many wireless com-
munication and sensing designs necessitate simulating how the RF
signals from a source (transmitter) are distributed over space and
interact with the environment. Conventional full-wave simulation
approaches, such as Finite Element Method (FEM) [17] and Finite-
Difference Time-Domain (FDTD) [42], can generate highly accurate
simulation results. However, their substantial computational com-
plexities limit their usage to small-scale RF device simulations, such
as antenna design. Ray tracing approaches [6, 23, 35, 49, 51] enable
efficient large-scale simulations by approximating electromagnetic
waves as geometrical optics. A typical ray tracing simulation con-
sists of transmitters (Tx), receivers (Rx), and mesh representation of
objects in the scene. A mesh consists of numerous small polygons
that delineate the contour of the object. The simulation starts by
emitting rays from each Tx in all directions, with the ray density
determined by predefined resolutions. Then the simulator detects
the intersections between the rays and object meshes. At each in-
tersection, the simulator replicates rays according to the number
of interactions, redirects the rays based on the interaction types
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(e.g., reflection, refraction, or diffraction). Additionally, it calculates
the directional radiance, representing the power radiated by the ray
along a specific direction after the interaction, which depends on
the object’s material properties (e.g., permittivity and conductivity).
The propagation of a ray terminates when it arrives at the Rx or
reaches a predefined maximum number of interactions. Finally,
all rays received by the Rx are coherently combined to obtain the
received signal, with the relative phases of different rays calculated
based on their respective path lengths.

Ray tracing requires accurate models of objects’ geometries and
material properties, which can hardly be generated using common
sensors. Even for reflective objects with simple geometries, visual
3D models of the objects cannot easily capture the fine-grained
shape details, which may look trivial visually but may interact sig-
nificantly with RF signals. Recent work [49, 51] employed Lidar or
RF transceivers themselves to create a 3D view of the environment
as ray tracing input. However, these approaches still fall short of
granularity and cannot model sophisticated multipath channels.

Sx)<o0

Zero Plane

S(x)>0

Signed Distance Function Object Structure

Figure 2: The geometry boundary is defined via the zero-level
set of SDFs.

Neural representations for RF simulation. Neural scene rep-
resentations have emerged as a powerful paradigm in computer
graphics, gaining widespread adoption following the breakthrough
of Neural Radiance Fields (NeRF) [28]. NeRF employs neural net-
works to implicitly model two key properties of a 3D scene: the
volumetric density at any spatial location, and the radiance (color
and brightness) emitted along any viewing direction from that lo-
cation. By learning these view-dependent and location-dependent
radiance mappings from a set of input images, NeRF can effectively
render photorealistic images from unseen viewpoints, without re-
quiring explicit 3D geometry or surface models.

However, when NeRF-rendered scenes are used in RF simulation,
as in NeRF? [57], the entire scene has to be modeled as a monolithic
blackbox, with no clearly defined boundaries of physical objects and
interactions between physical objects and RF signals. This results
in limited flexibility and high sensitivity to common environmental
changes. To demonstrate this issue, we train a NeRF? model for the
room. The result shows that when the scene remains unchanged,
NeRF? is more accurate than conventional ray tracing. However,
after moving some objects in the scene and recollecting RF mea-
surements, the RSS error of NeRF? increases significantly by 4.58
dB. Moreover, existing methods, such as WiNeRT [30], partially
integrate neural representations with conventional ray tracing by
using neural networks to model materials’ reflection parameters,
which are then applied in ray tracing. However, these methods still
rely on conventional 3D mesh models, which struggle to capture
the fine-grained structural details of real objects.
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Figure 3: RFCanvas System Workflow.

Visual scene representation. To mitigate the shortcomings of
mesh models, which capture fine details as well as internal and
implicit structures, and the black-box nature of NeRF models, alter-
native representations have been widely studied.

Signed Distance Functions (SDF) [11, 13, 31, 32], offer an implicit
surface representation, defining a field function f(x,y, z) that re-
turns the signed distance to the nearest surface point for any given
3D coordinate. The surface itself is represented by the zero-level
set of this function, as shown in Fig 2. SDFs provide a compact rep-
resentation suitable for ray tracing techniques and enable efficient
collision detection. They also facilitate smooth blending between
objects and support analytical operations like unions and intersec-
tions. Recent advancements in neural SDFs have shown promise in
representing complex scenes with high fidelity. However, although
SDF is efficient at capturing fine-grained geometric surfaces, it can-
not capture the internal and multilayer structures common in RF
simulation.

3D Gaussian Splatting (3DGS) [18] has emerged as a powerful
technique for representing and rendering complex scenes. This
method represents a scene as a set of 3D Gaussian primitives, each
defined by parameters such as position, covariance matrix, and
appearance attributes. A key feature of 3DGS is its use of spherical
harmonics [29] to capture view-dependent appearance, allowing
for efficient modeling of complex lighting interactions and material
properties. 3DGS cannot explicitly represent object boundaries that
are necessary for accurate multipath simulation; it can only model
the Gaussian distribution of probabilities. RFCanvas adopts the
idea of the spherical harmonic function to capture the sensitive
view-dependent radiance attributes.

