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Abstract—Reconstructing physical field tensors from in situ
observations, such as radio maps and ocean sound speed fields,
is crucial for enabling environment-aware decision making in var-
ious applications, e.g., wireless communications and underwater
acoustics. Field data reconstruction is often challenging, due to
the limited and noisy nature of the observations, necessitating
the incorporation of prior information to aid the reconstruction
process. Deep neural network-based data-driven structural con-
straints (e.g., “deeply learned priors”) have showed promising
performance. However, this family of techniques faces challenges
such as model mismatches between training and testing phases.
This work introduces FieldFormer, a self-supervised neural prior
learned solely from the limited in sifu observations without the
need of offline training. Specifically, the proposed framework
starts with modeling the fields of interest using the tensor
Tucker model of a high multilinear rank, which ensures a
universal approximation property for all fields. In the sequel, an
attention mechanism is incorporated to learn the sparsity pattern
that underlies the core tensor in order to reduce the solution
space. In this way, a “complexity-adaptive” neural representation,
grounded in the Tucker decomposition, is obtained that can
flexibly represent various types of fields. A theoretical analysis is
provided to support the recoverability of the proposed design.
Moreover, extensive experiments, using various physical field
tensors, demonstrate the superiority of the proposed approach
compared to state-of-the-art baselines. The code is available at
https://github.com/OceanSTARLab/FieldFormer.

Index Terms—3D physical field reconstruction, tensor attention
prior, tensor completion.

I. INTRODUCTION

HE accurate characterization of signal propagation in
complex environments, such as underwater acoustics in
the sea or electromagnetic waves in urban areas, is the stepping
stone towards environment-aware wireless communications,
target detection and recognition [1]-[6]. To accomplish this,
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several types of three-dimensional (3D) physical fields have
been developed to provide valuable information across a given
geographical region. Examples include the ocean sound speed
field [7], which governs sound transmission in a spatially
3D ocean environment, and the radio map [2], which reveals
information about the propagation of radio power across two
spatial domains and one frequency domain.

Despite the vital role of the aforementioned 3D physical
fields, crafting a finely detailed field that precisely captures the
rapid variations of physical quantities (such as sound speeds
or radio powers) across multiple domains (such as spaces or
frequencies) presents a highly challenging task. Due to the
high cost of in-situ measurements, sensors are often sparsely
deployed across the geographical region, leaving a substantial
portion of the physical fields unobserved [8], [9]. Using such
limited and potentially noisy samples to reconstruct the com-
plete 3D physical field is a typical ill-posed inverse problem,
which has undergone extensive studies in recent years [1]-[4],
[10]-[16].

Within the vast literature, the primary idea is to supplement
the ill-posed reconstruction process with various informative
priors of the associated physical fields. Early studies utilized
hand-crafted priors rooted in basic assumptions about these
fields, such as local smoothness [3], [12], [13], [17], [18]
and global coherence [19], [20]. These assumptions could be
readily translated into analytical forms such as total variations
[18] and low-rank modeling [19], [20]. Despite their simplicity
and interpretability, methods based on hand-crafted priors
encounter challenges when the underlying structure of physical
fields becomes complex. For instance, in the deep ocean, the
presence of internal waves and eddies causes significant fluctu-
ations in sound speed across large spatial scales [7]. Similarly,
in urban areas, the proliferation of obstacles exacerbates the
shadowing effect [21].

To excel in complex environments, there has been a notable
focus on data-driven priors. These priors can be broadly
classified into two categories: supervised priors and unsuper-
vised priors (also called trained priors and untrained priors,
respectively). Supervised priors rely on training data from
historical measurements or simulators. Despite their promising
performance in applications like ocean sound speed field
recovery [22], [23] and radio map estimation [1], [15], [16],
[24], [25], these methods face a number of challenges: 1)
the performance deteriorates substantially when the fields
targeted for reconstruction follow different data distributions
compared to the training data; 2) the learned priors need to
be retrained if the scenarios change; and 3) obtaining high-
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Fig. 1: The schematic figure illustrating the rationale of the
proposed method.

quality training data is not always feasible, especially for
physical fields situated in deep-sea or rural areas [8], [9].
To address the aforementioned challenges, there has been a
surging interest in unsupervised data-driven priors [26]. These
neural network-based priors only leverage inherent inductive-
biases [27] that match the structure of the data, requiring no
additional training data. This idea was used in various fields,
e.g., image restoration [28] and sound speed field recovery
[10]. Nonetheless, their effectiveness is often hampered by the
limited number of observations and the predetermined model
architecture/complexity. This prompts an intriguing question:
Can a self-supervised learning approach be devised to further
distill knowledge from a limited amount of samples, which will
lead to a “complexity-adaptive” data-driven prior to enhance
physical field reconstruction?

Contributions. To address this question, we propose Field-
Formers. These comprise neural representations for field data
that build upon a) a tensor Tucker model, b) an attention
mechanism and c) self-supervised learning. Central to our idea
is to leverage the notion of attention mechanism to automat-
ically adjust the complexity of the adopted Tucker model, so
that the representation strikes a reasonable balance between
universality and parsimony. The main rationale of the proposed
method lies in the following concept. We split the observation
tensor in smaller cubes (see the first part of Fig. 1). One could
view this process as the equivalent of the tokenization step in
natural language processing (NLP). Then, a similarity matrix
among the various tokens/cubes is computed, similar to the
attention map in transformers (see the second part of Fig. 1).
The similarity (attention) matrix implicitly implies a sparsity
structure, since less similar parts/tokens lead to low-value
attention weights. It is exactly this information that will be
exploited by imposing it on the adopted Tucker model (see the
third part of Fig. 1). Following this rationale, we devise (multi-
head) tensor attention priors (MH)TAP) to enable learning
the sparse patterns of the core tensor of an over-complete
Tucker model, which will be elaborated in Sec. III. The tensor
attention mechanism is critical in capturing both short- and
long-range dependencies among different areas of the field,
and mapping such dependencies into the core tensor.

In addition to model design, the paper also studies various
aspects that are of theoretical interest. We analyze the expected
number of the non-zero elements in the core tensor to represent

field data. Furthermore, we provide recoverability guarantees
under the proposed model, which reveal the trade-off between
sample and model complexities. Extensive experimental re-
sults, using ocean sound speed fields and radio maps, are
presented that demonstrate the excellent performance of the
proposed approaches.

Notations: Lower- and upper-case bold letters (e.g., x and X)
are used to denote vectors and matrices, respectively. Upper-
case bold calligraphic letters and upper-case calligraphic let-
ters (e.g., X and X) are used to denote tensors and sets.
Operations ®, ®, *, 0 denote Kronecker product, Khatri-Rao
product, Hadamard product and outer product respectively.
Il - II#s ]l - llos |l - 2 and || - ||« represent Frobenius norm, Lg
norm, Ly norm and nuclear norm, respectively. | X| represents
the cardinality of set X. || and mod are exact division and
modulus operators.

II. PROBLEM STATEMENT AND PRIOR ART

In this section, we present the problem setup of 3D physical
fields reconstruction and introduce the prior art.

A. Problem Setup

The objective is to reconstruct the ground-truth 3D physical
field, denoted as X € RIxI2XIs  from a limited number of
noisy observations, denoted as Y € RI1*12xIs_The typical
observation or sensing model is defined as follows:

Y=0x(X;+N), (D

where N/ € R71*/2XIs represents the noise tensor, and
the binary tensor O indicates the observed entries, where
O(iy,i9,13) = 1 if the (iy1,42,i3)-th point is observed, and
O(i1,i2,13) = 0 otherwise.

Based on the sensing model in (3), the reconstruction
problem can be formulated in the following conceptual form:

min —OxX|3,
nin [ I3 o
st. X e F,

where F denotes a set of structural constraints of the 3D
field X. The recovery problem is ill-posed, as the number of
observations is often much smaller than the signal dimension
I, I515. The key to tackling such a challenging inverse task
lies in selecting a proper F that reflects prior information of
X and incorporating the related information to recover X. We
also denote full observation 57 as:

j):Xh+N. 3)

In the following subsections, we briefly review the prior art
on designing F and the remaining challenges.

B. Prior Art and Challenges Ahead

Handcrafted prior: Many early methods in this domain use
a relatively simple constraint set F, e.g., low (matrix/ten-
sor) rank [19], [20], and total variation [3], [17], [18]. The
respective implementation is also relatively straightforward:
one can often approximate these constraints using convex
regularization terms, e.g., using the tensor nuclear norm [29]



%2?21 X« to approximate the low-rank constraint on
X, where X(;y is the mode-/ folding of X,VI. Although
these constraints/regularization terms are simple to incorporate
and easy to interpret, they often have limited capabilities
in handling complex scenarios, requiring careful design for
specific tasks.
Supervised and unsupervised data-driven priors: Another
idea is to learn a generative model of X from historical
or simulated data {X*"™"}N_ . This can be done via using
popularized neural generative models such as autoencoders
(AEs) [1] or generative adversarial networks (GANs) [25];
e.g., conceptually, AE-based generative model learning can be
formulated as
: 1 A D Xtrain Xtrain 2 4

mjn 5 2 106(Qa(X™) - XIIE @
Here, the representation model X =~ Dg(z), where Dg(-)
denotes a neural generative model and z is the associated
latent representation of X’; (Qg(X) is the so-called “encoder”
parameterized by 3 such that Qg(X) ~ z. Once Dg-(-) is
learned with 8* denoting the learned parameters, problem (2)
can be simplified as

min | — O * D (2)|3. (5)

This type of data-driven prior partially mitigates the challenges
related to handcrafted priors, particularly excelling in captur-
ing the intricate details of physical fields [1], [24]. Nonethe-
less, their performance heavily depends on the quality and
quantity of the training datasets {X*™}N_ = Consequently,
they face difficulties in adapting to real-time environmental
shifts, potentially requiring re-training.

