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A bst r a ct

Gr o u p s y n c hr o niz ati o n pl a ys a cr u ci al r ol e i n gl o b al
pi p eli n es f or Str u ct ure fr o m M oti o n ( Sf M). Its f or m ul ati o n is
n o n c o nv e x a n d it is f a c e d wit h hi g hl y c orr u pt e d m e as ure m e nts.
C y cl e c o nsist e n c y h as b e e n eff e cti v e i n a d dressi n g t h es e c h al-
l e n g es. H o w e v er, c o m p ut ati o n all y effi ci e nt s ol uti o ns are n e e d e d
f or c y cl es l o n g er t h a n t hre e, es p e ci all y i n pr a cti c al s c e n ari os
w h ere 3- c y cl es are u n a v ail a bl e. To o v erc o m e t his c o m p ut ati o n al
b ottl e n e c k, w e pr o p os e a n al g orit h m f or gr o u p s y n c hr o niz ati o n
t h at l e v er a g es i nf or m ati o n fr o m c y cl es of l e n gt hs r a n gi n g fr o m
t hre e t o si x wit h a ti m e c o m pl e xit y of or d er O (n 3 ) ( or O (n 2 .3 7 3 )
w h e n usi n g a f ast er m atri x m ulti pli c ati o n al g orit h m). We est a b-
lis h n o n-tri vi al t h e or y f or t his a n d rel at e d m et h o ds t h at a c hi e v es
c o m p etiti v e s a m pl e c o m pl e xit y, ass u mi n g t h e u nif or m c orr u p-
ti o n m o d el. To a d v o c at e t h e pr a cti c al n e e d f or o ur m et h o d, w e
c o nsi d er distri b ut e d gr o u p s y n c hr o niz ati o n, w hi c h re q uires at
l e ast 4- c y cl es, a n d w e ill ustr at e st at e- of-t h e- art p erf or m a n c e b y
o ur m et h o d i n t his c o nt e xt.

1. I nt r o d u cti o n

Str u ct ur e fr o m M oti o n ( Sf M) as ks t o r e c o v er t h e 3 D str u ct ur e
of a st ati o n ar y s c e n e fr o m m ulti pl e i m a g es t a k e n b y c a m er as
fr o m diff er e nt ori e nt ati o ns a n d l o c ati o ns. I n t h e p ast d e c a d e, t h e
gl o b al Sf M pi p eli n e h as b e c o m e i n cr e asi n gl y p o p ul ar d u e t o its
s e v er al a d v a nt a g es o v er t h e i n cr e m e nt al pi p eli n es [ 1 7 , 3 1 ]. First
of all, gl o b al Sf M r e q uir es o nl y o n e i m pl e m e nt ati o n of b u n dl e
a dj ust m e nt, m a ki n g it m or e effi ci e nt i n c o m p ut ati o n. S e c o n d,
it esti m at es c a m er a p os es i n a gl o b al o pti mi z ati o n fr a m e w or k
w hi c h miti g at es t h e drifti n g iss u e of t h e i n cr e m e nt al pi p eli n es.
D es pit e t h e p o p ul arit y of gl o b al Sf M pi p eli n es, t h e esti m ati o n
of gl o b al c a m er a p os es ( e. g., ori e nt ati o ns) r e m ai ns a hi g hl y c h al-
l e n gi n g pr o bl e m. F or i nst a n c e, esti m ati n g c a m er a ori e nt ati o ns
fr o m t h eir r el ati v e m e as ur e m e nts, oft e n c all e d r ot ati o n s y n c hr o-
ni z ati o n, is a hi g hl y n o n c o n v e x gr a p h o pti mi z ati o n pr o bl e m.
I n t y pi c al s c e n ari os of hi g hl y n ois y or c orr u pt e d m e as ur e m e nts
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of r el ati v e ori e nt ati o ns, m a n y c o m m o n s ol uti o ns of r ot ati o n
s y n c hr o ni z ati o n h a v e p o or a c c ur a c y a n d sl o w c o n v er g e n c e.

Gi v e n t h es e c h all e n g es, t h e or eti c al d e v el o p m e nts h a v e
d e m o nstr at e d t h e criti c al r ol e of c y cl e- c o nsist e n c y i nf or m ati o n
i n i nf erri n g c orr u pt e d m e as ur e m e nts [2 5 ]. I n pr a cti c e, t h e
c o nsist e n c y c o nstr ai nt o n 3- c y cl es w as utili z e d t o esti m at e
t h e err or of e a c h m e as ur e d r el ati v e ori e nt ati o n. It als o h el p e d
n o n c o n v e x it er ati v e r ot ati o n s y n c hr o ni z ati o n s ol v ers a v oi d
s p uri o us l o c al mi ni m a a n d a c hi e v e si g nifi c a ntl y hi g h er a c c ur a c y
[3 9 ].   H o w e v er, t h e us a g e of 3- c y cl es l ar g el y li mits t h e
a p pli c ati o n of t h es e i m pr o v e d al g orit h ms t o ot h er i m p ort a nt
s c e n ari os. O n e s c e n ari o i n v ol v es a s p ars e vi e wi n g gr a p h l a c ki n g
s uffi ci e nt 3- c y cl es. T his oft e n o c c urs w h e n t h e si z e of t h e gr a p h
is t o o l ar g e t o d e ns el y m e as ur e t h e r el ati v e ori e nt ati o ns o n its
e d g es, w hi c h c o ul d h a p p e n i n c ert ai n c as e f or t h e m ol e c ul ar
ori e nt ati o n esti m ati o n i n cr y o- el e ctr o n mi cr os c o p y i m a gi n g.
A n ot h er s c e n ari o is ori e nt ati o n esti m ati o n f or e a c h pi e c e of
ji gs a w p u z zl es, w h er e t h e gr a p h is a 2 D l atti c e a n d 3- c y cl e
d o es n ot e xist. L astl y, i n distri b ut e d Sf M, e d g es b et w e e n a n y
t w o cl ust ers of n o d es f or m a bi p artit e gr a p h, a n d c y cl es of o d d
l e n gt h d o n ot e xist. O ur n u m eri c al r es ults pri m aril y e m p h asi z e
t h e pr a cti c al s c e n ari o of distri b ut e d Sf M, w hi c h h ol ds p arti c ul ar
r el e v a n c e f or t h e br o a d er c o m p ut er visi o n c o m m u nit y.

D es pit e t h e m ulti pl e criti c al a p pli c ati o ns of l o n g- c y cl e
c o nsist e n c y, i nf erri n g m e as ur e m e nt n ois e fr o m l o n g c y cl es is
c h all e n gi n g i n b ot h c o m p ut ati o n a n d t h e or y. First of all, t h e
n u m b er of c y cl es gr o ws e x p o n e nti all y wit h t h e c y cl e l e n gt h, a n d
m e as uri n g c y cl e i n c o nsist e n ci es f or e a c h l o n g c y cl e is c o m p ut a-
ti o n all y i ntr a ct a bl e. M or e o v er, d e v el o pi n g t h e or eti c al g u ar a nt e es
f or l o n g- c y cl e i nf er e n c e m et h o ds is f u n d a m e nt all y m or e diffi c ult
t h a n t h e 3- c y cl e c as e. I n d e e d, i n a r a n d o m gr a p h s etti n g, a s et of
l o n g er c y cl es ar e m or e li k el y t o s h ar e c o m m o n e d g es, m a ki n g
t h eir c o nsist e n c y s c or e hi g hl y c orr el at e d. T h er ef or e, n e w t o ols
ar e r e q uir e d t o h a n dl e t h e c orr el at e d e m piri c al pr o c ess.

I n t his w or k, w e pr o p os e t h e first pr a cti c al m et h o d,
L o n g S y n c, f or i nf erri n g e d g e c orr u pti o n l e v els fr o m l o n g
c y cl e c o nsist e n c y i nf or m ati o n. F or t his p ur p os e, w e c ar ef ull y
m o dif y a n d v e ct ori z e t h e C y cl e E d g e M ess a g e P assi n g ( C E M P)
m et h o d [ 2 5 ]. T his n o ntri vi al m o difi c ati o n dr asti c all y r e d u c es its
c o m p ut ati o n al c o m pl e xit y w h e n usi n g l o n g er c y cl es. M or e o v er,
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b y e m pl o yi n g a m or e d eli c at e a n al ysis a n d i n c or p or ati n g n e w
t o ols fr o m pr o b a bilit y t h e or y a n d c o m bi n at ori cs, w e d e v el o p
a si g nifi c a ntl y str o n g er e x a ct r e c o v er y r es ult wit h a g e n er al
c y cl e l e n gt h u n d er a p o p ul ar pr o b a bilisti c m o d el. T h e s a m pl e
c o m pl e xit y i n o ur t h e or y is t h e l o w est a m o n g all pr a cti c al
r ot ati o n s y n c hr o ni z ati o n m et h o ds. Alt h o u g h w e li mit o ur
s c o p e t o t h e a p pli c ati o n of distri b ut e d Sf M, o ur al g orit h m a n d
t h e or y a p pli es t o a n y fi nit e- di m e nsi o n al li n e ar gr o u p i n gr o u p
s y n c hr o ni z ati o n, a n d n ot j ust S O ( 3) i n r ot ati o n s y n c hr o ni z ati o n.

1. 1. R el at e d W o r k

E arli er r ot ati o n  s y n c hr o ni z ati o n   m et h o ds [ 2 , 1 0 –
1 3 , 1 8 , 3 3 , 4 2 , 4 3 ] s e e k t o mi ni mi z e a l e ast s q u ar es
e n er g y f u n cti o n. T h e y c a n b e d es cri b e d as r el a x e d v ersi o ns of
t h e m a xi m u m li k eli h o o d esti m at or u n d er t h e a d diti v e G a ussi a n
n ois e m o d el, b ut t h e y ar e n ot r o b ust i n t h e pr es e n c e of o utli ers
or h e a v y-t ail e d n ois e. N e v ert h el ess, i n t h e c as e of gl o b al
Sf M, t h e i niti all y esti m at e d r el ati v e c a m er a r ot ati o ns c a n b e
s e v er el y c orr u pt e d d u e t o t h e err o n e o us k e y p oi nt m at c h es a n d
t h e s u bs e q u e nt p o or esti m ati o n of f u n d a m e nt al m atri c es.

T o h a n dl e o utli ers, r o b ust r ot ati o n s y n c hr o ni z ati o n m et h o ds
eit h er mi ni mi z e a r o b ust e n er g y f u n cti o n or r e w ei g h/tri m t h e
vi e wi n g gr a p h b as e d o n t h e c orr u pti o n l e v els of t h e e d g es.
Wa n g a n d Si n g er [ 4 9 ] mi ni mi z es a c orr es p o n di n g ℓ 1 o bj e cti v e
f u n cti o n usi n g s e mi d efi nit e pr o gr a m mi n g ( S D P) r el a x ati o n,
w hi c h is sl o w i n pr a cti c e. Ot h er e n er g y mi ni mi z ati o n m et h o ds
ar e t y pi c all y n o n c o n v e x, w hi c h i n cl u d e t h e Weis zf el d al g orit h m
[2 0 ] a n d t h e Ri e m a n ni a n s u b gr a di e nt m et h o d [2 9 ] f or ℓ 1

mi ni mi z ati o n, a n d t h e it er ati v el y r e w ei g ht e d l e ast s q u ar es
(I R L S) f or mi ni mi zi n g g e n er al ℓ p [5 ] a n d G e m a n- M c Cl ur e [4 ]
l oss f u n cti o ns. H o w e v er, all t h es e m et h o ds h e a vil y r el y o n g o o d
i niti ali z ati o n. Si d h art h a a n d G o vi n d u [4 1 ] p arti all y r e m e d y t h e
iss u e usi n g a d a pti v e G e m a n- M c Cl ur e l oss f u n cti o ns, b ut t h eir
a p pr o a c h r e m ai ns s e nsiti v e t o t h e i niti ali z e d w ei g hts. M a u n u
a n d L er m a n [ 3 0 ] pr o p os e t o s ol v e r ot ati o n s y n c hr o ni z ati o n
b y a n it er ati v e r o b ust a v er a gi n g m et h o d t h at utili z es T u k e y
d e pt h, b ut t h e y h a v e n ot d e m o nstr at e d eff e cti v e p erf or m a n c e
f or r e al Sf M a p pli c ati o ns. Arri g o ni et al. [1 ] a p pli es a l o w-r a n k
a n d s p ars e m atri x d e c o m p ositi o n m et h o d t o S O( 3) a n d S E( 3)
s y n c hr o ni z ati o n, b ut it is e v e n l ess r o b ust t o o utli ers t h a n I R L S.

I nst e a d of e m pl o yi n g a r o b ust o bj e cti v e f u n cti o n, S h e n
et al. [ 3 6 ] a n d Z a c h et al. [5 1 ] us es t h e 3- c y cl e c o nsist e n c y
c o nstr ai nt t o d et e ct a n d r e m o v e c orr u pt e d r el ati v e ori e nt ati o ns.
L er m a n a n d S hi [ 2 5 ] t a k e o n e st e p f urt h er t o esti m at e t h e
c orr u pti o n l e v el of e a c h r el ati v e m e as ur e m e nt b y a n o v el
c y cl e- e d g e m ess a g e p assi n g ( C E M P) al g orit h m. T h e y t h e n
us e t h e esti m at e d c orr u pti o n l e v els t o r e w ei g h t h e gr a p h a n d
s ol v e r ot ati o n s y n c hr o ni z ati o n usi n g a w ei g ht e d l e ast s q u ar es
m et h o d. T his m ess a g e p assi n g pr o c e d ur e w as f urt h er c o m bi n e d
wit h I R L S t o b o ost its a c c ur a c y i n [ 3 9 ]. P arti c ul ar v ersi o ns
a n d e xt e nsi o ns of t his pr o c e d ur e f or p er m ut ati o n a n d p arti al
p er m ut ati o n s y n c hr o ni z ati o n, w hi c h ar e r el e v a nt t o t h e m at c hi n g
c o m p o n e nt of Sf M, w er e dis c uss e d i n [ 2 7 , 4 0 ].

H o w e v er, all t h e pr e vi o usl y m e nti o n e d c y cl e- b as e d m et h o ds
[2 5 , 2 7 , 3 6 , 3 8 – 4 0 , 5 1 ] o nl y us e 3- c y cl es i n pr a cti c e, li miti n g
t h eir a p pli c ati o n f or distri b ut e d s y n c hr o ni z ati o n. I n d e e d, t h e
st a n d ar d distri b ut e d s y n c hr o ni z ati o n oft e n r e q uir es “stit c hi n g ”
l o c al s ol uti o ns b y s y n c hr o ni zi n g t h e r el ati v e r ot ati o ns b et w e e n
cl ust ers. E a c h of t h es e i nt er- cl ust er r ot ati o ns is esti m at e d b y
“ a v er a gi n g ” t h e e d g es b et w e e n t h e t w o cl ust ers. T h es e e d g es
f or m a bi p artit e gr a p h, a n d t h e mi ni m al c y cl e l e n gt h is 4.
As p oi nt e d i n [ 5 1 ], t h e n u m b er of o p er ati o ns f or c o m p uti n g
l o n g c y cl e c o nsist e n c y i nf or m ati o n s c al es e x p o n e nti all y wit h
t h e c y cl e l e n gt h. T h er ef or e, n o n e of t h e e xisti n g distri b ut e d
r ot ati o n s y n c hr o ni z ati o n m et h o ds dir e ctl y e x pl oits l o n g c y cl e
i nf or m ati o n d u e t o t his c o m p ut ati o n al c h all e n g e.

T h e e arli er distri b ut e d m et h o ds f or S O (d ) s y n c hr o ni z ati o n,
s u c h as [4 5 ] a n d [4 4 ], mi ni mi z e a l e ast s q u ar es e n er g y a n d
ar e n ot r o b ust t o o utli ers. A s eri es of distri b ut e d Sf M m et h o ds
[1 4 – 1 6 ] i m pl e m e nt i n cr e m e nt al Sf M al g orit h ms f or e a c h
cl ust er. H o w e v er, t h es e m et h o ds d o n ot e m pl o y a st a n d ar d
r ot ati o n s y n c hr o ni z ati o n al g orit h m, as t h e y r e q uir e a d diti o n al
i nf or m ati o n s u c h as t h e n u m b er of k e y p oi nt m at c h es b et w e e n
i m a g es. M or e o v er, t h e i n cr e m e nt al m et h o ds ar e sl o w er si n c e
t h e y r e q uir e m ulti pl e r o u n ds of gl o b al r ot ati o n s y n c hr o ni z ati o n.
M ulti S y n c [ 9 ] s y n c hr o ni z es t h e i nt er- cl ust er r ot ati o ns dir e ctl y
usi n g all i nt er- cl ust er e d g es a m o n g all cl ust ers, b y f or m ul ati n g
a n o v el s y n c hr o ni z ati o n pr o bl e m o n a m ulti- gr a p h. Alt h o u g h
it utili z es a m or e u nifi e d f or m ul ati o n, its o bj e cti v e f u n cti o n is
l e ast s q u ar es w hi c h l ar g el y li mits its r o b ust n ess t o o utli ers.

A r e c e nt a n d diff er e nt t y p e of m et h o ds f or r ot ati o n
s y n c hr o ni z ati o n us e d e e p l e ar ni n g [ 2 1 , 2 6 , 3 4 ]. H o w e v er, t h es e
m et h o ds ar e s u p er vis e d a n d t h us m a y n ot g e n er ali z e w ell
w h e n s wit c hi n g d at as ets. M or e o v er, li k e m a n y ot h er pr e vi o us
m et h o ds, t h e y l a c k t h e or eti c al g u ar a nt e es.

A c o m m o n t h e or eti c al s etti n g t o ass ess t h e p erf or m a n c e of
r ot ati o n s y n c hr o ni z ati o n al g orit h ms is t h e u nif or m c orr u pti o n
m o d el ( U C M) d es cri b e d i n § 4 . We pr o vi d e t h e b est s a m pl e
c o m pl e xit y f or L o n g S y n c, e v e n wit h o nl y 3 c y cl es, a m o n g all
pr e vi o usl y est a blis h e d esti m at es f or t h e U C M m o d el.

