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Abstract—In this paper, we consider using norm-trace codes
over extension fields for error correction using partial informa-
tion from received words. To do so, we define virtual projections
of norm-trace codes and we implement a fractional decoding
scheme. The scheme depends on a refined key equation tailored
to the norm-trace code.
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I. INTRODUCTION

Tamo, Ye, and Barg [16] introduced the fractional decoding
problem, motivated by distributed storage systems in which
there are limitations on the disk operation and on the amount
of information transmitted for the purpose of decoding. They
outlined the concept of error correction with partial infor-
mation for codes defined over an extension field, focusing
on maximum distance separable (MDS) codes. Fractional
decoding seeks to consider codes defined over extension fields
and algorithms for error correction that use fewer symbols
than usual from the base field, thus operating using a restricted
amount of information in the decoding process. In [15], Santos
provided a connection between fractional decoding of Reed-
Solomon codes, which can be considered as codes from the
projective line, a curve of genus 0, and collaborative decoding
of interleaved Reed-Solomon codes. Later in [13], [14], an
algorithm is given for fractional decoding of r-Hermitian
codes, which are constant field extensions of subcodes of the
one-point Hermitian codes.

In this paper, we present a fractional decoding approach
for one-point codes from the norm-trace curves where the
evaluation points have coordinates that lie in a proper subfield
(as done by Guruswami and Xing [6] and Gao, Yue, Huang,
and Zhang [3], among others). The codes considered in this
paper and those in [16] have lengths ¢?" !, over alphabet sizes
of ¢"" and ¢(2"~! respectively. While they are shorter than
Reed-Solomon codes over the same alphabets, they allow for
fractional decoding with o < 1, whereas Reed-Solomon codes
themselves do not. Moreover, norm-trace codes with > 2 can
have better relative parameters than Hermitian codes and give
a step in the direction of fractional decoding for more general
families of curves.
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This paper is organized as follows. This section concludes
with the notation used throughout the paper. Section II reviews
norm-trace codes and their properties. Section III develops
their virtual projections, allowing them to be considered as
interleaved codes over a smaller field. Section IV describes
how the virtual projections are used to provide a fractional
decoding algorithm for these codes. The paper ends with a
conclusion in Section V.

Notation. The set of nonnegative integers is denoted by N.
Given a positive integer n, [n] := {1,...,n}. Given integers

1 ifs=j

sand j, 05 := For a rational function f €

0 otherwise.

F(X) on a curve X and a rational point P on X, the valuation
of f at P is denoted vp(f). The multiplicative group of a field
F is denoted by F*.

II. NORM-TRACE CODES

In this section, we identify the virtual projections of the
norm-trace codes which we will later use for decoding. Recall
that the norm-trace curve X, is defined by

q"—1 r—1
(L‘qflzyq +...+yq+y
over the finite field F,~ with ¢" elements, meaning N(z) =
Tr(y), where the norm N(z) := z* and the trace Tr(y) :=
v ...+ y? +y are taken with respect to the extension
Fyr/Fy and u = qqrfll. It is well-known that the genus of X,

isg=3(""'-1)(u—-1).

Given a € Fyr, consider I', :={b € Fyr : T'r(b) = N(a)}.
For all a € Fyr, | 'y |= ¢"~!. The affine points of X, , over
F,~ are of the form P, := (a,b) with a € Fyr and b € T';
and the set of Fy--rational points of X, is

Xy (Fgr) ={Pa :a €Fyr,b €T} U{Ps},

where P,, denotes the unique point at infinity which has
projective coordinates (0 : 1 : 0). It is useful to partition the
set Xy, (Fgr) \ {Poo} as

oo (Fp)\ P} = U,y P

where P, := {P, : b € ', }. We consider codes Cy(8Px) :=
ev(Li(BP~)) < Fy. in which the evaluation points
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Py, ..., P, are the ¢> ! affine points of X, , and the func-
tions to evaluate are elements of

Ll(ﬁpoo) = L(ﬁpoo) & quz - qul (Xq,r)
so that

ev : El(ﬁpoo) — FZ’PZ

is injective. To guarantee that, we assume 3 < n := ¢?" L. If
29 < B < ¢* !, then C(BPx) is an Fn-linear code over
quz, of dimension at least 5 + 1 — g, and with minimum
distance at least n — (3.

Recall that the Weierstrass semigroup of Py, is H(Py) =

{¢""Yi+wuj : i,j € N} which we enumerate as

r—1

ny:=0<ng:=¢q <ng<---.