A workaround is to employ the so-called unsupervised
priors, i.e., representing X as X = D(60), ie., a neural
network with untrained parameters 6, and solve the following:

Inein |V —©xD(6)|3. (6)

In this way, neural architectures introduce useful inductive
bias to model complex X, but training data is not needed.
The input of the corresponding neural network is excited by
random noise [28], [30]. Such untrained models attracted much
attention from the vision community [28], [30] and were also
used in sound speed field recovery [10]. However, designing
the neural architecture is often nontrivial, and implementing
such complex models often requires many heuristics that are
hard to interpret, e.g., early stopping [28].

Self-supervised approach: To address the limitations of both
supervised and unsupervised methods mentioned earlier, this
paper follows a different path aiming to reconstruct physical
fields using a self-supervised approach. The essence of self-
supervised learning is to learn the underlying structure of the
data by generating features at the output of an encoder, which
is trained via targets that are constructed from the available
unlabeled data, e.g., [31]-[33]. In our specific context, the
reconstruction problem can be formulated as follows:

moin 1YV -0 X|3,
st. X =Dg(Y).
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Fig. 2: Illustration of a 3-rd order tensor Tucker model.

Here, Dg(Y) defines the feasible set F (the feasible set could
be considered as the encoder branch in a self-supervised task,
starting from the input Y) and recovers the entire field from
limited and noisy observations ), which act as the respective
targets for the training. The parameters 6 are optimized
through self-supervised learning, contrasting with supervised
approaches with pre-trained parameters. On the other hand,
the proposed approach leverages input observations Y to
dynamically learn the model architecture/complexity, while
earlier unsupervised methods are reliant on a fixed neural net-
work architecture/complexity. Self-supervised prior learning
was recently seen in vision [34] and hyperspectral imaging
[35], showing appealing characteristics. However, [34] and
[35] are not well suited for handling complex physical fields,
as the former fails to capture multidimensional interactions
within 3D fields, while the latter imposes restrictive low-rank
constraints. In this work, our interest lies in designing self-
supervised prior learning mechanisms tailored for 3D physical
fields.

III. PROPOSED APPROACH

In this section, we first introduce the tensor Tucker model
and the attention mechanism as preliminaries, and then we
elaborate how we propose our framework based on them.

A. Preliminaries

Tensor Tucker model: The tensor Tucker model serves as the
cornerstone of the proposed framework. We choose Tucker
model because it appears to fit to the context of field estimation
naturally. In particular, the core tensor resembles the attention
map that admits interesting interpretation. Other tensor decom-
position models may not offer such an immediate connection
to attention. Specifically, we employ a third-order Tucker
model in this work, as illustrated in Fig. 2. Its mathematical
expression is as follows:

G =8 %1V x2Vy x3Vg, ®

where S € RF1*R2xRs repregents the core tensor and {V; €
RI> RS | denote three sets of factor matrices. The output is
denoted by G € RI1*12XI3 Note that x; stands for mode-I
product. Specifically, the mode-/ product of a third order tensor
A e RIv<oxIixexIn gnd g matrix B € R7*1t, denoted as
A x; B, produces a L-th order tensor C € R X xJixexIn
And it can be expressed as

I
Civvin iz = Y Ais s e iz Bl k- )
k=1



The Tucker model was introduced as higher-order singular
value decomposition (SVD) [36] as it can retain orthogonal-
ity of V;,Vl (yet other decomposition such as the canoni-
cal polyadic decomposition (CPD) [37] cannot). The Tucker
model is a universal representer—that is, when Ry, R, and R3
are large enough (up to R; = I;), any tensor can be expressed
by a Tucker decomposition model [37]. This is analogous the
matrix case—i.e., any real-valued matrix admits an SVD.
Attention mechanism: The scaled dot-product attention
mechanism [38] has been widely adopted in NLP and com-
puter vision [39], [40] for its powerful feature extraction
capabilities. Given N input vectors of dimension K (e.g.,
word embeddings), they can be organized into the input matrix
P € RY*X, The matrix P is then projected into different
“embedding spaces’:

Q=PW, K=PWg,V=PWy, (10)

where Wo, W, Wy € REXM are the feature embedding
matrices and M represents the latent embedding dimension.
The matrices Q, K, and V are the query, key, and value matri-
ces, respectively, all sharing the size of N x M. Consequently,
the formulation of attention is as follows:

QK"
VM

where SoftMax function does row normalization of QKT after
scaled by /M. Note that QKT results in an attention map
(i.e., row-by-row correlation matrix) of size N x N, with the n-
th row representing the similarities between n-th input vector
and the rest. In a nutshell, attention is basically an expansion
of the input matrix P in terms of value vectors (i.e., rows in
V) with weighting coefficients expressing mutual similarities.
Less similar vectors are weighted with small weights. Thus
this mechanism can also be used to impose sparsity in the
model.

A toy example is provided in Fig. 3 to illustrate the process
of computing an attention map, which typically reflects some
sparse patterns due to the predominantly incoherent nature of
the latent features.

Attention(Q, K, V) = SoftMax(

)V, Y

B. Proposed Sparse Tensor Attention Module

The expressiveness of the Tucker model depends on the
sizes or dimensions of the core tensor S € RF1*F2xRs jp
comparison to the output tensor G € R11*2XIs Specifically,
when the core tensor is large, i.e., R; > I;, VI, it becomes
expressive enough to represent an arbitrary tensor of size
(I1, I, I3). However, in the absence of suitable regularization,
directly fitting such a Tucker model to limited observations of
physical fields can lead to overfitting. To address this issue,
previous methods have proposed sparsifying the core tensor
S by incorporating various sparsity-aware regularizers [23],
[41], [42]. Nevertheless, these handcrafted regularizers do not
adapt to in-situ data, and thus often exhibit model mismatches
in field estimation problems.

Towards data-adaptive sparse coding for the core tensor S,
we propose leveraging the attention mechanism. Our idea is
inspired by the underlying similarities between the expansions
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(a) Toy example of query ma-
trix Q. The first row of Q is
a sine wave in combination
with k; and k4 (as shown in
(b)). The rest rows of Q are
similar to that of K.

(b) Toy example of key ma-
trix K. Each row of K (i.e.,
k;,l = 1,2,3,4) is a sine
wave with different frequen-
cies. Therefore, they are or-
thogonal to each other.
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(c) Toy example of QK™.

Fig. 3: Toy example of query, key matrices and their similar-
ities represented by QK. Obviously, only q; shows some
similarities with k; and k, while others show no similarities
but themselves.

in Eq. (8) and Eq. (11). By comparing the two expressions,
one can interpret the Tucker model as a tensorized version
of the attention matrix. Specifically, the core tensor & acts
as the weight coefficient tensor, and the three factor matri-
ces {V;}}_, serve as the value matrices. This observation
motivates us to propose a way for automatically learning the
sparsity pattern of the core tensor S.

1) Local Region Representation: To achieve this goal, as
shown in the first part of Fig. 4, we begin by extracting
cubes from the observed 3D physical field Y € RI1xf2xIs
using 3D windows of sizes (K71, Ko, K3) and strides of sizes
(S1,So,S3) in the three modes'. This process generates a total
of N cubes, where N = [[’_, J; and J; = (I’E—ZK’ +1).
Specifically, we define C,, € RE1*K2XKs o represent the
n-th cube extracted from Y:

CTL = y(i17i27i3)7

where the index set {i; = 14 (m;—1)S; : (m;—1)S;+ K, Vi}
and m; = (n—1)||JoJ5+1,me = [(n—1) mod JoJs]||Js+
1,ms3 = (n—1) mod Js3 + 1. A clearer illustration of patch
extraction can be found in the cube extraction part of Fig. 4,
where the first cube C; is represented in blue, the second
cube Cs is in green, and so forth. These N cubes are then
vectorized, resulting in a data matrix P = [c1,...,cy|T €
RNVN*K1K2Ks where ¢, = vec(C,,) € RE1E2Ks,

(12)

! Guidelines for the selection of window sizes and stride sizes are presented
in Appendix L.
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Fig. 4: The detailed architecture of the proposed tensor attention prior (TAP) model for reconstructing 3D physical fields with

limited observations.

2) Sparse Tensor Attention Construction: Next, we in-
troduce the proposed sparse tensor attention (STA) module.
As shown in the second part of Fig. 4, we project the
data matrix P into two latent spaces using the embedding
matrices Wq, Wy € RFE1E2K:xM Thig projection yields
the query matrix Q = PWg € RV*M and the key matrix
K = PWg € RVXM_ The dot products between the query
and key matrices are then computed, resulting in a N x N
correlation matrix QK.

Unlike the traditional scaled dot-product attention mecha-
nism in (11), which assumes the full observation and scales
the correlation matrix with a constant v/, we apply element-
wise division with a scaling matrix M. The operation is
represented as QKT @ M, where @ is the element-wise
division operator and M € R¥*¥ is the matrix containing
the norms of embedded features, with each element being:

M(n1,n2) = |[dn, [|2|[Kn, [|2- (13)

Here, q,, denotes the ni-th row of Q and k,, denotes the
na-th row of K. The scaling matrix M is used to normalize
the dot products, addressing the issue of energy imbalance
caused by different missing patterns across extracted cubes.
Then, the results are passed through the SparseMax function
[43]. This process generates the sparse attention map, which
is similar to a correlation matrix and is denoted as

S = SparseMax(QK™ © M) € RV*V, (14)

The SparseMax function, like the SoftMax function, aims to
produce a normalized score vector, but its output is much
sparser (see illustrations in Fig. 11 and brief implementation
details in Appendix C). Concretely, it selects a certain number
of leading entries of the input while setting the rest to zero,
and finally normalizes these support entries to sum up to 1.
Further details can be found in [43].