1. 2. C o nt ri b uti o ns of T his W o r k

• We pr o p os e t h e first pr a cti c al al g orit h m t h at i nf ers e d g e
c orr u pti o n l e v els fr o m l o n g c y cl e c o nsist e n c y i nf or m ati o n.
T h e c o m p ut ati o n c o m pl e xit y of o ur m et h o d is r e d u c e d fr o m
O (n c ) t o O (n 3 ) ( or p ossi bl y O (n 2 .3 7 3 )) f or c y cl e l e n gt h
c ≤ 6 a n d O (n [ (c + 3 ) / 2] ) f or c > 6 .

• We est a blis h s a m pl e c o m pl e xit y esti m at es f or o ur m et h o d
u n d er t h e u nif or m c orr u pti o n m o d el, w h er e w e g et cl os er t o
t h e i nf or m ati o n t h e or eti c b o u n d t h a n a n y ot h er e xisti n g w or k.
O ur pr o of r e q uir es d eli c at e a n al ysis a n d it als o i m pr o v es
pr e vi o us esti m at es f or t h e C E M P al g orit h m.

• We i ntr o d u c e a n e w gr a p h p artiti o n a n d gr a p h pr e pr o c essi n g
m et h o d t h at utili z es o ur i nf er e n c e m et h o d, a n d d e m o nstr at e
t h e eff e cti v e n ess of o ur pi p eli n e i n b o osti n g t h e p erf or m a n c e
of distri b ut e d s y n c hr o ni z ati o n.
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• E xt e nsi v e n u m eri c al e x p eri m e nts d e m o nstr at e t h e o utst a n di n g
p erf or m a n c e of o ur m et h o d.

2. P r o bl e m F o r m ul ati o n a n d P r eli mi n a ri es

Ass u m e a gr a p h G = ([ n ], E) w h er e [n ] is t h e s et of n o d es
i n d e x e d b y { 1 , 2 , ··· , n} a n d E is t h e s et of e d g es. Gi v e n
a m at h e m ati c al gr o u p G , e a c h gr a p h n o d e is assi g n e d a n
u n d erl yi n g gr o u n d tr ut h gr o u p el e m e nt R ∗

i , w h er e R ∗
i ∈ G

a n d w e us e st ar s u p ers cri pt t o e m p h asi z e t h e gr o u n d tr ut h.
F or e a c h e d g e ij ∈ E , w e o bs er v e a r el ati v e gr o u p r ati o
R i j ∈ G , w h os e cl e a n c o u nt er p art is R ∗

i j = R ∗
i R ∗ − 1

j . G r o u p
s y n c h r o ni z ati o n ai ms t o r e c o v er t h e gr o u n d tr ut h gr o u p
el e m e nts { R ∗

i } i∈ [n ] fr o m t h e p ossi bl y n ois y a n d c orr u pt e d
m e as ur e m e nts { R i j } i j ∈ E . I n t his p a p er, w e f o c us o n t h e c as e
of r ot ati o n s y n c hr o ni z ati o n, w hi c h is a s p e ci al c as e of gr o u p
s y n c hr o ni z ati o n wit h G = S O( d ). F or a p pli c ati o ns i n c a m er a
ori e nt ati o n s y n c hr o ni z ati o n ( d = 3 ), w e esti m at e a bs ol ut e
r ot ati o ns f or e a c h n o d e i ∈ [n ] fr o m m e as ur e d r el ati v e r ot ati o ns
of e d g es i n E . N ot e t h at si n c e { R ∗

i } i∈ [n ] a n d { R ∗
i R 0 } i∈ [n ]

g e n er at e t h e s a m e s et of r el ati v e r ot ati o ns, o n e c a n o nl y esti m at e
{ R ∗

i } i∈ [n ] u p t o a gl o b al r ot ati o n. T h e g e n er ali z ati o n t o a n y
li n e ar gr o u ps is dis c uss e d i n t h e s u p pl e m e nt ar y m at eri al.

2. 1. N ot ati o ns a n d D e fi niti o ns

We d e n ot e t h e a dj a c e n c y m atri x of gr a p h G as A , a n d f or m a
p air wis e o bs er v ati o n m atri x R ∈ R d n × d n b y st a c ki n g t h e R i j ’s
(f or ij ̸ ∈E , s et R i j = 0 3 × 3 ):

R : =








R 1 1 R 1 2 ··· R 1 n

R 2 1 R 2 2 ··· R 2 n

...
...

...
...

R n 1 R n 2 ··· R n n








.

We list t h e m atri x o p er ati o ns us e d i n t h e p a p er. F or m atri c es
X a n d Y , t h e o p er ati o ns X ⊗ Y , X ⊙ Y , X ⊘ Y r es p e cti v el y
d e n ot es t h e Kr o n e c k er pr o d u ct, H ar d m ar d ( el e m e nt- wis e)
m ulti pli c ati o n a n d H ar m ar d di visi o n b et w e e n X a n d Y . X ⊙ k

d e n ot es t h e el e m e nt- wis e m atri x k - p o w er. F or bl o c k m atri c es,
⟨X ,Y ⟩ bl o c k d e n ot es t h e bl o c k wis e i n n er pr o d u ct of X a n d Y ,
i. e. ⟨X ,Y ⟩ bl o c k (i,j) = ⟨X [i,j],Y [i,j]⟩, w h er e [i,j] r ef ers t o t h e
c orr es p o n di n g bl o c k of t h e m atri x.

2. 2. R e vi e w of C E M P f o r c - C y cl es

We ass u m e t h e a b o v e s etti n g of S O (d ) s y n c hr o ni z ati o n. L et
D b e a n y bi-i n v ari a nt m etri c o n S O (d ). We ass u m e a fi x e d
n u m b er of c y cl es, c , a n d d e n ot e b y N c

i j t h e s et of si m pl e c y cl es
of l e n gt h c ( or si m pl e c - c y cl es) c o nt ai ni n g e d g e ij. C E M P [2 5 ]
ai ms t o esti m at e f or e a c h e d g e ij t h e c orr u pti o n l e v el

s ∗
ij = D (R i j ,R

∗
i j ), ( 1)

fr o m t h e s et of c y cl e i n c o nsist e n c y m e as ur es

d L = D (R L ,R i j ) ( 2)

w h er e c y cl e L = ( i k1 , k1 k 2 , ··· , kc − 2 j, ji ) ∈ N c
i j a n d

R L : = R i k 1 R k 1 k 2 ··· R k c − 2 j . T h e esti m at e d s ∗
i j c a n t h e n

b e us e d f or e xtr a cti n g a cl e a n s u b gr a p h, or t o i m pl e m e nt a
w ei g ht e d l e ast s q u ar es s ol v er w h er e hi g h er w ei g hts ar e assi g n e d
t o cl e a n er e d g es.

It is o b vi o us t h at if all t h e e d g es i n L ar e cl e a n t h e n d L = 0 .
M or e o v er, d u e t o bi-i n v ari a n c e of D , t h e f oll o wi n g h ol ds tr u e

d L = s ∗
ij w h e n e v er L ∈ G c

i j , ( 3)

w h er e G c
i j is t h e s et of g o o d c - c y cl es wit h r es p e ct t o ij, i. e. t h e

s et of c y cl es L ∈ N c
i j s u c h t h at i k1 ,···, kc − 2 j ar e cl e a n. T his

gi v es a s uffi ci e nt c o n diti o n f or d L t o b e a n e x a ct esti m at or of s ∗
i j .

T o esti m at e t h e c orr u pti o n l e v els of e a c h e d g e ij, C E M P

i niti ali z es t h e e d g e w ei g ht of e a c h ij ∈ E as w
( 0 )
i j = 1 . It t h e n

it er ati v el y u p d at es t h e c orr u pti o n l e v el esti m at e as t h e f oll o wi n g
c o n v e x c o m bi n ati o n of d L ’s:

s
( t )
ij =

L ∈ N c
i j

w
( t )
L d L / z

( t )
i j ( 4)

w h er e z
( t )
i j = L ∈ N c

i j
w

( t )
L . T h e c y cl e w ei g hts w

( t + 1 )
L ar e

c o m p ut e d fr o m t h e e d g e w ei g hts w
( t + 1 )
e = e − β t s ( t )

e :

w
( t + 1 )
L =

e ∈ L \ { i j }

w ( t + 1 )
e =

e ∈ L \ { i j }

e − β t s ( t )
e , ( 5)

s o t h at w
( t + 1 )
L f o c us es o n g o o d c y cl es. T h e c y cl e w ei g hts a n d

e d g e c orr u pti o n l e v els ar e alt er n ati n gl y u p d at e d a n d i m pr o v e d
fr o m e a c h ot h er. I nt er esti n gl y, it is pr o v e d i n [2 5 ] u n d er t w o
diff er e nt c orr u pti o n m o d els t h at C E M P c o n v er g es li n e arl y t o
t h e gr o u n d tr ut h c orr u pti o n esti m at es u n d er mil d c o n diti o ns f or
c = 3 . I n pr a cti c e, C E M P o nl y us es 3- c y cl es f or c o nsi d er ati o n of
effi ci e n c y. F or l o n g er c y cl es, t h e c o m pl e xit y of C E M P s c al es e x-
p o n e nti all y wit h t h e c y cl e l e n gt h c ( w hi c h is dis c uss e d i n §3. 2 ),
a n d t h e c o n v er g e n c e g u ar a nt e e of C E M P r e m ai ns u n k n o w n.

3. O u r m et h o d: L o n g S y n c

3. 1. L o n g S y n c: M o di fi c ati o n of C E M P

O ur g o al is t o d e v el o p a s c al a bl e v ari a nt of C E M P f or a n y fi x e d
n u m b er of c y cl es, c ≥ 3 . T h e m ai n c o m p ut ati o n al b ottl e n e c k
of st e p (4 ) i n C E M P is t h at c o m p uti n g a n d s u m mi n g t h e c y cl e
i n c o nsist e n c y m e as ur es t a k es i j ∈ E |N c

i j |= O (n c ) o p er ati o ns
a n d m e m or y. T h er ef or e, t o d e v el o p a s c al a bl e al g orit h m,
w e ai m t o t a k e w ei g ht e d a v er a g e o v er d L wit h o ut e x pli citl y
c o m p uti n g a n d st ori n g e a c h d L . T o a c hi e v e t his, w e pr o p os e
t h e f oll o wi n g s p e cifi c ati o n a n d m o difi c ati o n o n C E M P:
• Us e C h o r d al dist a n c e o n S O( d). We s u g g est t h e dist a n c e

f u n cti o n
D (R 1 ,R 2 ) = 1 − ⟨ R 1 ,R 2 ⟩/ d.

T his dist a n c e is pr o p orti o n al t o t h e C h or d al dist a n c e o n
S O ( 3), w hi c h is t h e E u cli d e a n dist a n c e b et w e e n t w o
r ot ati o ns e m b e d d e d i n R d × d .
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• Us e w ei g ht e d q u a d r ati c a v e r a g e f o r c o r r u pti o n l e v el
u p d at e. I nst e a d of u p d ati n g t h e c orr u pti o n l e v el esti m at es
b y a w ei g ht e d a v er a g e of d L , w e us e t h e w ei g ht e d q u a dr ati c
a v er a g e of d L , n a m el y

s
( t )
ij =

L ∈ N c
i j

w
( t )
L d 2

L / z
( t )
i j ( 6)

w h er e t h e u p d at e r ul e of c y cl e w ei g hts r e m ai ns t h e s a m e:

w
( t + 1 )
L =

e ∈ L \ { i j }

w ( t + 1 )
e =

e ∈ L \ { i j }

e − β t s ( t )
e . ( 7)

As a r es ult, d 2
L = d 2 (R L ,R i j ) = 1 − ⟨ R L ,R i j ⟩/ d is li n e ar

i n b ot h R L a n d R i j . T h er ef or e o n e c a n s wit c h t h e or d er of
d 2 a n d t h e w ei g ht e d s u m m ati o n, s o t h at t h e c o m p ut ati o n of

s
( t )
i j c a n b e v e ct ori z e d. I n d e e d, b y t his li n e arit y a n d e q u ati o ns

(4 ) a n d (2 ), a n d n ot e t h at z
( t )
i j = L ∈ N c

i j
w

( t )
L , w e o bt ai n t h e

f oll o wi n g e q u ati o n:

s
( t )
ij =

L ∈ N c
i j

w
( t )
L d 2

L / z
( t )
i j

1 / 2

=
L ∈ N c

i j

w
( t )
L D 2 (R L ,R i j )/ z

( t )
i j

1 / 2

= D 2

L ∈ N c
i j

w
( t )
L R L ,R i j / z

( t )
i j

1 / 2

= 1 −
L ∈ N c

i j

w
( t )
L R L ,R i j / d

L ∈ N c
i j

w
( t )
L

1 / 2

( 8)

E q u ati o n (8 ) c a n b e v e ct ori z e d usi n g t h e tri c k of m atri x
p o w er if w e all o w r e p e at e d n o d es f or e a c h c y cl e. T h at is, o n e

c a n st a c k t h e s
( t )
i j ’s a n d w

( t )
i j ’s i nt o m atri c es S ( t ) a n d W ( t ) , a n d

v e ct ori z e ( 8 ) as

S ( t ) = A − W ( t ) ⊗ 1 d ⊙ R
c − 1

,R
bl o c k

⊘ d (W ( t ) ) c − 1
⊙ 1 / 2

. ( 9)

I n d e e d, b y (7 ) a n d t h e d efi niti o n of R L , L ∈ C c
i j

w
( t )
L R L

is t h e ij-t h bl o c k of (W ( t ) ⊗ 1 d ⊙ R ) c − 1 , a n d L ∈ C c
i j

w
( t )
L is

t h e ij-t h el e m e nt of W ( t ) c − 1 , w h er e C c
i j is t h e s et of c - c y cl es

c o nt ai ni n g ij wit h p ossi bl y r e p e at e d n o d es.
I n t h e c as e of utili zi n g o nl y si m pl e c y cl es, (8 ) a n d (9 )

ar e n ot e q ui v al e nt a n d w e n e e d t o c orr e ct (9 ) t o r e m o v e t h e
c y cl es wit h r e p e at e d n o d es, s o t h at o nl y si m pl e c y cl es i n
N c

i j r e m ai n. L et g c (W , R ) b e t h e m atri x v al u e d f u n cti o n

w h er e g c (W , R )(i, j) = L ∈ N c
i j

( e ∈ L \ { i j } w
( t )
e )R L . L et

f c (W ) b e t h e m atri x v al u e d f u n cti o n w h er e f c (W )(i, j) =

L ∈ N c
i j

( e ∈ L \ { i j } w
( t )
e ). T h e f oll o wi n g r es ult h ol ds:

P r o p ositi o n 3. 1. T h e u p d at e r ul e of L o n g S y n c (8 ) is e q ui v al e nt
t o t h e f oll o wi n g m atri x e q u ati o ns:

S ( t ) = A − h c (W
( t ) ,R ),R

b l o c k
⊙ A

⊙ 1 / 2

, ( 1 0)

w h ere W ( t + 1 ) = A ⊙ e x p( − β t S
( t ) ) a n d

h c (W
( t ) ,R ): = g c (W

( t ) ,R ) ⊘ (d ·f c (W
( t ) ) ⊗ 1 d ).

H ere e x p d e n ot es t h e el e m e nt wis e e x p o n e nti al f u n cti o n.

We us e e q u ati o n (1 0 ) as t h e u p d at e r ul e of L o n g S y n c a n d
pr o p os e t h e v e ct ori z e d L o n g S y n c al g orit h m i n al g orit h m 1 .

Al g o rit h m 1 ( L o n g S y n c)

I n p ut: p air wis e r ot ati o n m atri x R ∈ R d n × d n , a dj a c e n c y m atri x
A ∈ [ 0,1] n × n , c y cl e l e n gt h c , p ositi v e p ar a m et ers { β t } t ≥ 1 ,
ti m e st e p T
W ( 0 ) (i,j) ← A
f o r t = 0: T d o

S ( t ) ← A − h c (W
( t ) ,R ),R

b l o c k
⊙ A

⊙ 1 / 2

( 1 1)

W ( t + 1 ) ← A ⊙ e x p( − β t S
( t ) ) ( 1 2)

e n d f o r
O ut p ut: e d g e w ei g hts W ( T + 1 ) , c orr u pti o n l e v els S ( T )

We cl ai m t h at g c a n d f c c a n b e c o m p ut e d wit h a s e q u e n c e
of m atri x o p er ati o ns, t h us gr e atl y r e d u ci n g t h e ti m e a n d s p a c e
c o ns u m pti o n of L o n g S y n c c o m p ar e d t o its ori gi n al f or m. F or
c ≤ 6 , t h e ti m e c o m pl e xit y of c o m p uti n g g c a n d f c is O (r (d n )),
w h er e r (n ) is t h e c o m pl e xit y f or m ulti pl yi n g t w o n × n
m atri c es; f or c ≥ 7 t h e ti m e c o m pl e xit y is at m ost O (n [ (c + 3 ) / 2] ).
T his cl ai m is pr o v e d i n t h e s u p pl e m e nt ar y m at eri al. We list t h e
f or m ul a f or g c a n d f c f or c = 3 ,4 ,5 ,6 i ns pir e d b y [3 5 , 4 6 ]. T h e
f or m ul a f or c = 6 is m o v e d t o t h e s u p pl e m e nt ar y m at eri al d u e
t o t h e s p a c e li mit. F or c ≥ 7 t h e f or m ul a b e c o m es e xtr e m el y
c o m pli c at e d. We r e m ar k t h at i n pr a cti c e, t h e c y cl es of l e n gt h
gr e at er t h a n 6 ar e oft e n n ot us e d.

We fi n all y r e m ar k t h at alt h o u g h Al g orit h m 1 o nl y utili z es
c y cl es of a fi x e d l e n gt h, o n e c a n e asil y g e n er ali z e it t o
i n c or p or at e c y cl es of diff er e nt l e n gt hs. I n d e e d, t h e e q u ati o n
(1 0 ) c o ul d us e a c o n v e x c o m bi n ati o n of h c ’s t h at c orr es p o n ds
t o diff er e nt v al u es of c . T h at is, f or a pr es el e ct e d s et of c y cl e
l e n gt hs C , t h e e q u ati o n (1 1 ) i n Al g orit h m 1 is r e pl a c e d b y

S ( t ) = A −
c ∈ C

λ c h c (W
( t ) ,R ),R

b l o c k

⊙ A

⊙ 1 / 2

( 1 3)

w h er e t h e c o effi ci e nts λ c s atisfi es c ∈ C λ c = 1 t o e ns ur e a
c o n v e x c o m bi n ati o n. H er e e a c h λ c is us er-s p e cifi e d t o r efl e ct
t h e i m p ort a n c e of t h e c y cl es of l e n gt h c . H o w e v er, t h e o pti m al
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c h oi c e of t h es e p ar a m et ers u n d er c ert ai n st atisti c al m o d el
r e m ai ns u n cl e ar.

