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Abstract

Group synchronization plays a crucial role in global
pipelines for Structure from Motion (SfM). Its formulation is
noncorvex and it is faced with highly corrupted measirements.
Cycle consistency has been effective in addressing these chal-
lenges. However, computationally efficient solutions are needed
for cycles longer than three, especially in practical scenarios
where 3-cycles are unavailable. To overcome this computational
batileneck, we propose an algorithm for group synchronizarion
that leverages information from cycles of lengths ranging from
three to six with a time complexity of order O(n?) (or O(n®3™)
when using a faster marrix mudfiplicarion algorithm). We estab-
lish non-trivial theory for this and related methods thar achieves
competitive sample complexiry, assuming the uniform corrup-
tion model. To advocate the practical need for our method, we
consider distributed group synchronization, which requires at
least 4-cycles, and we illustrare state-af-the-art performance by
owr method in this context.

1. Introduction

Structure from Motion (SfM) asks to recover the 3D structure
of a stationary scene from multiple images taken by cameras
from different orientations and locations. In the past decade, the
global SfM pipeline has become increasingly popular due to its
several advantages over the incremental pipelines [17, 31]. First
of all, global SfM requires only one implementation of bundle
adjustment, making it more efficient in computation. Second,
it estimates camera poses in a global optimization framework
which mitigates the drifting issue of the incremental pipelines.
Despite the popularity of global 5fM pipelines, the estimation
of global camera poses (e.g., orientations) remains a highly chal-
lenging problem. For instance, estimating camera orientations
from their relative measurements, ofien called rotation synchro-
nization, is a highly nonconvex graph optimization problem.
In typical scenarios of highly noisy or corrupted measurements
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of relative orientations, many common solutions of rotation
synchronization have poor accuracy and slow comvergence.

Given these challenges, theoretical developments have
demonstrated the critical role of cycle-consistency information
in inferring cormupted measurements [25]. In practice, the
consistiency constraint on 3-cycles was utilized to estimate
the error of each measured relative orientation. It also helped
nonconvex iterative rotation synchronization solvers avoid
spurious local minima and achieve significantly higher accuracy
[39]. However, the usage of 3-cycles largely limits the
application of these improved algorithms to other important
scenarios. One scenario involves a sparse viewing graph lacking
sufficient 3-cycles. This ofien occurs when the size of the praph
is too large to densely measure the relative orientations on its
edpes, which could happen in certain case for the molecular
orientation estimation in cryo-electron microscopy imaging.
Another scenario is orientation estimation for each piece of
jigsaw purzles, where the graph is a 2D lattice and 3-cycle
does not exist. Lastly, in distributed 5fM, edges between any
two clusters of nodes form a bipartite graph, and cycles of odd
length do not exist. Our numerical results primarity emphasize
the practical scenario of distributed S5fM, which holds particular
relevance for the broader computer vision community.

Despite the multiple critical applications of long-cycle
consistency, inferring measurement noise from long cycles is
challenging in both computation and theory. First of all, the
number of cycles grows exponentially with the cycle length, and
measuring cycle inconsistencies for each long cycle is computa-
tionally iniractable. Moreover, developing theoretical puaraniees
for long-cycle inference methods is fundamentally more difficult
than the 3-cycle case. Indeed, in a random graph setting, a set of
longer cycles are more likely to share common edges, making
their consistency score highly correlated. Therefore, new tools
are required to handle the comelated empirical process.

In this work, we propose the first practical method,
LongSync, for inferring edge corruption levels from long
cycle consistency information. For this purpose, we carefully
modify and vectorize the Cycle Edpe Message Passing (CEMP)
method [25]. This nonirivial modification drastically reduces its
computational complexity when using longer cycles. Momrover,
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by employing a more delicate analysis and incorporating new
tools from probability theory and combinatorics, we develop
a significantly stronger exact recovery result with a general
cycle length under a popular probabilistic model. The sample
complexity in our theory is the lowest among all practical
rotation synchronization methods. Although we limit our
scope to the application of distributed SfM, our algorithm and
theory applies to any finiie-dimensional linear group in group
synchronization, and not just SO 3) in rotation synchronization.

1.1. Related Work

Earlier rotation synchronization methods [2, 10~
13, 18, 33, 42, 43] seek to minimize a least squares
energy function. They can be described as relaxed versions of
the maximum likelihood estimator under the additive Gaussian
noise model, but they are not robust in the presence of outliers
or heavy-tailed noise. Nevertheless, in the case of global
SiM, the initially estimated relative camera rotations can be
severely corrupled due to the erroneous keypoint matches and
the subsequent poor estimation of fundamental matrices.

To handle outliers, robust rotation synchronization methods
either minimize a robust energy function or reweigh/trim the
viewing graph based on the corruption levels of the edges.
Wang and Singer [9] minimizes a corresponding £ objective
function using semidefinite programming (SDP) relaxation,
which is slow in practice. Other energy minimization methods
are typically nonconvex, which include the Weiszfeld algorithm
[20] and the Riemannian subgradient method [29] for £
minimization, and the iteratively reweighted least squares
(IRLS) for minimizing general £, [5] and Geman-McClure [4]
loss functions. However, all these methods heavily rety on good
initialization. Sidhartha and Govindu [41] partially remedy the
issue using adaptive Geman-McClure loss functions, but their
approach remains sensitive to the initialized weights. Maunu
and Lerman [3(] propose to solve rotation synchronization
by an iterative robust averaging method that utilizes Tukey
depth, but they have not demonsirated effective performance
for real SfM applications. Arrigoni et al. [1] applies a low-rank
and sparse matrix decomposition method to SO(3) and SE(3)
synchronization, but it is even less robust to outliers than IRLS.

Insiead of employing a robust objective function, Shen
et al. [36] and Zach et al. [51] uses the 3-cycle consistency
constraint to detect and remove corrupted relative orientations.
Lerman and Shi [25] take one step further to estimate the
corruption level of each relative measurement by a novel
cycle-edge messape passing (CEMP) algorithm. They then
use the estimated corruption levels to reweigh the graph and
solve rotation synchronization using a weighted least squares
method. This message passing procedure was further combined
with IRLS to boost its accuracy in [39]. Particular versions
and extensions of this procedure for permutation and partial
permutation synchronization, which are relevant to the matching
component of SfM, were discussed in [27, 40].

However, all the previously mentioned cycle-based methods
[25, 27, 36, 3840, 51] only use 3-cycles in practice, limiting
their application for distributed synchronization. Indeed, the
standard distributed synchronization often requires “stitching”™
local solutions by synchronizing the relative rotations between
clusters. Each of these inter-cluster rotations is estimated by
“averaging” the edges between the two clusters. These edges
form a bipartite graph, and the minimal cycle length is 4.
As pointed in [51], the number of operations for computing
long cycle consistency information scales exponentially with
the cycle length. Therefore, none of the existing distributed
rotation synchronization methods directly exploits long cycle
information due to this computational challenge.

The earlier distributed methods for SO/(d) synchronization,
such as [45] and [44], minimize a least squares energy and
are not robust to outliers. A seres of distributed SfM methods
[14-16] implement incremental SfM algorithms for each
cluster. However, these methods do not employ a standard
rotation synchronization algorithm, as they require additional
information such as the number of keypoint matches between
images. Moreover, the incremental methods are slower since
they require multiple rounds of global rotation synchronization.
MultiSync [9] synchronizes the inter-cluster rotations directly
using all inter-cluster edges among all clusters, by formulating
a novel synchronization problem on a multi-graph. Although
it utilizes a more unified formulation, its objective function is
least squares which largely limits its robusiness to outliers.

A recent and different type of methods for rotation
synchronization use deep leaming [21, 26, 34]. However, these
methods are supervised and thus may not generalize well
when switching datasets. Moreover, like many other previous
methods, they lack theoretical guarantees.

A common theoretical setting to assess the performance of
rotation synchronization algorithms is the uniform corruption
model (UCM) described in §4. We provide the best sample
complexity for LongSync, even with only 3 cycles, among all
previously established estimates for the UCM model.

1.2. Contributions of This Work

* We propose the first practical algorithm that infers edge
cormuption levels from long cycle consistency information.
The computation complexity of our method is reduced from
O(n®) to O(n*) (or possibly O(n™*™)) for cycle length
c<6and O(nl+3/2) for c> 6.

* We establish sample complexity estimates for our method
under the uniform corruption model, where we get closer to
the information theoretic bound than any other existing work.
Our proof requires delicate analysis and it also improves
previous estimates for the CEMP algorithm.

* We infroduce a new graph partition and graph preprocessing
method that utilizes our inference method, and demonstrate
the effectiveness of our pipeline in boosting the performance
of distributed synchronization.
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+ Exiensive numerical experiments demonstrate the outstanding
performance of our method.