One might concern whether the missing values in Y
could significantly affect the assessment of tensor attention.
However, our observation is that they do not. The reason
is that when calculating the correlation between two high-
dimensional signals, a few missing values in each signal will
not substantially degrade the correlation estimation.

3) Decoder Design: Finally, the sparse attention map is
used to reconstruct the entire tensor. This corresponds to what
we call “decoder design” in neural representation learning.

Fig. 5: Tllustration of attention map tensorization.

The goal now is to tensorize the sparse attention map S into
a sparse tensor S of appropriate dimensions, which will act as
the core tensor that interacts with the three factor matrices to
produce the output. Note that S is the tensorized version of S,
containing the same elements as S. To this end, the following
procedure is adopted.

The sparse attention map consists of N row vectors (i.e,
S = [€1, - ,¢n]T), with the n-th row vector ¢} € RI*N
encoding the correlations between n-th cube with other NV
cubes. We first tensorize each row of S € RY*¥ into a sub-
tensor (with size Jy x J; X J3). Specifically, the n-th sub-tensor
C., can be represented as

Cn(J1,J2,73) = €n((J1 — 1)J2J3 + (j2 — 1)J5 + j3). (15)
This process is done orderly to ensure that the relative po-
sitions of the entries within each sub-tensor align with the
positions of the corresponding cubes in Y. Next, we stack
these sub-tensors in the same order to construct the sparse
core tensor S € RN X N2XNs \where N; = (J;)2,VI. That is,

(16)

where the index set {n; = 1 + (my — 1)J; : myJ;,VI} and
my = (n—1)||JeJs + 1,me = [(n — 1) mod JaJs]||J5 +
1,ms3 = (n — 1) mod Js + 1. The relative positions within
each sub-tensor are also consistent with the arrangement of
the extracted cubes in Y. As a result, the physical meaning of
of an entry, S(ny,n2,n3), is that it quantifies the correlation
between the embedding feature of the z-th and the y-th cubes,
where © = (n1]|J1)J2Js + (n2||J2)J3 + (n3|Js) + 1 and y =
((n1 — 1) mod Jl)Jng, + ((n2 — 1) mod JQ)J3 + ((713 — 1)
mod J3+1). The tensorization process is illustrated in Fig. 5,
which can be simply understood as the reorganization of
the elements of S into the tensor &, thereby rendering S

S(n17 ns, Ilg) = én»
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Fig. 6: Element-wise view of the sparse tensor attention (STA)
module.

inherently sparse. Its primary goal is to preserve the spatial
relationships of each entry, mirroring the relative positions
of the cubes that are extracted from Y, see Fig. 4. This
ensures the construction of an informative core tensor that
leverages the priors, which come from the observations, so
that to effectively capture multidimensional interactions. The
formulation of the tensorization process can be conveniently
implemented with PyTorch, as it presented in Appendix A.
The size of S determines the respective size of each one
of the three learnable factor matrices (a.k.a value matrices)
{V, € RN v,y € RI2XNz2 V3 € REXNs} The proposed
sparse tensor attention module can be expressed as follows:

G =STA(Q,K,V;,V,,V3) =
S X1 V1 X9 V2 X3 \/3 c R11><12><[3’
s.t. 8 = Tensorize(SparseMax(QK™ @ M)).

a7

Essentially, the proposed sparse tensor attention (STA) mod-
ule can be interpreted as the summation of all multiplicative
interactions of the value matrices weighted by the sparse core
tensor S. More specifically, an element-wise interpretation of
Eq. (17) can be formulated as:

G(i1,12,13) = 8 x1 V1(i1,:) X2 Va(ig,:) X3 V3(is,:). (18)

The illustration of this formulation can be seen in Fig. 6.
Note that V;(i;,:) can be interpreted as the i;-th feature
embedding of mode-I (see the blue, green and red feature
vectors in Fig. 6). The sparse core tensor S, which contains
spatial correlation weights, appropriately combines all the
feature embeddings (i.e., V;(i;, :), Vl) and produces the output
G(iy,i9,13).

The module operates intuitively: when the extracted cubes
exhibit significant similarities, indicating a simpler repre-
sentation model for the considered 3D physical field, the
resulting sparse attention map highlights these similarities, and
it consequently leads to a reduced number of the non-zero
elements in the core tensor for reconstructing the 3D physical
field, and vice versa. Therefore, the proposed module can
adaptively adjust the model’s complexity based on information
that is extracted from the the observations.

C. Proposed Tensor Attention Prior

In the previous two sections, we have discussed how to
utilize a limited number of observations to construct a sparse
attention map and then generate the core tensor for the Tucker

Algorithm 1 3D FieldFormer based on TAP.

Input: Observations Y € RI>X/2XIs binary tensor
O ¢ RIxE2XIs | window size in three modes (K1, K2, K3),
stride size in three modes (S, Sz, S3);
Initialization: Initialize the query and key matrices
Wo, Wi € RM*M a5 well as the value matrices
V, € RIIXNI,VQ S RIQXN27V3 € RIsxNs,
1: Extract cubes from observations Y to get P.
2: while not converge do
3: Compute the query and key through Q = PWg, K =
PWg.
4: Compute the output of sparse attention module through
Eq. (17) and obtain reconstructed 3D physical field X via
Eq. (20).
: Compute the loss ||V — O * X||%
Update Wq, Wk, V1, Vs, V3 according to the loss
using the Adam optimizer.

7: end while
Output: The reconstructed 3D physical field X.

model. The nonlinear activation function ¢(-) is then intro-
duced to produce the final output, aiming to further enhance
the expressive power of the proposed model while maintaining
stable gradients during training [44]. We recommend using
Tanh or Sigmoid to regulate the output range. The overall
model, illustrated in Fig. 4, is referred to as the tensor attention
prior (TAP) representation model.

Given the TAP model, the problem of reconstructing the
physical field can be formulated as follows:

|Y — O x¢(S x1 Vi x2 Vo x5 V)|,

min
WQ :WK7{VZ }[3=1

s.t. S = Tensorize(SparseMax(QK™ @ M)),

Q=PW,,K = PWg.
(19)

Once the parameters W*g, W* . {V*}3_| are learned,
the reconstructed field is given by:

X =¢(Tensorize(SparseMax([PW™* ] PW*x]" o M)

X1 V*l X9 V*Q X3 V*g))
(20)

The resulting 3D FieldFormer algorithm for 3D physical field
reconstruction is presented in Algorithm 1.

Remark 1 (Initializations and Convergence): All the pa-
rameters are initialized using samples drawn from uniform
distributions following the Kaiming initialization scheme [45].
We employ the Adam optimizer to minimize the objective
function. Given that the objective is differentiable with respect
to all parameters, the convergence of Adam to a stationary
point over long-run iterations with a constant stepsize has been
established in [46].

D. Multi-Head Tensor Attention Prior
To further enhance the extracted information, the Multi-
Head Sparse Tensor Attention (MHSTA) generalization is also
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Fig. 7: Illustration of Multi-head Sparse Tensor Attention
Module.

proposed, where one can utilize multiple embedding subspaces
for quantifying similarity and computing the corresponding
attention maps. This is illustrated in Fig. 7. First, h query
and key matrices are employed to perform, in parallel, inner
products followed by the corresponding SparseMax opera-
tions. Thus, h sparse attention maps are obtained. These
maps are then reshaped? to obtain Sy € R N1xh2Naxhs N
The Tucker model is applied next, where Syy operates
with three sets of value matrices {V; € RIv*mNi v, ¢
REzxh2N2 v, ¢ RIsxhsNsl Note that equation hN? =
h1N7 X haNy X hgN3 should be guaranteed. This produces
the output:

MHSTA({QZ'}?:D {Ki}?:la Vi1, Va, VS) =

SMH X1 V1 X9 V2 X3 V3 S R11X12><13

s.t.  Swmu = Tensorize(SparseMax(

Concat(Q: K| @ My, -+, Q, K} © My))),
where Q; = PWE?, K, = PW}( and M; is computed from
the row-wise norms of Q; and K;.

Then, we propose the multi-head tensor attention prior
(MHTAP) architecture by simply replacing the STA of TAP

with multi-head STA (MHSTA). The formulation of MHTAP
for reconstructing 3D physical fields is as follows:

21

mln{W7 W}< i= 17{Vl}?:1
| — O # <(Sum x1 Vi X2 Va x5 Vi)

The associated FieldFormer algorithm is similar to Algorithm
1 and summarized in Appendix B.

(22)

Remark 2 (Extension to Higher-order Field Tensors): The
proposed FieldFormer naturally extends to higher-order ten-
sors by extracting multidimensional cubes, computing their
similarities to generate a sparse attention map, and tensorizing
it into a multidimensional core as described in Sec. III-B.
Finally, reconstruction is carried out using a multidimensional
Tucker model.

IV. RECOVERABILITY ANALYSIS

In this section, we investigate the recoverability of the
ground-truth 3D field tensor X', based on the problem formu-
lated in (19). Our analysis adapts the framework established

2We first tensorize h attention maps individually as before and obtain
{S; € RN1xNaxNsyh Then, to make the sparse core tensor has the
appropriate dimensionality (each dimension is relatively balanced), we choose
hi,ha,hs such that h = hihohs. {S; € RN1XNaxNsyh  are then
stacked along the corresponding modes to form Sy € RP1 V1% h2N 2xhg N3
with multidimensional correlations preserved.

in [1], [47], [48] to the proposed nonlinear Tucker model that
includes a sparse core tensor with its sparsity pattern deter-
mined by attention schemes, non-orthogonal factor matrices,
and a nonlinear activation function. Notably, we derive new
theoretical results on the covering number and generalization
errors associated with the proposed model.