F or si m pli cit y, i n t h e e x p eri m e nts w e o nl y us e a fi x e d c y cl e
l e n gt h t o a v oi d c h o osi n g λ c . We h a v e o bs er v e d t h at s u c h si m pl e
c h oi c e still yi el ds s atisf yi n g a c c ur a c y i n c a m er a ori e nt ati o n
esti m ati o n o n b ot h s y nt h eti c a n d r e al d at a. We r ef er t h e r e a d ers
t o §5 a n d 6 f or m or e d et ails.

c F o r m ul a of f c (W ) F o r m ul a of g c (W ,R )
3 W 2 P 2

4 W 3 − d (W 2 )W   P 3 − d bl o c k (P
2 )P

− W d (W 2 ) + W ⊙ 3 − P d bl o c k (P
2 ) + P ⊙ 3

5 W 4 − d (W 3 )W   P 4 − d bl o c k (P
3 )P

− d (W 2 )W 2 − d bl o c k (P
2 )P 2

− W 2 d (W 2 ) − P 2 d bl o c k (P
2 )

− W d (W 2 )W − P d bl o c k (P
2 )P

+ 3 W ⊙ 2 W 2 + 3 P ⊙ 2 P 2

+ W W ⊙ 3 + W ⊙ 3 W + P P ⊙ 3 + P ⊙ 3 P

Ta bl e 1. F or m ul as f or f c a n d g c . H er e w e l et P = ( W ⊗ 1 d ) ⊙ R f or
s h ort er n ot ati o n. d (X ) r et ur ns t h e di a g o n al of m atri x X , d bl o c k (X )
r et ur ns t h e di a g o n al bl o c k m atri x fr o m t h e d × d di a g o n al bl o c ks of
m atri x X .

3. 2. C o m p ut ati o n al C o m pl e xit y

We d eri v e t h e s p a c e a n d ti m e c o m pl e xit y f or L o n g S y n c, a n d
d e m o nstr at e its a d v a nt a g es o v er C E M P. T h e i niti ali z ati o n st e p
i n v ol v es s etti n g t h e w ei g hts of all e d g es t o 1, w hi c h t a k es
ti m e O (|E |) a n d s p a c e O (n 2 ). F or e a c h it er ati o n, L o n g S y n c
u p d at es t h e m atri c es S ( t ) a n d W ( t ) wit h e q u ati o ns (1 1 )
a n d (1 2 ), r es p e cti v el y.  C o m p uti n g W ( t + 1 ) i n v ol v es t w o
m atri x s u btr a cti o ns, o n e s c al ar- m atri x m ulti pli c ati o n a n d o n e
el e m e nt- wis e m atri x e x p o n e nti al o p er ati o n o n S ( t ) ∈ R n × n .
T h er ef or e t h e u p d at e st e p (1 2 ) t a k es at m ost O (n 2 ) ti m e a n d
s p a c e. E q u ati o n (1 1 ), o n t h e ot h er h a n d, i n v ol v es a s e q u e n c e
of m atri x o p er ati o ns o n P ( t ) = ( W ( t ) ⊗ 1 d ) ⊙ R ∈ R d n × d n a n d
W ( t ) ∈ R n × n , i n cl u di n g m atri x m ulti pli c ati o ns, el e m e nt- wis e
m ulti pli c ati o ns a n d di a g o n al bl o c k s el e cti o ns. C o m p uti n g
P ( t ) t a k es O (d 2 n 2 ) m e m or y a n d O (d 2 n 2 ) ti m e. T h e m atri x
o p er ati o ns o n P ( t ) t a k e O (K c d

3 n 3 ) ti m e a n d O (d 2 n 2 ) s p a c e,
a n d t h e m atri x o p er ati o ns o n W ( t ) t a k e O (K c n

3 ) ti m e a n d
O (n 2 ) s p a c e, w h er e K c is t h e n u m b er of t er ms i n t h e e q u ati o n
f or f c a n d g c . T h er ef or e, e a c h it er ati o n o v er t t a k es O (K c d

3 n 3 )
ti m e a n d O (d 2 n 2 ) s p a c e. T o s u m u p, f or L o n g S y n c, t h e
ti m e c o m pl e xit y is O (K c d

3 n 3 ) a n d t h e s p a c e c o m pl e xit y is
O (d 2 n 2 ). F or c = 3 ,4 ,5 ,6 , t h e n u m b er K c is e q u al t o 1 ,3 ,9 ,3 2 .

I n c o m p aris o n, w e c o nsi d er t h e i niti ali z ati o n st e p of C E M P.
F or e a c h e d g e ij ∈ E a n d L ∈ N c

i j , i niti ali zi n g C E M P i n v ol v es
c o m p uti n g a n d st ori n g all t h e c y cl e i n c o nsist e n c y m e as ur es d L

usi n g e q u ati o n (2 ). F or e a c h L ∈ N c
i j , c o m p uti n g d L i n v ol v es

m ulti pl yi n g c r ot ati o ns, w hi c h t a k es O (c d 3 ) ti m e a n d O (d 2 )
s p a c e. T his st e p is r e p e at e d f or e a c h ij ∈ E a n d L ∈ N c

i j ,

t h er ef or e t h e t ot al ti m e c o m pl e xit y is O (c d 3
i j ∈ E |N c

i j |) a n d

t h e t ot al s p a c e c o m pl e xit y is O (d 2
i j ∈ E |N c

i j |). Si n c e f or e a c h

e d g e t h er e ar e (n − 2)( n − 3) ···(n − c + 1) = O (n c − 2 ) c y cl e c a n-
di d at es, w e k n o w t h at |N c

i j | ∼ O (n c − 2 ) f or e a c h ij ∈ E i n t h e
w orst c as e s c e n ari o of a d e ns e gr a p h. T h er ef or e t h e i niti ali z ati o n
of C E M P t a k es O (c d 3 n c − 2 |E |) ti m e a n d O (d 2 n c − 2 |E |) s p a c e
i n t h e w orst c as e. Gi v e n c ≥ 4 a n d |E | ∼ n 2 , C E M P r e q uir es
m u c h m or e ti m e a n d s p a c e t h a n L o n g S y n c.

4. T h e o r y f o r U nif o r m C o r r u pti o n M o d el

I n t his s e cti o n, w e pr es e nt t h e e x a ct r e c o v er y g u ar a nt e e of
L o n g S y n c u n d er t h e u nif or m c orr u pti o n m o d el ( U C M). U C M is
a p o p ul ar pr o b a bilisti c m o d el t h at is wi d el y a d o pt e d f or s y nt h eti c
e x p eri m e nts of m a n y pr e vi o us w or ks o n gr o u p s y n c hr o ni z ati o n
[8 , 2 5 , 2 8 , 2 9 , 3 2 , 4 2 ]. T h e m o d el U C M(n, p, q g ) ass u m es t h at G
is a n Er dős- R é n yi gr a p h wit h e d g e c o n n e cti o n pr o b a bilit y p . F or
e a c h e d g e ij ∈ E , R i j is g e n er at e d i n d e p e n d e ntl y as f oll o ws:

R i j =
R ∗

i j w. p. q g ;

R̃ i j ∼ H a ar (G ) w. p. 1 − q g .

We als o d e v el o p e d a n e x a ct r e c o v er y t h e or y f or a g e n er al
m o d el of a d v ers ari al c orr u pti o n, w hi c h w e i n cl u d e i n s e cti o n
C. 1 of t h e s u p pl e m e nt ar y m at eri al. A n i nf or m al v ersi o n of o ur
m ai n r es ult f or U C M is st at e d i n T h e or e m 4. 1 . Alt h o u g h t h e
a p pli c ati o n of t his p a p er is f o c us e d o n r ot ati o n s y n c hr o ni z ati o n,
t h e f oll o wi n g t h e or y f or U C M is v ali d f or a n y c o m p a ct gr o u p
G , as e x pl ai n e d i n t h e s u p pl e m e nt ar y m at eri al.

T h e o r e m 4. 1. L et 0 < r < 1 , 0 < q < 1 , 0 < p ≤ 1 , G = S O ( 3).
Ass u m e L o n g S y n c is a p pli e d wit h c y cl es of l e n gt h c , n / l o gn ∼

p − ( c − 1 ) / ( c − 2 − ϵ ) q
− 7 ( c − 1 ) / 3 ( c − 2 )
g f or s o m e ϵ > 0 a n d

1 / β t + 1 = r / β t f or all t ≥ 1 .

T h e n wit h a p pr o pri at e c h oi c es of β 0 , β1 , r, a n d hi g h pr o b a bilit y,

m a x i j ∈ E |s ∗
i j − s

( t )
i j | ≤ 1

2 c β t
f or all t ≥ 1 .

T h e m aj or diffi c ult y of pr o vi n g T h e or e m 4. 1 is t h e d e p e n-
d e n c e i n t h e c y cl e i n c o nsist e n c y m e as ur es f or c y cl es i n N c

i j

w h e n c ≥ 4 . U nli k e t h e 3- c y cl e c as e, t h e c y cl e i n c o nsist e n c y
m e as ur e of a 4- c y cl e L 1 = ( i k1 , k1 k 2 , k2 j ) is c orr el at e d wit h
t h at of L 2 = ( i k1 , k1 k 3 , k3 j ) u n d er U C M. T h er ef or e t h e k e y
c o n c e ntr ati o n i n e q u aliti es f or t h e pr o of c a n n ot b e c o n cl u d e d
fr o m t h e st a n d ar d C h er n off b o u n ds.   T o o v er c o m e t his
t h e or eti c al o bst a cl e, w e h a v e i nt e gr at e d v ari o us m at h e m ati c al
t e c h ni q u es fr o m [3 , 7 , 2 2 – 2 4 , 4 8 ] t o pr o v e t h e t h e or e m, w h os e
d et ails ar e i n cl u d e d i n t h e s u p pl e m e nt ar y m at eri al.

T h e or e m 4. 1 pr o vi d es a n u p p er b o u n d of t h e s a m pl e
c o m pl e xit y (t h e r e q uir e d gr a p h si z e n ) of L o n g S y n c f or e x a ct
r e c o v er y of t h e gr o u n d tr ut h s ol uti o ns. T his s a m pl e c o m pl e xit y
is t h e cl os est t o t h e i nf or m ati o n t h e or eti c b o u n d a m o n g all
e xisti n g r ot ati o n s y n c hr o ni z ati o n m et h o ds. T h e c o m p aris o n
wit h pr e vi o us w or ks is s u m m ari z e d i n Ta bl e 2 .
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R ef er e n c e S a m pl e C o m pl e xit y

[2 5 ] f or C E M P O (p − 2 q
− 2 8 / 3
g )

[2 9 ] f or R e S y n c O (p − 2 q − 7
g )

O urs f or C E M P O (p − 2 − ϵ q
− 1 4 / 3
g )

O urs f or L o n g S y n c ( c = 3 ) O (p − 2 − ϵ q
− 1 4 / 3
g )

O urs f or L o n g S y n c ( c = 4 ) O (p − 1 .5 − ϵ q − 3 .5
g )

O urs f or L o n g S y n c ( a n y c ) O p − c − 1
c − 2 − ϵ q

−
7 ( c − 1 )
3 ( c − 2 )

g

O urs f or L o n g S y n c ( c → ∞ ) O (p − 1 − ϵ q
− 7 / 3
g )

I nf or m ati o n T h e or eti c B o u n d [6 ] O (p − 1 q − 2
g )

Ta bl e 2. C o m p aris o n of t h e s a m pl e c o m pl e xit y r e q uir e m e nt. L o w er
a bs ol ut e v al u es of t h e p o w ers o n p, q g i n di c at e b ett er r es ults. ϵ is a n
ar bitr aril y s m all p ositi v e r e al n u m b er.

5. S y nt h eti c D at a E x p e ri m e nt

We t est L o n g S y n c o n s y nt h eti c d at as ets g e n er at e d wit h
U nif or m C orr u pti o n M o d el ( U C M) a n d U nif or m Bi p artit e
C orr u pti o n M o d el ( U B C M) r es p e cti v el y d es cri b e d i n § 5. 1 a n d
5. 2 . F or b ot h m o d els wit h t h eir c orr es p o n di n g vi e wi n g gr a p hs
G = ([ n ], E), w e s a m pl e t h e gr o u n d tr ut h a bs ol ut e r ot ati o n
m atri c es { R ∗

i } i∈ [n ] i n d e p e n d e ntl y fr o m t h e H a ar m e as ur e
o n S O( 3), a n d w e g e n er at e t h e o bs er v e d r el ati v e r ot ati o ns
{ R i j } i j ∈ E i n d e p e n d e ntl y as f oll o ws:

R i j =
R ∗

i R ∗
j w. p. q g ;

R̃ i j ∼ H a ar (S O ( 3)) w. p. 1 − q g .

We us e L o n g S y n c wit h c y cl e l e n gt h c , β t = mi n( 2 t ,2 0) a n d
T = 1 0 a n d r e c or d t h e e d g e w ei g hts. F or U C M w e s et c = 4 ,5
a n d f or U B C M w e o nl y us e c = 4 si n c e n o 5- c y cl es e xist. F or o ur
m et h o d, w e first b uil d a w ei g ht e d gr a p h w h os e e d g e w ei g hts ar e
esti m at e d b y L o n g S y n c. We t h e n e xtr a ct a m a xi m u m s p a n ni n g
tr e e ( M S T) of t h e r es ulti n g w ei g ht e d gr a p h. T h e r es ulti n g s p a n-
ni n g tr e e is e x p e ct e d t o b e t h e cl e a n est p ossi bl e s p a n ni n g tr e e.
T o i niti ali z e o ur s ol uti o n of a bs ol ut e r ot ati o ns, w e first fi x R 1 as
t h e i d e ntit y r ot ati o n, a n d fi n d t h e r est of R i ’s b y c o ns e c uti v el y
m ulti pl yi n g t h e r el ati v e r ot ati o ns al o n g t h e s p a n ni n g tr e e usi n g
t h e f or m ul a R i = R i j R j . T o r efi n e o ur i niti ali z e d s ol uti o n, w e
a p pl y I R L S wit h G e m a n- M c Cl ur e [ 4 ] l oss f u n cti o ns t o mi ni-
mi z e i j ∈ E ρ G M (d ∠ (R i j ,R i R

T
j )), w h er e d ∠ is t h e g e o d esi c

dist a n c e i n S O ( 3). We r ef er t o t his m et h o d as L o n g S y n c +I R L S.
T o d e m o nstr at e t h e a d v a nt a g es of utili zi n g l o n g er c y cl e

i nf or m ati o n, w e c o m p ar e o ur m et h o d wit h I R L S i niti ali z e d b y
ot h er t w o diff er e nt s p a n ni n g tr e es. T h e first o n e is t h e r a n d o m
s p a n ni n g tr e e, w hi c h us es n o c y cl e i nf or m ati o n. T h e ot h er o n e
t h e M S T e xtr a ct e d fr o m t h e C E M P- esti m at e d w ei g hts. N ot e
t h at C E M P o nl y us es 3- c y cl e i nf or m ati o n. We r ef er t o t h es e
m et h o ds as I R L S a n d C E M P +I R L S r es p e cti v el y.

Si n c e t h e s ol uti o n of a bs ol ut e r ot ati o ns is d et er mi n e d u p t o
a gl o b al r ot ati o n, w e ali g n o ur esti m at e d r ot ati o n { R̂ i } wit h
{ R ∗

i } b y R ali g n t h at mi ni mi z es t h e ℓ 1 r ot ati o n ali g n m e nt err or

0. 8 6  0. 8 8  0. 9  0. 9 2
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L o n g S y n c 4 + I R L S

L o n g S y n c 5 + I R L S

C E M P + I R L S
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L o n g S y n c 4 + I R L S

C E M P + I R L S

I R L S

Fi g ur e 1.   A v er a g e err ors f or I R L S, C E M P +I R L S a n d L o n g S y n c
+I R L S wit h c = 4 , 5, usi n g t h e u nif or m c orr u pti o n (t o p) a n d u nif or m
bi p artit e c orr u pti o n ( b ott o m) m o d els. T h e m e a n err ors ar e m e as ur e d
i n d e gr e es. L o n g S y n c 4 a n d L o n g S y n c 5 r ef er t o L o n g S y n c wit h 4 a n d
5 c y cl es, r es p e cti v el y.

i∈ [n ]∥ R̂ i R ali g n − R ∗
i ∥ F . We r e p ort t h e m e a n esti m ati o n err or

i n d e gr e es: 1 8 0 · i∈ [n ]d ∠ (R̂ i R ali g n ,R
∗
i )/ n .

5. 1. U nif o r m C o r r u pti o n M o d el

F or U C M( n, p, q g ), w e t a k e n = 2 0 0 a n d p = 1 a n d c orr u pti o n
pr o b a bilit y q = 1 − q g r a n g es fr o m 0. 8 6 t o 0. 9 2. We r e p ort t h e
a v er a g e m e a n esti m ati o n err or fr o m 2 0 tri als of t h e u nif or m
c orr u pti o n m o d el i n t h e t o p p a n el of Fi g ur e 1 .

We n ot e t h at L o n g S y n c u nif or ml y i m pr o v es I R L S, a n d t h e
m e a n err or of L o n g S y n c d e cr e as es as t h e c y cl e l e n gt h i n cr e as es.
W h e n q > 0 .8 6 , t h e e x p e ct e d n u m b er of cl e a n 3- c y cl es f or e a c h
e d g e is l ess t h a n 4, a n d t h er ef or e l o n g er c y cl es ar e h el pf ul. T h e
n u m eri c al r es ult ali g ns wit h o ur t h e or y t h at usi n g l o n g er c y cl es
m a y t ol er at e hi g h er c orr u pti o n wit h fi x e d gr a p h si z e n .