2. Problem Formulation and Preliminaries

Assume a graph G = ([n], E) where [n] is the set of nodes
indexed by {1,2,- n} and E is the st of edges. Given
a mathematical group &, each graph node is assigned an
underlying ground tuth group element B, where Bf = G
and we use star superscript to emphasize the ground truth.
For each edge ij = E, we observe a melative group ratio
Ry € G, whose clean counierpart is Ry, = R:R“_‘.,‘_l. Group
synchronization aims to recover the pround truth group
elements { R} }ycp) from the possibly noisy and corrupied
measurements { Hy; }iyci. In this paper, we focus on the case
of rotation synchronization, which is a special case of group
synchronization with G =S50id). For applications in camera
orientation synchronization (d = 3), we estimate absolute
rotations for each node 1 € [n] from measured relative rotations
of edges in E. Note that since {R;}icqn) and {R Ro}cjo
generate the same set of relative rotations, one can only estimate
{1 hijn) up to a global rotation. The generalization to any
linear groups is discussed in the supplementary material.

2.1. Notations and Definitions

We denote the adjacency matrix of graph & as A, and form a
pairwise observation matrix R € R%*9" by stacking the Ry;'s
(for ij ¢ E, set Ry =032k

Ry Ry -~ Ry
Ry Ry - R

Rni Rpa -~ Rpn

We list the malrix operations used in the paper. For matrices
X and Y, the operations X @Y , X @Y, X @Y respectively
denotes the Kronecker product, Hardmard (element-wise)
multiplication and Harmard division between X and ¥. X ©¥
denotes the element-wise matrix k-power. For block matrices,
{X ¥ tiock denotes the blockwise inner product of X and ¥,
ie. (XY Joiock(i,7) = (X [‘i.j],Y[‘i.j]}, where [i'.j] refers to the
comesponding block of the matrix.

2.2. Review of CEMP for -Cycles

We assume the above setting of SO(d) synchronization. Let
T be any bi-invariant metric on SO{d). We assume a fixed
number of cycles, ¢, and denote by N{; the set of simple cycles
of length ¢ (or simple c-cycles) containing edge 5. CEMP [25]
aims to estimate for each edge 7 the corruption level

5:j=ﬂfﬂdj:-ﬁ:j:|: (1)
from the set of cycle inconsistency measures
d, =D(Ry, .Ry) (2)

where C}"Ch L = (ﬂil'. klkﬂ'. Ty kc—ﬂj:. ji'} € Nf‘i and
RL = .Rﬂ_.] R’k]kz - Rk.:-'!j" The estimated Si*j can then
be used for extracting a clean subgraph, or to implement a
weighted least squares solver where higher weights are assipned
to cleaner edges.

It is obvious that if all the edges in L are clean then dy, =0.
Moreover, due to bi-invariance of T, the following holds true

dy, = si; whenever L e Gy, 3

where G, is the set of good c—cycles with respect to ij, Le. the
set of cycles L Ny such that ik - k.27 are clean. This
gives a sufficient condition for dy. to be an exact estimator of s3,.

To estimate the corruption levels of each edge ij, CEMP
initializes the edge weight of each ij € F as w, — 1. It then
iteratively updates the corruption level estimate as the following
comvex, combination of d s

sy = 3 widy/z) @)
LENE

where zf;) =3 LeN= wf}. The cycle weights w£¢+1) are
=7
computed from the edge weights wl ™" —¢—Fes”:

— A7 gled
wf— I w®V= [ ™,  ©®
ecL\ {17} ec Ly {1}

s0 that wf-_f“"' focuses on good cycles. The cycle weights and
edge corruption levels are allernatingly updaied and improved
from each other. Interestingly, it is proved in [25] under two
different corruption models that CEMP converges linearly to
the ground truth cormuption estimates under mild conditions for
c=23. In practice, CEMP only uses 3-cycles for consideration of
efficiency. For longer cycles, the complexity of CEMP scales ex-
ponentially with the cycle length « (which is discussed in §3.2),
and the convergence guarantee of CEMP remains unknown.

3. Our method: LongSync
3.1. LongSync: Modification of CEMP

Our goal is to develop a scalable variant of CEMP for any fixed
number of cycles, ¢ > 3. The main computational bottleneck
of step (4) in CEMP is that computing and summing the cycle
inconsistency measures takes } |, | V| =O(n") operations
and memory. Therefore, to develop a scalable algorithm,
we aim to take weighied average over dj, without explicitly
computing and storing each d;,. To achieve this, we propose
the following specification and modification on CEMP:

* Use Chordal distance on 50(d). We suggest the distance

function

D(R15R2}= W 1_{R15R'2:'fl‘i
This distance is proportional to the Chordal distance on
S0(3), which is the Euclidean distance between two
rotations embedded in R%*.
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+ Use weighted quadratic average for corruption level
update. Instead of updating the corruption level estimates
by aweighted average of d;,, we use the weighted quadratic
average of dy,, namely

1
sg = | D wi'dt [z (6)

LENE;
where the update rule of cycle weights remains the same:

c+1) H w[:,+1}_ H g Besld )
el {17} ecLy{1g}
As a result, di =d2|[RL..Rq} =1— (R Ry;)/d is linear
in both Ry and R,;. Therefore one can switch the order of
d* and the weighted summation, so that the computation of

s;) can be vectorized. Indaad, by this linearity and equations
(4) and (2), and nofe that z{;' = 3", . v w}’, we obtain the
i

following equation:
Sis) ( Z wf" d‘i ;'zf‘)) 1/2
! LENF. !
~( 3wl DRy Ry 20)
LEN
— ( ( Z wL}RL:H-!j)fZ(c})
LEN;
_ (1—< 3 wj.j?'RL,R,j)zd 3 w}?)w (8)
LeNE; LeNg

Equation (8) can be vectorized using the trick of matrix
power if we allow repeated nodes for each cycle. That is, one
can stack the s{’s and w]; s into matrices S and W (®), and
vectorize (8) as

S{‘}=(A—<(W{‘3'®1d@-ﬂ) !

)@1;2

"R> block

@d(W #)==1 (9)

Indeed, by (7) and the definition of Ry, Y1 ccc wl Ry,
is the ij-th block of (W® @1, R)*!, and Y recs wi is
the ij-th element of W (©=~! where C, is the set of IH:}'(.‘]E:S
containing ij with possibly repeated nodes.

In the case of ufilizing only simple cycles, (£) and (%)
are not equivalent and we need to correct (%) to remove the
cycles with repeated nodes, so that only simple cycles in
Ni; remain. Let g.(W, R) be the matrix va]ued function
where ."-?:':W R} i 3} ELEI‘F (HEEL"-.{ij} '“-'E }RL
f-(W) be the matrix valued function where F (W, 3}
ELenrc (HeEL\“{i_j‘}w-E ). The following result holds:

Proposition 3.1. The update rule of LongSync (8) is equivalent
to the following matrix equations:

S'[‘}=(A—<hc{W{‘),R}1R>m@A) 2 o)

where W+ = A @exp(—5,8™) and
he(W' R):=g.(W" R)o(d- fo(W")@1a).
Here exp denotes the elementwise exponential function.

We use eqguation (10) as the update rule of LongSync and
propose the vectorized LongSync algorithm in algorithm 1.

Algorithm 1 (LongSync)

Input: pairwise rotation matrix R < R *9" adjacency matrix
A€ [Dal]ﬂxnr cycle length c, positive parameters {5; }e>1,
time step T'

WO (i) A
for t=0:T do

o (A—<hc(W(‘},Rj,R)hm@A)@m (11)

W A@exp(—58™) (12)

end for
Output: edge weights W'T+! comuption levels ST

We claim that g. and f. can be computed with a sequence
of mairix operations, thus greatly reducing the time and space
consumption of LongSync compared to its original form. For
c=6, the time complexity of computing g. and fe. is O(r(dn)),
where rin) is the complexity for multiplying two n % n
matrices; for ¢ 7 the time complexity is at most O(nl(=+31/2]),
This claim is proved in the supplementary material. We list the
formula for g, and f. for c=3,4,5.6 inspired by [35, 46]. The
formula for c=6 is moved to the supplementary material due
to the space limit. For ¢ > 7 the formula becomes exiremely
complicated. We remark that in practice, the cycles of length
greater than 6 are ofien not used.

We finally remark that although Algorithm 1 only utilizes
cycles of a fixed length, one can easily gereralize it to
incorporate cycles of different lengths. Indeed, the equation
(10} could use a convex combination of h,.'s that cormesponds
to different values of . That is, for a preselected set of cycle

lengths ), the equation (11) in Algorithm 1 is replaced by

@172
sm=(a—<ZAchc{W*“,R}..R> @A) (13)
bilock

el

where the coefficients A, satisfies 3} - A. =1 to ensure a
comvex combination. Here each A is user-specified to reflect

the importance of the cycles of length «. However, the optimal
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choice of these parameiers under certain statistical model
remains unclear.

For simplicity, in the experiments we only use a fixed cycle
length to avoid choosing A.. We have observed that such simple
choice still yields satisfying accuracy in camera orientation
estimation on both synthetic and real data. We refer the readers
to §5 and 6 for more details.