To proceed, we denote 2 as the set of observed indices,

e, @ = {(i1,42,13)|O(i1,i2,i3) = 1} and introduce the
following definitions.

Definition 1 (Solution Set): Let Xpap C RI1X12X13 be the
solunon set that contains all solutions X of (19) satisfying
= §(8X1V1 XQVQ ><3V3) where ||S||F < o and ||Vl||F

B for 1 =1,2,3.

Definition 2: Define Gap(X,Q) =
IOSSQ(;Y), where

lossy (X) —

loss; (X) = i > V(i iz, i) — X (i, iz, is)]13,
(’il,ig,i3>€Q
lossQ(X):ﬁ > Wi da,is) — Xlir, da, i) 3.

i1,%2,13

(23)

Note that lossl(i') represents the loss measured on the
observed part of the data, while lossy(X) represents the
loss measured over the entire data. Thus, Gap(i’ ,§2) can be
interpreted as the generalization error.

We can then show the following lemmas based on the
definitions provided above.

Lemma 1: The expected number of the non-zero elements
in the sparse core tensor & € RM*NoxNs jg F(||S||o) =
NE(n(z)), where n(z) is a random variable representing the
number of the non-zero elements in each row of the sparse
attention map S. The expectation of the non-zero elements
E(n(z)) = Zf\; iP(n(z) = i), where P(n(z)) follows the
distribution specified in (24) under the assumption that all
entries of QK™ @M are independent random variables drawn
from a normal distribution with a mean of 0 and a variance
of 1 [38].

(24)

where ® (-) is the cumulative distribution function (CDF) of
Gaussian distribution with mean 0 and variance 1:

- |

Proof: See Appendix D. |
Lemma 1 characterizes the expected number of the non-
zero elements within the sparse tensor attention map, a metric

2
—_z—
e zdx.

(25)



useful for assessing the complexity of the proposed model.
Building on the similar assumption made in the attention anal-
ysis using the SoftMax operator [38], Lemma 1 establishes the
sparsity level result for the SparseMax operator. This lemma
is useful for future endeavors that employ the SparseMax
operator to derive attention scores.

Lemma 2: The covering number [49] of the e-net of the
solution set Xqap is given by

N(Xrap,e) <

[3T(53 I 30452)} ISllo+35_, NiIy
£

allSllo gEiny Nuli (26)

where T is the Lipschitz constant of the activation function
and E(||S||o) is given by Lemma 1.
Proof: See Appendix E. |

Lemma 3: Let Gap™(2) = SUD 3 ‘Gap (x Q)‘ be the

supremum of Gap(.5c' ,$). Based on the sensing model in (3),
the following inequality holds with a probability of at least

1-6:
1
2e §2w QN(XTAP,E) )4
Gap™(Q —l—(lo _— , 27
PO o (S50l E) e
where ¢ > 0 is a positive scalar and w = (‘5—12| +
IQ\hlIzIs — 1111213). N(Xrap,€) is the covering number of

(v+ov+ aﬁ3)2 with v =
mMax;, is,ig ‘Xh(il, ig, 23)‘ and v = maxi, is, iz | (il, ig, 23)‘

Proof: See Appendix F. |

Lemma 2 and Lemma 3 characterize the generalization
error for the proposed TAP model. They extend the results
developed in [1], [47], [48] to account for the sparse tensor
core, non-orthogonal factors, and the non-linear activation
function. As a result, in addition to paving the way for
establishing the recoverability of the proposed model (refer to
Theorem 1 below), these two lemmas themselves are essential
for quantifying the generalization error in any future nonlinear
tensor Tucker model.

Finally, we can derive the main recoverability theorem based
on the aforementioned lemmas and definitions.

Theorem 1(Recoverability): Under the sensing model de-
scribed in (3), assume that X* = ¢(8™ x1 V] x2 Vi x3 V%),
where 8" and {V;}}_, are obtained from any optimal so-
lution of (19). Here, 8™ represents a sparse core tensor and
the activation function g() is T-Lipschitz continuous. Also
assume that 8* and {V;}7_, satisfy the specifications in the
solution set in Definition 1. Then, with a probability of at least
1 — 4, the following statement holds:

Xrap (see Lemma 2), and & =

X" — Xylle .
—————— < Gap"(Q N
VIR, o Trmn Wik o8
10 * M) Hx ~ x|
\/\Ql \/lQ F
where X* = argmin 5 X — XhH and Gap*(Q) is

upper bounded by (27) w1th the covering number in (26).
Proof: See Appendix G. |
Theorem 1 presents a bound on the estimation error for

recovering the ground-truth 3D physical fields, based on the

criterion described in (19). Upon closer inspection of (28),
it is readily seen that the recovery error stems from three
primary sources: the generalization error Gap* (2), the sensing
noise A, and the representation error of the TAP model.
Consequenlty, exact recovery occurs only when these three
error sources simultaneously approach zero. This necessitates
the noise to diminish, and the representation model to strike
an optimal balance between conciseness (resulting in near-zero
generalization error) and expressiveness (resulting in near-zero
representation error).

Note that the number of the non-zero elements of S
represents a trade-off between the conciseness and expres-
siveness of TAP model, thereby influencing the generalization
error Gap™(€2). An increase in the number of the non-zero
elements in the attention map amplifies the generalization error
Gap™(2), but at the same time it enhances the model’s capacity
to represent a more intricate 3D field, thereby reducing the

*k
representation error HX , and vise versa.

Further discussions, concernlng comparisons of the recov-
erability analysis with the existing model [1], can be found in
Appendix H. The impact of the sparsity level and observation
patterns on the recoverability analysis is discussed in Ap-
pendix M. The main insight is that the proposed model has the
potential to achieve lower reconstruction error than [1], partic-
ularly under distribution shifts. This advantage stems from the
self-supervised learning of ||S||g, which allows the model’s
covering number (see Lemma 2) to adapt to the observed
data, thereby reducing the generalization error. Moreover,
since our model does not rely on any pretrained models, its
representation error remains unaffected by distribution shifts.
Our recoverability analysis above can also be easily extended
to the MHTAP model.

V. EXPERIMENTS AND DISCUSSIONS

In this section, we present experimental results to demon-
strate the effectiveness and versatility of the proposed methods
using two 3D physical field datasets. We first compare our
methods against state-of-the-art (SOTA) techniques and then
carry out the ablation studies to draw insights concerning
the proposed approach. The corresponding algorithms are
implemented using PyTorch 1.13.1 and all experiments are
performed on a RTX 4070 GPU with 8 GB of GPU memory.

A. Ocean Sound Speed Field (SSF) Reconstruction

3D SSF data: In the following experiments, the South China
Sea SSF dataset denoted as X € R20%29%20 i ygilized [10],
[23]. The dataset covers a spatial area of 152km x 152km x
190m and has a horizontal resolution of 8 km and a vertical
resolution of 10 m.

Performance metric: The reconstruction performance is
evaluated by the root mean square error (RMSE) [10]:

1
RMSE = |/ 7| — &, 2,

where X and X’y represent the reconstructed SSF and the
ground truth, respectively. The total number of SSF entries [

(29)



TABLE I: Average reconstruction errors (RMSEs) of the
proposed methods and the benchmarks for different p values.
The bold and underlined numbers represent the lowest and
second lowest RMSEs in the comparisons, respectively.

Methods p=5% p=10% p=20% p=30%
Tucker-ALS 2.666 1.527 0.663 0.411
LRTC 2.723 2.228 1.181 0.773
TNN 2.803 1.562 0.405 0.312
TAP 0.954 0.560 0.346 0.245
MHTAP 1.225 0.535 0.317 0.218

equals I; x Iy x Is. The reported RMSEs are averaged over
10 Monte-Carlo trials.

Baseline: Three unsupervised reconstruction methods,
namely Tucker-ALS [37], LRTC [19], and TNN [10] are
selected. The Tucker-ALS and LRTC methods are model-
based approaches that utilize handcrafted priors, specifically
the low-rankness property. The TNN method, on the other
hand, can be regarded as an untrained deep-learning version
of the Tucker-ALS method.

Implementation Details: See Appendix L.

Results: We first test the proposed methods using the noise-
free SSF data under various observation rates p = IIHXC?%

Table I presents the RMSEs of different algorithms across
different p values. As the observation rate increases, the
reconstruction errors decrease for all algorithms. Notably,
when p > 20%, TNN demonstrates significant advantages
over the model-based methods (Tucker-ALS and LRTC). Fur-
thermore, the proposed methods consistently outperform the
SOTA baselines in all scenarios. MHTAP exhibits superior
performance compared to TAP when p is higher (p > 10%).
This is attributed to the MHTAP’s ability to capture more
information from different subspaces of the input as more
measurements of the SSF are observed. However, when p
is relatively low, MHTAP tends to overfit the limited ob-
servations due to its increased number of parameters. Fig. 8
illustrates the reconstructed SSF data of the five methods and
their corresponding RMSEs at p = 10%. TAP and MHTAP
provide more accurate fits to the missing entries. Overall, the
proposed methods achieve significantly superior results in both
quantitative and visual evaluations compared to the very recent
TNN model.

Next, we evaluate the performance of the proposed methods
using noisy SSF data, where Gaussian noise with a mean of
0 and variance o2 is added according to the sensing model
(3). Table II presents the RMSEs of different algorithms at
various sampling ratios and noise powers. It is observed that
the TNN algorithm proves ineffective at a low observation rate
(p = 10%). In contrast, the proposed methods outperform all
the baseline algorithms across all p values. Particularly, when
the observation rate is very low (e.g., p = 10%), TAP exhibits
superior noise robustness compared to MHTAP, primarily due
to its reduced number of parameters. Conversely, when the
observation rate is high (p > 20%), MHTAP achieves better
performances than TAP.