5. 2. U nif o r m Bi p a rtit e C o r r u pti o n M o d el

F or U B C M, w e first g e n er at e t h e gr a p h a n d r el ati v e r ot ati o ns b y
U C M( n, p, q g ) wit h n = 2 0 0 , p = 1 a n d q = 1 − q g r a n gi n g fr o m
0. 8 t o 0. 8 5. T h e n w e s plit t h e n o d es i nt o t w o cl ust ers of e q u al
si z e a n d r e m o v e t h e i ntr a- cl ust er e d g es f or b ot h cl ust ers. T h e
r es ulti n g gr a p h is bi p artit e, w h er e o nl y c y cl es of e v e n l e n gt hs
e xist. We r e p ort t h e m e a n esti m ati o n err or fr o m 2 0 tri als i n t h e
b ott o m p a n el of Fi g ur e 1 .

We o bs er v e t h at L o n g S y n c wit h 4- c y cl es al m ost e x a ctl y
r e c o v ers t h e r ot ati o ns, w hil e f or ot h er al g orit h ms t h e r ot ati o n
esti m at es ar e n ot e v e n cl os e t o t h e gr o u n d tr ut h.
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6. R e al D at a E x p e ri m e nt

We t est distri b ut e d s y n c hr o ni z ati o n wit h L o n g S y n c o n t h e P h o-
t o T o uris m d at as et [5 0 ] t o d e m o nstr at e its a d v a nt a g es i n a c c ur a c y
a n d s p e e d o v er ot h er b as eli n es. P h ot o T o uris m is a l ar g e s c al e
d at as et c o nsisti n g of 1 5 s ets of i m a g es t a k e n f or 3 D r e c o n-
str u cti o n. T h e s m all est d at as et c o nsists of 2 4 7 c a m er as, a n d t h e
l ar g est d at as et c o nsists of 5 4 3 3 c a m er as. T h e i n p ut gr a p h a n d i ni-
ti al p air wis e r ot ati o n esti m at es ar e pr o vi d e d i n t h e d at as et. I n t h e
f oll o wi n g, w e first e x pl ai n t h e c o m m o n st e ps f or distri b ut e d s y n-
c hr o ni z ati o n, a n d o ur i m pr o v e m e nt usi n g L o n g S y n c. We t h e n
d es cri b e o ur gr a p h pr o c essi n g m et h o d f or filt eri n g b a d n o d es
a n d e d g es, w hi c h als o is a p pli c a bl e t o ot h er b as eli n e m et h o ds.
St e ps i n Dist ri b ut e d S y n c h r o ni z ati o n:

1. G r a p h p a rtiti o ni n g. T h e first st e p i n v ol v es p artiti o ni n g
t h e gr a p h G = ([ n ], E) i nt o K cl ust ers G i = ( V i , Ei ),i∈ [K ].
I n t his p a p er w e a p pl y s p e ctr al cl ust eri n g al g orit h m [3 7 ]
o n t h e a dj a c e n c y m atri x G , w h er e K = 0 .6

√
n p a n d

p = 2 |E |/ (n (n − 1)) .
2. S y n c h r o ni z ati o n wit hi n cl ust e rs. R u n st a n d ar d s y n c hr o-

ni z ati o n s ol v ers f or e a c h cl ust er. I n t his w or k, w e us e t h e
c urr e nt st at e- of-t h e- art m et h o d M P L S [ 3 9 ]. N ot e t h at f or
e a c h c a m er a p i n cl ust er k , o n e c a n o nl y esti m at e t h e tr u e
r ot ati o n R ∗

p u p t o a gl o b al r ot ati o n R k . N a m el y, o n e o nl y

o bt ai ns R̂ p ≈ R ∗
p R − 1

k w h er e R k is u n k n o w n a n d is t h e
s a m e f or all c a m er as i n cl ust er k .

3. Esti m ati o n of i nt e r- cl ust e r r ot ati o ns. T o fi n d R ∗
p of all

c a m er as, o n e n e e ds t o s ol v e R k f or all cl ust ers. N a m el y, o n e
n e e ds t o r ot at e a n d stit c h t h e s ol uti o ns of all cl ust ers s o t h at
t h e y ar e i n t h e s a m e r ef er e n c e fr a m e. T o d o t his, it is c o m m o n
t o first esti m at e t h e i nt er- cls ut er r ot ati o ns R kl : = R k R − 1

l

b et w e e n p airs of cl ust ers k,l , a n d t h e n s y n c hr o ni z e t h es e
r el ati v e r ot ati o ns. T o esti m at e e a c h R kl , w e n ot e t h at R kl =
R ∗ − 1

p R ∗
p q R ∗

q f or e a c h p ∈ V k a n d q ∈ V l. T h er ef or e, o n e c a n

us e t h e r ot ati o ns i n t h e s et S kl : = { R̂ − 1
p R p q R̂ q } p ∈ V k , q∈ V l

t o a p pr o xi m at e R kl . We r e m ar k t h at t his st e p is cr u ci al t o t h e
o v er all p erf or m a n c e of distri b ut e d m et h o ds, a n d w e c o m p ar e
t h e f oll o wi n g m et h o ds f or s ol vi n g R kl :
• M ult S y n c [ 9 ]: R u n s y n c hr o ni z ati o n o n a m ulti- gr a p h

w h er e e a c h e d g e kl is assi g n e d a s et of r el ati v e r ot ati o ns
{ R̂ − 1

p R p q R̂ q } p ∈ V k , q∈ V l
. T his c o m bi n es t h e st e p 3 a n d

4 i n a u nifi e d l e ast s q u ar es f or m ul ati o n.
• E d g e a v er a gi n g usi n g I R L S: We i niti ali z e R̂ kl wit h t h e

q u at er ni o n ℓ 2 m e a n of t h e s et S kl a n d r efi n e it usi n g
ℓ 1 -r ot ati o n a v er a gi n g [1 9 ]. We r ef er t o t his m et h o d as
I R L S i n o ur c o m p aris o n.

• E d g e a v er a gi n g usi n g L o n g S y n c: We first p erf or m
L o n g S y n c wit h 4- c y cl es t o esti m at e t h e w ei g hts of t h es e
i nt er- cl ust er e d g es (t h er e ar e n o 3- c y cl es f or a bi p artit e
gr a p h). We n e xt i niti ali z e R̂ kl as t h e q u at er ni o n w ei g ht e d
ℓ 2 m e a n of S kl , usi n g t h e e d g e w ei g hts fr o m L o n g S y n c
b y t h eir L o n g S y n c w ei g hts. L astl y, w e r efi n e t h e s ol uti o n
usi n g [ 1 9 ].

4. S y n c h r o ni z ati o n of i nt e r- cl ust e r r ot ati o ns. T his st e p is
s ki p p e d f or M ulti S y n c. F or ot h er m et h o ds d es cri b e d i n st e p
3, w e fi n d R k ( u p t o a r ot ati o n) f or e a c h cl ust er k fr o m t h e
esti m at e d { R kl } k,l ∈ [K ] b y M P L S.

5. R ot ati o n m e r gi n g. Fi n all y, f or e a c h c a m er a p i n cl ust er k ,
t h e r ot ati o n esti m at e of p is gi v e n b y R fi n al

p = R̂ p R − 1
k .

N e xt, w e i ntr o d u c e o ur gr a p h pr o c essi n g m et h o d t o f urt h er
b o ost t h e p erf or m a n c e of all t est e d m et h o ds.
E xt r a I m p r o v e m e nt b y G r a p h P r o c essi n g:
• S p e ct r al cl ust e ri n g wit h J a c c a r d I n d e x. F or st e p 1, w e us e

t h e J a c c ar d i n d e x m atri x as t h e si mil arit y m atri x f or s p e ctr al
cl ust eri n g, i nst e a d of t h e a dj a c e n c y m atri x. T h e n × n J a c c ar d
i n d e x m atri x A J is d efi n e d as f oll o ws:

A J (i,j) =
0 ij ̸ ∈E
|N i ∩ N j |
|N i ∪ N j | ij ∈ E

( 1 4)

w h er e N i a n d N j d e n ot e t h e s ets of n ei g h b ori n g n o d es of
n o d e i a n d j , r es p e cti v el y. I n t his w a y, A J (i, j) is hi g h er
f or t h e p air ij c o nt ai n e d i n m a n y 3- c y cl es, w hi c h is a m or e
r o b ust a n d ni c el y s c al e d st atisti cs (∈ [ 0,1] ) f or m e as uri n g t h e
l o c al gr a p h d e nsit y ar o u n d e d g e ij.

• R efi n e m e nt of i nt r a- cl ust e r e d g es a n d n o d es. F or st e p
2, aft er t h e M P L S st e p, w e p erf or m C E M P wit h 3- c y cl es
t o esti m at e t h e c orr u pti o n l e v el of t h e i ntr a- cl ust er e d g es
f or e a c h cl ust er. We r e m o v e a c a m er a if t h e n u m b er of
n ei g h b ori n g ‘ g o o d’ e d g es, i. e. t h e e d g es wit h c orr u pti o n l e v el
l ess t h a n 0. 1, is l ess t h a n 4. T h e n u m b ers 4 a n d 0. 1 ar e c h os e n
t o b al a n c e t h e n u m b er of r e m ai ni n g c a m er as a n d t h e q u alit y
of i ntr a- cl ust er r ot ati o n esti m at es. I n or d er t o eli mi n at e t h e
s p ars el y c o n n e ct e d c o m p o n e nts i nsi d e t h e cl ust er, w e us e t h e
M atl a b b uilt-i n hi er ar c hi c al s p e ctr al cl ust eri n g f u n cti o n o n t h e
r e m ai ni n g c a m er as wit h t h e ‘ c ut off’ a n d ‘ d e pt h’ p ar a m et ers
as 2 a n d 4, a n d w e k e e p t h e l ar g est c o m p o n e nt. T h e a bs ol ut e
r ot ati o ns f or t h e r e m ai ni n g c a m er as ar e esti m at e d b y M P L S.
We r e m ar k t h at o n e c o ul d r e pl a c e C E M P b y L o n g S y n c
wit h 3- c y cl es. H o w e v er, w e h a v e n ot o bs er v e d si g nifi c a nt
diff er e n c e i n t h e p erf or m a n c e.
We r es p e cti v el y n a m e M ulti S y n c a n d I R L S wit h o ur n e w

gr a p h pr o c essi n g m et h o d as M ulti S y n c( N e w) a n d I R L S( n e w).
“ L o n g S y n c ” i n o ur e x p eri m e nt r ef ers t o t h e f ull v ersi o n of
o ur al g orit h m: us e L o n g S y n c w ei g hts f or e d g e a v er a gi n g
i n St e p 3, wit h t h e gr a p h pr o c essi n g st e p. We als o c o m p ar e
wit h M P L S o n t h e w h ol e d at as et, si n c e it is a st at e- of-t h e- art
n o n- distri b ut e d m et h o d, b ut w e n ot e t h at M P L S is si g nifi c a ntl y
sl o w er t h a n all distri b ut e d m et h o ds.   We r e p ort m e di a n
err or 1 8 0 · m e di a n ({ d ∠ (R̂ i R ali g n , R ∗

i )} i∈ [n ] of t h e t est e d
m et h o ds o n 1 4 d at as ets i n Fi g ur e 2 . We e x cl u d e t h e r es ult of
G e n d ar m e n m ar kt si n c e all m et h o ds r et ur n l ar g e esti m ati o n
err ors i n t h e fi g ur e. T h e f ull r es ults, i n cl u di n g t h at of m e a n
err or ar e i n cl u d e d i n t h e s u p pl e m e nt ar y m at eri al.

I n Fi g ur e 3 , f or e a c h distri b ut e d m et h o d, w e r e p ort t h e
r ati o (i n p er c e nt a g e) b et w e e n its t ot al r u nti m e o n all d at as ets
a n d t h at of t h e n o n- distri b ut e d M P L S. N a m el y, w e c o m p ut e
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Fi g ur e 3. R u nti m e r ati o a n d a v er a g e m e di a n a n d m e a n err or g a ps
b et w e e n t h e distri b ut e d m et h o ds a n d M P L S o n t h e e ntir e gr a p h.

d ∈ D tdist , d/ d ∈ D tM P L S , d, w h er e D is t h e s et of 1 5 d at as ets,
a n d e a c h tdist , d a n d tM P L S , d is r es p e cti v el y t h e r u nti m e of
t h e distri b ut e d m et h o d a n d M P L S o n d at a d . I n t h e s a m e
fi g ur e, w e pr es e nt t h e m e a n/ m e di a n err or g a p b et w e e n
e a c h distri b ut e d m et h o d a n d M P L S. T h e m e a n a n d m e di a n
err or g a p is r es p e cti v el y d efi n e d as (ē dist − ē M P L S )/ ē dist a n d
(ê dist − ê M P L S )/ ê dist , w h er e ē a n d ê r es p e cti v el y d e n ot e t h e m e a n
a n d m e di a n err or o v er all c a m er as.

Fr o m Fi g ur e 2 a n d 3 , o ur m et h o d o ut p erf or ms ot h er dis-
tri b ut e d m et h o ds o n 1 3 o ut of 1 5 d at as ets. T h e m ost si g nifi c a nt
i m pr o v e m e nt i n m e a n err or a n d m e di a n err or ar e r es p e cti v el y
2 8 .6 % a n d 4 6 .4 % (i n N otr e D a m e) c o m p ar e d t o t h e b est p er-
f or mi n g m et h o d b et w e e n I R L S( n e w) a n d M ulti S y n c( n e w). T h e
i m pr o v e m e nt is e v e n m or e si g nifi c a nt w h e n c o m p ari n g t o t h e
ori gi n al v ersi o n of t h es e b as eli n e m et h o ds wit h o ut o ur gr a p h pr o-
c essi n g m et h o d. T h e o nl y t w o d at as ets wit h o ut i m pr o v e m e nt ar e
G e n d ar m e n m ar kt a n d U ni o n S q u ar e. O ur m et h o d is c o m p ar a bl e
t o ot h ers o n U ni o n S q u ar e, a n d all m et h o ds r et ur n l ar g e err ors o n
G e n d ar m e n m ar kt d u e t o m a n y r e p etiti v e p att er ns i n its 3 D s c e n e.

T h e a v er a g e m e a n a n d m e di a n err or g a p b et w e e n o ur m et h o d
a n d f ull M P L S ar e r es p e cti v el y 3 8 .3 % a n d 1 8 .4 % . C o m p ar e d t o
t h e b est p erf or mi n g m et h o d a m o n g ot h ers, o ur m et h o d r e d u c es
t h e a v er a g e m e di a n err or g a p b y 4 0 .8 % , a n d t h e a v er a g e m e a n
err or g a p b y 9 .6 % . I n t er ms of r u nti m e, o ur m et h o d is u nif or ml y
f ast er t h a n M ulti S y n c a n d it is s c al a bl e o n t h e l ar g est d at as et,
t a ki n g l ess t h a n 6 % of t h e t ot al r u nti m e of f ull M P L S. I n c o n cl u-
si o n, o ur m et h o d si g nifi c a ntl y i m pr o v es t h e r es ult of distri b ut e d
r ot ati o n s y n c hr o ni z ati o n wit h o ut c o m pr o misi n g r u nti m e.

I n t h e s u p pl e m e nt ar y m at eri al, w e f urt h er d e m o nstr at e t h e
i m pr o v e m e nt b y o ur n e w gr a p h pr o c essi n g m et h o d, w hi c h
si g nifi c a ntl y i m pr o v es t h e r es ults of L o n g S y n c ( wit h o ut e xtr a
gr a p h pr o c essi n g) i n 1 4 of t h e 1 5 d at as ets. O n t h es e 1 4 d at as ets,
t h e a v er a g e r e d u cti o n o n m e a n err or is 5 9 .2 % a n d t h e a v er a g e
r e d u cti o n o n m e di a n err or is 2 8 .5 % .

7. C o n cl usi o n

We pr o p os e L o n g S y n c, a r o b ust a n d effi ci e nt al g orit h m f or
gr o u p s y n c hr o ni z ati o n. It m o difi es a n d v e ct ori z es C E M P w hi c h
e n a bl es effi ci e nt c o m p ut ati o n w h e n usi n g l o n g er c y cl es. T h e
t h e or y w e d e v el o p e d f or L o n g S y n c is t h e str o n g est a m o n g
all ot h er e xisti n g r es ults u n d er U C M. E x p eri m e nt s h o ws t h at
L o n g S y n c, t o g et h er wit h o ur i m pr o v e d gr a p h pr e pr o c essi n g
m et h o d, a c hi e v es s u p eri or a c c ur a c y f or distri b ut e d s y n c hr o ni z a-
ti o n o n l ar g e r e al d at as ets wit h c o m p etiti v e r u nti m e. H o w e v er,
o ur m et h o d als o h as s o m e li mit ati o ns. First of all, i n t h e or y t h er e
is still a s m all g a p of s a m pl e c o m pl e xit y fr o m o ur m et h o d t o t h e
i nf or m ati o n t h e or eti c o n e. Filli n g t his g a p is a n o p e n pr o bl e m,
w hi c h r e q uir es n e w t o ols a n d p ossi bl y m or e s o p histi c at e d a n al-
ysis. S e c o n d, o ur gr a p h pr e pr o c essi n g m et h o d is q uit e h e uristi c,
a n d a n a ut o m ati c w a y of c h o osi n g p ar a m et ers is n e e d e d. O ur
w or k als o o p e ns a d o or f or s o m e i m p ort a nt f ut ur e dir e cti o ns,
i n cl u di n g distri b ut e d p arti al p er m ut ati o n s y n c hr o ni z ati o n f or
m ulti-i m a g e m at c hi n g, a n g ul ar s y n c hr o ni z ati o n f or Cr y o- E M
a n d Ji gs a w P u z zl es, a n d a n al ysis of t h eir al g orit h ms.
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S u p pl e m e nt ar y M at eri al

A. F ull R es ults f o r t h e R e al D at a E x p e ri m e nt

We r e c or d t h e f ull r es ults f or o ur r e al d at a e x p eri m e nt i n Ta bl es 3 a n d 4 .