¢ Formulaof f.(W)  Formula of 5.(W 1)

3 W2 P?

i W dWoOw P —dppock (P°)P
~WdAW?2)+ W3 _ Pdya(P?)+ P®3

5 Wi dWoOW P —dpyoci (P°)P
—dWHw? — bk (P?) P2
~W23(W?) — P (P?)
~-WdWHW —Pdyok(PY) P
+IW O 2 +3pe?p?
tWWEELWEW L ppRiy padp

Table 1. Formulas for f, and g.. Here we let P={Wal,)o R for
shorter notation. d{X) retums the diagonal of matrix X, dy.q (X))
returns the diagonal block matrix from the d » d diagonal blocks of
matrix X

3.2, Computational Complexity

We derive the space and time complexity for LongSync, and
demonsirate its advantages over CEMP. The initialization step
involves setting the weights of all edges to 1, which takes
time O(|E|) and space ((n?). For each iteration, LongSync
updates the matrices S and W' with equations (11)
and (12), respectively. Computing W+ involves two
matrix subiractions, one scalar-mairix multiplication and one
element-wise matrix exponential operation on S ¢ R™*™,
Therefore the update step (12) takes at most O(n?) time and
space. Equation (11), on the other hand, involves a sequence
of matrix operations on P*) = (W ®) @14) @ R R¥™* " and
W e R™*"_including matrix multiplications, element-wise
multiplications and diagonal block selections. Computing
PV takes O(d*n?) memory and O(d’n?) time. The matrix
operations on P! take O(K.d°n?) time and O(d"n?) space,
and the matrix operations on W* take O(Kn®) time and
)(n?) space, where K. is the number of terms in the equation
for f. and g.. Therefore, each ileration over ¢ takes O(K .d°n®)
time and ((d*n”) space. To sum up, for LongSync, the
time complexity is O(K.d°n) and the space complexity is
O(d*n?). For c=3,4,5.6, the number K. is equal to 1,3,9,32.
In comparison, we consider the initialization step of CEMP.
For each edge ij € E and L € N, initializing CEMP involves
computing and storing all the cycle inconsistency measures dj,
using equation (2). For each L € Ny, computing dj, involves
multiplying e rotations, which takes O(cd®) time and O(d”)
space. This step is repeated for each ij € E and L € Ny,
therefore the total time complexity is D(c:dgzqeﬂNﬁ,” and

the total space complexity is O{dﬂzﬂeﬂN;}D. Since for each
edge there are (n—2)(n—3)--(n—c+1)=0(n""?) cycle can-
didates, we know that |V | ~0(n®?) for each ij € E in the
worst case scenario of a dense graph. Therefore the initialization
of CEMP takes O(cd®*n®~2| E|) time and O(d*n"?|E|) space
in the worst case. Given ¢ > 4 and |E| ~n?, CEMP requires
much more time and space than LongSync.

4. Theory for Uniform Corruption Model

In this section, we present the exact recovery guarantee of
LongSync under the uniform cormuption model (UCM). UCM is
a popular probabilistic model that is widely adopied for synthetic
experiments of many previous works on group synchronization
[8, 25,28, 29, 32, 42]. The model UCM(n.p.q,) assumes that &
is an Erdds-Rényi graph with edge connection probability p. For
each edge ij € E, Ry; is generated independently as follows:

_ By W.p. qg;
H {wauw{g;. wp. 1-g,.

We also developed an exact recovery theory for a peneral
model of adversarial cormuption, which we include in section
C.1 of the supplementary material. An informal version of our
main result for UCM is staied in Theorem 4. 1. Although the
application of this paper is focused on rotation synchronization,
the following theory for UCM is valid for any compact group
&, as explained in the supplementary material.

Theorem 4.1. Let 0<r<1 Ozg<l O0sp<], G=50(3).
Assume LongSync is applied with cycles of length ¢, n/logn ~
P—(c—n;[c—z—equT{ﬂ—iflf'E{ﬂ—T.l for some e >0 and

1/Beyr =/ forall = 1.

Then with appropriate choices of fo. 51, and high probability,
maxyer|sy;—siy | < 5 forall t>1.

The major difficulty of proving Theorem 4.1 is the depen-
dence in the cycle inconsistency measures for cycles in N
when ¢ > 4. Unlike the 3-cycle case, the cycle inconsistency
measure of a 4-cycle Ly = (iky, ki ko, ka7) is comelated with
that of La = (iky,k1ks, ka7) under UCM. Therefore the key
concentration inequalities for the proof cannot be concluded
from the standard Chemoff bounds. To overcome this
theoretical obstacle, we have integrated various mathematical
techniques from [3, 7, 22-24, 48] to prove the theorem, whose
details are included in the supplementary material.

Theorem 4.1 provides an upper bound of the sample
complexity (the required graph size n) of LongSync for exact
recovery of the ground truth solutions. This sample complexity
is the closest to the information theoretic bound among all
existing rotation synchronization methods. The comparison
with previous works is summarized in Table 2.
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Reference Sample Complexity
[25] for CEMP Olp~2g3 1)
[29] for ReSync Olp g7 ")
Ours for CEMP O(p~25q, V%)

Ours for LongSync (c=3) O(p~25g, V%)

Owrs for LongSync (c=4) O(p ™ ¢, >%)
-_— Tie—T
Ours for LongSync (any c) o(p—,—:ai—nqg stc_z,)
Ours for LongSync (c— oa) Op—'—* q;'n‘z}
Tnformation Theoretic Bound [6] 04,

Table 2. Comparison of the sample complexity requirement. Lower
ahsolute values of the powers on p,q, indicate better results. € is an

arbitrarily small positive real number.

5. Synthetic Data Experiment

We test LongSync on synthefic datasets pgenerated with
Uniform Corruption Model (UCM) and Uniform Bipartite
Corruption Model (UBCM) respectively described in §5.1 and
5.2. For both models with their cormesponding viewing graphs
G = ([n], £), we sample the ground truth absolute rotation
matrices {R}}ie[n) independently from the Haar measure
on S50(3), and we generate the observed relative rotations
{Ryy}eger: independently as follows:

Ri-j _ 'E_Z:R; WP ggi
Ry~Haar(SO@) wp 1-g5.

We use LongSync with cycle length ¢, 5; =min(2*,20) and
T =10 and record the edge weights. For UCM we set c=45
and for UBCM we only use =4 since no 5-cycles exist. For our
method, we first build a weighted graph whose edge weights are
estimated by LongSync. We then exiract a maximum spanning
tree (MST) of the resulting weighted graph. The resulting span-
ning tree is expected to be the cleanest possible spanning ree.
To initialize our solution of absolute rotations, we first fix 1 as
the identity rotation, and find the rest of R,'s by consecutively
multiplying the relative rotations along the spanning free using
the formula R, = R,; R;. To refine our initialized solution, we
apply IRLS with Geman-McClure [4] loss functions to mini-
mize E{jeEPGM{dA(Hﬁ:RtR}"}}: where d . is the geodesic
distance in SO(3). We refer to this method as LongSync+IRLS.

To demonstrate the advantages of utilizing longer cycle
information, we compare our method with IRLS initialized by
other two different spanning trees. The first one is the random
spanning tree, which uses no cycle information. The other one
the MST extracted from the CEMP-estimated weights. Note
that CEMP only uses 3-cycle information. We refer to these
methods as IRLS and CEMP+IRLS respectively.

Since the solution of absolute rotations is determined up to
a global rotation, we align our estimated rotation {JAZ;} with
{ R} by Rajg, that minimizes the £ rotation alignment error

150 LongEynca + FLS
LongEymes + IRL3
CEMF » IRLS

D.B8 D.28 0.8 0.8z
q

150 Lu:ml:d-;IH.LE I
- -CEMF + IRLE
E ] wLa
100 0
&
5 B
= )

D

D& 081 D82 083 D84 0BS5S
q

Figure 1. Average ermors for IRLS, CEMP+IRLS and LongSync
+IRLS with £=4, 5, using the uniform comuption (top) and uniform
bipartite comuption (bottom) models. The mean ermrors are measured
in degmees. LongSyned and LongSyncS refer to LongSyne with 4 and
5 cycles, mspectively.

Y e | e Rasign— Ry | . We report the mean estimation error
in degrees: 180-3, ...z (R Rasgn, ) /.

5.1. Uniform Corruption Model

For UCMin.p,q,), we take n =200 and p=1 and corruption
probability g=1—g, ranges from 0.86 to 0.92. We report the
average mean estimation error from 20 trials of the uniform
corruption model in the top panel of Figure 1.

We note that LongSync uniformly improves IRLS, and the
mean error of LongSync decreases as the cycle length increases.
When g == (.26, the expected number of clean 3-cycles for each
edpe is less than 4, and therefore longer cycles are helpful. The
numerical result aligns with our theory that using longer cycles
may tolerate higher corruption with fixed graph size n.