TABLE II: Average reconstruction errors (RMSEs) of the
proposed methods and the benchmarks for different p values
and Gaussian noise powers. The bold and underlined numbers
represent the lowest and second lowest RMSEs in the com-
parisons, respectively.

Methods p=10% p=20% p=30%
Tucker-ALS 1.548 0.655 0.412
LRTC 2232 1.195 0.789
c=0.1 TNN 1.683 0.471 0.329
TAP 0.571 0.382 0.293
MHTAP 0.609 0.346 0.261
Tucker-ALS 1.546 0.663 0.425
LRTC 2.247 1.226 0.826
oc=0.2 TNN 1.784 0.516 0.356
TAP 0.600 0.425 0.351
MHTAP 0.610 0.406 0.318
Tucker-ALS 1.549 0.639 0.451
LRTC 2.266 1.270 0.875
c=0.3 TNN 2.170 0.561 0.423
TAP 0.685 0.482 0.419
MHTAP 0.714 0.471 0.388

TABLE III: Average reconstruction errors (RMSEs) of the
proposed methods for different p values and Laplacian noise
powers.

Methods p=10% p=20% p=30%
o =0.1 TAP (Laplacian) 0.617 0.385 0.302
MHTAP (Laplacian) 0.633 0.356 0.283
o =0.2 TAP (Laplacian) 0.622 0.424 0.351
MHTAP (Laplacian) 0.662 0.410 0.336
o =0.3 TAP (Laplacian) 0.717 0.487 0.426
MHTAP (Laplacian) 0.745 0.491 0.420

To evaluate the robustness of our method, we add to the
observations Laplacian noise with a mean of 0 and variance
o? and assess the reconstruction performances. As shown in
Table III, the reconstruction error increases only slightly in
the presence of Laplacian noise, compared to Gaussian noise
of the same power, indicating the robustness of our method to
non-Gaussian noise sources.

B. Radio Map Tensor Reconstruction

In this section, we conduct experiments on radio map tensor
reconstruction.

Data Description: The radio map tensors used in the fol-
lowing experiments are generated from the joint path loss and
log-normal shadowing model [1], [50], which can be expressed

as:
R

Xu = ZS, O Cp S RIlXI2X[3.

r=1

(30)
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Fig. 8: Visualizations of ground-truth, observation and reconstructed SSF data of various methods at depth Om (top),

100m

(middle), 200m (bottom) under p = 10%. The corresponding RMSEs are provided at the top of the figure.

TNN+TV SLNRE=0.358

L]
a
!

Ground truth Observations

Nasdac SLNRE=0.286

DowJons SLNRE 0., 303 TAP+TV SLNRE 0.169 MHTAP+TV SLNRE 0.160

20
30
el
. -40
20
-30
-40 %

&8

Fig. 9: Visualizations of ground-truth, observation and reconstructed radio maps of various methods at the 7-th (top), 18-th

(middle) and 29-th (bottom) frequency bins; p = 10%,
at the top of the figure.

Here, R is the number of emitters and S, € RI1*/2 ¢, € Rs
is the spatial loss function (SLF) and power spectrum density
(PSD) of r-th emitter. Specifically, the r-th SLF at location
m = [i,5]T is generated by

v (m)

S (Z .7) = ”m m'rHQ’YTlO 10

€29

where m,. is the coordinate of r-th emitter, vy, is the r-th
path loss coefficient, and v,.(m) is the correlated shadowing
component that is generated from Gaussian distribution with
zero mean and variance 7),.. The auto-correlation function
between m and m’ is E(v,(m),v,.(m")) = 7, exp(—|jm —
m,HQ /dcorr), In Which dco tepresents the decorrelation dis-
tance. The PSD of the emitter r is given by c,.(k) =
Zi]\il a(“)sinCQ(k; — feiry/weiry), where ag; -y is the scaling
factor of r-th emitter at i-th subband drawing from a uniform
distribution over the interval (0.5,2.5); f(1,r), ", f(as,r) are
the central frequencies of M subbands available to r-th emitter
and M is set to 10. w(; ,-y controls the width of sidelobe of r-th
emitter at ¢-th subband drawing from an uniform distribution
over the interval (2,4). In the experiments, I; = [, = 51,
I3 = 64.

R =17, deorr = 50, n = 10. The corresponding SLNREs are provided

Performance metric: The performance metric is the scaled
log-domain normalized reconstruction error (SLNRE) [25]:

||X10g - th)g”%
||Xh10g||12? 7

where X, is the log-transformed reconstructed radio map
while X'y, being the log-transformed ground truth radio map.
The SLNRE is an appropriate metric for skewed data like radio
map [25]. All the SLNRESs are averaged over 10 Monte-Carlo
trials.

Baseline: We use SOTA untrained method TNN [10] and
trained methods Nasdac and DowlJons [1], to benchmark the
proposed methods. Nasdac learns a generative deep network
to reconstruct individual SLFs of the emitters from sensor
measurements based on block term decomposition model. And
Dowlons leverages the generative deep network as structural
constraints and reconstruct radio map tensors based on opti-
mization criterion.

Implementation Details: See Appendix J.

Results: The first dataset (radio map 1) is generated using
the typical setting described in [1], where the number of
emitters R = 7, the decorrelation distance d.., = 50 and the

SLNRE = 100 x (32)
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Fig. 10: Reconstruction results of the proposed FieldFormer on SSF data with 10% observations over epochs. Top: Visualizations
of reconstruction results over various epochs on depth Om (top), 100m (middle), 200m (bottom). Bottom: Illustration of the
percentage of the non-zero elements in the Tucker core tensor and the reconstruction error over epochs.

shadowing coefficient 7 = 6 for all . In the subsequent exper-
iments, we use a fiber-wise sampling methodology to obtain
observed radio map tensors, with sensors randomly distributed
across a 2D spatial domain to capture measurements over the
entire frequency spectrum.

Table IV shows the SLNREs for the trained methods (Nas-
dac, DowlJons), the untrained methods (TNN, TAP, MHTAP)
and these untrained methods enhanced by total variation (TV)
regularization [18] under various p values on reconstructing
radio map 1. Total variation regularization provides com-
plementary structual regularization on the smoothness of the
3D field and serves as a widely used, easily implemented
handcrafted prior in reconstruction tasks. One can see that the
proposed TAP and MHTAP consistently perform better than
TNN, with MHTAP consistently outperforming TAP. However,
these untrained methods (TNN, TAP, MHTAP) are still inferior
to Nasdac and DowlJons, especially when p is small, due to the
lack of supervised prior knowledge. The performance gap can
be simply filled in via incorporating a simple TV regularization
to enforce the spatial smoothness of the reconstructed maps
(details can be found in Appendix K). Specifically, the SLNRE
of TNN decreases rapidly as p increases and surpasses Nasdac
and DowJons when p > 15%, indicating that TNN becomes
effective given enough observations. the proposed methods
outperform all the baselines.

Fig. 9 provides the illustrative example given p = 10%, R =
7, deorr = 50 and 1 = 10, bridging the SLNREs and the visual
quality of the reconstructions. First, both Nasdac and Dowjons

TABLE IV: Average reconstruction error (SLNREs) of dif-
ferent methods in reconstructing radio map 1 versus various
p values. Bold number and underlining number indicate the
lowest and the second lowest SLNREs in the comparisons,
respectively.

Methods p=5% p=10% p=15% p=20%
Nasdac 0.246 0.192 0.179 0.161
DowlJons 0.216 0.173 0.167 0.149
TNN 83.65 25.72 1.574 0.337
TAP 7.132 0914 0.489 0.223
MHTAP 5.517 0.480 0.326 0.168
TNN+TV 0.539 0.242 0.158 0.116
TAP+TV 0.189 0.100 0.073 0.067
MHTAP+TV 0.180 0.091 0.071 0.065

accurately reconstruct the radio map. Then, these untrained
methods, further aided by TV regularization which enforces
multidimensional smoothness of the outputs, achieve good
visual results given few observations. Finally, the proposed
methods capture more fine-grained features of the radio map
compared to the Nasdac and the DowJons.

Next, we consider radio map tensors with more complex
shadowing environments. We create the radio map tensors with
R =10, dorr = 50 under various 7, (i.e., 9, 10, 12) for all r,



TABLE V: Average reconstruction error (SLNRESs) of different
methods in radio map reconstruction task under p = 10%
versus various 7. Bold number and underlining number
indicate the lowest and the second lowest SLNREs in the
comparisons, respectively.

Methods n=9 n=10 n=12
Nasdac 0.238 0.286 0.667
DowlJons 0.232 0.303 0.631
TNN+TV 0.304 0.369 0.411
TAP+TV 0.130 0.170 0.232
MHTAP+TV  0.128 0.162 0.222

which are the out-of-training distribution data for the Nasdac
and the DowJons. In the subsequent experiments, the untrained
methods are all enhanced by TV regularization.

Table. V displays the SLNREs of different methods given
p = 10%. One can see that Nasdac and the DowlJons
deteriorate in reconstructing the radio maps that they have
never seen before, being surpassed by TNN when n = 12.
With TV regularization, the TAP and MHTAP consistently
outperform all the baselines and MHTAP still remains superior
to TAP. These experiments verify that the proposed methods
generalize better in handling 3D physical fields of varying
complexity levels without the cost of extensive training and
the risk of inaccurately estimating the number of emitters.