Tensorial Fields discretize 3D space into a regular grid of volumet-
ric elements (voxels), each storing information such as occupancy
or color. This representation allows for efficient spatial queries and
is particularly suited for volumetric data RF fields. TensoRF [5] rep-
resenting scenes using a compact factorized tensor representation.
It decomposes 3D space into vector components along each dimen-
sion, enabling efficient modeling of view-dependent effects and fine
geometric details. This factorized approach allows for faster train-
ing and rendering compared to traditional neural radiance fields

467

while maintaining fidelity. However, the application of tensorial
fields in RF simulation, as well as their dynamic adaptation and
initialization, remains unexplored.

Summary: RFCanvas leverages the strengths of both neural-
based and conventional RF simulation approaches, as illustrated in
Fig. 1. It employs explicit tensorial grids of radiance and attenua-
tion fields and SDFs from visual priors to capture the intricacies
of RF signal propagation, similar to neural-based methods while
maintaining the interpretability and adaptability characteristic of
conventional techniques.

3 SYSTEM DESIGN

RFCanvas is a novel data-driven RF simulation system that lever-
ages visual priors to reconstruct scenes and adapt to scene dynamics
efficiently. The end-to-end workflow is shown in Fig. 3. The design
components can be summarized into three parts:

(i) RFCanvas representation is a novel explicit scene repre-
sentation for RF simulation based on tensorial fields and boundary-
aware signed distance functions (SDFs).

(ii) RFCanvas reconstruction module initializes the RFCanvas
scene from visual priors by inferring depth and material informa-
tion, with no need for real RF samples.

(iii) Dynamics adaptation module adapts to scene changes by
monitoring motion vectors derived from visual priors.

RFCanvas’s workflow begins with its novel scene representation,
combining tensorial fields and SDFs for an explicit, editable RF
scene model. The reconstruction module then initializes this scene
using visual priors from cameras, extracting depth and material
information to set up SDFs and attenuation tensors, while using
multipath tracing to initialize radiance tensors. As the environment
changes, the dynamics adaptation module detects and classifies
changes by estimating motion vectors from camera frames. It then
updates the scene representation accordingly, using ray sample
redirection for moving objects or partial reinitialization for new
additions.

3.1 RFCanvas Scene Representation

RFCanvas scene represents a collection of objects to be simulated
to estimate RF fields. To achieve rapid scene reconstruction and
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adaptation from visual priors, the scene representation must meet
two requirements: 1) Optimizability: The scene representation
needs to be differentiable to support efficient gradient-based opti-
mization. 2) Editability: The scene representation needed to be
partially editable to integrate prior knowledge of object geome-
try, surface material types, and dynamic changes to corresponding
regions of the scene. Mesh representations used in conventional
ray tracing methods fail to meet the first requirement. Despite
numerous studies on the differentiability of meshes in rendering,
this does not transfer well to RF simulation. Additionally, mesh
representations have low precision, as they can only model surface
reflections and lack the ability to characterize complex scattering
inside objects. In contrast, trainable neural representations, such
as NeRF? and NeWRE, fulfill the first requirement. However, they
are purely based on implicit neural networks, where assigning and
updating material properties and geometrical boundaries to specific
regions is infeasible. Further, they require complete retraining with
massive RF measurements for updating.

Explicit and Editable Tensorial RF Field. Inspired by recent
advances in computer graphics, we employ tensorial fields [5] to
represent the geometric structures in RF simulation. Unlike MLPs
in NeRF that implicitly map locations to RF radiance, we represent
RF radiance fields as an explicit voxel grid of features. Given a 3D
tensor 7~ € RI*/*K for a 3D cuboid space, each element Tijk ex-
plicitly stores the directional radiance coefficients and attenuation
coefficient of the corresponding voxel. Voxel-based data allows for
high interpretability and editability, enabling users to manipulate
individual voxel values similarly to editing image-like data. This
includes operations such as cropping, deleting, and adding voxels,
facilitating precise modifications.

Different from conventional voxel-based representations that
have high memory costs and require long reconstruction times, ten-
sorial representations use Vector-Matrix Decomposition (VM) [5] to
factorize the high-dimensional tensors into multiple compact low-
dimensional components as shown in Fig. 4. This can be expressed
as:

R
7= > v oMIZ vl oMSZ vz oMY, (1)
r=1
where MZ € RYXZ MXZ e RXXZ MXY € RX*Y are matrix
factors. vX,vY,vZ are vector factors. R is the resolution of the
cubic scene tensor.

Therefore, the query the tensor element is:

R
— m
Tk =, AP om € XYZ, @)
r=1 m
X _ YZ . gY _ Y M XZ. aZ  _ 7 XY
ﬂr,ijk - vifiMr,jk’ﬂr,ijk - vr,er,ik’ﬂr,ijk - Vr,kMr,ij' ®)

Explicit Boundaries of Objects. Existing neural representa-
tions do not explicitly define object boundaries but point-wise
samples of attenuation and radiance fields. Such dense representa-
tions waste model representability and computing resources, due to
the imbalanced complexity of RF propagation inside and outside of
objects. Specifically, in empty space, which usually occupies a large
portion of a scene, RF signals simply follow free-space propagation.
In contrast, complex RF interactions only happen at the boundary
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of and inside the substantial objects. However, these objects are
usually just sparsely distributed in a scene.