5.2. Uniform Bipartite Corruption Model

For UBCM, we first penerate the graph and relative rotations by
UCMin,p.qg) with n =200, p=1 and g=1—g, ranging from
0.8 to 0.85. Then we split the nodes into two clusters of equal
size and remove the intra-cluster edges for both clusters. The
resulting graph is bipartite, where only cycles of even lengths
exist. We report the mean estimation error from 20 trials in the
bottom panel of Figure 1.

We observe that LongSync with 4-cycles almost exactly
recovers the rotations, while for other algorithms the rotation
estimates are not even close to the ground truth.
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6. Real Data Experiment

We test distributed synchronization with LongSync on the Pho-
toTourism dataset [ 5] to demonstrate its advantages in accuracy
and speed over other baselines. PhotoTourism is a larpe scale
dataset consisting of 15 sets of imapes taken for 3D recon-
struction. The smallest dataset consists of 247 cameras, and the
larpest dataset consists of 5433 cameras. The input graph and ini-
tial pairwise rotation estimates are provided in the dataset. In the
following, we first explain the common steps for distributed syn-
chronization, and our improvement using LongSync. We then
describe our graph processing method for filtering bad nodes
and edges, which also is applicable to other baseline methods.
Steps in Distributed Synchronization:

1. Graph partitioning. The first step involves partifioning
the graph G =([n].E) into K clusters G, = (V;,E,).i€ [K].
In this paper we apply spectral clustering algorithm [37]
on the adjacency matrix &, where K = 0.6,/np and
p=2|E|/(n(n—1)).

2. Synchronization within clusters. Run standard synchro-
nization solvers for each cluster In this work, we use the
current state-of-the-art method MPLS [39]. Note that for
each camera p in cluster k&, one can only estimate the rue
rotation H up to a global rotation K. Namely, one only
obtains 7 ~ R}R, " where Ry is unknown and is the
same for all cameras in cluster k.

3. Estimation of inter-cluster rotations. To find R, of all
cameras, one needs to solve R, for all clusters. Namely, one
needs to rotate and stitch the solutions of all clusters so that
they are in the same reference frame. To do this, it is common
to first estimate the inter-clsuter rotations Ry :— Ry R,
between pairs of clusters k.l, and then synchronize these
relative rotations. To estimate each ., we note that By, =
R; ' R;, R, foreach pe Vi, and g € V. Therefore, one can
use the rotations in the set Sg; = {R;lquRq }PEVL.QEVI
to approximate JF;;. We remark that this step is crucial to the
overall performance of distributed methods, and we compare
the following methods for solving Ry,

* MultSync [9]: Run synchronization on a multi-graph
where each edge k! is assigned a set of relative rotations
{R;' RpyRq}pev, qev;. This combines the step 3 and
4 in a unified least squares formulation.

+ Edge averaging using IRLS: We initialize 12, with the
quaternion £s mean of the set Sy and refine it using
£y-rotation averaging [19]. We refer to this method as
IRLS in our comparison.

* Edee averaging using LongSync: We first perform
LongSync with 4-cycles to estimate the weights of these
inter-cluster edges (there are no 3-cycles for a bipartite
graph). We next initialize Ry, as the quaternion weighted
£5 mean of S, using the edpe weights from LongSync
by their LongSync weights. Lastly, we refine the solution
using [19].

4. Synchronization of inter-cluster rotations. This step is
skipped for MultiSync. For other methods described in step
3, we find Ry, (up to a rotation) for each cluster k from the
estimated { Ry }x 1e[x) by MPLS.

5. Rotation merging. Finally, for each camera p in cluster k,
the rotation estimate of p is given by Ri™ = R, R, "
Next, we inroduce our graph processing method to further

boost the performance of all tested methods.

Extra Improvement by Graph Processing:

+ Speciral clustering with Jaccard Index. For step 1, we use
the Jaccard index matrix as the similarity matrix for spectral
clustering, instead of the adjacency matrix. The n x n Jaccard
index matrix A ; is defined as follows:

.. 0 ijgE
As(g)=9 vy (14)
NN G eE

where N; and N; denote the sets of neighboring nodes of
node i and j, respectively. In this way, A ;(i,7) is higher
for the pair i contained in many 3-cycles, which is a more
robust and nicely scaled statistics (£ [0,1]) for measuring the
local graph density around edge ;.

+ Refinement of intra-cluster edges and nodes. For step
2, after the MPLS siep, we perform CEMP with 3-cycles
to estimate the cormuption level of the inira-cluster edpes
for each cluster We remove a camera if the number of
neighboring ‘good’ edges, ie. the edges with comuption level
less than 0.1, is less than 4. The numbers 4 and 0.1 are chosen
to balance the number of remaining cameras and the quality
of intra-cluster rotation estimates. In order to eliminate the
sparsely connected components inside the cluster, we use the
Matlab built-in hierarchical spectral clustering function on the
remaining cameras with the ‘cutoff” and ‘depth’ parameters
as 2 and 4, and we keep the larpest component. The absolute
rotations for the remaining cameras are estimated by MPLS.
We remark that one could replace CEMP by LongSync
with 3-cycles. However, we have not observed significant
difference in the performance.

We respectively name MultiSync and IRLS with our new
eraph processing method as MultiSync(New) and IRLS(new).
“LongSync” in our experiment refers to the full version of
our alporithm: use LongSync weights for edge averaging
in Step 3, with the graph processing step. We also compare
with MPLS on the whole dataset, since it is a state-of-the-art
non-distributed method, but we note that MPLS is significantly
slower than all distibuted methods. We report median
error 180 - median({d./(R: Ruign, R})}e(n) Of the tested
methods on 14 datasets in Figure 2. We exclude the result of
Gendarmenmarkt since all methods return large estimation
emors in the fipure. The full results, including that of mean
error are included in the supplementary material.

In Figure 3, for each distributed method, we report the
ratio (in percentage) between its total runtime on all datasets
and that of the non-distributed MPLS. Namely, we compute
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Figure 2. Median ermor for rotations for each dataset measured in degrees.
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Figure 3. Runtime ratio and average median and mean ermor gaps
between the distributed methods and MPLS on the entire graph.

¥ aeptasta/? g ptvpis g, where D is the set of 15 datasets,
and each fgsq and typsg is respectively the runtime of
the distributed method and MPLS on data 4 In the same
fipure, we present the mean'median error gap between
each distributed method and MPLS. The mean and median
error gap is respectively defined as (g4 — EmpLs) /Egia and
(4w —EmpLs ) Edist, Where £ and & respectively denole the mean
and median error over all cameras.

From Figure 2 and 3, our method outperforms other dis-
tributed methods on 13 out of 15 datasets. The most significant
improvement in mean error and median error are respectively
28.6% and 46.4%, (in Notre Dame) compared to the best per-
forming method between IR S{new) and MultiSyncinew). The
improvement is even more significant when comparing to the
original version of these baseline methods without our graph pro-
cessing method. The only two datasets without improvement are
Gendarmenmarkt and Union Square. Our method is comparable
to others on Union Square, and all methods retum large errors on
Gendarmenmarkt due to many repetitive patierns in its 3D scene.

The average mean and median error pap between our method
and full MPLS are respectively 38.3% and 18.4%. Compared to
the best performing method among others, our method reduces
the average median error gap by 40.8%, and the average mean
error gap by 9.6%. In terms of runtime, our method is uniformly
faster than MultiSync and it is scalable on the largest dataset,
taking less than 6% of the total runtime of full MPLS. In conclu-
sion, our method significantly improves the result of distributed
rotation synchronization without compromising runtime.

In the supplementary material, we further demonstrate the
improvement by our new graph processing method, which
significantly improves the results of LongSync (without exira
graph processing) in 14 of the 15 datasets. On these 14 datasets,
the average reduction on mean error is 59.2% and the average
reduction on median error is 28.5%.