Let p be the monomial weight inherited from the Weierstrass
semigroup so that

p(a'y’) = ¢ Vi+ uj.
Breaking ties using x > y, we can view p as a monomial
order on Fyr[z,y]. Let ¢, be the maximum monomial such
that p(p¢) = ny. Moreover, we define
Cptyd ) = W]
p (Zawx Yy ) : gz;zgp(x y).
Observe that |J,,cn L(MmPs) = Forlz,y]/(N(x) — Tr(y)).
We will identify the elements of Fy-[x,y] with their classes
in Fyr[z,y]/(N(xz) — Tr(y)). Thus, monomials in F,[z,y]
corresponds to elements in £(mPs,) for some m where m is

an upper bound on the weight p of the monomial. For 5 € N,
define

Opg = {;L’iyj

Then the Riemann-Roch space of a divisor SP, on X,
satisfies

P 0<i<u, 0<j,p(x'y’) < B}

L(BPx) = (Pg) C Fyr[z,y].
II1. VIRTUAL PROJECTIONS OF NORM-TRACE CODES

In this section, we will see how the codes C;(8Px,) C FZ’“’
can be represented over Fy- in ways that will allow for error
correction with partial information. We note that the monomial
basis @4 is convenient, and the technique applies to other bases
for L(8Px), including those consisting of rational functions
that are not polynomials.

Let {C1,..., (i} be a basis of F i /Fyr, and let {v1,..., v}
be its dual basis, meaning tr((sv;j) = ds,;. Then for all § € F,

l
B = Ztr(gsﬁ)yy
s=1

In other words, any element /3 € IE‘qu can be calculated from
its [ projections tr((s5), s € [I], onto Fr.

Definition 1. Keep the notation above and assume that $g =
{h1,...,hi}. For s € [l], the s-projection of the function

[z, y) = Zle a;hi(z,y) € L1(BPx) to L(BP) is defined
to be

k
[s ($, y) = Z tr(csai)hi(xv y)

Note that
f € Li(BPx) CFyri(X) = fs € L(BPx) C For (X).
Furthermore,  f(z,y) is  fully  determined by
{fs(z,y) : s € [l]}, since
fla,y) =i ashi(z,y)

= S S tr(Gagw] hu(e.y)
=3 {Zf:l tr(Csai)hi(ﬂf»y)} Vs

l
= Zs:l fS (J}, y)VS'
To set the stage for fractional decoding, fix a partition
AU UA,, C{P,..., P}

where m < [. For each t € [m], consider an annihilator
polynomial p;(z,y) € Fgr[x,y] of a minimal degree of the
set A;, meaning

pi(a,b) =0 V(a,b) € A;.

We use this partition and the associated annihilator poly-
nomials to define the virtual projection of functions in the
Riemann-Roch space over Fg ., which are inspired by the
virtual projections of Reed-Solomon codes [16]-[18].

Definition 2. Given f € L/(8Px), AU---UA,, C
{P1,...,P,}, and t € [m), define

Tt(f)(xay) = fl—m—‘—t(xay)(pt(xay))lim

+ 0 fol@,y) (e, )T € Fyrla,y)
and the t-virtual projection of C;(8Px,) to be
Vi(BPso) = {(Te(f)(P1), -, Te(f)(Pn)) : f € Li(BP)} -

The next result demonstrates how the t¢-virtual projection is
a subcode of a one-point norm-trace code.

Proposition 3. The t-virtual projection Vi(8Px,) of C/(8Ps)
is a subcode of Fy,:

Vi(BPs) € C((B— (1 -
Proof. Notice that
Vi(BPx) = ev(Ty(Li(BPx))) € Fyr.
For all f,h € Li(8Px) and a,b € Fyr,
T,0af +T; 0bh =Ty o (af + bh)

m)vp., (pt))Poo-

and

a-ev(Ty(f)) +b-ev(Ti(h)) =ev(Ti(af + bh)).
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For any function f € £;(8Px) and t € [m], vp,_ (T3(f)) is
bounded below by

min {vp,, (fip}) v (fiomeepi ™) 1 € [l —m]}
. Vp,, (fl) + Z"UpOC (pt) , . —m
= m““{ vp (fioman) £ (L= myop ) €L ]}

N
{5

There are two natural sets of points to consider for a
partition that gives rise to a virtual projection.

Corollary 4. 1) Suppose A\U---UAl, C Fyr, and let
A ={Pyp € X(Fy) : a € A}} foriec [m]. Then

Vi(BPsx) € C ((B+ (I —m)|Afl¢" ") Pu).