To integrate the information on object boundaries in the scene
representations, we model the object boundaries with SDF. Given
a group of geometry Q and its boundary 9Q, each element in the
SDF $© stores the signed distance to the nearest surface:

S8 =5(p. Q) - d(p.o0), @)

where d(p,9Q) = infgeoq d(p, q) denotes the minimal distance
between the point p and any point g on the object’s surface 9Q. In
addition, the sign s(p, Q) indicates the containing relation between
the point p and the object Q, where a positive sign means that the
point p is outside the object, i.e., p ¢ Q while a negative sign means
peqQ.

An SDF can serve as a mask of tensorial fields, where only the
tensorial fields with S <= 0, i.e., the boundary and inside region
of the object, are sampled. The SDF is first initialized from visual
priors and then optimized progressively along with tensorial fields,
detailed in Section 3.2.3.

Trilinear Interpolation. RFCanvas represents the scene via
tensorial fields. Although the tensor elements are discrete, they
can represent continuous surfaces and geometry through trilinear
interpolation.

For each sampling position, we calculate the weighted average
of the 8 voxels surrounding the sampling position. The weights are
determined by the distances between the voxel centers and the sam-
pling position. However, evaluating 8 voxels for each sample can
be costly. Utilizing VM decomposition, trilinear interpolation can
be decomposed into a linear decomposition on vectors and bilinear
interpolation on matrices, which further reduces the computational
cost.

Simulation with RFCanvas scene representations. The prop-
agation of an RF signal S from a transmitter (TX) to a receiver (RX)
is characterized by the following equation:

SpRx =a-Stx - e~ 2nfer (5)
where Spx denotes the received signal, and Sty represents the
transmitted signal. The complex factor a = |ale/? accounts for
both amplitude attenuation |a| and phase shift  introduced by the
channel. The term e ~/27/e7 describes the additional phase shift due
to the propagation delay, where f; is the carrier frequency and 7 is
the time delay. This formulation effectively captures the combined
effects of attenuation and phase alteration as the signal traverses
the distance from TX to RX.

We use differentiable volumetric ray marching to simulate the
RF signal propagation. The 3D position along a ray from receiver
location py at direction w is defined as P(t, w) = po + wt., where t
is the distance from the transmitter. The total attenuation between
the point P(¢, w) and the receiver Py is

t
Ap(t.0) Py = XD ( [ [rseud - a-po + 75, -] di)

N

©
~exp (Z [BSPL(t) - (1= £(2)) + T, - £(00) At),

i=1
where FSPL(¢t) is the free space path loss at distance ¢, T4 (¢, ©) is
the tensorial field sample for attenuation along the ray at distance
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t, f(¢) is a binary function based on SDF sample that determines
whether the signal is in a medium (1) or in free space (0) at position
t, At is the sampling step size, and N is the number of sampling
points along the ray. The resulting received signal R(w) of the ray
is computed as:

R
R@) = [ Apo)pe Ty W00 -0) dt (1)
(VNN _
Attenuation

Radiance

Spherical Harmonics Y," () are naturally adept at representing di-
rectional data. Their completeness and rotational invariance enable
them to accurately capture the sensitivity of mmWave signals to
minute directional changes while providing the ability to analyze
signals across different frequency scales. The Spherical Harmonic
function is defined as:

Y, (0,¢) = \’%%Pﬁ(cos 0)e'™m?

where Y, represents the spherical harmonic function, ¢ and ¢ are
the spherical coordinates, P" is the associated Legendre polynomial,
and [ and m are the degree and order of the harmonic, respectively.

7% stores the spherical harmonics coefficients of the radiances.
To query the radiance of a voxel from a given direction, one multi-
plies the coefficients from the tensor with the spherical harmonics
for the querying direction. In other words, the surface reflection
pattern is modeled by spherical harmonics along with its coeffi-
cients. Since spherical harmonics are used in a linear system, we
find that they can be inverted for a given reflection pattern to pre-
dict the coefficients. This is particularly helpful for initializing the
radiance tensor when the voxel reflection patterns are recalculated
via multipath tracing (detailed in Section 3.2.2).

®

3.2 RFCanvas Scene Reconstruction

RFCanvas initializes the scene using visual priors to reduce the
required RF measurements. Cameras can provide rich knowledge
about the environment in terms of geometry, distance, and materials.
RFCanvas does not require precise visual scanning of each object
by moving the camera in the scene and synthesizing images from
multiple views. Instead, RFCanvas only relies on a few static visual
sensors (e.g., from several distributed surveillance cameras and IoT
cameras) to reconstruct partial scene representations, which are
then progressively refined. This makes RFCanvas more adaptable
and efficient.
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3.2.1 Visual Knowledge Extraction from Cameras. RFCanvas ex-
tracts two types of information from camera images, depth and
material of objects’ surfaces, and uses them as visual priors to
initialize the RF scene. By default, neither type of information is
provided by common monocular cameras. Fortunately, recent ad-
vances in for computer vision [1, 52] have enabled the extraction of
them from camera images. With the depth information, i.e., the dis-
tance of each pixel to the camera, RFCanvas can estimate the shapes
and locations of objects in the scene, which are used to initialize
SDF [47]. Meanwhile, objects’ materials can be classified by ana-
lyzing visual cues such as texture, color, and reflectance recorded
in images [14, 41]. This information is then used to initialize the
attenuation tensors of RFCanvas scene representations. Despite
not being perfect, the initialization with visual priors helps reduce
the search space of scene parameters, leading to more accurate
simulations and faster optimization in the refinement process.