7. Conclusion

We propose LongSync, a robust and efficient algorithm for
group synchronization. It modifies and vectorizes CEMP which
enables efficient computation when using longer cycles. The
theory we developed for LongSync is the strongest among
all other existing results under UCM. Experiment shows that
LongSync, together with our improved graph preprocessing
method, achieves superior accuracy for distributed synchroniza-
tion on large real datasets with competitive nintime. However,
our method also has some limitations. First of all, in theory there
is still a small gap of sample complexity from our method to the
information theoretic one. Filling this gap is an open problem,
which requires new tools and possibly more sophisticated anal-
ysis. Second, our graph preprocessing method is quite heuristic,
and an automatic way of choosing parameters is needed. Our
work also opens a door for some important future directions,
including distributed partial permutation synchronization for
multi-image matching, angular synchronization for Cryo-EM
and Jigsaw Purzles, and analysis of their alporithms.
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Supplementary Material

A. Full Results for the Real Data Experiment
We record the full results for our real data experiment in Tables 3 and 4.

Data LongSync MultiSync-New IRLS-New MPLS on full dataset | Remaining
n |k| E & i E & t E [ t E [ i cameras
Alamo 627 (10| 267 103 668|321 181 B077 |274 114 358|203 095 5347 070
Ellis Island 200 (7 L07 060 105|181 137 2446|129 092 079|089 048 440 0.66
Madrid Metropolis 394 (6| 2985 189 128|442 392 1476|335 227 100|210 L10 576 0.53
Montreal Notre Dame | 474 | 8 | 3.89 045 296 | 434 1.05 3917 | 400 060 186|078 041 1495 070
Notre Dame 553 (11| L0 060 526|193 164 11198 140 112 304 | 095 050 5268 0.66
NYC Library 36 |6 205 L09 120|256 1.63 1457|231 147 083|156 L01 502 0.56
Piazza del Popolo 345 (7| 383 062 139|407 107 2291 | 389 083 098 | 1lel 057 626 0.61
Roman Forum 1102| 6| 247 L6l 560|284 198 1613|255 168 321 | 1L.80 133 2405 0.48
Tower of London 489 5| 285 218 182|349 266 843 |294 220 117|250 213 563 0.60
Union Square 930 (4802 431 259|779 393 492 |776 373 173|450 353 720 0.42
Vienna Cathedral 018 (9] 365 058 566|434 157 5645|376 077 336 | 130 053 5462 0.48
Gendarmenmarkt 742 | 6 |B495 7760 321 |83.30 8048 1575 (7471 8423 227 | 4852 4016 1358 0.47
Piccadilly 2508| 9| 507 L75 2256|543 246 6589|521 208 1072 220 145 42940 0.45
Trafalgar 5433 9| 712 233 7933(1001 519 9169|725 244 4159 L.BS 117 179641 0.38
Yorkminster 458 (6| L97 136 252|233 174 1497 |201 138 189|163 131 705 0.61

Table 3. Results for PhotoTourism. For each dataset, £ and & indicate the mean error and median error of the output absolute rotation estimates
measured in degrees, and ¢ is the total untime of each method measured in seconds. The last column indicates the remaining portion of cameras
for each dataset after adpoting our new graph preprocessing method.

Data LongSync-Naive MultiSync IRLS MPLS on full dataset
n |k| E & t E & t B & t B & t
Alamo 627 (10| 745 111 891 (774 156 BL73| 756 130 571|367 102 5543
Ellis Island 247 (7|38 069 228 (524 229 3549|412 109 177 (282 050 572
Madrid Metropolis 394 (6| 985 292 29 |1027 391 1546 (1013 361 224|583 131 763
Montreal Notre Dame | 474 [ 8 | 593 061 517 | 649 144 4120 | 606 087 337 L13 050 1840
Notre Dame 553 (11| 457 092 856 [497 128 11781 482 1.09 519|271 Oed 574
NYC Library e (6| al5 165 277 |7.13 29 1558 | 628 192 207|311 130 592
Piazza del Popolo 345 (7637 099 284 |1018 7.09 3335 (723 LI18 207|344 086 719
Roman Forum 1102| 6 | 598 180 1015|661 257 1917|606 193 581|287 141 2733
Tower of London 480 (5 | 646 295 399 (703 343 977 | 674 324 277(39% 244 653
Union Square 930 (4 |2568 568 595 (2764 724 734 |2531 574 420 (614 370 852
Vienna Cathedral 918 (9 {1326 Le0 1031 (1374 237 6284|1347 197 633|619 131 5805
Gendarme nmarkt 742 [ 6 |74.25 7234 640 (7463 TL53 1756|7658 8132 433 (3970 1048 17.13
Piccadilly 2508( 9| 958 282 4217 (991 319 7209 (1066 378 1939( 445 208 45583
Trafalgar 343319 961 327 130551023 416 11262| 975 344 o6049| 549 439 1929.21
Yorkminster 458 (6 | 825 169 506 | BBD 247 1659|828 174 387|355 158 83l

Table 4. Results for PhotoTourism where all methods are performed without our graph preprocessing method. For each dataset, £ and & indicate
the mean ermor and median error of the output absolute rotation estimates measured in degrees, and £ is the total nmtime of each method measured
in seconds. The last column indicates the remaining portion of cameras for each dataset after the camera pruning step of our improved pipeline.




B. Proof for the Formulas of g. and f. and their Computation Complexity

In this section we prove the formulas and time complexity for f. and g. defined in section 3.

For =3, since all 3-cycles are simple, fe(W)(i.7) =21 ccx, eeryjuy) = Loepmy s is exactly the ij-th entry of w2,
and ge(W R)(ij) = 1 ce, = X iefu] @ik Rty R is exactly the ij-th block of P2,

For c= 4, there are redundant cycles in CF;, i.e. cycles that are not simple. We follow the argument in [35] to compute f(W)(1.7)
and g.(W, R)(i,j). For example, the cycle ikij is redundant since the node i repeats twice. We say this cycle satisfy the partition
0+2+1 of c—1, in that the number of steps from the first node to the repeated node is 0, the number of steps from the repeated
node to its second appearance is 2, and the number of remaining steps to the last letter is 1. Some cycles may satisfy more than 1
partition. For integer 1 <a<c—1, let Cf; ; be the set of redundant c-cycles satisfying a partitions. Let g. be the number of admissible
partitions of length ¢, i.e. partitions that corespond to a redundant cycle. Then the function f and g, can be written as follows:

J=
flW)ED=W 'y (-1 3 [ we (15)
a=1 LeCy; jeclh{ig}
I
ge(W.R)ig) =P '+ (-1)* 3 ] weRe (16)
a=1 LeCy; jeeL\{i7}

For £ =4, the set of admissible partitions is {0+2+1,1+ 240}, therefore gy =2. By enumerating the possible cycles for any
combination of such admissible partitions, we know that the set Cy; ; = {k € [n]:ikij }U{k € [n] :ijk;}, and the set C} , ={ijij}.
Therefore we can simplify the above formulation as:

Fe(Wig)= wel_ Z Wy Wiy Wy — Z Wy Wk Wy Wy Weg Wiy (17
ke[n) ken)
Qc'[W‘.-R}{iJ} = Pc_l - Z wikwkiwinikRkiﬂij - Z wijwjkwﬁ:jRinij&j+w1.jwjiwininj1Rtj- (18)
ke[n) ke(n]
This can be vectorized as
fAW) =W (W)W —Wd(W?2)+ W3 (19)
ge(W,R)= P°—d(P*)P— Pd(P*)+ P, (20)

Using similar arpuments as above (one may refer to [35]), we have the formulas for ¢ =5 and = 6. The formulas for c=5
are presented in Table 1. The formulas for =6 are as follows:

fAW)=WAW)+dWHW + W2HAW ) +d( W W2 LW AW W2 - W W HW - Wd(W W
+W2oWS LW oW L oWd(W2 o W22 L 2d(WH )W o w2
+4dWHW S L AW 234 (W2) —WAd(WAd(W )W) —d(Wd(WH W )W
—IW (W2 oW?) WS oW )W —Ww w2 w2
—IWd(W2)2—2(W2)PW —W (W aW?)—(W oW )W —W oW —2W W3 _d(W)?Wd(W?)
—WeW oW-WWEW _2W oW oW 4w 5

g-(W ,R)=Pd(P*) +d(P!) P+ P%d(P?)+d(P*) P2+ Pd(P?) P2+ P%d(P?) P+ Pd(P?)P
+ P2 PP 1 3Po (PP +2Pd( P o P2+ 24( P?) Po P2
+4d(P?) P9 1 4 P34 P?)— Pd(Pd(P?) P)—d(Pd(P2)P)P
—2P(P** o PY) - 2P o P*)P—P**P*_ P2 P®?
—2Pd(P?)? -2d(P??P- P(Po PY)— (PoPY)P-Po P 2P9P? _4(P)?Pd(P?)
—PoPoP’-PP®P_ 2P P o P’ —4P%



The computational time complexity of the previous cases for f. and g. are O(r({n)) and O(r(dn)), respectively, since computing
[ by the formula above only requires standard matrix operations between n x n matrices, and computing g, by the formula above
only requires standard matrix operations between dn x dn matrices. For the case ¢ 7, [47] gives an estimation on the upper bound
of the computational time complexity as Of(nl(c+3)/2)),

C. Main Theory

We formulate theory for adversarial corruption in Section C.1 and for the uniform cormuption model in Section C.2. The latter theory
extends the one stated in Section 4.

Both settings use the following common notation. Let E; be the set of good (clean) edges, Ej, be the set of bad (corrupted) edges,
and Ni; be the set of simple c-cycles containing 7. Let &7, be the set of good simple c-cycles with respect to ¢5. That is, for any
cycle L e Gy, L is simple of length c and L\ {i5} are all clean.

C.1. Theory for Adversarial Corruption

In this section we focus on the adversarial cormuption model [25]. The adversarial corruption model makes no assumption on the
graph topology or the corrution pattem. The only assumption is that for each ij € E;, g1y = g7;, and for each ij € Ejp, giy # g7;. Since
LongSync is a modified and vectorized version of CEMP for higher-order cycles, it inherits the robustness of CEMP to adversarial
corruption. Define A =may;e | Bf|/| V| where Bf; = Nj\Gy; is the set of bad cycles with respect to ij (namely at least one
of the other (¢—1) edges in the cycle are cormupted). hltnescmannufadvmsaﬁalmm:pﬁnnwiﬂmnassmnﬁjunnnh,wecan
guaraniee linear convergence of LongSync as follows.