D at a
L o n g S y n c M ulti S y n c- N e w I R L S- N e w M P L S o n f ull d at as et R e m ai ni n g

n k ē ê  t ē ê  t ē ê  t ē ê  t c a m er as
Al a m o 6 2 7 1 0 2. 6 7 1. 0 3 6. 6 8 3. 2 1 1. 8 1 8 0. 7 7 2. 7 4 1. 1 4 3. 5 8 2. 0 3 0. 9 5  5 3. 6 7 0. 7 0
Ellis Isl a n d 2 4 7 7 1. 0 7 0. 6 0 1. 0 5 1. 8 1 1. 3 7 2 4. 4 6 1. 2 9 0. 9 2 0. 7 9 0. 8 9 0. 4 8  4. 4 0 0. 6 6
M a dri d M etr o p olis 3 9 4 6 2. 9 8 1. 8 9 1. 2 8 4. 4 2 3. 9 2 1 4. 7 6 3. 3 5 2. 2 7 1. 0 0 2. 1 0 1. 1 0  5. 7 6 0. 5 3
M o ntr e al N otr e D a m e 4 7 4 8 3. 8 9 0. 4 5 2. 9 6 4. 3 4 1. 0 5 3 9. 1 7 4. 0 0 0. 6 0 1. 8 6 0. 7 8 0. 4 1  1 4. 9 5 0. 7 0
N otr e D a m e 5 5 3 1 1 1. 0 0 0. 6 0 5. 2 6 1. 9 3 1. 6 4 1 1 1. 9 8 1. 4 0 1. 1 2 3. 0 4 0. 9 6 0. 5 0  5 2. 6 8 0. 6 6
N Y C Li br ar y 3 7 6 6 2. 0 5 1. 0 9 1. 2 0 2. 5 6 1. 6 3 1 4. 5 7 2. 3 1 1. 4 7 0. 8 3 1. 5 6 1. 0 1  5. 0 2 0. 5 6
Pi a z z a d el P o p ol o 3 4 5 7 3. 8 3 0. 6 2 1. 3 9 4. 0 7 1. 0 7 2 2. 9 1 3. 8 9 0. 8 3 0. 9 8 1. 6 1 0. 5 7  6. 2 6 0. 6 1
R o m a n F or u m 1 1 0 2 6 2. 4 7 1. 6 1 5. 6 0 2. 8 4 1. 9 8 1 6. 1 3 2. 5 5 1. 6 8 3. 2 1 1. 8 0 1. 3 3  2 4. 0 5 0. 4 8
T o w er of L o n d o n 4 8 9 5 2. 8 5 2. 1 8 1. 8 2 3. 4 9 2. 6 6  8. 4 3 2. 9 4 2. 2 0 1. 1 7 2. 5 0 2. 1 3  5. 6 3 0. 6 0
U ni o n S q u ar e 9 3 0 4 8. 0 2 4. 3 1 2. 5 9 7. 7 9 3. 9 3  4. 9 2 7. 7 6 3. 7 3 1. 7 3 4. 5 0 3. 5 3  7. 2 0 0. 4 2
Vi e n n a C at h e dr al 9 1 8 9 3. 6 5 0. 5 8 5. 6 6 4. 3 4 1. 5 7 5 6. 4 5 3. 7 6 0. 7 7 3. 3 6 1. 3 0 0. 5 3  5 4. 6 2 0. 4 8
G e n d ar m e n m ar kt 7 4 2 6 8 4. 9 5 7 7. 6 0 3. 2 1 8 3. 3 0 8 0. 4 8 1 5. 7 5 7 4. 7 1 8 4. 2 3 2. 2 7 4 8. 5 2 4 0. 1 6 1 3. 5 8 0. 4 7
Pi c c a dill y 2 5 0 8 9 5. 0 7 1. 7 5 2 2. 5 6 5. 4 3 2. 4 6 6 5. 8 9 5. 2 1 2. 0 8 1 0. 7 2 2. 2 0 1. 4 5 4 2 9. 4 0 0. 4 5
Tr af al g ar 5 4 3 3 9 7. 1 2 2. 3 3 7 9. 3 3 1 0. 0 1 5. 1 9 9 1. 6 9 7. 2 5 2. 4 4 4 1. 5 9 1. 8 8 1. 1 7 1 7 9 6. 4 1 0. 3 8
Yor k mi nst er 4 5 8 6 1. 9 7 1. 3 6 2. 5 2 2. 3 3 1. 7 4 1 4. 9 7 2. 0 1 1. 3 8 1. 8 9 1. 6 3 1. 3 1  7. 0 5 0. 6 1

Ta bl e 3. R es ults f or P h ot o T o uris m. F or e a c h d at as et, ē a n d ê i n di c at e t h e m e a n err or a n d m e di a n err or of t h e o ut p ut a bs ol ut e r ot ati o n esti m at es
m e as ur e d i n d e gr e es, a n d t is t h e t ot al r u nti m e of e a c h m et h o d m e as ur e d i n s e c o n ds. T h e l ast c ol u m n i n di c at es t h e r e m ai ni n g p orti o n of c a m er as
f or e a c h d at as et aft er a d p oti n g o ur n e w gr a p h pr e pr o c essi n g m et h o d.

D at a
L o n g S y n c- N ai v e M ulti S y n c I R L S M P L S o n f ull d at as et

n k ē ê  t ē ê  t ē ê  t ē ê  t

Al a m o 6 2 7 1 0 7. 4 5 1. 1 1 8. 9 1 7. 7 4 1. 5 6 8 1. 7 3 7. 5 6 1. 3 0 5. 7 1 3. 6 7 1. 0 2  5 5. 4 3

Ellis Isl a n d 2 4 7 7 3. 8 4 0. 6 9 2. 2 8 5. 2 4 2. 2 9 2 5. 4 9 4. 1 2 1. 0 9 1. 7 7 2. 8 2 0. 5 0  5. 7 2

M a dri d M etr o p olis 3 9 4 6 9. 8 5 2. 9 2 2. 9 6 1 0. 2 7 3. 9 1 1 5. 4 6 1 0. 1 3 3. 6 1 2. 2 4 5. 8 3 1. 3 1  7. 6 3

M o ntr e al N otr e D a m e 4 7 4 8 5. 9 3 0. 6 1 5. 1 7 6. 4 9 1. 4 4 4 1. 2 0 6. 0 6 0. 8 7 3. 3 7 1. 1 3 0. 5 0  1 8. 4 0

N otr e D a m e 5 5 3 1 1 4. 5 7 0. 7 2 8. 5 6 4. 9 7 1. 2 8 1 1 7. 8 1 4. 8 2 1. 0 9 5. 1 9 2. 7 1 0. 6 4  5 7. 9 4

N Y C Li br ar y 3 7 6 6 6. 1 5 1. 6 5 2. 7 7 7. 1 3 2. 9 6 1 5. 5 8 6. 2 8 1. 9 2 2. 0 7 3. 1 1 1. 3 0  5. 9 2

Pi a z z a d el P o p ol o 3 4 5 7 6. 3 7 0. 9 9 2. 8 4 1 0. 1 8 7. 0 9 3 3. 3 5 7. 2 3 1. 1 8 2. 0 7 3. 4 4 0. 8 6  7. 1 9

R o m a n F or u m 1 1 0 2 6 5. 9 8 1. 8 0 1 0. 1 5 6. 6 1 2. 5 7 1 9. 1 7 6. 0 6 1. 9 3 5. 8 1 2. 8 7 1. 4 1  2 7. 3 3

T o w er of L o n d o n 4 8 9 5 6. 4 6 2. 9 5 3. 9 9 7. 0 3 3. 4 3  9. 7 7 6. 7 4 3. 2 4 2. 7 7 3. 9 6 2. 4 4  6. 5 3

U ni o n S q u ar e 9 3 0 4 2 5. 6 8 5. 6 8 5. 9 5 2 7. 6 4 7. 2 4  7. 3 4 2 5. 3 1 5. 7 4 4. 2 0 6. 1 4 3. 7 0  8. 5 2

Vi e n n a C at h e dr al 9 1 8 9 1 3. 2 6 1. 6 0 1 0. 3 1 1 3. 7 4 2. 3 7 6 2. 8 4 1 3. 4 7 1. 9 7 6. 3 3 6. 1 9 1. 3 1  5 8. 0 5

G e n d ar m e n m ar kt 7 4 2 6 7 4. 2 5 7 2. 3 4 6. 4 0 7 4. 6 3 7 1. 5 3 1 7. 5 6 7 6. 5 8 8 1. 3 2 4. 3 3 3 9. 7 0 1 0. 4 8 1 7. 1 3

Pi c c a dill y 2 5 0 8 9 9. 5 8 2. 8 2 4 2. 1 7 9. 9 1 3. 1 9 7 2. 0 9 1 0. 6 6 3. 7 8 1 9. 3 9 4. 4 5 2. 0 8 4 5 5. 8 3

Tr af al g ar 5 4 3 3 9 9. 6 1 3. 2 7 1 3 0. 5 5 1 0. 2 3 4. 1 6 1 1 2. 6 2 9. 7 5 3. 4 4 6 0. 4 9 5. 4 9 4. 3 9 1 9 2 9. 2 1

Yor k mi nst er 4 5 8 6 8. 2 5 1. 6 9 5. 0 6 8. 8 0 2. 4 7 1 6. 5 9 8. 2 8 1. 7 4 3. 8 7 3. 5 5 1. 5 8  8. 3 1

Ta bl e 4. R es ults f or P h ot o T o uris m w h er e all m et h o ds ar e p erf or m e d wit h o ut o ur gr a p h pr e pr o c essi n g m et h o d. F or e a c h d at as et, ē a n d ê i n di c at e
t h e m e a n err or a n d m e di a n err or of t h e o ut p ut a bs ol ut e r ot ati o n esti m at es m e as ur e d i n d e gr e es, a n d t is t h e t ot al r u nti m e of e a c h m et h o d m e as ur e d
i n s e c o n ds. T h e l ast c ol u m n i n di c at es t h e r e m ai ni n g p orti o n of c a m er as f or e a c h d at as et aft er t h e c a m er a pr u ni n g st e p of o ur i m pr o v e d pi p eli n e.



B. P r o of f o r t h e F o r m ul as of g c a n d f c a n d t h ei r C o m p ut ati o n C o m pl e xit y

I n t his s e cti o n w e pr o v e t h e f or m ul as a n d ti m e c o m pl e xit y f or f c a n d g c d efi n e d i n s e cti o n 3 .
F or c = 3 , si n c e all 3- c y cl es ar e si m pl e, f c (W )(i, j) = L ∈ C c

i j e ∈ L \ { i j } = k ∈ [n ]w i k w k j is e x a ctl y t h e ij-t h e ntr y of W 2 ,

a n d g c (W ,R )(i,j) = L ∈ C c
i j

= k ∈ [n ]w i k R i k w k j R k j is e x a ctl y t h e ij-t h bl o c k of P 2 .

F or c ≥ 4 , t h er e ar e r e d u n d a nt c y cl es i n C c
i j , i. e. c y cl es t h at ar e n ot si m pl e. We f oll o w t h e ar g u m e nt i n [3 5 ] t o c o m p ut e f c (W )(i,j)

a n d g c (W ,R )(i,j). F or e x a m pl e, t h e c y cl e i kij is r e d u n d a nt si n c e t h e n o d e i r e p e ats t wi c e. We s a y t his c y cl e s atisf y t h e p artiti o n
0 + 2 + 1 of c − 1 , i n t h at t h e n u m b er of st e ps fr o m t h e first n o d e t o t h e r e p e at e d n o d e is 0, t h e n u m b er of st e ps fr o m t h e r e p e at e d
n o d e t o its s e c o n d a p p e ar a n c e is 2, a n d t h e n u m b er of r e m ai ni n g st e ps t o t h e l ast l ett er is 1. S o m e c y cl es m a y s atisf y m or e t h a n 1
p artiti o n. F or i nt e g er 1 ≤ a ≤ c − 1 , l et C c

i j, a b e t h e s et of r e d u n d a nt c - c y cl es s atisf yi n g a p artiti o ns. L et q c b e t h e n u m b er of a d missi bl e
p artiti o ns of l e n gt h c , i. e. p artiti o ns t h at c orr es p o n d t o a r e d u n d a nt c y cl e. T h e n t h e f u n cti o n f c a n d g c c a n b e writt e n as f oll o ws:

f c (W )(i,j) = W c − 1 +

q c

a = 1

(− 1) a

L ∈ C c
i j , a e ∈ L \ { i j }

w e ( 1 5)

g c (W ,R )(i,j) = P c − 1 +

q c

a = 1

(− 1) a

L ∈ C c
i j , a e ∈ L \ { i j }

w e R e . ( 1 6)

F or c = 4 , t h e s et of a d missi bl e p artiti o ns is { 0 + 2 + 1 ,1 + 2 + 0 } , t h er ef or e q 4 = 2 . B y e n u m er ati n g t h e p ossi bl e c y cl es f or a n y
c o m bi n ati o n of s u c h a d missi bl e p artiti o ns, w e k n o w t h at t h e s et C 4

i j,1 = { k ∈ [n ]:i kij} ∪ { k ∈ [n ]:ij k j} , a n d t h e s et C 4
i j,2 = { ijij} .

T h er ef or e w e c a n si m plif y t h e a b o v e f or m ul ati o n as:

f c (W )(i,j) = W c − 1 −
k ∈ [n ]

w i k w k i w i j −
k ∈ [n ]

w i j w j k w k j + w i j w j i w i j ( 1 7)

g c (W ,R )(i,j) = P c − 1 −
k ∈ [n ]

w i k w k i w i j R i k R k i R i j −
k ∈ [n ]

w i j w j k w k j R i j R j k R k j + w i j w j i w i j R i j R j i R i j . ( 1 8)

T his c a n b e v e ct ori z e d as

f c (W ) = W 3 − d (W 2 )W − W d (W 2 ) + W ⊙ 3 ( 1 9)

g c (W ,R ) = P 3 − d (P 2 )P − P d (P 2 ) + P ⊙ 3 . ( 2 0)

Usi n g si mil ar ar g u m e nts as a b o v e ( o n e m a y r ef er t o [ 3 5 ]), w e h a v e t h e f or m ul as f or c = 5 a n d c = 6 . T h e f or m ul as f or c = 5
ar e pr es e nt e d i n Ta bl e 1 . T h e f or m ul as f or c = 6 ar e as f oll o ws:

f c (W ) = W d (W 4 ) + d (W 4 )W + W 2 d (W 3 ) + d (W 3 )W 2 + W d (W 2 )W 2 + W 2 d (W 2 )W + W d (W 3 )W

+ W 2 ⊙ W ⊙ 3 + 3 W ⊙ (W ⊙ 2 ) 2 + 2 W d (W 2 ) ⊙ W ⊙ 2 + 2 d (W 2 )W ⊙ W ⊙ 2

+ 4 d (W 2 )W ⊙ 3 + 4 W ⊙ 3 d (W 2 ) − W d (W d (W 2 )W ) − d (W d (W 2 )W )W

− 2 W (W ⊙ 2 ⊙ W 2 ) − 2( W ⊙ 2 ⊙ W 2 )W − W ⊙ 2 W 2 − W 2 W ⊙ 2

− 2 W d (W 2 ) 2 − 2 d (W 2 ) 2 W − W (W ⊙ W 2 ) − (W ⊙ W 2 )W − W ⊙ W 3 − 2 W ⊙ 2 W 3 − d (W ) 2 W d (W 2 )

− W ⊙ W 2 ⊙ W 2 − W W ⊙ 3 W − 2 W ⊙ W 2 ⊙ W 2 − 4 W ⊙ 5

g c (W ,R ) =P d (P 4 ) + d (P 4 )P + P 2 d (P 3 ) + d (P 3 )P 2 + P d (P 2 )P 2 + P 2 d (P 2 )P + P d (P 3 )P

+ P 2 ⊙ P ⊙ 3 + 3 P ⊙ (P ⊙ 2 ) 2 + 2 P d (P 2 ) ⊙ P ⊙ 2 + 2 d (P 2 )P ⊙ P ⊙ 2

+ 4 d (P 2 )P ⊙ 3 + 4 P ⊙ 3 d (P 2 ) − P d (P d (P 2 )P ) − d (P d (P 2 )P )P

− 2 P (P ⊙ 2 ⊙ P 2 ) − 2( P ⊙ 2 ⊙ P 2 )P − P ⊙ 2 P 2 − P 2 P ⊙ 2

− 2 P d (P 2 ) 2 − 2 d (P 2 ) 2 P − P (P ⊙ P 2 ) − (P ⊙ P 2 )P − P ⊙ P 3 − 2 P ⊙ 2 P 3 − d (P ) 2 P d (P 2 )

− P ⊙ P 2 ⊙ P 2 − P P ⊙ 3 P − 2 P ⊙ P 2 ⊙ P 2 − 4 P ⊙ 5



T h e c o m p ut ati o n al ti m e c o m pl e xit y of t h e pr e vi o us c as es f or f c a n d g c ar e O (r (n )) a n d O (r (d n )), r es p e cti v el y, si n c e c o m p uti n g
f c b y t h e f or m ul a a b o v e o nl y r e q uir es st a n d ar d m atri x o p er ati o ns b et w e e n n × n m atri c es, a n d c o m p uti n g g c b y t h e f or m ul a a b o v e
o nl y r e q uir es st a n d ar d m atri x o p er ati o ns b et w e e n d n × d n m atri c es. F or t h e c as e c ≥ 7 , [4 7 ] gi v es a n esti m ati o n o n t h e u p p er b o u n d
of t h e c o m p ut ati o n al ti m e c o m pl e xit y as O (n [ (c + 3 ) / 2] ).

C. M ai n T h e o r y

We f or m ul at e t h e or y f or a d v ers ari al c orr u pti o n i n S e cti o n C. 1 a n d f or t h e u nif or m c orr u pti o n m o d el i n S e cti o n C. 2 . T h e l att er t h e or y
e xt e n ds t h e o n e st at e d i n S e cti o n 4 .

B ot h s etti n gs us e t h e f oll o wi n g c o m m o n n ot ati o n. L et E g b e t h e s et of g o o d ( cl e a n) e d g es, E b b e t h e s et of b a d ( c orr u pt e d) e d g es,
a n d N c

i j b e t h e s et of si m pl e c - c y cl es c o nt ai ni n g ij. L et G c
i j b e t h e s et of g o o d si m pl e c - c y cl es wit h r es p e ct t o ij. T h at is, f or a n y

c y cl e L ∈ G c
i j , L is si m pl e of l e n gt h c a n d L \ { ij} ar e all cl e a n.