In practice, given multiple cameras, RFCanvas needs their global
poses to fuse their data to reconstruct the scene. We use an au-
tomatic progress to determine the pose based on shared spatial
features [22]. The calibration for the poses of static cameras only
needs to be conducted once.

3.2.2 RF Field Reconstruction from Visual Knowledge. With the
visual knowledge, RFCanvas initializes three elements of the scene
representations, i.e., SDF, attenuation tensor, and radiance tensor.

To initialize SDF, we first transform the depth image into 3D
space using a calibrated camera pose and the camera’s intrinsic
matrix. The point clouds are then mapped to voxels. The SDF is
calculated by checking each voxel within the space to determine the
distance to the nearest surface, completing the SDF initialization.
While occluded regions may exist, they are acceptable as the SDF
will be further refined with RF measurements.

The attenuation tensor of RFCanvas tensorial fields is physically
related to the properties of surface materials. With the material
types extracted from camera images, RFCanvas can query a material
database to obtain the materials” average dielectric constants and
conductivity coefficients from literature [20, 39]. For unrecognized
materials, RFCanvas uses the material properties of neighboring
voxels for initialization.

The radiance tensor captures the multipath propagation of RF
signals. Each voxel is considered as an effective emitter that retrans-
mits the signal it receives in desired directions. Unlike neural-based
methods where radiance fields are randomly initialized, RFCanvas
uses a physically-based initialization through multipath tracing. As
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shown in Fig. 5, RFCanvas explicitly calculates the dominant mul-
tipath components with less than three reflections. Beyond three
reflections, RF signals become very weak and thus negligible. RF-
Canvas uses a modified ray tracing algorithm to calculate all paths
received and reflected by each voxel, creating a reflection pattern.
Specifically, view-dependent reflection is calculated by multiplying
the radiance coefficient by the spherical harmonics. RFCanvas in-
versely calculates and assigns the radiance coefficient by dividing
the path-traced reflection pattern by the spherical harmonics, as
illustrated in Fig 6.

Although visual priors only provide a rough initialization, they
provide a fairly good initialization of the scene. Compared with
random initialization, the initialization with visual priors is much
closer to the realistic physical scene, making RFCanvas easier to
refine progressively using few-shot RF measurements.

3.2.3
tations created from visual priors still have sim-to-real gaps due to
visual inaccuracy and occlusions. Therefore, RFCanvas further fine-
tunes the scene representations using few-shot RF measurements
from real users. Compared to conventional ray tracing with 3D
meshes, RFCanvas is end-to-end trainable, thanks to the differen-
tiable components, including SDF, attenuation, and radiance tensors.
Additionally, unlike neural-based methods, RFCanvas ’s explicit
representation and fairly accurate initialization significantly reduce
the amount of RF measurements required for training. With the
rapid optimization process, RFCanvas can be progressively updated
on the fly, making it more practical for real-world applications.
Refinement procedure. RFCanvas exploits RF measurements
from mobile users in the scene. Nowadays, mobile devices are com-
monly equipped with communication modules and IMUs. We as-
sume users with mobile devices move around freely in the scene.
They are the source of major environmental changes in the scene,
but simultaneously provide RF measurements, such as RSS and CSI,
and their trajectories can be calculated from onboard IMUs. The
combination of RF measurements and trajectories is referred to as
"RF Spatial Measurements." The paired RF Spatial Measurements
can then be used to evaluate the real-time accuracy of RFCanvas,
and guide the subsequent optimization of RFCanvas scene repre-
sentations through backpropagation.

Refinement with real RF measurements. The scene represen-
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Figure 6: RFCanvas initialize the radiance tensor using reflec-
tion patterns obtained from multipath tracing by inverting
spherical harmonics.

Boundary confidence-guided optimization. To capture the real
structure and material properties of the objects and minimize the
sim-to-real discrepancy, RFCanvas needs to keep optimizing the
attenuation tensor 7 g, radiance tensor 7%, and SDF SQ, ie.,

M
(74,77, SQ)* = argmin Z L(5,s5), 9)

T74,75,5% 120
where § are RF measurements in the scene and M is the number of
measurements. L is the loss that quantifies the discrepancy between
real measurements § and RFCanvas’s RF simulation output s.

Joint optimization of SDF and tensorial fields may lead to sub-
optimal solutions due to their complexity and non-convexity. To
address this issue, we propose a boundary confidence-guided op-
timization strategy. In surface regions covered by visual priors,
we reduce the granularity (i.e., resolution of SDF gradients) and
learning rates because these regions have higher boundary confi-
dence. For occluded regions with lower confidence, we enable joint
optimization with tensorial fields.

It is expected that a few shots of RF measurements, i.e., a small
M, are sufficient for scene refinement since RFCanvas obviates
the need to capture expansive empty regions and only focuses on
objects with the fairly accurate initialization based on visual priors.