Theorem C.1. Assume data is penerated by the adversarial corruption model with X < Wll‘.u’ Assume the parameters {5 };=7

of LongSync with c-cycles satisfy o <1/(c—1), i1 =rfrand l<r< =5 1,.f 2 Then the corruption levels {sﬂ Yer estimated
by LongSync satisfy the following equation:

1
il >0.
maxts(y) —s}y| < gy e for all 420 (21)

1:|:||E|.1ﬂ.'|.'i==_f

Proof Lt c () = |5t — st and e(t) = maxyye pegy (). By the fact that |dy, —sfy| < s}, G, C Nj and s} =0 for L € G§, we
n

ELEN= e Pusl dﬂ
; Bed ':‘}
ELEN‘.‘T.E
_g gt
{ELew,fff st |dy, —S:jF
g gt
ELeN‘-' el
ELEN=E Bl '[S >
2 LeNsE€ e—Besty)
i
g gt
{ELEB..;E Fese (31:'2
ELEGF. eFest!
i
ELeB;.‘-jE_'BLE‘E LEAL) (51 }2

- ELEG-: g B e D)

Ez,s,{:—nc(c} Z —Basi (%) (22)

LeBg;

2 Tl 2
(e (t+1))2 =5ty — st 2= —s}|

IGI

We prove the theorem by induction. Note that the case ¢ =0 is equivalent to e(0) < 1/(c—1)5p, and this immediately follows from the
fact that 0< ,;(0) < 1 and the assumption By < 1/(c—1). We next prove e(t+1) < 1/(c—1)Be+; from e(t) < 1/(c—1)8;. By the in-



equality above, the induction assumption, the fact that x2e” < 4/(ax)? with z— s? and a= 3; and the definition of A and r we have

1 16214|ij|= 4|Bg| - 44 _ 1 _ 1 .
IG5~ 8 1GHIsE ~ (1-NF  Fir2(c-1)?  F4(c-1)?
The theorem follows by taking the maximum of the left hand side and then the square root of both sides of the above equation. [
C.2. Theory for Uniform Corruption Model

Throughout the rest of the paper we use P(A) to denote the probability of event A. Let py = P(gy; = gi;) for each edge ij € Ej.
By the choice of corruption model, py, only depends on the group G. Let g, =1—g+gpy = P(ij€ Ejlij €E). Letg;=1—q. We
remark that for rotation synchronization (in fact any Lie group synchronization), g; =g, and pp =0,

Recall for each e € E, s} is the ground truth corruption level of edge e For L = (iky, k1 ka, - ke—a2j) € N, we denole
s} =EEEL‘-.{13}’:‘ To state our main theorem, we let F(3) = {f- (z) == ""*2r22% /4:7 > 8} and V (8) =sup,.. sVar(f- (s} )).
Due to the model assumptions, the distribution of f- (s} ) is independent of the choice of L€ Ny,.

Using the above notation, we formulate the following theorem, which generalizes Theorem 4.1

{Eij‘{t'i'l:l:lﬂ = (23)

Theorem C.2. Let0<r<]1 0<g<l 0<p<1 Assume we use LongSync with cycles of length - and nflogn=ﬂ{{pqg}_=_51_=}
Jor some e=0. Assume

l qg—lq;:—l
o< By~ 16(1—g5 ') (e—1)24, 2
r —1
V)< e T )
1/Biy1=r/B forall t =1, (26)
. 5 1— —1}2
Iﬂln{np,nc_ﬂ Epc—l:’?"{ T @7

ECEN

Then with probability ar least 1 — 4em? exp (—K,ﬁ{pq.ji%n) — 2% - oxp (—n¥/Didogn) —
n2exp(— Bmin(npn® g )V (B1)) — 2n% -exp (— BLIn(1 + 5= Jmin(np;n®=2-p*1) ), where mo,n,K eg,vg are

absolute constants, we have maxye (s}, —si;3'| < ﬁﬁmﬂ t=1.
Remark C.3. As is shown in [25], for G € SO(3), V(8) ~O(3~3). Therefore n/logn ~ p~ (e 1/(e=2—€) g Te /8276 50 e
minimal sample complexity dependence for G = S50(3) such that with high probability, the conclusion of Theorem 4.1 holds true.

C.3. Proof of Theorem C.2

We adopt the proof framework of [25]. The major difficulty of the proof is the dependence in the cycle inconsistency measures of
cycles in N when = 4. For example, the cycle inconsistency measure of a 4-cycle Ly = (iky k1k2,k27) is not independent with that
of Lo={iky kyks,ka7), while for a pair of 3-cycles their ratios are always independent. This means that the required concentration
inequalities cannot be obtained by directly applying the standard Chernoff bounds. MNonetheless, we have integrated various
mathematical techniques from [3, 7, 22-24, 4] to derive Theorem 4. 1, which offers improvements over theorem 7 presented in [25].

For convenience for any > 3, we define a c-path as a path that involves ¢ vertices, and we define an ij,c-path as a c-path that
starts from ¢ and ends at j. We extend the definition of N{; as the set of ij,c-paths in graph G.

We first prove that with high probability, the number of ¢;-cycles concentrates around its mean for any «; <« Mo specifically, let
g, =(n—2)(n—3)(n—4)--(n—ec; +1) be the number of possible ij,c;-path candidates, and m,., = max(p™ ~'n,, ,n®). Therefore
the expected number of ij,c;-paths is p™ ~'n,.,. For any e, >0 we define the (&,7)-regular Erdds-Rényi graph condition as follows:

Definition C.4. Let d=sup{d>0s.t np'*% /logn— oo} and ¢y = [246!]. A graph G satisfies the (e,n)-regular Erd6s-Rényi
graph condition if and only if the following conditions hold true:
» Forany i+ j€n] and c1 > e,
(1—mo)me, <INg | <(1+m)me, (28)
and

r1—1

(1—n0)gs* ~'me, <|GE < (1+m0)g5 ' mey; (29)



* Forany i+ j €[n] and ¢; <qp,
0<|Ng|<m,. 30)

We have the following theorem on the phase transition of the number of ~paths:

Theorem C.5. Assume G is generated with the uniform corruption model UCM(n,p.q), and e, >0 are constants. Then the (emn)-
— e

repular E-R graph condition holds with probability at least 1 —mzmcpl:—ﬂ:gpnj —mzmcpl:—Krﬁpc_—; n) —enexp(— '—;qu,ﬂ:l -

en®exp( K ni(pgs) =) 2% cnexp(—n/ 1) + (c—2)logn), which is almost I by the condiion n /logn—=((pgg)” =),

The proof of Theorem C.5 is put in section D). Based on this theorem, we have a concentrated "initialization” of corruption level
estimates after the first iteration:

Theorem C.6. (Initialization) Assume the (e,m)-repular E-R graph condition holds. Recall that the corruption level estimation

af LongSyne with cycle length c at t =0 is
Yrevgdi
sy = ﬂ‘ e (31)

Denote eg =Ed? and vg =Var(d2). Then for any n>0 and ij € E,

P(|(s)~E(syg)?| > sy )? J{chp( e ln(l+ g Dymin(npin®*- ‘p”—lzr). (32)
Let A =maxy;ep | By |/IVg| where B, = Ni\GY; is the set of bad ij,c-paths. To prove the linear convergence, we need the
following three lemmas:
Lemma C.J. 1 maxyerl|(sly )2 —E(sf; )?| < gzt then
(1) * A ?{c—l]
EﬁlﬂEls 31;1'—1_}1 ¢_1'3D~ (33)
Lemma C.8. Assume that maxyeg|sly’ —sf| <1/(2(c—1)81), fe=rPrs1 fort>1, and
1 . 1
‘ﬂ'ab{s*jz-::—furaﬂt:_*lT (34)
GEB . MA
where M =4(c—1)%eA/({1—A)r?). Then the LongSync comruption level estimates satisfy
max]s{) —s |.::l-.—t—1 forall ¢ >1. (35)
I_‘FEE 1] 'H]_ =

Lemma C.9. 1f either sf; for ij € Ej is supported on |a,00) and a = 1/|Bg;| or Q is differentiable and ¢)'(x)/Q(z) < 1/x for
x <2 P(1), then there exists an absolute constant K" such that

P (s V
(_f,.e.?—'f_ﬂjl B > f(sE)>V(B)

Le E“

+

logmin(np,n©—2-cp*—T)
min(np,n®2-p=~1)

In2
< mfp(— Tnﬂniﬂpfﬂ"ﬁ_ipﬂ_lﬂ”(ﬂ}) - (36)

F(B)={fr(x) =T % /d:r > B},



Lemma C.7 and C.8 are direct extensions of lemma 4 and lemma 5 of [25]. Lemma C.9, however, involves the extension of
theorem 2.3 in [3] to the supremum of locally independent empirical processes and Hajnal-Szemerédi theorem for equitable coloring.
We refer the reader to section D for the proof of these lemmas.