2) Suppose AYU---UA; C Fy.. Let D be the sum of
all Fgr-rational points (a,b) of Xq, with a # 0, and
consider A; = {Py, € X (Fyr) be A}, i € [m).
Then the virtual projection of the code with evaluation
points in the support of D is

Vi(BPx) € C((B+ (I = m)|AjJu) P) -

We will see that a key idea to achieving fractional decoding
of Cj(BPx) is decoding V;(8Px), t € [m].

Theorem 5. Suppose I C AU---UA,, C {P,...,P,},
for some information set I for the code C;(8Px). Then f €
L1(BPx) depends only on {T(f) :t € [m]} and evaluation
of its elements at points in I.

if vp,, (pt) >0
ifvp_ (pt) < 0.

P (Pt)
O]

Proof. Given A U---UA,, - {Py,...,P,} and
{Ty(f)(z,y) : t € [m]}, we aim to determine f. For
i €[l—m]andt € [m], let Tt(l)(f)(amy) =
T() (@) = Sy fol@ o, )
pe(, )t
First, we will determine f;. Notice that Tt(l) (f) =T:(f) and
Hi(P) =T(f)(P)
for all P € A;. Since f; = Z?:l aijh; for some ay; € Fyr

and I C Ay U---U A,,, we may use the values hj(P) for
j € [k] and P € I to set up a system of equations. Since I is
an information set, we can determine the a;; and hence f;.

Next, induct on ¢ € [m], assuming that f,, s € [i — 1], is
known. Notice that Tt(l) (f) can be determined from T;(f) and
{fs}'Z} . Since

l-m
T(f) = fimmee(pe) T + Z folpe)™™,

s=1

substitution yields £i(P) = T\)(P) for all P € A,. Recall
that f; = 1 aijh; for some a;; € Fg. Then using
the values h; (7P P € I gives a system of k equations

fi(P) = Z?=1 a;jh;(P) in k unknowns a;;, j € [k]. Since
I is an information set, the a;; can be found, hence revealing
fi. In this way, {fs(x,y) : s € [m]} may be determined, and

flzy) =30, folay)vs. 0
IV.

In this section, we detail how virtual projections give rise
to fractional decoding algorithms for norm-trace codes over
extension fields.

Given a received word w =
i € [n] and ¢t € [m], download

DECODING VIA VIRTUAL PROJECTIONS

ev(f) +e € F" gt for each

l—m

l m+ztr Cswz Pt( ) 1'
s=1 (1)

We aim to show that if e has relatively low weight, then ev(f)
can be recovered from

wf =t (Qemyews) e (P

whowl o Wl
W owi o wl, .
p— mXxXn
(w) = : F )
w®  wi w)

where n’ < n and {1,...,n'} contains an information set.
Notice that if w = ev(f) where f € L;(G), then

w! tr(Cz m+tf( ) pe(P)™
+ T (G () pe(Py)*

fieme(P)pe(B)' =+ ST fo(Ppe(P)*!

= T(N)(F).
Indeed, if f(z,y) =

Z?:l a;h;(z,y) where h; € Fyr[x], then

k
tr (Cof(z,y) =tr | (Y ajh;(x

J=1
k
=tr | (s Z a;
Jj=1

We have already seen in Theorem 5 that ev(f) can be
recovered from the array

TL()(P)  Ti(f)(Py) Ty (f)(Par)
(AP To(f)(P) BOE) | e
To(F)(P)) T(F)(P2) Ton(£)(Por)

The challenge now is to confirm that this is the case if w =
ev(f)+e where e € JF:;H has a positive weight, meaning some
positions are in error.

We consider an approach to fractional decoding with two
phases. We will write 3; = B8+ (I — m)|Al|l¢g"! or B =
B+ (I — m)|A}|u, depending on the partition in Corollary 4
used. Similar ideas apply to other partitions.

Given a received word w, download the 7(w). Then:
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1) Apply a decoding algorithm for C(8;P) C Fy. to
obtain T3(f) for all ¢t € [m].
2) Apply Theorem 5 to obtain ev(f) € Fr.

In this way, the next result follows.
Theorem 6. Suppose I C AU---UA,, C

{P,...,P,}, for some information set I for the
code Ci(BPx). The code Cj(BPsx) can correct any

Y oy |

mn entries of Fyr

errors from

If m < [, then Theorem 6 offers an improvement in
the number of symbols needed for decoding. Also, with
knowledge of a subset of coordinates of size n’ < m containing
an information set, only mn’ < In symbols need to be
downloaded. The performance will be dictated by the partition
of the evaluation set AU---UA,, C {P,...,P,} and the
associated choice of annihilator functions as well as the choice
of the decoding algorithm for Step (1).