We then provide detailed analysis of why the proposed
approach outperforms the baseline methods in certain scenar-
ios (e.g., at low observation rates), particularly by examining
the specific properties of the proposed method. Both Tucker-
ALS and TNN, like the proposed FieldFormer, are based on
the Tucker model. However, they share a key limitation: the
need to predefine the size of the Tucker core, which directly
determines the model’s complexity. Although we carefully
tune hyperparameters (e.g., the multilinear rank) over a large
search space to achieve their best overall performance, these
methods — due to their fixed, non-adaptive model complexity —
struggle to adapt to different observation scenarios, particularly
at low observation rates. As shown in Fig. 8, both methods
tend to overfit the noise in sparse observations.

LRTC, which is based on the t-SVD model, seeks to mini-
mize the tensor tubal rank while reconstructing the entire field
from sparse observations. However, this objective function
prevents LRTC from capturing the fine details of the physical
field, leading to underfitting — particularly when reconstructing
complex structures such as the SSF, as it is illustrated in Fig. 8.

Nasdac and DowlJons, which are trained on pre-collected
data, rely on the assumption that the training and test data
share similar distributions. However, in real-world scenarios,
where data distribution shifts occur, these pre-trained models
fail to generalize effectively, leading to significant performance
degradation.

In contrast, the proposed FieldFormer dynamically adjusts
its model complexity to fit the observations without requiring
training data. This adaptability helps mitigate overfitting, un-
derfitting, and sensitivity to data distribution shifts, leading to

superior performance compared to the baseline methods.

C. Complexity-adaptive Neural Representation

In this subsection, we provide detailed discussions and
experimental results to explain how the attention mechanism
adjusts model complexity. The proposed FieldFormer, based
on the Tucker model, leverages an attention mechanism to
dynamically control the sparsity of the core tensor during the
reconstruction process. Fig. 10 provides detailed visualizations
of the intermediate steps on reconstructing the SSF data. The
top of Fig. 10 illustrates reconstruction results at different
epochs, while the bottom shows the percentage of the non-
zero elements in the Tucker core tensor and the corresponding
reconstruction error over epochs. It is readily observed that
the reconstruction results progress from coarse to fine as the
number of epochs increases. The percentage of the non-zero
elements drops sharply before gradually rising to a plateau,
while the reconstruction error consistently decreases. This phe-
nomenon suggests that the model complexity is dynamically
adjusted throughout the reconstruction process.

At the beginning of reconstruction, the parameters of the
attention mechanism (i.e., Wg, Wg) are randomly initial-
ized, causing similarity scores between different cubes to be
randomly distributed. Consequently, the percentage of the non-
zero elements in the core tensor is relatively high. As the
model optimizes the loss function, the attention mechanism
becomes more effective at capturing meaningful similarities
between different cubes. This leads to a reduction in the
percentage of the non-zero elements, as similarity scores
concentrate on the most relevant pairs. More specifically, at
the early epochs, since the parameters are updated in the
direction of the steepest descent of the loss function, the
model primarily fits the lower-frequency components (e.g.,
the mean value) of the field, as shown in Fig. 10. This is
reflected in the rapid decrease in reconstruction error and
the relatively coarse visual appearance of the reconstruction
results. During this phase, model complexity remains low, as
indicated by a low percentage of the non-zero elements in
the Tucker core tensor. As training progresses, in order to
further decrease the reconstruction loss, the model gradually
captures higher-frequency components of the field, leading to
an increase in model complexity. As shown in Fig. 10, the
reconstruction error declines more slowly in later stages, while
the reconstruction results become increasingly fine-grained.
This explains the subsequent rise in the percentage of the
non-zero elements in the core tensor. Eventually, the model
reaches an optimal level of complexity for representing the
field, after which the percentage of the non-zero elements
stabilizes. We further provide discussions on the trade-off
between computational cost and reconstruction accuracy in
Appendix N.

D. Ablation Study

1) Impact of Prior Information from Partial Observations
Incorporated by Attention Mechanism: In this paper, we pro-
pose using dot-product between query and key (generated from
extracted cubes P) to gain informative priors from the limited



TABLE VI: Ablation study on reconstructing radio map 1
with SLNRE metric. All the methods are enhanced by TV
regularization.

TABLE VII: Average reconstruction errors (RMSEs) of TAP
and MHTAP using SparseMax activation or SoftMax activa-
tion versus various p values.

Methods (+TV)  p=5% p=10% p=15% p=20% Methods p=5% p=10% p=20% p=30%
TAP 0.189 0.100 0.073 0.067 TAP (SparseMax) 1.085 0.564 0.351 0.236
TAP wo OI 13.75 0911 0.574 0.632 TAP (SoftMax) 1.391 0.745 0.363 0.246
MHTAP 0.180 0.091 0.071 0.065 MHTAP (SparseMax) 1.349 0.543 0.319 0.215
MHTAP wo OI 0.385 0.263 0.284 0.261 MHTAP (SoftMax) 1.626 0.714 0.347 0.231

1.0 1.0
0.8 0.8
-0.6 -0.6
-0.4 -0.4
-0.2 -0.2
—0.0 —0.0

(a) Attention map (Soft-
Max).

(b) Attention map (Sparse-
Max).

Fig. 11: Partial visulization of attention maps learned by TAP
under p = 20% using SoftMax and SparseMax activation
function respectively.

observations. This approach allows for adaptively tuning the
sparsity of the core tensor in a self-supervised manner.

Therein, we conduct the ablation study on TAP/MHTAP
in reconstructing radio map 1 to prove its efficacy. For
comparison, we replace P containing observation informa-
tion with noise matrix N. sharing the same shape with
P. Therefore, the original sparse core tensor of TAP S
in (19) becomes Tensorize(SparseMax([N.W o] [N.W T @
M). Similarly, the ablated sparse core tensor of MH-
TAP is Tensorize(SparseMax(Concat([N.W4][N. W |T ©
My, - ,[NEWg][NEW};(]T @ Myp))). In this way, the in-
formation prior from partial observations is discarded.

Table VI shows the average results of TAP/MHTAP com-
pared to TAP/MHTAP without observation information (OI).
The performances deteriorate significantly in the absence of
the observation information, indicating that the self-supervised
prior extracted from the limited observations is useful in the
proposed methods in the 3D physical field reconstruction task.

2) Impact of SparseMax Function: We introduce the
SparseMax function into the TAP/MHTAP model to boost the
sparsity of the attention map. In this subsection, we compare
its performance with the commonly used SoftMax function to
demonstrate its effectiveness. The following experiments are
conducted on SSF data. Tab. VII shows the average reconstruc-
tion results of TAP/MHTAP using SoftMax function or using
SparseMax function under various p values. It indicates that
the utilization of SparseMax activation enhances performance,
particularly when p is small. For enhanced visual clarity, we
depict 50 x 50 sub-matrices extracted from attention maps
learned by TAP using SoftMax and SparseMax activation in
Fig. 11. The attention map learned using the SoftMax function

typically consists of many uniformly small scores, whereas the
attention map learned using the SparseMax function yields
fewer but larger scores. These fewer but larger scores effec-
tively capture the main features of the signals and alleviate
overfitting in the reconstruction task.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced FieldFormers based on TAP
and MHTAP models for self-supervised reconstruction of
3D physical fields from limited observations. By bridging
the Tucker model with the attention scheme, the proposed
approach effectively captured both short- and long-range cor-
relations within the limited observations. This learned infor-
mation was then utilized to adaptively adjust the complexity
of the tensor Tucker model, specifically the sparsity of the
core tensor. As a result, our method demonstrated promising
generalization performance across various types of 3D physi-
cal fields. Theoretical analysis was provided to characterize
the recovery of ground-truth 3D physical fields using the
proposed methods. Additionally, the analysis shed light on the
sources of reconstruction errors. Furthermore, we conducted
numerical experiments on diverse datasets, including ocean
sound speed fields and radio maps, to validate the superiority
of the proposed methods in 3D physical field reconstruction
compared to SOTA baselines. While the proposed method
has demonstrated strong performance in reconstructing 3D
physical fields from limited observations, several directions
remain open for future research. In particular, reducing the
computational complexity of the tensor attention mechanism
would enhance scalability. Also, developing a generative pre-
trained version of the proposed approach, which is robust to
distribution shifts, could further enhance the reconstruction
performance, even under extremely limited observations.
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APPENDIX

A. Pseudo code of tensorization

def tensorize_to_core(s, flag):

if flag == "TAP’: #s:sparse attention map(N=N)

s = s.view(J1, J2, J3, J1, J2, ]3)

s = s.permute(0,3,1,4,2.5)

core_tensor = s.reshape (N1, N2, N3)

elif flag == "MHTAP’: #s:sparse attention map(hN=N)
s = s.view(hl, h2, h3, J1, J2, J3, J1, J2, J3)

s = s.permute(0,3,6,1,4,7,2,5,8)

core_tensor = s.reshape(hl«NI, h2«N2, h3xN3)
return core_tensor

B. 3D FieldFormer based on MHTAP.

The algorithm is summarized in Algorithm 2.

Algorithm 2 3D FieldFormer based on MHTAP.

Input: Observations ) € RI*12XIs  jpdicating tensor
O € RIExIEXIs | window size in three mode (K1, Ko, K3),
stride size in three mode (57, S2,53);
Initialization: Initialize the query and key matrices
{WL Wil | as well as the value matrices
V; e RIlXNl,Vg S RIQXNQ,Vg € RIsxNs,
Extract cubes from observations Y to get P.
while not converge do

Compute the query-key pairs through {Q; = PW5,
K, =PWi .
4: Compute the output of sparse attention mod-
ule through Eq. (17) and obtain reconstruction with
C(MHSTA({QZ' ?:17 {Ki}?:lv V17 Vo, Vd))

Compute the loss ||V — O * X||%

Update {W,, Wi }h | 'V V,, V3 according to the
loss using the Adam optimizer.

O I S

AN

7: end while
Output: The reconstructed 3D physical field X.

C. Implementation details for the SparseMax function

The algorithm is summarized in Algorithm 3.