Proaf of the main theorem. By the regular E-R graph condition, we can choose appropriate mn so that

1 ¢! 1-x ¢!
- 4 .
g T A g! o

To puarantee the condition (34) of Lemma C.8, we need to choose S, such that V(5,) < e/2M and n large
enough such that log(min(np, n°2~*p*1))/ min(np, n®2~%p"~!) <« €*/4K™M?2 By the assumption that
V(B1) < (rgt1)/16(c—1)(1—gt~ 1), M =4(c—1)%eX/((1—A)r?) and (37) we know that V'(53;) <e/2M. By the assumption that
min(np,n®2~%p"~) 2 (1 - g{~")?/g:*“""'r* we know that log(min(np,n®~2~“p*~))/min(np,n®~2~p*~") < ?/AK"2M".
Therefore the condition (34) of Lemma C.8 holds true.

On the other hand, by Theorem C.6 with n=1,/2{c—1)5 we know that w.h.p. the condition of Lemma C.7 holds true. By the
assumption that 180 < g5~ g5~ " /16(1—g5~")(c—1)*5y, we know that the conclusion of Lemma C.7 implies the first assumption
of Lemma C.2.

Themefore, the proof of the theorem follows from the conclusion of Lemma C.8. |

D. Proofs of Auxiliary Results
We provide additional results for auxiliary theorems and lemmata used in the previous section.

Progf af Theorem C.5. 'We have the following basic lemmas:

Lemma D.1. (Concentration of number of paths of length > cp — 1 with fixed endpoints) Let 0 < g < 1,0 < p<1, ne Mwithnp> B(1).
Assume data is generated by UCMin,p,q), and « = . For any = (), there exists a constant K =0 that only depends on «, such that

2

P(INjj|—p""ne<mop"'ne) <exp(—32pn) (38)
e—1
P(Ng|~p'n.>mop*~'n,) <exp(—K i3p=in) (39)
for any fixed i£j<V, and
2
P(N§|—p* " ne<mop"nc) < | Elexp(—g2pn) “0)
P(ING|—p*"ne >mp™ " ne) <| Elexp(— Kngp=n). @1

Progf Let My, = {(i,k1,ka, ,ke—2,5) : i,k1,ka,~ ke—2,j € [n] are different}. Note that |N;| = EuEM;. I, where I, =
L eelkkacr 1k, sk 2eElk_ager fOr a=(iky ko ke _a,5). Furanya,,SEij,cbﬁne “=EaeM;Efu =EaEM,.=_1.PC_1=
" In,. Let us write o~ 3 if a, Be My; with at least one common edge, and define 6={EQN|B]EI&I§};’U. (This sum should be
interpreted as the sum over all pairs (o, /3), so each pair is counted twice.) By theorem 1 of [22], we have the following inequality:

2

PN <(1-m)p~"ne) Sexpl(—5 55) @)

Denote |, 3| as the number of nodes that belong to 3 but do not belong to . By the definition of 4, we have the following estimate:



5= El.lg)/w

e

IyS oy m

oEME k=1 and |oe 5=k

Iw |Z Z prret

ke=Lensf and |\ | =k
c—3

(n—2)(n—3)-—(n—c+1) .
Pb—l{n—Ej{n—.’]}...{ﬂ_c_i_1}E(H—Ej{ﬂ—:}}-..{n—k—ljp’%

[

< —c(n—2)(n—3)-(n—c+2)p™?
n—2)(n—3)- {n—c+2}pﬂ—2=m. (43)
Plugging (43) to (42) gives:
P(INg| < (1—m)p" ") Sexp(— Effﬂi
{mcp{—%
win—c+1
Em_w;
<exp(-B"P) (@)

Therefore inequality (38) is proved, and inequality (40) follows from a union bound arpument.

For the upper tail, let A be an arbitrary subset of {kq, ko, .k._a}, the set of free vertices of an ij,cpath. Denote B 4 as the
expected number of ij,c-paths (ik; ki ks, k.—27), where the vertices in A are fixed, and let My, = max; 4~ ;. M.4. We have the
following calculation:

c—2—k 1-k k<ec—3
Mk={"l‘ P Rse (45)

k=c—2"

Let l=rﬁ{n—c+l}p§. By e e, we know that A =cw(logn). Also, by setting My =My and My = MpA—* we know that for
all 0 <k <c—2, My = M,.. Therefore we can apply theorem 1.2 in [4%] and pet the following inequality

P(ING | —p™ " ne > mone) <exp(—Koms (n—c+1)p=) (46)
where K is a constant that only depends on c. Let K = Ky /2. By the order of < we know that

P(INg|—p'n.>mon,) <exp(—Krgnp=2). (47)
Themefore inequality (39) is proved, and inequality (41) follows from a union bound argument. O

Lemma D2 let0<g<1,0<p<1, neM with np> 6(1). Assume data is pereraied by UCMin,p.g), c>op, and K is the constant
in Lemma 2. 1. For any my =0, we have

PG| —p" gt e <mop™ gl ﬂc}{mrp(—gpq,n} (48)

PG5 |—p" g5 'ne >nop" g5 'n) < exp(—Knjipgen) (49)



for any fixed i£j<V, and

a3
PG54 ne <mop™ 4~ ne) < Elexp(— R pgen) )
P(|GS|—p" g e >mop i 'ne) < | Elexp(— K npgen). (51)

Lemma .2 is proved by replacing p with pg, in the proof of Lemma D. 1.

To count the shorier paths which has a vanishing expectation when n tends to infinity, we need the following concentration
inequality:
Lemma D.3. (Concentration of number of paths with length <cp—2) Let 0<g < 1, 0= p <1, n € M with np> B(1). Assume
data is generated by UCMi(n,p,q), and ¢ < cp. For any e = (), there exisis a constant £ > 0 that only depends on c, such that

P(ING| > K'n®) < 2e%exp(—n/"D + (e—2)logn) (52)

for any fixed i£j<V, and
P(IN§| > K'n®) <2*| Elexp(—n/“"" +(c—2)logn). (53)

Progf. Define the multivariable polynomial f({Tpqlpsgem)) = 3o Mg, Tas where o, = Ty Teky - Tk_oy fOT
= ﬁ?kl:aka'"akc—ﬁ:.ﬂ in *M‘:; = {l:iaklfkﬂa‘"akc—ﬂﬂ-} :iaklakEf"'akC—ﬂJ S [ﬂ‘] ane lil.ffﬂ]'ﬂ'l'l.l} Note that IN:;}l = .fl:{IMEE}ﬁEqE[ﬂI:I
Let AC {zper :p#q€[n]} be a subset of the variables of f, and fa({zpq}pqein)) be the partial derivative of f({pq}psgen))
with respect to all variables in A. Let 84| Njj| = fa({1pger }psgejn))- Define Ej = max; 4> E(84|Ng|). By the main theorem
in [24], we know that
P(IN§,—Eo| > K'n'“~ Y%/ Ey Ey) < 2exp(—n® + (c—2)logn). (54)
Because ¢ < cp, we know that for any k € M, max 4 <, oE(84|Ny|) = o(1) and maxy_,. 1 E(84|Ny|) = 1. Therefore,
Ey=E; =1. Plugging these values into inequality (54) and substituting e with e/(c—1) results in inequality (52). Inequality (53)
is obtained from a union probability bound argument. O
With the estimates above, the regular E-R graph condition holds with probability at least 1 — n® exp(— %}m} -

nexp(—Kngpin) —nexp(— L pgan) —nexp(— K18 (pa,) Z2n) — 2e*n?exp(—n‘ +(c—2logn). _

Proof of Theorem C.6. For any L e Nj; and pge L, we say L' is correlated with L if L L’ is nonempty, and L' is comrelated with
L\{pq} if (L\{pg})NL' is nonempty. We denote C'y, as the set of ij,c-paths in V; that is comrelated with L, and denote 7, g as
the set of ij,c-paths in N7 that is comrelated with L\ {pg}. With the regular E-R graph condition, we know that for any L N,

ICLI< Y ICripay] (55)
ppelL

CMp—_1 + M Me_g+MatMe_3+ -+ Me_am) +Me_1 (56)

< CTMe—1. (57)

Denote ﬂ1=ma:c;_,€nr:.-j |C]. Then we know that A; < em._1 < emax(n®,n®*p2). We apply theorem 2.5 in [23] mELENTjd%
and 3-; o (—d; ) and get the following inequalities:
i

INE ug TEY L ene 1
P 2= (14nE S 42 ] = 58
and
NE MEY p en=di
P(Y & <1-nE Y ) <exp(— L o 5 ) (59)