3.3 Dynamics Adaptation

Rapidly adapting to dynamic environments is crucial for respon-
sive RF simulation. Existing neural-based methods [53, 57] treat
the entire scene as an implicit model and hence cannot adapt to
environmental changes easily. While some recent works [16, 33]
generate dynamic neural radiance fields, they are optimized from
scratch using a complete sequence of images, but cannot adapt to
any new images. In contrast, thanks to the editability of RFCan-
vas scene representations, RFCanvas supports rapid adaptation to
environmental changes.

First, RFCanvas detects and models environmental changes by
exploiting visual priors from cameras. To model the changes, RF-
Canvas estimates the motion vector in image coordinates by match-
ing the spatial features across images, based on the Horn-Schunck
Method[4]. After obtaining the screen space motion vector along
with depth information, RFCanvas transforms the motion vector to
3D space using the camera’s intrinsic matrix K, the 3D position of
a pixel (u, v) with depth z can be computed as p = z- K~ (u,0,1) 7.
Applying this transformation to consecutive frames yields the 3D
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Figure 7: Motion Vectors and Scene Dynamics Adaptations.

positions p; and ps41, from which the 3D motion vector is calcu-
lated.

After obtaining the motion vectors, we classify the scene changes
into four categories, as illustrated in Fig. 7. Each category is handled
differently:

(i) Translation & rotation. The translation T € R3 and rotation
R € R3*3 of dynamic voxel groups are determined either by cluster-
ing the motion vectors directly or by using vision-based 3D bound-
ing box systems. We employ ray sample redirection to sample the
tensorial field before transformation. Consider an original tensorial
field 70 and a transformed tensorial field 7*1. For each query
position and direction P(t, ) on 7!, we can redirect the sample
by the motion’s translation and rotation. This is represented as
P'(t,0") = py +w't, where p(| = RT (po—T) and &’ = RT w. There-
fore, sampling P(t, ) on 7! is equivalent to sampling P’ (t, w’)
on 7710,

(ii) Deformation. Deformation involves changes in the shape of
the object rather than just its position or orientation. We model
deformation as a combination of small translations and rotations
applied to individual parts of the object. This can be mathemati-
cally represented by a set of local transformations, each described
by a translation vector Tj and a rotation matrix R;. These local
transformations are applied to each voxel in the object, effectively
capturing the deformation process. The cumulative effect of these
local transformations results in a complex deformation that can be
analyzed and visualized in the tensorial field.

(iii) Addition. Addition refers to the appearance of new objects
or regions within the scene. This is determined by comparing the
current voxel frame with the subsequent voxel frame to identify
regions that were previously unseen. Since new additions do not
have corresponding motion vectors from the previous frame, we
identify these regions by detecting spatial features that appear in
the subsequent frame but are absent in the previous one.

The manipulation of the tensorial field for addition is similar to
the partial initialization from visual priors, as discussed in Section
3.2. Specifically, the SDF and the appearance region of the new
voxels are recalculated. The attenuation fields are filled with the
reflection coefficients obtained from material identification. The
radiance field is initialized using multipath tracing through our
custom-designed Ray Tracing simulator, which is specifically opti-
mized for calculating multipath effects.

(d) Deletion. Deletion refers to the disappearance of objects or
regions from the scene. Similar to addition, deletion is determined
by comparing the current voxel frame with the subsequent voxel
frame. Regions that were present in the previous frame but are
missing in the subsequent frame are identified as deletions. This
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involves detecting spatial features that vanish and clustering the dis-
appearing voxels to recognize coherent objects or regions that have
been removed. By analyzing these deletions, we can understand
changes in the scene’s structure over time.

The manipulation of the tensorial field for deletion involves
recalculating the SDF for the disappearing regions. The attenuation
fields and radiance field are reset to zero to reflect the removal of
the objects or regions.

4 IMPLEMENTATION
4.1 Software

We implement the RFCanvas framework using PyTorch. However,
since PyTorch is designed for data parallelism and model paral-
lelism, it may encounter performance bottlenecks when dealing
with complex operations like ray tracing. Hence, we use custom
CUDA kernels based on TinyCudaNN and the Slang Shader Lan-
guage [2] for GPU computation to improve efficiency. The Adam
optimizer is used for gradient descent. The training of our system
is conducted on a server equipped with two NVIDIA RTX A6000
GPUs.

We train the RFCanvas scene using the Adam optimizer, starting
with a learning rate of 1 x 1073 that decays to 1 X 107> over 10,000
iterations. Both the tensorial and SDF fields are trained using a
multi-resolution approach. Initially, the resolution for both fields is
set to 128. During training, we upsample the vectors and matrices
linearly and bilinearly at iterations 2000, 3000, 4000, 5500, and
7000. The upsampling process involves interpolating the number
of voxels between the initial resolution and the final resolution in
logarithmic space. The final resolution is determined by the size of
the scene’s bounding box divided by half the wavelength.

For interpreting visual priors, we employ the pre-trained DepthAny-

thingV2 [52] model to extract depth information. For material identi-
fication, we use a modified ViT-based semantic segmentation model
[55] trained on Apple’s Dense Material Segmentation Dataset [45].
The dielectric constants of the corresponding material are refer-
enced from the Wireless InSite database [37]. The scene dynamics
are estimated by monitoring the 3D bounding box of the objects.
The human body dynamics is specifically modeled via SMPL model
[19, 24].