C. 1. T h e o r y f o r A d v e rs a ri al C o r r u pti o n

I n t his s e cti o n w e f o c us o n t h e a d v ers ari al c orr u pti o n m o d el [ 2 5 ]. T h e a d v ers ari al c orr u pti o n m o d el m a k es n o ass u m pti o n o n t h e
gr a p h t o p ol o g y or t h e c orr uti o n p att er n. T h e o nl y ass u m pti o n is t h at f or e a c h ij ∈ E g , g i j = g ∗

i j , a n d f or e a c h ij ∈ E b , g i j ≠ g ∗
i j . Si n c e

L o n g S y n c is a m o difi e d a n d v e ct ori z e d v ersi o n of C E M P f or hi g h er- or d er c y cl es, it i n h erits t h e r o b ust n ess of C E M P t o a d v ers ari al
c orr u pti o n. D efi n e λ = m a x i j ∈ E |B c

i j |/ |N c
i j | w h er e B c

i j = N c
i j \ G c

i j is t h e s et of b a d c y cl es wit h r es p e ct t o ij ( n a m el y at l e ast o n e
of t h e ot h er (c − 1) e d g es i n t h e c y cl e ar e c orr u pt e d). I n t h e s c e n ari o of a d v ers ari al c orr u pti o n wit h a n ass u m pti o n o n λ , w e c a n
g u ar a nt e e li n e ar c o n v er g e n c e of L o n g S y n c as f oll o ws.

T h e o r e m C. 1. Ass u m e d at a is g e n er at e d b y t h e a d v ers ari al c orr u pti o n m o d el wit h λ < 1
1 + ( c − 1 ) 2 . Ass u m e t h e p ar a m et ers { β t }

t m a x
t = 1

of L o n g S y n c wit h c - c y cl es s atisf y β 0 ≤ 1 / (c − 1) , β t + 1 = r β t a n d 1 < r < 1
c − 1

1 − λ
λ . T h e n t h e c orr u pti o n l e v els { s

( t )
i j } i j ∈ E esti m at e d

b y L o n g S y n c s atisf y t h e f oll o wi n g e q u ati o n:

m a x
i j ∈ E

|s
( t )
i j − s ∗

i j | ≤
1

(c − 1) β 0 r t
f or all t ≥ 0 . ( 2 1)

Pr o of. L et ϵ i j (t) = |s
( t )
i j − s ∗

i j | a n d ϵ(t) = m a x i j ∈ E ϵ i j (t). B y t h e f a ct t h at |d L − s ∗
i j | ≤ s ∗

L , G c
i j ⊆ N c

i j a n d s ∗
L = 0 f or L ∈ G c

i j , w e
o bt ai n t h at

(ϵ ij (t + 1)) 2 = |s
( t )
i j − s ∗

i j |
2 = |

L ∈ N c
i j

e − β t s
( t )
L d 2

L

L ∈ N c
i j

e − β t s
( t )
L

− s ∗
i j |

2

≤
L ∈ N c

i j
e − β t s

( t )
L |d L − s ∗

i j |
2

L ∈ N c
i j

e − β t s
( t )
L

≤
L ∈ N c

i j
e − β t s

( t )
L (s ∗

L ) 2

L ∈ N c
i j

e − β t s
( t )
L

≤
L ∈ B c

i j
e − β t s

( t )
L (s ∗

L ) 2

L ∈ G c
i j

e − β t s
( t )
L

≤
L ∈ B c

i j
e − β t e ∈ L ϵ e ( t ) (s ∗

L ) 2

L ∈ G c
i j

e − β t e ∈ L ϵ e ( t )

≤
1

|G c
i j |

e 2 β t ( c − 1 ) ϵ ( t )

L ∈ B c
i j

e − β t s ∗
L (s ∗

L ) 2 . ( 2 2)

We pr o v e t h e t h e or e m b y i n d u cti o n. N ot e t h at t h e c as e t = 0 is e q ui v al e nt t o ϵ( 0) ≤ 1 / (c − 1) β 0 , a n d t his i m m e di at el y f oll o ws fr o m t h e
f a ct t h at 0 ≤ ϵ i j ( 0) ≤ 1 a n d t h e ass u m pti o n β 0 < 1 / (c − 1) . We n e xt pr o v e ϵ(t + 1) < 1 / (c − 1) β t + 1 fr o m ϵ(t) < 1 / (c − 1) β t . B y t h e i n-



e q u alit y a b o v e, t h e i n d u cti o n ass u m pti o n, t h e f a ct t h at x 2 e x < 4 / (a x ) 2 wit h x = s ∗
L a n d a = β t a n d t h e d efi niti o n of λ a n d r w e h a v e

(ϵ ij (t + 1)) 2 ≤
1

|G c
i j |

·e 2 ·
4 |B c

i j |

e 2 β 2
t

=
4 |B c

i j |

|G c
i j |β

2
t

≤
4 λ

( 1 − λ )β 2
t

=
1

β 2
t r 2 (c − 1) 2

=
1

β 2
t + 1 (c − 1) 2

. ( 2 3)

T h e t h e or e m f oll o ws b y t a ki n g t h e m a xi m u m of t h e l eft h a n d si d e a n d t h e n t h e s q u ar e r o ot of b ot h si d es of t h e a b o v e e q u ati o n.

C. 2. T h e o r y f o r U nif o r m C o r r u pti o n M o d el

T hr o u g h o ut t h e r est of t h e p a p er w e us e P (A ) t o d e n ot e t h e pr o b a bilit y of e v e nt A . L et p 0 = P (g i j = g ∗
i j ) f or e a c h e d g e ij ∈ E b .

B y t h e c h oi c e of c orr u pti o n m o d el, p 0 o nl y d e p e n ds o n t h e gr o u p G . L et q ∗ = 1 − q + q p 0 = P (ij ∈ E g |ij ∈ E ). L et q g = 1 − q . We
r e m ar k t h at f or r ot ati o n s y n c hr o ni z ati o n (i n f a ct a n y Li e gr o u p s y n c hr o ni z ati o n), q g = q ∗ a n d p 0 = 0 .

R e c all f or e a c h e ∈ E , s ∗
e is t h e gr o u n d tr ut h c orr u pti o n l e v el of e d g e e . F or L = ( i k1 , k1 k 2 ,··· , kc − 2 j ) ∈ N c

i j , w e d e n ot e

s ∗
L = e ∈ L \ { i j } s ∗

e . T o st at e o ur m ai n t h e or e m, w e l et F (β ) = { f τ (x ): = e − τ x + 2 τ 2 x 2 / 4: τ > β } a n d V (β ) = s u p τ > β Var (f τ (s ∗
L )).

D u e t o t h e m o d el ass u m pti o ns, t h e distri b uti o n of f τ (s ∗
L ) is i n d e p e n d e nt of t h e c h oi c e of L ∈ N c

i j .
Usi n g t h e a b o v e n ot ati o n, w e f or m ul at e t h e f oll o wi n g t h e or e m, w hi c h g e n er ali z es T h e or e m 4. 1

T h e o r e m C. 2. L et 0 < r < 1 , 0 < q < 1 , 0 < p ≤ 1 . Ass u m e w e us e L o n g S y n c wit h c y cl es of l e n gt h c a n d n / l o gn = Ω(( p q g ) − c − 1
c − 2 − ϵ )

f or s o m e ϵ > 0 . Ass u m e

0 <
1

β 0
<

q c − 1
g q c − 1

∗

1 6( 1 − q c − 1
∗ )(c − 1) 2 β 1

, ( 2 4)

V (β 1 ) <
r

1 6( c − 1)
·

q c − 1
∗

1 − q c − 1
∗

, ( 2 5)

1 / β t + 1 = r / β t f or all t ≥ 1 , ( 2 6)

mi n( n p, n c − 2 − ϵ p c − 1 ) ≳
( 1 − q c − 1

∗ ) 2

q
2 ( c − 1 )
∗ r 2

. ( 2 7)

T h e n wit h pr o b a bilit y at l e ast 1 − 4 c n 2 e x p − K η 2
0 (p q ∗ )

c − 1
c − 2 n − 2 e 2 c · e x p − n ϵ / ( c − 1 ) + c l o gn −

n 2 e x p − l n 2
2 mi n( n p, n c − 2 − ϵ p c − 1 )V (β 1 ) − 2 n 2 ·e x p − η e G

8 c l n( 1 + e G

2 ( c − 1 ) β 0 v G
) mi n(n p, n c − 2 − ϵ p c − 1 ) , w h ere η 0 , η, K, eG , vG are

a bs ol ut e c o nst a nts, w e h a v e m a x i j ∈ E |s ∗
i j − s

( t )
i j | ≤ 1

2 c β t
f or all t ≥ 1 .

R e m ar k C. 3 . As is s h o w n i n [ 2 5 ], f or G ∈ S O ( 3), V (β ) ∼ O (β − 3 ). T h er ef or e n / l o gn ∼ p − ( c − 1 ) / ( c − 2 − ϵ ) q
− 7 ( c − 1 ) / 3 ( c − 2 − ϵ )
g is t h e

mi ni m al s a m pl e c o m pl e xit y d e p e n d e n c e f or G = S O ( 3) s u c h t h at wit h hi g h pr o b a bilit y, t h e c o n cl usi o n of T h e or e m 4. 1 h ol ds tr u e.

C. 3. P r o of of T h e o r e m C. 2

We a d o pt t h e pr o of fr a m e w or k of [ 2 5 ]. T h e m aj or diffi c ult y of t h e pr o of is t h e d e p e n d e n c e i n t h e c y cl e i n c o nsist e n c y m e as ur es of
c y cl es i n N c

i j w h e n c ≥ 4 . F or e x a m pl e, t h e c y cl e i n c o nsist e n c y m e as ur e of a 4- c y cl e L 1 = ( i k1 , k1 k 2 , k2 j ) is n ot i n d e p e n d e nt wit h t h at
of L 2 = ( i k1 , k1 k 3 , k3 j ), w hil e f or a p air of 3- c y cl es t h eir r ati os ar e al w a ys i n d e p e n d e nt. T his m e a ns t h at t h e r e q uir e d c o n c e ntr ati o n
i n e q u aliti es c a n n ot b e o bt ai n e d b y dir e ctl y a p pl yi n g t h e st a n d ar d C h er n off b o u n ds. N o n et h el ess, w e h a v e i nt e gr at e d v ari o us
m at h e m ati c al t e c h ni q u es fr o m [ 3 , 7 , 2 2 – 2 4 , 4 8 ] t o d eri v e T h e or e m 4. 1 , w hi c h off ers i m pr o v e m e nts o v er t h e or e m 7 pr es e nt e d i n [2 5 ].

F or c o n v e ni e n c e f or a n y c ≥ 3 , w e d efi n e a c - p at h as a p at h t h at i n v ol v es c v erti c es, a n d w e d efi n e a n ij, c- p at h as a c - p at h t h at
st arts fr o m i a n d e n ds at j . We e xt e n d t h e d efi niti o n of N c

i j as t h e s et of ij, c- p at hs i n gr a p h G .
We first pr o v e t h at wit h hi g h pr o b a bilit y, t h e n u m b er of c 1 - c y cl es c o n c e ntr at es ar o u n d its m e a n f or a n y c 1 ≤ c . M or e s p e cifi c all y, l et

n c 1
= ( n − 2)( n − 3)( n − 4) ···(n − c 1 + 1) b e t h e n u m b er of p ossi bl e ij, c1 - p at h c a n di d at es, a n d m c 1

= m a x( p c 1 − 1 n c 1
, nϵ ). T h er ef or e

t h e e x p e ct e d n u m b er of ij, c1 - p at hs is p c 1 − 1 n c 1
. F or a n y ϵ, η > 0 w e d efi n e t h e (ϵ, η 0 )-r e g ul ar Er dős- R é n yi gr a p h c o n diti o n as f oll o ws:

D efi niti o n C. 4. L et δ = s u p { δ > 0 s.t. n p 1 + δ / l o gn → ∞ } a n d c 0 = ⌈ 2 + δ − 1 ⌉ . A gr a p h G s atisfi es t h e (ϵ, η 0 )-r e g ul ar Er dős- R é n yi
gr a p h c o n diti o n if a n d o nl y if t h e f oll o wi n g c o n diti o ns h ol d tr u e:
• F or a n y i ≠ j ∈ [n ] a n d c 1 ≥ c 0 ,

(1 − η 0 )m c 1 < |N c 1
i j |< ( 1 + η 0 )m c 1 ( 2 8)

a n d
( 1 − η 0 )q

c 1 − 1
∗ m c 1

< |G c 1
i j |< ( 1 + η 0 )q

c 1 − 1
∗ m c 1

; ( 2 9)



• F or a n y i ≠ j ∈ [n ] a n d c 1 < c 0 ,
0 ≤| N c 1

i j |< m c 1
. ( 3 0)

.

We h a v e t h e f oll o wi n g t h e or e m o n t h e p h as e tr a nsiti o n of t h e n u m b er of c - p at hs:

T h e o r e m C. 5. Ass u m e G is g e n er at e d wit h t h e u nif or m c orr u pti o n m o d el U C M(n ,p ,q ), a n d ϵ, η > 0 are c o nst a nts. T h e n t h e (ϵ, η 0 )-

re g ul ar E- R gr a p h c o n diti o n h ol ds wit h pr o b a bilit y at l e ast 1 − c n 2 e x p( −
η 2

0

5 c p n ) − c n 2 e x p( − K η 2
0 p

c − 1
c − 2 n ) − c n 2 e x p( −

η 2
0

5 c p q ∗ n ) −

c n 2 e x p − K η 2
0 (p q ∗ )

c − 1
c − 2 n − 2 e 2 c n 2 e x p − n ϵ / ( c − 1 ) + ( c − 2)l o g n , w hi c h is al m ost 1 b y t h e c o n diti o n n / l o gn = Ω(( p q g ) − c − 1

c − 2 − ϵ ).

T h e pr o of of T h e or e m C. 5 is p ut i n s e cti o n D . B as e d o n t his t h e or e m, w e h a v e a c o n c e ntr at e d ’i niti ali z ati o n’ of c orr u pti o n l e v el
esti m at es aft er t h e first it er ati o n:

T h e o r e m C. 6. (I niti aliz ati o n) Ass u m e t h e (ϵ, η 0 )-re g ul ar E- R gr a p h c o n diti o n h ol ds. R e c all t h at t h e c orr u pti o n l e v el esti m ati o n
of L o n g S y n c wit h c y cl e l e n gt h c at t = 0 is

s
( 0 )
i j =

L ∈ N c
i j

d 2
L

|N c
i j |

. ( 3 1)

D e n ot e e G = E d 2
L a n d v G = Var (d 2

L ). T h e n f or a n y η > 0 a n d ij ∈ E ,

P (|(s
( 0 )
i j ) 2 − E (s

( 0 )
i j ) 2 |> η E (s

( 0 )
i j ) 2 ) < 2 e x p −

η e G

8 c
l n( 1 +

η e G

2 v G
) mi n(n p, n c − 2 − ϵ p c − 1 ) . ( 3 2)

L et λ = m a x i j ∈ E |B c
i j |/ |N c

i j | w h er e B c
i j = N c

i j \ G c
i j is t h e s et of b a d ij, c- p at hs. T o pr o v e t h e li n e ar c o n v er g e n c e, w e n e e d t h e

f oll o wi n g t hr e e l e m m as:

L e m m a C. 7 . If m a x i j ∈ E |(s
( 0 )
i j ) 2 − E (s

( 0 )
i j ) 2 | ≤ 1

2 ( c − 1 ) β 0
, t h e n

m a x
i j ∈ E

|s
( 1 )
i j − s ∗

i j | ≤
λ

1 − λ

2( c − 1)

q c − 1
g β 0

. ( 3 3)

L e m m a C. 8 . Ass u m e t h at m a x i j ∈ E |s
( 1 )
i j − s ∗

i j |< 1 / ( 2(c − 1) β 1 ), β t = r β t + 1 f or t ≥ 1 , a n d

m a x
i j ∈ E

1

|B c
i j | L ∈ B i j , c

e − β t s ∗
L (s ∗

L ) 2 <
1

M β 2
t

f or all t ≥ 1 , ( 3 4)

w h er e M = 4( c − 1) 2 e λ / (( 1 − λ )r 2 ). T h e n t h e L o n g S y n c c orr u pti o n l e v el esti m at es s atisf y

m a x
i j ∈ E

|s
( t )
i j − s ∗

i j |<
1

β 1
r t − 1 f or all t ≥ 1 . ( 3 5)

L e m m a C. 9 . If eit h er s ∗
i j f or ij ∈ E b is s u p p ort e d o n [a, ∞ ) a n d a ≥ 1 / |B c

i j | or Q is diff er e nti a bl e a n d Q ′(x )/ Q (x ) ≲ 1 / x f or
x < P ( 1), t h e n t h er e e xists a n a bs ol ut e c o nst a nt K ′′ s u c h t h at

P



 su p
f τ ∈ F ( β )

1

|B c
i j | L ∈ B c

i j

f τ (s ∗
L ) > V (β )

+ K ′′ l o g mi n(n p, n c − 2 − ϵ p c − 1 )

mi n( n p, n c − 2 − ϵ p c − 1 )

< e x p −
l n 2

2
mi n( n p, n c − 2 − ϵ p c − 1 )V (β ) . ( 3 6)

w h er e F (β ) = { f τ (x ) = e − τ x + 2 τ 2 x 2 / 4: τ > β } .



L e m m a C. 7 a n d C. 8 ar e dir e ct e xt e nsi o ns of l e m m a 4 a n d l e m m a 5 of [ 2 5 ]. L e m m a C. 9 , h o w e v er, i n v ol v es t h e e xt e nsi o n of
t h e or e m 2. 3 i n [3 ] t o t h e s u pr e m u m of l o c all y i n d e p e n d e nt e m piri c al pr o c ess es a n d H aj n al- S z e m er é di t h e or e m f or e q uit a bl e c ol ori n g.
We r ef er t h e r e a d er t o s e cti o n D f or t h e pr o of of t h es e l e m m as.