Next, we consider how this approach applied is in various
settings. First, recall that an error-locator is a polynomial
A € Fyr[z,y] such that A(P;) = 0 for all ¢ € [n] with
e; # 0. The syndrome polynomial is a tool useful in finding
an error-locator polynomial of minimal degree. The syndrome
polynomial is defined as

2.

S(x,y) =
plpi,)<B+

where s Y avii(P), s =
max{j p(©i ;) <BL} and Bt = n+ 29 — 2 — B. The
maximal possible order of S(x,y) is ps = 29— 1+ (jg+1)u.

The decoding problem can be described by the following
theorem, which was proven in [9] for the Hermitian case. We
follow the general lines of the proof, extending the result to
norm-trace codes. The Clifford defect is used to describe the
number of errors correctable by the so-called key equation.
Recall that the Clifford defect of a set £ of divisors on a
curve X is

" —aq_;
“g=1 Y908
8i @t "y

deg(E
s(€) :max{egQ() —UE)+1 :EEE}.
Theorem 7. Consider a norm-trace code C(SPsx) C Fyr
received word w = ¢ + e with ¢ € C(BPx) and e of weight
t < L%J — 5. Then there exists a unique polynomial A(x,y)
and an auxiliary polynomial R(x,y) that fulfill

Az,y)S(z,y) = R(x,y) 3)

p(R)=p(A) < ps—BF—1=1", “

and p(A) is minimal among all pairs (A, R) satisfying (3) and

(4), where S(x,y) is the syndrome polynomial associated with
e. Moreover, A is an error-locator polynomial.

mod 3761

Before we prove Theorem 7, we provide an overview of
how it is used for decoding C(8Px). Details are given in
Algorithm 1. Given a received word w = ev(f) + e € Fy,
obtained from a codeword ev(f) € C(5Px), an error-locator
is A(z,y) € Fyrlx,y] is found, along with a polynomial

R(z,y) € Fgr[z,y] as in Equation 3. The error positions
i € [n], meaning those with e; # 0, are found by determining
the roots of A(z,y) among the P;, i € [n]. Then the nonzero
coordinates of the error vector are given by

_ R(z,y)
€; = .
Az, y)

Now, to prove Theorem 7, we start by proving that any
error-locator is a solution to the key equation (3). To simplify
the notation, we set u, := u and u, = ¢" ' — 1. We will
need the following lemma, given in [10] for Hermitian codes
and whose proof adapts immediately to norm-trace codes.

Lemma 8. [I10] Given an error-locator polynomial A(x,y)
Sor a received word w = ¢+ e with ¢ € C(8Px), meaning
e; # 0= A(P;) = 0, there exists a polynomial R(x,y) such

that the pair (A, R) is a solution to the key equation (3).

To guarantee that the solution in Lemma 8 is unique, we
will use the following result which appears throughout the
literature (see [20], for instance). We include it here (along
with a short proof) for easy reference.

Proposition 9. Let Q = >, ; P; for some I C [n]. Let v
be the smallest integer such that (VP — Q) # 0. Let s be
the Clifford defect of the curve, 3 > 0 and d = n — . If
| T|< L%J — s, then

029 =2— B+ )P +Q) =0
for any p <wv.

Proof. Since (2g — 2)Px, is a canonical divisor, then £,, :=
L((29 — 2 — B+ + ) P + Q) is isomorphic to

Q((ﬁL - M)Poo - Q)
The result for v follows from Proposition 14 in [20]. Since
L, € L, for any p < v, we have the conclusion. O

We are now ready to prove Theorem 7.

Proof. Let
S = Z Sabxum_ayjﬁ_ba
a<ug,b<jg
Tr(y) —Tr(B:) _ N(z)—N(x)

YT e —a)y—B)  (@—a)y-B)

and
n

_ jg+1
U=- Z B;" " ey

i=1
= P,. We have that
. Bj/i+1) N(.’E) _N(ai)
’ (x — i)y — Bi)

kph uz—k, jsg—h
az/Ble y]B

where P, s,
(yja-i-l

- ¥

k<us,h<js

- ¥

k<uz,h<jg

P n(Py)atsFylo =,
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Thus, U +y# 1 3" eju; = S. Let h = ﬁg—ﬂ

Let (A, R) be a minimal solution of the Jkey equation. Let
v be the minimal order of an error-locator polynomial. Since
any error-locator polynomial is a solution, 4 := p(A) < v.