4.2 Evaluation Setup

Mobile Platform. As shown in Fig. 9, we employ Turtlebot4 to
collect ground truth RF scene data. The robot is equipped with
integrated Light Detection and Ranging (LiDAR) sensor and a Si-
multaneous Localization and Mapping (SLAM) system. The robot
can navigate the target space by following a predefined trajectory
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Figure 8: RF Channel Estimation for four indoor scenarios. RFCanvas outperforms all baselines in accuracy.

with designated waypoints, ensuring precise positioning within the
floor plan. Furthermore, the adjustable height of wireless devices
mounted on the Turtlebot4 facilitates more accurate data collection.
Leveraging this platform, we affixed a smartphone and a mmWave
router specifically configured for 2.4/5 GHz WiFi and 60 GHz WiGig
Received Signal Strength Indicator (RSSI) acquisition.

2.4/5GHz Recei
¥ ec‘ew} 60GHz Router ——_

2.4/5GHZ AP ~, |

Figure 9: RFCanvas Wireless Channel Collection Setup.

Wireless Devices. For our Wi-Fi setup, we deploy an ASUS RT-
AC86U router supporting 802.11ac as our access point (AP), and an
iPhone 14 Pro as the client device, functioning as the transmitter
and receiver, respectively. The RT-AC86U operates in concurrent
dual-band mode (2.4 GHz and 5 GHz). On the client side, we utilize
the “Wi-Fi Scan” feature of the AirPort Utility application to record
real-time RSSI values for both frequency bands. For the WiGig
setup, we employ two 802.11ad-compliant MikroTik wAP 60Gx3
routers [3], with one functioning as the transmitter and the other
as the receiver. To overcome the limitations of the proprietary
operating system, we opt for the open-source OpenWrt operating
system in combination with the Mikrotik Researcher Tools [10],
a specialized OpenWrt system designed for research purposes, to
facilitate efficient RSSI collection. Both setups are illustrated in Fig.
9.

Baselines. We use the following classical and state-of-the-art meth-
ods for baseline comparison:

(i) Ray tracing. We utilize AutoMS [27] for the ray tracing base-
line as its implementation supports optimizing surface material
reflectance with few-shot RF measurements, which aligns with RF-
Canvas. The 3D mesh required by ray tracing is scaned via Polycam
[34].
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(ii) NeRF?. We use NeRF? [57] as one of the neural methods
baselines. NeRF? represents the state-of-the-art (SOTA) in neural
channel prediction. Our implementation for NeRF? adheres to the
default configuration provided in the publicly available code archive.
We train the models for 30,000 epochs using the cosine annealing
scheduler to avoid overfitting. The reproduced results demonstrate
a performance of 2.90 dB on BLE RSSI, 22.24 dB on WiFi SNR, and
0.82 SSIM for the RFID spectrum, which aligns with the original
paper.

(iii) NeWRF. NeWRF [25] is used as the second neural method
baseline, as it is an improved version of NeRF? tailored for station-
ary Tx, consistent with our experimental setup.

(iv) Linear Interpolation. We employ linear interpolation from
the scipy package as a pure signal processing baseline.

Vision Prior Granularity. We use two metrics to qualify the
granularity of vision priors required by RFCanvas.

i). Camera Coverage Quantification. As different cameras in the
scene come in different models and usually with different resolu-
tions and fields of view (FoV), we quantify and unify the contri-
bution of camera sensors by employing the Voxelization method
(when 3D ground truth is available), which divides the 3D space
into voxels and calculates the ratio of voxels observed by cameras
to the total number of voxels in the scene.

ii). Scene Dynamics Quantification. The measurements of scene
changes involve the number of voxels (volumes) of changes Av and
the distance (e.g., displacement) of changes Ad. We quantify the
measurements as a unified metric Ac = Av X Ad.

5 EVALUATION

5.1 System Performance Evaluation

5.1.1 RF Channel Modeling Accuracy. As illustrated in Fig. 8, we
evaluate RFCanvas in four real-world indoor scenes comprising
multiple types of objects and materials. For each scene, we collected
2.4 GHz, 5 GHz WiFi, and 60 GHz WiGig RSSI using the mobile
platform. For meeting rooms, two images are captured from ceiling-
mounted cameras angled downward. For hallways and kitchens,
two panoramic images are taken from the center of each region. A
total of roughly 200 RF samples are collected for each scene under
each frequency band, of which 80% of the samples are used for
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reconstructing RFCanvas and the baselines scene. The CDFs for
each room are shown in Fig. 8. The median errors of RFCanvas
and baselines across different frequency bands are shown in Fig. 13.
RFCanvas outperforms all baselines in all scenarios and frequency
bands, with an overall median error of 2.2 dB. The results confirm
that RFCanvas is capable of modeling indoor RF channels accurately
using few-shot measurements and visual priors.