D. Proof of Lemma 1

Without loss of generality, assume all entries in QKT @ M
are independent random variables with mean O and variance
1. SparseMax applies row-wise sparse normalization and we
treat all rows equivalently, so we take a specific row of
QK™ @ M, denoted by z = [z(1), 22), -+ » 2(w)] € RY for
example. Firstly, SparseMax sorts z as 21 < 2o < --- < 2zpn.
Secondly, it compute support number n(z) = max{n €
[N][1+nz, > 37, 2;}. Thirdly, it computes normalization

. i j—1 . .
coefficient 7(z) = % with n(z) leading scores.

Finally, n(z) leading scores are normalized with summation
to 1 while others are set to zeroes through threshold function
[z; —7(z))],. Tt is worthy to note that given a specific
number k, if 1+ kz, < ngk zj, then 1+ (k + 1)zp4q <
L+ kzk + 2kt1 < D jcp2j + Zh41 = Dy 25 holds,
which means that if n = k does not satisfy the inequality



Algorithm 3 SparseMax Function.
) Z( N)} € RV,

Input: Vector z = [(1), 2(2), -

1: Sort the elements of z in descending order:

212 22" 2 ZN.

2: Determine the support number n(z) satisfying:
n(z) > Z Zj
Jj=1

=maxin€{l,...,N} |1+ nz,

3: Compute the threshold 7(z):

) zi—1
T(Z) _ Z]Sn(z) J )

n(z)
4: Compute the final normalized output:
P = max(z;) —7,0), Vie{l,...,N}.
Output: Normalized output p = [p(1), p(2), "+ »pny] € RY.

(I +nz, > > ,<, %), then any n > k does not satisfy the
inequality as well. Therefore, if n = k—1 satisfy the inequality
but n = k do not, then n(z) = k — 1 holds.

Before computing E(n(z)), we need to acquire the proba-
bility distribution of discrete random variable n(z). Given the
above property, we have:

P(n(z) =1) =
P(l +2z1 > Zl)P(l + 220 < 2 +22|2’2 < 2:1) =
P(1+2’2§21,2’2<2’1) P(ZlszZI)
1 x = (33)
P(z < z1) P(z9 — 21 <0)
P2 ) 1-0()
P(22 < 0) ®(0)

where ® (+) is the cumulative distribution function (CDF) of
Gaussian distribution with mean O and variance 1:

P (X) = \/ﬂe z dzx.

Similarly, we can get P(n(z) = 2):

(n(z) =2) =
P14 21 > z1)P(1+ 229 > 21 + 22|22 < 21)
P(1+4323 < 21+ 29+ 23|23 < 22) =
P(1422z9 > 21 + 29,20 < 21) o

P(ZQ < 21)
P(1+323 <2 + 20+ 23,23 <22)

P(z3 < z9) B
PO<z —2z2<1) " Pz 420 =223 > 1)
Pz < z1) P(z5 < 22)

)=2(0) 1-9(d)

a0

(34)

P

(35)

(L

@(0)

To conclude, for N > 3, we have:

1) = 2 — 25(—~

Sl

P(n(z) = N) = H(m(\/%lj) —1).
1=2

(36)

We can infer from Eq. (36) that P(n(z)) is a constant
independent of N and that most of the probability density
falls into small values. And the expectation of n(z) can be
computed through E(n(z)) = va iP(n(z) = 1). Therefore,
the expectation of the number of the non-zero elements in
attention map (i.e., [|S|lo) equals NE(n(z)).

E. Proof of Lemma 2

Lemma 4 [47] : Let Z be a subset of a vector space of real
dimension R with unit norm (||Z]|p = 1) and let 0 < e < 1.
The covering number of Z scaled by ¢ is upper bounded by:

g\ R
N(Z,e) < (6) | (37)

[ |

Consider the set S = {§ € RV >NV || < a}

containing the core tensor and V; = {V; € RN [V, <
By, Ve = {Va € RN [V < B1Vs = {V; €
RN || V3. < B} containing the factor matrices. Since
S is an Euclidean ball that has a radius of « in the ||S]|o-
dimensional space. Then, according to Lemma 4, the covering
number of S is upper bounded by :

NS.0) < (30[>||S|o.

é_ (38)
The above leads to the following upper bound:
Slo
e 3a(3% + 3a82)\!

Also, V; is an Euclidean ball that has a radius of 3 in the
I; N;-dimensional space. Similarly, the covering number of V)
is upper bounded by :

LN,
NV, e) < (?) ,

for ¢ = 1,2, 3. This also holds that:
3 21\ 11V
€ )<<3B(B +3aﬁ)) , @1

(40)

NV,
O B3 + 3ap? €
for i = 1,2, 3. Here we define the set X = {.5( = levl X9
V2 X3 Vg‘s c S {V[ c Vl}z 1}

Let S be an W -net of S and V; be an m -net
of V; for ¢ = 1,2, 3, respectively. And we define the set X =



{2 =8 X1 Vl XQ_VQ X3 V3|S S 57 {Vl S fjl}?:l}' Hence,
the cardinality of X is upper bounded by

| <
<3a(ﬁs+3a52)>|8|0ﬁ(35(ﬁ3+3a52))ll1\[‘

€ ey € 42)
_ |:3(63 + 30(,82):| HSHO“FZ?Zl NI, aHSHOBZf’:l .

g

Consider X € X and X € X, which can be represented
asX S><1V1 X2V2 Xng,SGS{V[GV[}l 1and
X = S><1V1><2V2><3V3,8 €S, {V; e Vi }3_, respectively.
Hence, for any X, there exist X such that the following holds:
Hi’—i‘HF: H:SX\N[1 XVQ XVg—SXVl XVQ XV?)HF

ZHS X1 \71 X9 ‘72 X3 V3:|:S X1 Vl X9 VQ X3 V3:|:
3><1\71 XQVQ X3V3i3 lel XQVQ ><3V3
—8x1 Vi x5V, X3 V3||F

SHS X V1 X V2 X (V3 — V3)||F+
HS x Vi X (Vg —Vg) X V3||F+
HS X (Vl — Vl) X Vg X V3||F—|-

[(§ —8) x Vi x Va x Vsl|p

2 3 € _
<3af +h B3+ 3ap2

1S
(43)

Therefore, X is an e-net of X" with a covering number is upper
bounded by

N(X,e) <

[3(ﬂ3 n 30[52)} ISllo+>7_, NiIy
€

allSllo gioy Nili “4)

Next, consider the T-Lipschitz continuous activation function

¢(+) such that the following holds for any X1, X5 € X:
(X 1) = <(Xo)[[e < T X1 — Xslw (45)

Consider the set Xmap = {C(jf) = <(3 x1 Vi X2 Va X3
V3)|S € S.{V, € Vi})_,}, we find that an %-net of X is an
e-net of AXrap. Hence, we have

N(Xrap,e) <

|:3T(ﬂ3 + 3a62)] HS|\0+Z?:1 NIy
e

4
aHSHoBE?:l Ny (46)

This completes the proof.

F. Proof of Lemma 3

Lemma 5: [21] Let V1, -+, Yy be a set of samples taken
without replacement from {y1,---,y,} of mean u. Denote
a = min; y; and b = max; y;, then

Lo 2wt?
Pr |Ezyl_'u|2t S2eXp(_(1_(w—l)/n)(b_a)Q).
i=1 (47)
|

Consider o a set of variables
Wi, i9,i3) = (P(i1,i2,13) — X (i1, i2,13))?, V(i1, 42, 13) € Q.
Then, the sample mean of W(iy,is,43) is the empirical
loss loss;(X) and the actual mean is lossy(X).
One can see that W(iy,iz,1i3) _ (P(ir,ig,i3) —
X<7;17i27i3))2 S (‘y(7’172277’3)| + |X(i177;27i3)|)2 S
(Z/ + v+ 0453)2 = ¢ with v = Max, iy is |Xh(i1,i2,i3>|

and v = maxy, i, N (i1,42,i3)|. Using Lemma
5, we have Pr [\lossl(i') — lossy(X)] > t} <
2|0t
2expi( == ‘1)|/11]213)52) Denote an e-net of Xrap
as Arap. Using the union bound on all X € Xpp
yields  Pr {supX \lossl(é\:’) lossy (X)] > t} <
> 2|10t ; ;
2\XTAPJ ?Xp( _ 17(‘Q|7‘1)|/*1112[3)£.2)_ Equivalently, with
probability at least 1 — ¢, the following holds:
sup  [lossy (X)) — lossy(X)| <
XE/\_’TAP
- (48)
leOg(2|XTAP|/5)(L+ L1 )
2 Q QLI LIz
Let u(Q) £ SUD X ¢ e |loss1(i'z — lossa(X)|. We have
SUD ¥4 |/1oss1 (X) — y/lossa(X)| < /u(R)
Note that
\/IOSSQ \/IOSSQ
—Xp- Yy -X
- 1 .
Xlp= ———|lX - X
m”” YAl = g H
<
\/111213
(49)

Similarly, we have |{/loss;(X) — /loss; (X)| < \/Tﬁ\

Then we can show that the following holds:

\/10552
A / +
\/11]213 VIR

Therefore, the following holds using the definition of u ()
with probability at least 1 — 4:
\/ 10552

sup |\/loss1
log(= |XTAPD)

(50)

XGXTAP
2e

il

This completes the proof.
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G. Proof of Theorem 1

Denote the empirical loss and actual loss associated with an
optimal solution X™* as:

* 1 \ *
lossl(X ):\/Tﬁ'HO*(y*X )HF7

* ) ) ) 52)
lossy (X*) = \/ﬁﬂy - Xp.