S P Ar 7 INglog(1+A1 /8ING )

where (x) = (14 z)ln(l+x) —z. Noke that @{z) = zln(1+x)/2 for any = = 0. By the regular E-R graph condition we have
IN5 1= (1—np)n*p"", and therefore Ay /|Nj| <max(1/(n"*p"~"),1/(np))/(1—mo) < 1. Also, since all the dj s for L€ N



follow the same distribution with mean eg and variance vg, we know that EY LEw, = |Nj;leg. Therefore RHS of (58) and
{59) can be upper bounded as follows:

|Nj|uﬁ ﬂIE'ELEN‘dﬂ
R]-ISDf{ﬁE}aIId(S';)EE?CP(— A, 2|Nj|vg(1+ﬂ1f8| Al
WEELEPF
An{1+
{ Ile'Ug{l'i'ﬂleI ;_-;l:l )
1 TJ'IN_-;lﬂli}' neg
_ In(1
m( A, A0+A, /AN " o ALBN s”})

[

neg| ::jl TEg
qu( 1, Pt

neg(1—m)n*2p~"
<on( e 0 5D)
<oxp( L 2n(1+ I min(rpn*5)). @)
8c Qug
Combining the upper and lower tail bound together yields
P d-EY &[> ) df)<2exp(—" In(l+7 L )min(rpnt=2p ). (61)
LeNs; LeNs; LeNs; vg
Then Theorem C.6 follows by (31). O

Proof of Lemma C.7. Denote v,y = (sfy )2~ E(sly)? for ij € E and y=maxeg |y, so that the condition of the lemma can be

written more simply as 1/2(c—1)50 > ~. By rewriting E(s{y )? as ¢~ (s%)?+(1—q5~")zg +; and invoking lemma 1 in [25]
and equations (6) (7), we have the following bound:

— 1
ELENF.E_&VJZ‘ELI!’; (=202 +(1—q; )zgﬂcldL_S:jlﬂ

1 2
o =5l < —BoX. VT 2P g5 Dzgty
ELENEE ceLVW iy 18z g JEGTTe

B ELEB:jE—ﬂuzmeL\fﬂ;—l(az”]2+(l_q;—l’]5-g+’)'= (s3)2

(62)

EL eGs e PoXicer Vqu;_"[ai EH1-g5 Vg +.
iy

By first applying the facts: |7.| <~ and s = 0 for e € L where L € G5, and at last the inequality ze~9% < 1/(ea) with
£=Y ocp(s2)? and a—BogZ " /2, we obtain that

— —1ligey2 g1
WDt < Creny e oTrenVa G s 2
_311 -

GE e AotV Do

B L. (VTG eI Neg1—VI=6 Deg 1) (1 )2

1 2 12
Bo¥ ey (22) ‘h‘).-" ':3::.:'

2L eBg®

{ELEB,-‘E
- IG5
OO gy P B e ) e (2
B 1G5

< e DIBG

|ij|50@_

(63)



The lemma is concluded by applying the union bound on i € E and taking the square root on both sides of the above inequality. O

Proof of Lemma C.8. Let eyy(t)=|sl; — s3] and e(t) = maxyep e (t). We prove this lemma, or equivalently «(t) < 1/2(c—1)8
forall ¢ 1, by induction. We first noe that (1) << 1/47, is an assumption of the lemma. Next we show that e(t4+1) < 1/2{c—1) 5,4,
if e(t) < 1/2(c—1) ;.

By the fact that |dy, — sf,| < s}, GZ, C NG, and s} =0 for L € G, we obtain that

ELENEE_ﬁ*sE:dﬁ
ij
]
ELEN‘-‘?E Pesy
.t
- ELEN,FJ.E et |dy, —3:3-|2
= O]
ELENEE B8y,
gt
- ELEN,FJ.E Pear (a1 )?
=~ ELENF_E_ﬂ’at]
if
g 4lt)
- ELEB;;E Fusy (3132
=~ ELEG._:_ ) g[;':
ij
— t
EL&B;;E L=y D | ){51}2

- — B Z; LE=(L)
ELEG;FJ- £ F

< ) eMleDeltlg—fsi (57 )2, (64)
IGI}'L&B‘F.
i

Tl
ey(t+1)2=|sl) —s3, [P =| —s}|?

By the induction assumption «(#) < 1/2(c—1)5; and then using the definition of A, we have
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Combining the lemma assumptions and the definition of M we have
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Therefore the lemma is proved by taking the square root of both sides. O

Progf af Lemma C.9. To prove this lemma, we first prove an upper bound on the suprema of weakly dependent empirical processes.
For an index set .4 and comresponding random variables { X, } o< 4, we make the following definitions:

+ A subset A’ of A is independent if {X, }ac 4 is independent

= A family of pairs (.Ag,wy) is a fractional cover of Aif 3wl g, =1 4.

+ A fractional cover (Ag,uy ) is proper if each set .4, is independent.

Lemma D4, Assume {X,}aer are identically distributed according to P. Assume JF is a countable set of functions that are
all P-measurable and for all f € F, ||fllec = 1. Let Z =supper|? o f(Xa)|. Assume I admits a proper fractional cover
{U5wq)bses, and Zy=sup £} ner f(Xa)l- Let {ps}ses be positive numbers such that 3, p, = 1. Then
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where v=2min;EZ; +sup e x Var( f(Xq)) and W=3_ w;.



Proaf. We follow the proof strategy of [23]. By lemma 3.2 in [23] we can assume (I;,wy ) is an exact fractional cover of 1. We have
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Let p; be any positive numbers such that Ejpj =1. By Jensen's inequality, for any w0,
axplu(Z— Zﬂs}}{miZﬁ 1(Z,-EZy)) {ijmcp{—{zj EZ)). @3)

Since Z; is the supremum of a sum of independent random variables, by theorem 2.1 in [3] we have

'HHJj 'I.I!-‘H.lj

EDIP'[—'[Z; EZ4)) {E?CPII".E"[——}UJ} (74)

where () =e"" —1+x and vy =2EZ; +-sup ;- ¢ Var( f(Xg)). Let py=wy/W. By definition of v, v=minsv;. By Markov's
inequality we have
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Taking the minimum of the right hand side with respect to u gives P(Z >t) <e "¢(t/Wr), |

Now let's prove Lemma C.9. We slightly abuse the notation for simplicity. Throughout this proof we use B;; as the set of all
bad ij,~paths. To use Lemma .4, we need to construct a proper fractional cover of By;. Let Ay = [|Bj;|/em,.—1 |. Note that by
the regular E-R condition, we know that each L € By, has at most cm._y cycles that are comelated with L. By Hajnal-Szemeredi
theorem, there exists a partition of By, namely { By, k}k 1!, where for any K, | B gl =41 or Ay +1, and all paths in BY, , are
mdependf:nLTTusuuiucesapquerﬁmhcmalmr() :ji.::” By Lemma .4, foran}'t::-[]wehm'e
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where v=2min,EZ, +V(5).
By lemma 7 of [25] we know that EZ, < Cy, [log| By, . |/| By |- By |Bf | = Ay we know log|BF , [/| By | < log g fA.



By ¢(x) > ZIn(1+-x) and the definition of A;, let £=| Bg|(2C1y/logA1 /A +V/(8)) in (80), we have
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By the definition of m,._; we know that cm,_; ~max(n®3p"~2 n®). Therefore A; = (min(np,n°2~p°"1)). Since A; >1,
Lemma C.9 is proved by letting K" =2C; +1. O

E. Extension to any linear group with the metric induced by the Frobenius norm

Our algorithm LongSync can be extended to any linear group with the mefric induced by the Frobenius norm.  Let
Dg(G1.Gs) = |Gy —Ga|| F be such metric defined on a linear group G. The update rule of LongSync becomes:
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With the same f. and g, in 3.1, we have the following proposition:
Proposition E.1. The update rule of af LongSync for any linear group in equation (82) is equivalent to the following matrix operations:
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where W — A @exp(— 5,8,

Progf We prove the proposition by comparing the ij-th element of the right hand side of equation (83) with (82). By the definition
of blockwise inner product, the i7-th block of the right hand side of equation (£3) is
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Note that by definition of ge, ge(v/W(8),G)(i.5) = Lpens, Vi Gr. and ge(W (£),G)(i.1) = Cpens wi Gr. By the
definition of f,, f-(W®)(ij)=3 Le N_:_wf}. By directly comparing the terms we know that the right hand side of equation (83)
is the same as (82). ’ I

In view of this vectorized update rule, we propose the vectorized LongSync iterations for any linear group with [s meiric in
algorithm 2.

We remark that the theory of LongSync can also be adapted as long as the group is "well-conditioned’, i.e. there exists constants
Mg and mg only depending on & such that for any & &, the absolute value of the eigenvalues of (= is between mg and M.



Algorithm 2 (LongSync for any linear group)

Input: pairwise measurement matrix G, adjacency matrix A € [0,1]"*", cycle length ¢, positive parameters {3, }+>1, time siep T
WO A
for t=0:T do
@12
59 (((VWO.0)0.VWO.G))  ~2(5.WI,G).C) ) @fe(W)+(C, )
Wt o A@exp(—55Y)

end for
Output: edge weights W T+ corruption levels ST
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