5.1.2  Impact of RF Samples Density. We evaluate RFCanvas and
baselines in optimization performance with respect to RF sampling
density. The results are shown in Fig. 11. Ray tracing precisely pre-
dicts the channel structure; however, it only achieves a 13 dB error
without real RF measurements and converges to 7 dB when refining
solely the surface material, due to its inability to optimize internal
and complex propagation effects. The neural methods reached a 3.5
dB error in overall numerical accuracy; however, they struggle to
capture the channel structure adequately because they do not repre-
sent and define the boundaries of objects. We further augment the
training data for neural methods with RFCanvas simulated results.
However, they remain unable to capture the scene structure even
at high sampling density. Surprisingly, linear interpolation demon-
strates better structural characterization of the scene compared to
neural methods, achieving median errors of 3.75 dB. This is because
most of the propagation simply follows the FSPL, which is linear
in logarithmic space. We found linear interpolation fails in regions
heavily affected by occlusion, multipath, or a lack of sufficient train-
ing samples. In comparison, RFCanvas can characterize the scene
with extremely sparse samples (i.e., 0.05 sp/ft?) and achieves high
numerical accuracy with a 1.92 dB median error due to the initial-
ization from visual priors while maintaining superior structural
prediction due to the clear definitions of object boundaries.

Surveillance Camera Panoramic Camera

Figure 10: The camera setup for obtaining visual priors.

5.1.3 Impact of Scene Dynamics. We evaluate RFCanvas’s perfor-
mance in adapting to scene dynamics. RFCanvas is initialized on
the original scene and subsequently tested in three scenarios, each
incorporating varying degrees of transition, rotation, deformation,
addition, and deletion. The extent of dynamic changes increases
across the three cases as shown in Fig. 12. The results are shown in
Fig. 14. RFCanvas accurately predicted scenes (D1) and (D2) with a
median error of 2.2 and 2.2 dB, respectively, compared to the base-
line (without motion vector) error of 3.5 dB. In scene (D3), which
exhibits the most significant scene changes, RFCanvas achieves a
median error of 3.2 dB while the baseline demonstrates a 5.7 dB
median error. We further refine RFCanvas using five additional real-
world measurements around the changed object. The refinement
reduces the error to a mere 1.9 dB.
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5.2 Generalization Across Different Visual
Priors

5.2.1 Impact of Camera Coverage and NLOS Scenarios. We evaluate
RFCanvas’s performance across varying levels of camera coverage,
including scenarios with NLOS conditions due to occlusions. The
setup, as shown in Fig. 10, consists of two cameras with 100-degree
fields of view (FOV) and one panoramic camera at the room’s cen-
ter. The calculated camera coverage for a single corner camera,
two cameras, and the panoramic camera are approximately 30%,
60%, and 90% of the total area, respectively. We also include a sce-
nario with 0% scene coverage (i.e., no cameras) for comparison. The
results are presented in Fig. 15. RFCanvas demonstrates robust per-
formance even in NLOS scenarios, achieving a median error of 3.2
dB. In regions with camera coverage, the visual priors significantly
enhance optimization and convergence. In occluded regions, RF-
Canvas requires additional samples and processing time to reduce
uncertainty; however, it ultimately achieves satisfactory results
with a median error of 2.0 dB.

5.2.2  Visual Prior Sensitivity Analysis. While SOTA computer vi-
sion techniques can effectively extract visual information, the pre-
cision of object localization and boundary detection may be subject
to errors. To evaluate the robustness and sensitivity of RFCanvas in
the presence of visual prior inaccuracies, our experiment involved
systematically introducing random offsets to object boundaries
within the hallway scene. As shown in Fig. 16, RFCanvas demon-
strates resilience to moderate levels of visual prior errors, maintain-
ing satisfactory performance with a median error of 2.1 to 3.5 dB
when the geometric discrepancies remain below 10 cm. Notably,
the system’s utilization of the real RF measurements facilitates
automatic geometrical error calibration.

5.3 System Consumption

RFCanvas employs vector-matrix multiplication with a computa-
tional complexity of O(N?), where N is the tensorial fields’ resolu-
tion. This method reduces space complexity from O(N?3) to O(N?).
Neural-based methods using MLPs have a comparable computa-
tional complexity of O(D x W?), with D as the number of layers
and W as the layer dimension. Conventional ray tracing has a com-
putational complexity of O(U x V?), optimized to O(U x V log V)
with accelerated structures, where V is the number of scene tri-
angles and U is the number of rays. Notably, V. > U > N = W.
In practice, RFCanvas is highly efficient, predicting RF channels
in sub-millisecond time and supporting parallelization. Unlike ray
tracing, its performance is independent of scene complexity. The
simplicity of the vector-matrix operations allows deployment on
edge devices without GPU acceleration, making RFCanvas an effi-
cient solution for RF channel prediction across various computing
environments.

RFCanvas’s scene representation exhibits remarkable efficiency
in training. Training a room-sized scene is accomplished in approxi-
mately five minutes using a single RTX A6000 GPU. When adapting
to scene dynamics, operations such as translation, rotation, and
deletion are performed instantaneously. However, for additions and
significant scene alterations, such as furniture rearrangements, the
process necessitates initiating multipath tracing, which requires
approximately 5 seconds.
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Figure 11: RF channel estimation performance under varying sampling densities. RFCanvas outperforms neural-based
methods and ray tracing in both structural and numerical accuracy, especially with sparse samples.