Then the following chain of inequality holds:

| = el = %nz\f* — YN
fﬁnr—wﬁ e IWIr
gﬁuow 2%)|le + Gap* () + mnNnF
gﬁuow 2)r -+ Gap’ () + === WIlr
O+ (X X[ + O % (X~ P)le

N Vi

+ Gap (@) + mnNnF

S\/%Hi’*?‘-’uu + g 10+ Nl

+ 0’ (9) + === Wl

(53)
This completes the proof.

H. Comparisons of recoverability analysis

The key differences between the proposed recoverability
analysis and prior work lie in:

o The use of a nonlinear Tucker model with an activation

function.

o The presence of a core tensor with a sparsity pattern.

o The use of non-orthogonal factor matrices.

These differences primarily influence the generalization
error (i.e., Gap*(f2)) in the reconstruction error bound. In [1],
the generalization error is given by:

2cR 2w 2N(Xgr.0,,cR)
Gap™ (2 2" Jog(F———BT Y (54
p*(Q) < N + (35 log( 5 ), (54)
with the covering number
+
N(Xgro06) < (° (8 Oy rce B (pye (s53)
In contrast, the proposed model yields:
2e 52 2N(XTAP,E)
Gap™ (2 + log(——)), 56
AR (35~ log(———)) (56)
N(Xtap,€) <
3 o7 IS lo+320, Ny
|:3T(6+3a6):| aHSHoﬁE?:lNlll_ (57)
€

Comparing (53)-(56), we observe that the key difference in
the generalization error arises from the covering numbers
N(Xgr.0,,¢) and N(Xrap, €). In the SOTA model [1], the cov-
ering number is determined by pre-selected hyperparameters,
such as the assumed source number, R and the latent space
dimensionality, D. Choosing overly large values increases the
bound, thereby raising the risk of higher generalization error.
In contrast, the proposed model’s generalization error depends
on the sparsity of the core tensor, ||S]|g, which represents the
number of non-zero elements in the core tensor. Instead of

being pre-fixed, ||S||o is learned in a self-supervised manner
during training. This highlights the importance of learning the
core tensor sparsity and aligns with the experimental results.

Additionally, these differences also influence the represen-
tation error in the reconstruction error bound:

[ A (58)

where X represents the best reconstruction from the solution
set (see Definition 1) and X’ denotes the ground truth field.
In [1], the optimal reconstruction is given by:

Sk

X =arg min ||.5€' — Xylr, (59)
EXgR’gd
while in the proposed model:
X = arg min || X — Xillr. (60)

X eXnp

For the model in [1], the representation error is determined
by the pretrained deep model with parameters 8. If the test
data distribution differs significantly from the training data,
the prior information embedded in the pretrained model may
misleadingly constrain the solution set, resulting in increased
representation error. In contrast, the proposed model does not
rely on pretrained models, and its high expressiveness — since
the Tucker model is a universal approximator — enables a lower
representation error.

In summary, by comparing the two primary sources that
contribute to the reconstruction error — the generalization error
in (53)-(56) and the representation error in (57)-(59) — we
conclude that the proposed model has the potential to achieve a
lower reconstruction error compared to [1], particularly under
distribution shifts. This advantage stems from the proposed
model’s ability to adaptively adjust its complexity by learning
the sparsity of the core tensor, unlike the fixed model com-
plexity in [1], which depends on a pretrained deep model.

1. Implementation Details of Ocean Sound Speed Field Re-
construction

a. Tucker-ALS: The core tensor size is set to (5, 5, 5), and
the size of the three factor matrices is set to (20, 5)

b. LRTC: The hyperparameters « and 3 are both set to 1.

c. TNN: We choose the TNN with layer dimensionalities
of (5, 5, 5), (10, 10, 10), and (20, 20, 20), which
have been shown to be the most competent in the SSF
reconstruction task [10]. The learning rate is set to 4¢3
The number of parameters is 875.

d. TAP: The cube size is set to (4, 4, 4) and the stride is set
to (2,2, 2). Consequently, N = (2%-2+1)% = 729 cubes
can be extracted, and the reshape size (N1, Na, N3) is
(81, 81, 81). The learning rate is set to 4e—3. The number
of parameters is 12K.

e. MHTAP: The cube size is set to (5, 5, 5) and the stride
is set to (3, 3, 3). This configuration allows us to extract
a total of N = (252 +1)3 = 216 cubes, with M = 64.
We choose the head number i to be 8 (b1 = hy =
hs = 2) and set the reshape size (h1 N1, ho No, h3N3) to
(72,72,72), which approximates the reshape size used
in TAP. The learning rate is set to 4¢~3 and the number
of parameters is 132K.



J. Implementation Details of Radio Map Reconstruction

a. TNN: We choose the TNN with dimensionality of each
layer being (10,10,10), (25,25,32), (51,51,64). The learn-
ing rate is set to 4e~3. The number of parameters is
6.5K.

b. TAP: The cube size is set to (6,6,8), the stride is set to
(5,5.8). Therefore, N = (30 4 1)?(%4=8 + 1) = 800
cubes can be extracted and M = 288. The size of core
tensor (N1, Na2, N3) = (100,100,64). The learning rate is
set to 4e 3. The number of parameters is 180K.

c. MHTAP: The cube size is set to (9,9,8), the stride is set
to (7.7.8). Therefore, N = (=2 41)2(%4=2 +1) = 392
cubes can be extracted and M = 288. We choose the
head number h = 4 and we set the size of core tensor
(h1 N1, haNa, hgN3) = (98,98,64) approximating that
of TAP. The learning rate is set to 4¢~3. The number of
parameters is 1.5M.

K. Enhanced Loss Function with TV Regularization for Un-
trained Methods

To further enhance the competitiveness of those untrained
models, we incorporate the commonly used total variation
(TV) regularization [18] into the loss function to enhance
the performance. The second order TV regularization for 3D
physical fields is defined as:

|y =33 /D2 + D3+ 202,
ki

D, =(X (i1 + 1,i9,143) — 2X (i1, 2, 13) + X (i1 — 1,12,13))?
D, =(X(i1,i9 + 1,43) — 2X (i1, 40, 43) + X (i1,i2 — 1,i3))?
1
D,y :Z(X(il + 1,90+ 1,43) — X (i1 + 1,42 — 1,i3)—

X(iy — 1,ig + 1,i3) + X(iy — 1,45 — 1,i3))?
(61)

Then the loss function of those untrained methods becomes:

HE,ﬂHy—O*XH%‘F’Y”XHTVa (62)
where X is the reconstructed 3D physical field and v is the
trade-off parameter.

L. Generic guidelines for the choice of hyperparameters

Here, we provide guidelines for selecting dimensions
(R1, Ro, R3), (K1, Kg, K3) and (51, 2, S3).

Our key idea is to first construct an over-complete tensor
Tucker model with a Tucker core larger than the physical field
to ensure expressiveness (i.e., Ry > I;,V]). We then employ
an attention mechanism to adaptively learn the sparsity pattern
(model complexity). To achieve this, we recommend choosing
K, < L%LW, where K; and I; denote the window size
and the original field size for mode [, respectively. The stride
size controls the number of extracted cubes, and we suggest
choosing S; < [ &L ], VL.

Once (K, K, K3) and (S, 52, S53) are selected, the size
of the core tensor, (R, Ro, R3), can be determined by the
proposed tensorization steps in Sec. III-B, ensuring that

R; > I;,VI holds. Additionally, the empirical results indicate
that the corresponding final reconstruction remains insensitive
to different hyperparameter choices, provided the specified
conditions (i.e., R; > I;,VI) are met.

M. Impact of the sparsity level and pattern of the observations

Since our goal is to develop a “complexity-adaptive” model
for general physical field reconstructions, our derivation of
the reconstruction error bound (Theorem 1) imposes minimal
restrictions on the sparsity levels (p) and the patterns in the
original observation set, Y. Specifically, the sparsity level p
primarily influences the error bound through the term |{2| in
Eq. (26) and Eq. (27). A higher p (i.e., larger |(2|) reduces the
estimation error bound, as shown in Eq. (27).

Although the sparsity pattern of Y is not explicitly included
in the recoverability analysis, we conduct experiments with
different sampling patterns to evaluate the reconstruction per-
formance under practical scenarios. In these experiments, we
use random sampling for SSF and fiber-wise sampling for the
radio map. Empirically, the proposed model performs well
with both sampling strategies, demonstrating its robustness.

While our derived error bound does not explicitly quantify
the impact of the sparsity pattern of ), it does influence
reconstruction results to some extent. This presents an inter-
esting direction for future work — to refine the error bound
by incorporating sparsity patterns. In particular, adversarial
sampling scenarios (e.g., block-missing observations) can de-
grade the performance of the proposed model by creating large
variations in the observation counts across different cubes,
leading to misestimated similarity scores.

N. Trade-off between computational cost and reconstruction
accuracy

The proposed method exhibits a trade-off between computa-
tional cost and reconstruction accuracy when scaling to larger
datasets or more complex fields. FieldFormer is particularly
well-suited for handling spatial-temporal continuous fields,
which naturally result in a sparse attention map. This allows
the model to maintain a relatively low model complexity
and computational cost, while achieving state-of-the-art recon-
struction accuracy. However, when applied to more complex
fields, the model adapts accordingly and the percentage of the
non-zero elements in the Tucker core tensor could increase, ac-
tivating more learnable parameters. As a result, computational
costs rise to ensure accurate reconstruction. Similarly, when
scaling to larger datasets, more cubes are extracted to compute
similarity scores, expanding the sparse attention map. This
requires additional parameters to characterize the entire model,
inevitably increasing the computational cost to maintain recon-
struction accuracy. Nevertheless, the concern of computational
overhead can be mitigated by implementing linear attention
mechanisms [51], which provide a more efficient alternative
while preserving accuracy.
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