Pr o of of t h e m ai n t h e ore m. B y t h e r e g ul ar E- R gr a p h c o n diti o n, w e c a n c h o os e a p pr o pri at e η 0 s o t h at

1

4

q c − 1
∗

1 − q c − 1
∗

<
1 − λ

λ
< 4

q c − 1
∗

1 − q c − 1
∗

. ( 3 7)

T o g u ar a nt e e t h e c o n diti o n (3 4 ) of L e m m a C. 8 , w e n e e d t o c h o os e β 1 s u c h t h at V (β 1 ) < e / 2 M a n d n l ar g e
e n o u g h s u c h t h at l o g( mi n(n p, n c − 2 − ϵ p c − 1 ))/ mi n( n p, n c − 2 − ϵ p c − 1 ) < e 2 / 4 K ′′2 M 2 .   B y t h e ass u m pti o n t h at
V (β 1 ) < (r q c − 1

∗ )/ 1 6( c − 1)( 1 − q c − 1
∗ ), M = 4( c − 1) 2 e λ / (( 1 − λ )r 2 ) a n d (3 7 ) w e k n o w t h at V (β 1 ) < e / 2 M . B y t h e ass u m pti o n t h at

mi n( n p, n c − 2 − ϵ p c − 1 ) ≳ ( 1 − q c − 1
∗ ) 2 / q

2 ( c − 1 )
∗ r 2 w e k n o w t h at l o g( mi n(n p, n c − 2 − ϵ p c − 1 ))/ mi n( n p, n c − 2 − ϵ p c − 1 ) < e 2 / 4 K ′′2 M 2 .

T h er ef or e t h e c o n diti o n ( 3 4 ) of L e m m a C. 8 h ol ds tr u e.

O n t h e ot h er h a n d, b y T h e or e m C. 6 wit h η = 1 / 2( c − 1) β 0 w e k n o w t h at w. h. p. t h e c o n diti o n of L e m m a C. 7 h ol ds tr u e. B y t h e
ass u m pti o n t h at 1 / β 0 < q c − 1

∗ q c − 1
g / 1 6( 1 − q c − 1

∗ )(c − 1) 2 β 1 , w e k n o w t h at t h e c o n cl usi o n of L e m m a C. 7 i m pli es t h e first ass u m pti o n
of L e m m a C. 8 .

T h er ef or e, t h e pr o of of t h e t h e or e m f oll o ws fr o m t h e c o n cl usi o n of L e m m a C. 8 .

D. P r o ofs of A u xili a r y R es ults

We pr o vi d e a d diti o n al r es ults f or a u xili ar y t h e or e ms a n d l e m m at a us e d i n t h e pr e vi o us s e cti o n.

Pr o of of T h e ore m C. 5 . We h a v e t h e f oll o wi n g b asi c l e m m as:

L e m m a D. 1 . ( C o n c e ntr ati o n of n u m b er of p at hs of l e n gt h ≥ c 0 − 1 wit h fi x e d e n d p oi nts) L et 0 ≤ q < 1 , 0 < p ≤ 1 , n ∈ N wit h n p ≥ Θ( 1) .
Ass u m e d at a is g e n er at e d b y U C M( n, p, q), a n d c ≥ c 0 . F or a n y η 0 > 0 , t h er e e xists a c o nst a nt K > 0 t h at o nl y d e p e n ds o n c , s u c h t h at

P (|N c
ij | −p c − 1 n c < η 0 p

c − 1 n c ) < e x p( −
η 2

0

5 c
p n ) ( 3 8)

P (|N c
i j | −p c − 1 n c > η 0 p

c − 1 n c ) < e x p( − K η 2
0 p

c − 1
c − 2 n ) ( 3 9)

f or a n y fi x e d i ≠ j ∈ V , a n d

P (|N c
i j | −p c − 1 n c < η 0 p

c − 1 n c ) < |E |e x p( −
η 2

0

5 c
p n ) ( 4 0)

P (|N c
i j | −p c − 1 n c > η 0 p

c − 1 n c ) < |E |e x p( − K η 2
0 p

c − 1
c − 2 n ). ( 4 1)

Pr o of. L et M c
i j = { (i, k1 , k2 ,··· , kc − 2 , j) : i, k1 , k2 ,··· , kc − 2 , j ∈ [n ] ar e diff er e nt } . N ot e t h at |N c

i j | = α ∈ M c
i j

I α , w h er e I α =

1 i k 1 ∈ E 1 k 1 k 2 ∈ E ···1 k c − 3 k c − 2 ∈ E 1 k c − 2 j ∈ E f or α = ( i, k1 , k2 ,···, kc − 2 ,j). F or a n y α, β ∈ M c
i j , d efi n e ω = α ∈ M c

i j
E I α = α ∈ M c

i j
p c − 1 =

p c − 1 n c . L et us writ e α ∼ β if α , β ∈ M c
i j wit h at l e ast o n e c o m m o n e d g e, a n d d efi n e δ = ( α ∼ β E I α I β )/ ω . ( T his s u m s h o ul d b e

i nt er pr et e d as t h e s u m o v er all p airs (α, β ), s o e a c h p air is c o u nt e d t wi c e.) B y t h e or e m 1 of [2 2 ], w e h a v e t h e f oll o wi n g i n e q u alit y:

P (|N c
ij |< ( 1 − η 0 )p

c − 1 n c ) ≤ e x p( −
η 2

0 ω

2( 1 + δ )
). ( 4 2)

D e n ot e |α \ β | as t h e n u m b er of n o d es t h at b el o n g t o β b ut d o n ot b el o n g t o α . B y t h e d efi niti o n of δ , w e h a v e t h e f oll o wi n g esti m at e:



δ = (
α ∼ β

E I α I β )/ ω

=
1

ω
α ∈ M c

i j

c − 3

k = 1 α ∼ β a n d |α \ β |= k

E I α I β

=
|M c

i j |

ω

c − 3

k = 1 α ∼ β a n d |α \ β |= k

p k + c − 1

≤
(n − 2)( n − 3) ···(n − c + 1)

p c − 1 (n − 2)( n − 3) ···(n − c + 1)

c − 3

k = 1

(n − 2)( n − 3) ···(n − k − 1) p k + c

≤
1

p c − 1
c (n − 2)( n − 3) ···(n − c + 2) p 2 c − 3

≤ c (n − 2)( n − 3) ···(n − c + 2) p c − 2 =
c ω

(n − c + 1) p
. ( 4 3)

Pl u g gi n g ( 4 3 ) t o (4 2 ) gi v es:

P (|N c
i j |< ( 1 − η 0 )p

c − 1 n c ) ≤ e x p( −
η 2

0 ω

2( 1 + δ )
)

< e x p( −
η 2

0 ω

4 δ
)

≤ e x p( −
η 2

0 ω (n − c + 1) p

4 c ω
)

< e x p( −
η 2

0 n p

5 c
). ( 4 4)

T h er ef or e i n e q u alit y ( 3 8 ) is pr o v e d, a n d i n e q u alit y (4 0 ) f oll o ws fr o m a u ni o n b o u n d ar g u m e nt.
F or t h e u p p er t ail, l et A b e a n ar bitr ar y s u bs et of { k 1 , k2 ,···, kc − 2 } , t h e s et of fr e e v erti c es of a n ij, c- p at h. D e n ot e M A as t h e

e x p e ct e d n u m b er of ij, c- p at hs (i k1 , k1 k 2 ,···, kc − 2 j ), w h er e t h e v erti c es i n A ar e fi x e d, a n d l et M k = m a x |A | ≥k M A . We h a v e t h e
f oll o wi n g c al c ul ati o n:

M k =
n c − 2 − k p c − 1 − k , k ≤ c − 3

1 , k = c − 2
. ( 4 5)

L et λ = η 2
0 (n − c + 1) p

c − 1
c − 2 . B y c ≥ c 0 , w e k n o w t h at λ = ω (l o gn ). Als o, b y s etti n g M 0 = M 0 a n d M k = M 0 λ

− k w e k n o w t h at f or
all 0 ≤ k ≤ c − 2 , M k ≥ M k . T h er ef or e w e c a n a p pl y t h e or e m 1. 2 i n [4 8 ] a n d g et t h e f oll o wi n g i n e q u alit y

P (|N c
ij | −p c − 1 n c > η 0 n c ) ≤ e x p( − K 0 η

2
0 (n − c + 1) p

c − 1
c − 2 ) ( 4 6)

w h er e K 0 is a c o nst a nt t h at o nl y d e p e n ds o n c . L et K = K 0 / 2 . B y t h e or d er of c w e k n o w t h at

P (|N c
i j | −p c − 1 n c > η 0 n c ) ≤ e x p( − K η 2

0 n p
c − 1
c − 2 ). ( 4 7)

T h er ef or e i n e q u alit y ( 3 9 ) is pr o v e d, a n d i n e q u alit y (4 1 ) f oll o ws fr o m a u ni o n b o u n d ar g u m e nt.

L e m m a D. 2 . L et 0 ≤ q < 1 , 0 < p ≤ 1 , n ∈ N wit h n p ≥ Θ( 1) . Ass u m e d at a is g e n er at e d b y U C M( n, p, q), c ≥ c 0 , a n d K is t h e c o nst a nt
i n L e m m a D. 1 . F or a n y η 0 > 0 , w e h a v e

P (|G c
ij | −p c − 1 q c − 1

∗ n c < η 0 p
c − 1 q c − 1

∗ n c ) < e x p( −
η 2

0

5 c
p q ∗ n ) ( 4 8)

P (|G c
i j | −p c − 1 q c − 1

∗ n c > η 0 p
c − 1 q c − 1

∗ n c ) < e x p( − K η 2
0 p q ∗ n ) ( 4 9)



f or a n y fi x e d i ≠ j ∈ V , a n d

P (|G c
i j | −p c − 1 q c − 1

∗ n c < η 0 p
c − 1 q c − 1

∗ n c ) < |E |e x p( −
η 2

0

5 c
p q ∗ n ) ( 5 0)

P (|G c
i j | −p c − 1 q c − 1

∗ n c > η 0 p
c − 1 q c − 1

∗ n c ) < |E |e x p( − K η 2
0 p q ∗ n ). ( 5 1)

L e m m a D. 2 is pr o v e d b y r e pl a ci n g p wit h p q ∗ i n t h e pr o of of L e m m a D. 1 .
T o c o u nt t h e s h ort er p at hs w hi c h h as a v a nis hi n g e x p e ct ati o n w h e n n t e n ds t o i nfi nit y, w e n e e d t h e f oll o wi n g c o n c e ntr ati o n

i n e q u alit y:

L e m m a D. 3 . ( C o n c e ntr ati o n of n u m b er of p at hs wit h l e n gt h ≤ c 0 − 2 ) L et 0 ≤ q < 1 , 0 < p ≤ 1 , n ∈ N wit h n p ≥ Θ( 1) . Ass u m e
d at a is g e n er at e d b y U C M( n, p, q), a n d c < c 0 . F or a n y ϵ > 0 , t h er e e xists a c o nst a nt K ′ > 0 t h at o nl y d e p e n ds o n c, s u c h t h at

P (|N c
ij |> K ′n ϵ ) < 2 e 2 e x p( − n ϵ / ( c − 1 ) + ( c − 2)l o g n ) ( 5 2)

f or a n y fi x e d i ≠ j ∈ V , a n d
P (|N c

i j |> K ′n ϵ ) < 2 e 2 |E |e x p( − n ϵ / ( c − 1 ) + ( c − 2)l o g n ). ( 5 3)

Pr o of. D efi n e t h e m ulti v ari a bl e p ol y n o mi al f ({ x p q } p ≠ q ∈ [n ]) = α ∈ M c
i j

x α , w h er e x α = x i k 1
x k 1 k 2

··· x k c − 2 j f or

α = ( i, k1 , k2 ,···, kc − 2 , j) i n M c
i j = { (i, k1 , k2 ,···, kc − 2 , j): i, k1 , k2 ,···, kc − 2 , j ∈ [n ] ar e diff er e nt } . N ot e t h at |N c

i j |= f ({ 1 p q ∈ E } p ≠ q ∈ [n ]).
L et A ⊆ { x p q ∈ E :p ≠ q ∈ [n ]} b e a s u bs et of t h e v ari a bl es of f , a n d f A ({ x p q } p ≠ q ∈ [n ]) b e t h e p arti al d eri v ati v e of f ({ x p q } p ≠ q ∈ [n ])
wit h r es p e ct t o all v ari a bl es i n A . L et ∂ A |N c

i j | = f A ({ 1 p q ∈ E } p ≠ q ∈ [n ]). D efi n e E k = m a x |A | ≥k E (∂ A |N c
i j |). B y t h e m ai n t h e or e m

i n [2 4 ], w e k n o w t h at
P (|N c

ij − E 0 |> K ′n ( c − 1 ) ϵ E 0 E 1 ) < 2 e 2 e x p( − n ϵ + ( c − 2)l o g n ). ( 5 4)

B e c a us e c < c 0 , w e k n o w t h at f or a n y k ∈ N , m a x |A | ≤c − 2 E (∂ A |N i j |) = o ( 1) a n d m a x |A |= c − 1 E (∂ A |N i j |) = 1. T h er ef or e,
E 0 = E 1 = 1 . Pl u g gi n g t h es e v al u es i nt o i n e q u alit y (5 4 ) a n d s u bstit uti n g ϵ wit h ϵ /(c − 1) r es ults i n i n e q u alit y (5 2 ). I n e q u alit y (5 3 )
is o bt ai n e d fr o m a u ni o n pr o b a bilit y b o u n d ar g u m e nt.

Wit h t h e esti m at es a b o v e, t h e r e g ul ar E- R gr a p h c o n diti o n h ol ds wit h pr o b a bilit y at l e ast 1 − n 2 e x p( −
η 2

0

5 c p n ) −

n 2 e x p( − K η 2
0 p

c − 1
c − 2 n ) − n 2 e x p( −

η 2
0

5 c p q ∗ n ) − n 2 e x p( − K η 2
0 (p q ∗ )

c − 1
c − 2 n ) − 2 e 2 n 2 e x p( − n ϵ + ( c − 2)l o g n ).

Pr o of of T h e ore m C. 6 . F or a n y L ∈ N c
i j a n d p q ∈ L , w e s a y L ′ is c orr el at e d wit h L if L ∩ L ′ is n o n e m pt y, a n d L ′ is c orr el at e d wit h

L \ { p q } if (L \ { p q } ) ∩ L ′ is n o n e m pt y. We d e n ot e C L as t h e s et of ij, c- p at hs i n N c
i j t h at is c orr el at e d wit h L , a n d d e n ot e C L \ { p q } as

t h e s et of ij, c- p at hs i n N c
i j t h at is c orr el at e d wit h L \ { p q } . Wit h t h e r e g ul ar E- R gr a p h c o n diti o n, w e k n o w t h at f or a n y L ∈ N c

i j ,

|C L |≤
p q ∈ L

|C L \ { p q } | ( 5 5)

≤ m c − 1 + m 1 m c − 2 + m 2 m c − 3 + ···+ m c − 2 m 1 + m c − 1 ( 5 6)

< c m c − 1 . ( 5 7)

D e n ot e ∆ 1 = m a x L ∈ N c
i j

|C L |. T h e n w e k n o w t h at ∆ 1 < c m c − 1 < c m a x( n ϵ , nc − 3 p c − 2 ). We a p pl y t h e or e m 2. 5 i n [2 3 ] o n L ∈ N c
i j

d 2
L

a n d L ∈ N c
i j

(− d 2
L ) a n d g et t h e f oll o wi n g i n e q u aliti es:

P (
L ∈ N c

i j

d 2
L > ( 1 + η )E

L ∈ N c
i j

d 2
L ) < e x p( −

|N c
i j |v G

∆ 1
φ (

η E L ∈ N c
i j

d 2
L

|N c
i j |v G ( 1 + ∆ 1 / 8 |N c

i j |)
)) ( 5 8)

a n d

P (
L ∈ N c

i j

d 2
L < ( 1 − η )E

L ∈ N c
i j

d 2
L ) < e x p( −

|N c
i j |v G

∆ 1
φ (

η E L ∈ N c
i j

d 2
L

|N c
i j |v G ( 1 + ∆ 1 / 8 |N c

i j |)
)) ( 5 9)

w h er e φ (x ) = ( 1 + x )l n( 1 + x ) − x . N ot e t h at φ (x ) ≥ x l n( 1 +x )/ 2 f or a n y x ≥ 0 . B y t h e r e g ul ar E- R gr a p h c o n diti o n w e h a v e
|N c

i j | ≥( 1 − η 0 )n
c − 2 p c − 1 , a n d t h er ef or e ∆ 1 / |N c

i j | ≤m a x( 1 / (n c − 2 p c − 1 ),1 / (n p ))/ ( 1 − η 0 ) < 1 . Als o, si n c e all t h e d 2
L ’s f or L ∈ N c

i j



f oll o w t h e s a m e distri b uti o n wit h m e a n e G a n d v ari a n c e v G , w e k n o w t h at E L ∈ N c
i j

d 2
L = |N c

i j |e G . T h er ef or e R H S of (5 8 ) a n d

(5 9 ) c a n b e u p p er b o u n d e d as f oll o ws:

R H S of ( 5 8 ) a n d (5 9 ) ≤ e x p −
|N c

i j |v G

∆ 1
·

η E L ∈ N c
i j

d 2
L

2 |N c
i j |v G ( 1 + ∆ 1 / 8 |N c

i j |)

·l n( 1 +
η E L ∈ N c

i j
d 2

L

|N c
i j |v G ( 1 + ∆ 1 / 8 |N c

i j |)
)

= e x p −
1

∆ 1
·

η |N c
i j |e G

2( 1 + ∆ 1 / 8 |N c
i j |)

l n( 1 +
η e G

v G ( 1 + ∆ 1 / 8 |N c
i j |)

)

≤ e x p −
η e G |N c

i j |

4 ∆ 1
l n( 1 +

η e G

2 v G
)

≤ e x p −
η e G ( 1 − η 0 )n

c − 2 p c − 1

4 m a x( n ϵ , nc − 3 p c − 2 )
l n( 1 +

η e G

2 v G
)

≤ e x p −
η e G

8 c
l n( 1 +

η e G

2 v G
) mi n(n p, n c − 2 − ϵ p c − 1 ) . ( 6 0)

C o m bi ni n g t h e u p p er a n d l o w er t ail b o u n d t o g et h er yi el ds

P (|
L ∈ N c

i j

d 2
L − E

L ∈ N c
i j

d 2
L |> η E

L ∈ N c
i j

d 2
L ) < 2 e x p( −

η e G

8 c
l n( 1 +

η e G

2 v G
) mi n(n p, n c − 2 − ϵ p c − 1 )). ( 6 1)

T h e n T h e or e m C. 6 f oll o ws b y (3 1 ).