Let R = R+ \(S — S). Observe that p(R) < p(R). We
have R— AU = R—AS+y7#+1 Ah. Since (A, R) is a solution
to the key equation, we have R — AU = ye L (Ah + f) for
some polynomial f. We claim that

R—AU € L((n+ ") Pos + Q — (jg + 1) (us + 1) P)

where Q = >, . . .oy Pi- Observe that (h)es > Q + tPx
for some integer ¢. Thus,

R—AU € L' P+ Q— (jg+ 1)(ug + D) Fy).
We just need to compute a proper t' > p(R—AU). We have

p(R) < p+£* by definition of the key equation. Observe that

p(U) < p(Tr(y) = Tr(Bs)) — p(z — ;) — ply — Bi)
= (uz + 1) (uy + 1) = (uy +1) — (ug + 1)
=uzuy —1=29—1.

Thus, p(AU) < p+ 2g — 1. Remember that
0 =2g +uy +jpus +1) — g+ — 1.

By definition of jz, we have that (jig+1)(u; +1) > 5+. Then
0% > 2g — 2 and

p(R—AU) < p+ 01

from where we have the proof of the claim.
Since (y#™) = (jig + 1) (uy + 1)(Po — Ps), we have

L+ )P +Q — (Jp + 1) (uz + 1) Py)
=0+ 0" = (g + 1) (g + 1)) Poo + Q).

Given p+0*—(jg+1)(us+1) = p+29—2—p+ and pn < v, by
Proposition 9, we have that R — AU = 0, which is R = AU.
Since R is a polynomial, then (A)g > (U)oo — p(U)Psx = Q

and we obtain that A is an error-locator polynomial of minimal
degree. O

The main part of the division decoding algorithm proposed
by Kampf in [9] based on the polynomial division, proposed
a division decoding algorithm to locate all error patterns of
weight up to | 41| — s. The basic idea is the construction
of two sequences of polynomials A;(x,y) and R;(x,y), each

pair fulfilling
Ai(z,y)S(z,y) = Ri(z,y)

where p(A;) = p(p;) and p(R;) is minimal, given p(A;); that
is, the method consists in obtain a candidate error-locator of
each possible order, so as soon as ¢t < {%J — s we can find
a pair (A;, R;) that fulfills

p(Ri) = p(Ai) <07, (6)

then we set A(z,y) = A;(z,y) and R(z,y) = R;(z,y), which
is the wanted solution to the key equation (3). A pseudocode
for this method is given in Algorithm 1.

mod y7s+1 (®)]

Algorithm 1 Solving the key equation for norm-trace codes

Input: Polynomial S # 0, y?8F1; constant £*.
Output: Locator polynomial A, evaluator polynomial R.
Initialization: 1 = 0,Ag=1,Ry = S

repeat

1=1+1

if p; = 2% then @;, = 2971, else p;, = %

0= :;"1 R;, mod (N(x) —Tr(y), y’e+1).
Divide 6 by R;—1,..., Ry : 0 = Z]‘ 7i,jRj + R;
Yijiin = Vi, T ;0:1

Ap=—=3758;

until p(R;) — p(A;) < £

A=A, R=R,.

Since we are only interested in the zeros of the locator
polynomial, Algorithm 1 always considers monic polyno-
mials. The polynomial A;(z,y) will therefore be of the
form A;(z,y) = pi(x,y) + Z;;E a;pj(z,y) with constants
aj € qu.

To complete the decoding process, it is necessary to de-
termine the error positions and values so that the codeword
can be recovered. The error values are given by the residues
of R(xz,y)/A(x,y), meaning the error word (and hence code-
word) can be recovered from the output of Algorithm 1. In
particular,

R(%‘,yi)
A(ﬂ%yi)

>

i€n]A(z;,y;)=0

C=w —

provided wt(e) < {# — 5.
Finally, we give a fractional decoding of the constant
extension norm-trace codes as in Algorithm 2, and we utilize

the key equation for norm-trace codes.

Algorithm 2 Fractional decoding of constant extension norm-
trace codes

Input: Received word w = ev(f) + e where f € Li(8Px)
and I C A1U...UA,, C{P,...,P,} for some information
set I of Cj(8Px).

Output: ev(f) € C;(8Px), provided wi(e) < V—;ﬁ - SJ
fort=1,...,m

Download df, i € [n], as in Equation 1.

Apply Algorithm in 1 to recover T;(f).

Apply Theorem 5 to recover ev(f).

V. CONCLUSION

In this paper, we provide a fractional decoding algorithm
for codes from the norm-trace curve, allowing one to perform
decoding using a fraction 7+ < 1 of symbols of the base
field to represent a received word. While the error-correcting
capability is less than that of the original code, fewer symbols
are needed for recovering the original codeword. Furthermore,
these codes allow for longer constructions than those with

error correction from partial information in the literature.
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