6 CASE STUDY: METASURFACE
REDEPLOYMENT

Metasurfaces (MS) have emerged as promising techniques to manip-
ulate RF channels and coverage with fine granularity [7, 21, 27, 36].
Passive metasurfaces are typically optimized through simulations
of static environments and fabricated via 3D printing, hot stamp-
ing, etc. Consequently, they are unable to adapt to scene changes
such as furniture rearrangement. Although fabrication costs of new
metasurfaces are trending downward, adapting to scene changes
inevitably incurs additional expenses.

RFCanvas enables the redeployment of existing metasurfaces to
new locations, facilitating adaptation to dynamic scenes without
the need for new metasurfaces. We demonstrate this through a
case study in which we enable RFCanvas to support metasurface
(MS) optimization. This is achieved by representing the MS as a
thin quad using SDF with an assigned phase texture. When a ray
hits and reflects off the MS, its phase is shifted according to the
texture’s phase profile, while penetrations are discarded for the
MS. We set the experiment in a typical indoor environment as
illustrated in Fig. 17. The 60 GHz WiGig router is positioned at
the end of the hallway, and the user’s receiver is placed on the
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table. The direct path between the transmitter and the receiver
is blocked by the wall. We initially optimize the MS in the scene
using conventional methods [27] and fabricate an MS using 3D
printing [36]. Then we alter the scene by introducing new obstacles.
When a new object is introduced, obstructing the path between
the target region and the metasurface, the RSSI decreases by 7 dB.
We optimize the new deployment location and orientation of the
metasurface by extending existing optimization methods [27] with
RFCanvas simulation while maintaining the original metasurface
pattern. The optimized new deployment location and rotation yield
a 5 dB signal gain.

7 DISCUSSION AND FUTURE WORKS

Real-time channel modeling. RFCanvas is highly efficient for
inference and training, taking under one millisecond for RF channel
inference and about 20 ms per training iteration. The current imple-
mentation achieves a 5 Hz update rate for dynamic scenes, with the
main bottleneck being the camera-based depth and motion vector
estimation. As a framework for RF simulation, RFCanvas is poised
to achieve real-time RF scene adaptation with advancements in
computer vision, broadening its applicability to various real-world
scenarios.
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Figure 12: Motion Vectors and Scene Dynamics Adaptations
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Figure 17: Experiment setup for metasurface redeployment
case study.

Complex tasks and dynamic transmitters. Beyond RSSI pre-
diction, RFCanvas supports various complex tasks such as CSI
prediction, RFID spectrum prediction, and dynamic transmitters.
Following existing methods, high-dimensional inputs and outputs,
such as Tx location, CSI subcarriers, and angle spectrum, are man-
aged by combining them with additional MLPs. RFCanvas demon-
strated performance comparable to NeRF? (24 dB SNR for CSI and
0.8 SSIM for RF spectrum prediction) on its public dataset.
Outdoor environment. RFCanvas can be applied to large outdoor
environments, where visual priors can be obtained from widely
available street view or satellite images. In these environments,
objects such as buildings and terrains are often sparsely distributed
across vast areas. As a result, tensorial fields can be optimized using
hierarchical acceleration structures like octrees [9] or by partition-
ing the space into chunks for improved efficiency. Furthermore,
RFCanvas can be integrated with existing neural methods to im-
plicitly characterize objects with highly complex shapes, such as
vegetation, which are commonly found in outdoor settings.
Visual and RF disparities. RFCanvas is evaluated on common
indoor materials such as concrete, wood, plastic, and metal and
under the assumption that the visual and RF properties are coherent.
It may suffer incorrect initialization when encountering visually
disrupting material such as glass (transparent) and highly specular
reflection such as mirror and unseen material from the material
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library. A potential solution is to incorporate a more advanced
graphical 3D estimation model for initialization [54] and increase
the weight on material optimized from RF signal rather than solely
relying on visual material identification [30].

Beyond novel view synthesis for RF. Recent advancements, such
as 3DGS [18], can also be used to achieve similar tasks as RFCanvas,
such as creating a visual 3DGS from cameras and then optimizing
additional spherical harmonics coefficients for RF. However, we
believe it is important to go beyond simply adopting Novel View
Synthesis methods from computer graphics, where scene represen-
tations are specifically designed for only generating new sensor
views. We believe that to build a true digital twin for RF, the scene
geometries and materials must be explicitly defined and physically
grounded, rather than relying solely on neural and probabilistic
models. RFCanvas represents a step toward explicit scene represen-
tations for next-generation RF digital twin simulation.

8 CONCLUSION

We have presented RFCanvas, a novel system for generating neural-
free and explicit RF representations, ensuring accurate and flexible
RF simulations. RFCanvas surpasses conventional ray tracing and
neural scene models by utilizing visual priors and refining with
few-shot RF samples. Featuring RFCanvas Scene based on tenso-
rial fields, it offers editability and precision in modeling complex
geometries and materials. Its adaptability to scene dynamics via
motion vectors and its end-to-end optimization framework with
differentiable simulation provide notable advantages. We envision
RFCanvas as a powerful tool for wireless applications like network
planning and 3D reconstruction, with further exploration left for
future work.
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