Pr o of of L e m m a C. 7 . D e n ot e γ i j = ( s
( 0 )
i j ) 2 − E (s

( 0 )
i j ) 2 f or ij ∈ E a n d γ = m a x i j ∈ E |γ i j |, s o t h at t h e c o n diti o n of t h e l e m m a c a n b e

writt e n m or e si m pl y as 1 / 2( c − 1) β 0 ≥ γ . B y r e writi n g E (s
( 0 )
i j ) 2 as q c − 1

g (s ∗
i j )

2 + ( 1 − q c − 1
g )z G + γ i j a n d i n v o ki n g l e m m a 1 i n [ 2 5 ]

a n d e q u ati o ns ( 6 ) (7 ), w e h a v e t h e f oll o wi n g b o u n d:

|s
( 1 )
i j − s ∗

i j |
2 ≤

L ∈ N c
i j

e
− β 0 e ∈ L q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G + γ e |d L − s ∗
i j |

2

L ∈ N c
i j

e − β 0 e ∈ L

√
q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G + γ e

≤
L ∈ B c

i j
e − β 0 e ∈ L

√
q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G + γ e (s ∗
L ) 2

L ∈ G c
i j

e − β 0 e ∈ L

√
q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G + γ e

( 6 2)

B y first a p pl yi n g t h e f a cts: |γ e | ≤ γ a n d s ∗
e = 0 f or e ∈ L w h er e L ∈ G c

i j , a n d at l ast t h e i n e q u alit y x e − a x ≤ 1 / (e a ) wit h

x = e ∈ L (s ∗
e ) 2 a n d a = β 0 q

c − 1
g / 2 , w e o bt ai n t h at

|s
( 1 )
i j − s ∗

i j |
2 ≤

L ∈ B c
i j

e − β 0 e ∈ L

√
q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G − γ (s ∗
L ) 2

|G c
i j |e

− β 0 ( c − 1 )
√

( 1 − q c − 1
g ) z G + γ

=
L ∈ B c

i j
e − β 0 e ∈ L (

√
q c − 1

g ( s ∗
e ) 2 + ( 1 − q c − 1

g ) z G − γ −
√

( 1 − q c − 1
g ) z G + γ ) (s ∗

L ) 2

|G c
i j |

≤
L ∈ B c

i j
e − β 0 e ∈ L ( q c − 1

g ( s ∗
e ) 2 − 2 γ ) / 2 (s ∗

L ) 2

|G c
i j |

≤
e 2 β 0 ( c − 1 ) γ

L ∈ B c
i j

e − β 0 q c − 1
g e ∈ L ( s ∗

e ) 2 / 2 (c − 1) e ∈ L (s ∗
e ) 2

|G c
i j |

≤
2( c − 1) |B c

i j |

|G c
i j |β 0 q

c − 1
g

. ( 6 3)



T h e l e m m a is c o n cl u d e d b y a p pl yi n g t h e u ni o n b o u n d o n ij ∈ E a n d t a ki n g t h e s q u ar e r o ot o n b ot h si d es of t h e a b o v e i n e q u alit y.

Pr o of of L e m m a C. 8 . L et ϵ i j (t) = |s
( t )
i j − s ∗

i j | a n d ϵ(t) = m a x i j ∈ E ϵ i j (t). We pr o v e t his l e m m a, or e q ui v al e ntl y ϵ(t) < 1 / 2( c − 1) β t

f or all t ≥ 1 , b y i n d u cti o n. We first n ot e t h at ϵ( 1) < 1 / 4 β t is a n ass u m pti o n of t h e l e m m a. N e xt w e s h o w t h at ϵ(t + 1) < 1 / 2( c − 1) β t + 1

if ϵ(t) < 1 / 2( c − 1) β t .
B y t h e f a ct t h at |d L − s ∗

i j | ≤s ∗
L , G c

i j ⊆ N c
i j a n d s ∗

L = 0 f or L ∈ G c
i j , w e o bt ai n t h at

ϵ ij (t + 1) 2 = |s
( t )
i j − s ∗

i j |
2 = |

L ∈ N c
i j

e − β t s
( t )
L d 2

L

L ∈ N c
i j

e − β t s
( t )
L

− s ∗
i j |

2

≤
L ∈ N c

i j
e − β t s

( t )
L |d L − s ∗

i j |
2

L ∈ N c
i j

e − β t s
( t )
L

≤
L ∈ N c

i j
e − β t s

( t )
L (s ∗

L ) 2

L ∈ N c
i j

e − β t s
( t )
L

≤
L ∈ B c

i j
e − β t s

( t )
L (s ∗

L ) 2

L ∈ G c
i j

e − β t s
( t )
L

≤
L ∈ B c

i j
e − β t e ∈ L ϵ e ( t ) (s ∗

L ) 2

L ∈ G c
i j

e − β t e ∈ L ϵ e ( t )

≤
1

|G c
i j | L ∈ B c

i j

e 2 β t ( c − 1 ) ϵ ( t ) e − β t s ∗
L (s ∗

L ) 2 . ( 6 4)

B y t h e i n d u cti o n ass u m pti o n ϵ(t) < 1 / 2( c − 1) β t a n d t h e n usi n g t h e d efi niti o n of λ , w e h a v e

ϵ(t + 1) 2 ≤
e L ∈ B c

i j
e − β t s ∗

L (s ∗
L ) 2

|G i j |
≤

e λ

( 1 − λ )|B i j |
L ∈ B c

i j

e − β t s ∗
L (s ∗

L ) 2 . ( 6 5)

C o m bi ni n g t h e l e m m a ass u m pti o ns a n d t h e d efi niti o n of M w e h a v e

ϵ(t + 1) 2 ≤
e λ

M ( 1 − λ )β 2
t

= (
r

2( c − 1) β t
) 2 . ( 6 6)

T h er ef or e t h e l e m m a is pr o v e d b y t a ki n g t h e s q u ar e r o ot of b ot h si d es.

Pr o of of L e m m a C. 9 . T o pr o v e t his l e m m a, w e first pr o v e a n u p p er b o u n d o n t h e s u pr e m a of w e a kl y d e p e n d e nt e m piri c al pr o c ess es.
F or a n i n d e x s et A a n d c orr es p o n di n g r a n d o m v ari a bl es { X α } α ∈ A , w e m a k e t h e f oll o wi n g d efi niti o ns:
• A s u bs et A ′ of A is i n d e p e n d e nt if { X α } α ∈ A ′ is i n d e p e n d e nt.
• A f a mil y of p airs (A k , wk ) is a fr a cti o n al c o v er of A if k w k 1 A k

≥ 1 A .
• A fr a cti o n al c o v er (A k , wk ) is pr o p er if e a c h s et A k is i n d e p e n d e nt.

L e m m a D. 4 . Ass u m e { X α } α ∈ I ar e i d e nti c all y distri b ut e d a c c or di n g t o P . Ass u m e F is a c o u nt a bl e s et of f u n cti o ns t h at ar e
all P - m e as ur a bl e a n d f or all f ∈ F , ∥ f ∥ ∞ ≤ 1 . L et Z = s u p f ∈ F | α ∈ I f (X α )|. Ass u m e I a d mits a pr o p er fr a cti o n al c o v er
{ (I j , wj )} j ∈ J , a n d Z j = s u p f ∈ F | α ∈ I j

f (X α )|. L et { p j } j ∈ J b e p ositi v e n u m b ers s u c h t h at j p j = 1 . T h e n

P (Z >
j

w j E Z j + t) < e x p( − v φ (
t

W v
)) ( 6 7)

w h er e v = 2 mi n j E Z j + s u p f ∈ F Var (f (X α )) a n d W = j w j .



Pr o of. We f oll o w t h e pr o of str at e g y of [ 2 3 ]. B y l e m m a 3. 2 i n [2 3 ] w e c a n ass u m e (I j , wj ) is a n e x a ct fr a cti o n al c o v er of I . We h a v e

Z = s u p
f ∈ F

|
α ∈ I

f (X α )| ( 6 8)

≤ s u p
f ∈ F

|
α ∈ I j

w j 1 I j
(α )f (X α )| ( 6 9)

= s u p
f ∈ F

|
j

w j

α ∈ I

1 I j (α )f (X α )| ( 7 0)

= s u p
f ∈ F

|
j

w j

α ∈ I j

f (X α )| ( 7 1)

≤
j

w j s u p
f ∈ F

|
α ∈ I j

f (X α )|=
j

w j Z j . ( 7 2)

L et p j b e a n y p ositi v e n u m b ers s u c h t h at j p j = 1 . B y J e ns e n’s i n e q u alit y, f or a n y u > 0 ,

e x p( u (Z −
j

E Z j )) ≤ e x p(
j

p j
u w j

p j
(Z j − E Z j )) ≤

j

p j e x p(
u w j

p j
(Z j − E Z j )). ( 7 3)

Si n c e Z j is t h e s u pr e m u m of a s u m of i n d e p e n d e nt r a n d o m v ari a bl es, b y t h e or e m 2. 1 i n [3 ] w e h a v e

E e x p(
u w j

p j
(Z j − E Z j )) ≤ e x p( ψ (−

u w j

p j
)v j ) ( 7 4)

w h er e ψ (x ) = e − x − 1 + x a n d v j = 2 E Z j + s u p f ∈ F Var (f (X α )). L et p j = w j / W . B y d efi niti o n of v , v = mi n j v j . B y M ar k o v’s
i n e q u alit y w e h a v e

P (Z −
j

E Z j ≥ t) ≤ e − u t E e u ( Z − j E Z j ) ( 7 5)

≤ e − u t j w j e
ψ ( − u W ) v j

W
( 7 6)

≤ e − u t j w j e
ψ ( − u W ) v

W
( 7 7)

= e − u t + ψ ( − u W ) v ( 7 8)

= e − u t + ( e u W − 1 − u W ) v . ( 7 9)

Ta ki n g t h e mi ni m u m of t h e ri g ht h a n d si d e wit h r es p e ct t o u gi v es P (Z ≥ t) ≤ e − v φ ( t / W v ) .

N o w l et’s pr o v e L e m m a C. 9 . We sli g htl y a b us e t h e n ot ati o n f or si m pli cit y. T hr o u g h o ut t his pr o of w e us e B i j as t h e s et of all
b a d ij, c- p at hs. T o us e L e m m a D. 4 , w e n e e d t o c o nstr u ct a pr o p er fr a cti o n al c o v er of B c

i j . L et ∆ 1 = ⌊| B c
i j |/ c m c − 1 ⌋ . N ot e t h at b y

t h e r e g ul ar E- R c o n diti o n, w e k n o w t h at e a c h L ∈ B c
i j h as at m ost c m c − 1 c y cl es t h at ar e c orr el at e d wit h L . B y H aj n al- S z e m eré di

t h e or e m, t h er e e xists a p artiti o n of B c
i j , n a m el y { B c

i j, k }
c m c − 1

k = 1 , w h er e f or a n y k , |B c
i j, k | = ∆ 1 or ∆ 1 + 1 , a n d all p at hs i n B c

i j, k ar e
i n d e p e n d e nt. T his i n d u c es a pr o p er fr a cti o n al c o v er (B c

i j, k ,1) . B y L e m m a D. 4 , f or a n y t > 0 w e h a v e

P ( s u p
f τ ∈ F ( β ) L ∈ B c

i j

f τ (s ∗
L ) > t + c m c − 1 m a x

k
E Z k ) < e x p( − v φ (

t

c m c − 1 v
)). ( 8 0)

w h er e v = 2 mi n k E Z k + V (β ).

B y l e m m a 7 of [ 2 5 ] w e k n o w t h at E Z k ≤ C 1 l o g|B c
i j, k |/ |B c

i j, k |. B y |B c
i j, k | ≥ ∆ 1 w e k n o w l o g|B c

i j, k |/ |B c
i j, k | ≤ l o g ∆1 / ∆ 1 .



B y φ (x ) > x
2 l n( 1 +x ) a n d t h e d efi niti o n of ∆ 1 , l et t = |B c

i j |( 2C 1 l o g ∆1 / ∆ 1 + V (β )) i n (8 0 ), w e h a v e

P



 s u p
f τ ∈ F ( β )

1

|B c
i j | L ∈ B c

i j

f τ (s ∗
L ) > V (β ) + ( 2C 1 +

1

∆ 1
)

l o g ∆1
∆ 1





< e x p −
l n 2

2
∆ 1 ( 2C 1

l o g ∆1
∆ 1

+ V (β )) .

( 8 1)

B y t h e d efi niti o n of m c − 1 w e k n o w t h at c m c − 1 ∼ m a x( n c − 3 p c − 2 , nϵ ). T h er ef or e ∆ 1 = Ω( mi n( n p, n c − 2 − ϵ p c − 1 )). Si n c e ∆ 1 ≥ 1 ,
L e m m a C. 9 is pr o v e d b y l etti n g K ′′ = 2 C 1 + 1 .

E. E xt e nsi o n t o a n y li n e a r g r o u p wit h t h e m et ri c i n d u c e d b y t h e F r o b e ni us n o r m

O ur al g orit h m L o n g S y n c c a n b e e xt e n d e d t o a n y li n e ar gr o u p wit h t h e m etri c i n d u c e d b y t h e Fr o b e ni us n or m.   L et
D G (G 1 ,G 2 ) = ∥ G 1 − G 2 ∥ F b e s u c h m etri c d efi n e d o n a li n e ar gr o u p G . T h e u p d at e r ul e of L o n g S y n c b e c o m es:

s
( t )
ij =

L ∈ N c
i j

w
( t )
L d 2

L / z
( t )
i j

1 / 2

=
L ∈ N c

i j

w
( t )
L D 2

G (G L ,G i j )/ z
( t )
i j

1 / 2

=
L ∈ N c

i j

w
( t )
L ∥ G L − G i j ∥

2
F / z

( t )
i j

1 / 2

=
L ∈ N c

i j

w
( t )
L G L ,

L ∈ N c
i j

w
( t )
L G L − 2

L ∈ N c
i j

w
( t )
L G L ,G i j +

L ∈ N c
i j

w
( t )
L G i j ,G i j /

L ∈ N c
i j

w
( t )
L

1 / 2

. ( 8 2)

Wit h t h e s a m e f c a n d g c i n 3. 1 , w e h a v e t h e f oll o wi n g pr o p ositi o n:

P r o p ositi o n E. 1. T h e u p d at e r ul e of of L o n g S y n c f or a n y li n e ar gr o u p i n e q u ati o n (8 2 ) is e q ui v al e nt t o t h e f oll o wi n g m atri x o p er ati o ns:

S ( t ) = g c ( W ( t ) ,G ), gc ( W ( t ) ,G )
bl o c k

− 2 g c (W
( t ) ,G ),G

bl o c k
⊘ f c (W

( t ) ) + ⟨G ,G ⟩ bl o c k

⊙ 1 / 2

( 8 3)

w h ere W ( t + 1 ) = A ⊙ e x p( − β t S
( t ) ).

Pr o of. We pr o v e t h e pr o p ositi o n b y c o m p ari n g t h e ij-t h el e m e nt of t h e ri g ht h a n d si d e of e q u ati o n (8 3 ) wit h (8 2 ). B y t h e d efi niti o n
of bl o c k wis e i n n er pr o d u ct, t h e ij-t h bl o c k of t h e ri g ht h a n d si d e of e q u ati o n (8 3 ) is

g c ( W ( t ) ,G )(i,j), gc ( W ( t ) ,G )(i,j) − 2 g c (W
( t ) ,G ),G i j / f c (W

( t ) ) + ⟨G i j ,G i j ⟩

1 / 2

.

N ot e t h at b y d efi niti o n of g c , g c ( W (t),G )(i, j) = L ∈ N c
i j

w
( t )
L G L , a n d g c (W (t),G )(i, j) = L ∈ N c

i j
w

( t )
L G L . B y t h e

d efi niti o n of f c , f c (W
( t ) )(i,j) = L ∈ N c

i j
w

( t )
L . B y dir e ctl y c o m p ari n g t h e t er ms w e k n o w t h at t h e ri g ht h a n d si d e of e q u ati o n (8 3 )

is t h e s a m e as (8 2 ).

I n vi e w of t his v e ct ori z e d u p d at e r ul e, w e pr o p os e t h e v e ct ori z e d L o n g S y n c it er ati o ns f or a n y li n e ar gr o u p wit h l2 m etri c i n
al g orit h m 2 .

We r e m ar k t h at t h e t h e or y of L o n g S y n c c a n als o b e a d a pt e d as l o n g as t h e gr o u p is ’ w ell- c o n diti o n e d’, i. e. t h er e e xists c o nst a nts
M G a n d m G o nl y d e p e n di n g o n G s u c h t h at f or a n y G ∈ G , t h e a bs ol ut e v al u e of t h e ei g e n v al u es of G is b et w e e n m G a n d M G .



Al g o rit h m 2 ( L o n g S y n c f or a n y li n e ar gr o u p)

I n p ut: p air wis e m e as ur e m e nt m atri x G , a dj a c e n c y m atri x A ∈ [ 0,1] n × n , c y cl e l e n gt h c , p ositi v e p ar a m et ers { β t } t ≥ 1 , ti m e st e p T
W ( 0 ) (i,j) ← A
f o r t = 0: T d o

S ( t ) ← g c ( W ( t ) ,G ), gc ( W ( t ) ,G )
bl o c k

− 2 g c (W
( t ) ,G ),G

bl o c k
⊘ f c (W

( t ) ) + ⟨G ,G ⟩ bl o c k

⊙ 1 / 2

W ( t + 1 ) ← A ⊙ e x p( − β t S
( t ) )

e n d f o r
O ut p ut: e d g e w ei g hts W ( T + 1 ) , c orr u pti o n l e v els S ( T )
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