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Abstract—In this paper, we consider using norm-trace codes
over extension fields for error correction using partial informa-
tion from received words. To do so, we define virtual projections
of norm-trace codes and we implement a fractional decoding
scheme. The scheme depends on a refined key equation tailored
to the norm-trace code.
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I. INTRODUCTION

Tamo, Ye, and Barg [16] introduced the fractional decoding
problem, motivated by distributed storage systems in which
there are limitations on the disk operation and on the amount
of information transmitted for the purpose of decoding. They
outlined the concept of error correction with partial infor-
mation for codes defined over an extension field, focusing
on maximum distance separable (MDS) codes. Fractional
decoding seeks to consider codes defined over extension fields
and algorithms for error correction that use fewer symbols
than usual from the base field, thus operating using a restricted
amount of information in the decoding process. In [15], Santos
provided a connection between fractional decoding of Reed-
Solomon codes, which can be considered as codes from the
projective line, a curve of genus 0, and collaborative decoding
of interleaved Reed-Solomon codes. Later in [13], [14], an
algorithm is given for fractional decoding of r-Hermitian
codes, which are constant field extensions of subcodes of the
one-point Hermitian codes.

In this paper, we present a fractional decoding approach
for one-point codes from the norm-trace curves where the
evaluation points have coordinates that lie in a proper subfield
(as done by Guruswami and Xing [6] and Gao, Yue, Huang,
and Zhang [3], among others). The codes considered in this
paper and those in [16] have lengths q2r−1, over alphabet sizes
of qrl and q(2r−1)l respectively. While they are shorter than
Reed-Solomon codes over the same alphabets, they allow for
fractional decoding with α < 1, whereas Reed-Solomon codes
themselves do not. Moreover, norm-trace codes with r > 2 can
have better relative parameters than Hermitian codes and give
a step in the direction of fractional decoding for more general
families of curves.

The first and second authors are partially supported by NSF DMS-2201075
and the Commonwealth Cyber Initiative.

This paper is organized as follows. This section concludes
with the notation used throughout the paper. Section II reviews
norm-trace codes and their properties. Section III develops
their virtual projections, allowing them to be considered as
interleaved codes over a smaller field. Section IV describes
how the virtual projections are used to provide a fractional
decoding algorithm for these codes. The paper ends with a
conclusion in Section V.

Notation. The set of nonnegative integers is denoted by N.
Given a positive integer n, [n] := {1, . . . , n}. Given integers

s and j, δs,j :=

{
1 if s = j

0 otherwise.
For a rational function f ∈

F(X ) on a curve X and a rational point P on X , the valuation
of f at P is denoted vP (f). The multiplicative group of a field
F is denoted by F∗.

II. NORM-TRACE CODES

In this section, we identify the virtual projections of the
norm-trace codes which we will later use for decoding. Recall
that the norm-trace curve Xq,r is defined by

x
qr−1
q−1 = yq

r−1

+ · · ·+ yq + y

over the finite field Fqr with qr elements, meaning N(x) =
Tr(y), where the norm N(x) := xu and the trace Tr(y) :=
yq

r−1

+ . . . + yq + y are taken with respect to the extension
Fqr/Fq and u = qr−1

q−1 . It is well-known that the genus of Xq,r

is g = 1
2

(
qr−1 − 1

)
(u− 1).

Given a ∈ Fqr , consider Γa := {b ∈ Fqr : Tr(b) = N(a)}.
For all a ∈ Fqr , | Γa |= qr−1. The affine points of Xq,r over
Fqr are of the form Pab := (a, b) with a ∈ Fqr and b ∈ Γa;
and the set of Fqr -rational points of Xq,r is

Xq,r(Fqr ) = {Pab : a ∈ Fqr , b ∈ Γa} ∪ {P∞} ,

where P∞ denotes the unique point at infinity which has
projective coordinates (0 : 1 : 0). It is useful to partition the
set Xq,r(Fqr ) \ {P∞} as

Xq,r(Fqr ) \ {P∞} =
⋃̇

a∈Fqr
Pa

where Pa := {Pab : b ∈ Γa}. We consider codes Cl(βP∞) :=
ev (Ll(βP∞)) ⊆ Fn

qrl in which the evaluation points
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P1, . . . , Pn are the q2r−1 affine points of Xq,r and the func-
tions to evaluate are elements of

Ll(βP∞) := L(βP∞)⊗ Fqrl ⊆ Fqrl (Xq,r)

so that

ev : Ll(βP∞) −→ Fn
qrl

f 7−→ (f(P1), . . . , f(Pn))

is injective. To guarantee that, we assume β < n := q2r−1. If
2g ≤ β < q2r−1, then Cl(βP∞) is an Fqrl -linear code over
Fqrl , of dimension at least β + 1 − g, and with minimum
distance at least n− β.

Recall that the Weierstrass semigroup of P∞ is H(P∞) =
{qr−1i+ uj : i, j ∈ N} which we enumerate as

n1 := 0 < n2 := qr−1 < n3 < · · · .

Let ρ be the monomial weight inherited from the Weierstrass
semigroup so that

ρ(xiyj) := qr−1i+ uj.

Breaking ties using x > y, we can view ρ as a monomial
order on Fqr [x, y]. Let φt be the maximum monomial such
that ρ(φt) = nt. Moreover, we define

ρ
(∑

aijx
iyj

)
:= max

aij ̸=0
ρ(xiyj).

Observe that
⋃

m∈N L(mP∞) = Fqr [x, y]/(N(x) − Tr(y)).
We will identify the elements of Fqr [x, y] with their classes
in Fqr [x, y]/(N(x) − Tr(y)). Thus, monomials in Fqr [x, y]
corresponds to elements in L(mP∞) for some m where m is
an upper bound on the weight ρ of the monomial. For β ∈ N,
define

Φβ :=
{
xiyj : 0 ≤ i < u, 0 ≤ j, ρ(xiyj) ≤ β

}
.

Then the Riemann-Roch space of a divisor βP∞ on Xq,r

satisfies
L(βP∞) = ⟨Φβ⟩ ⊆ Fqr [x, y].

III. VIRTUAL PROJECTIONS OF NORM-TRACE CODES

In this section, we will see how the codes Cl(βP∞) ⊆ Fn
qrl

can be represented over Fqr in ways that will allow for error
correction with partial information. We note that the monomial
basis Φβ is convenient, and the technique applies to other bases
for L(βP∞), including those consisting of rational functions
that are not polynomials.

Let {ζ1, . . . , ζl} be a basis of Fqrl/Fqr , and let {ν1, . . . , νl}
be its dual basis, meaning tr(ζsνj) = δs,j . Then for all β ∈ F ,

β =

l∑
s=1

tr(ζsβ)νs.

In other words, any element β ∈ Fqrl can be calculated from
its l projections tr(ζsβ), s ∈ [l], onto Fqr .

Definition 1. Keep the notation above and assume that Φβ =
{h1, . . . , hk}. For s ∈ [l], the s-projection of the function

f(x, y) =
∑k

i=1 aihi(x, y) ∈ Ll(βP∞) to L(βP∞) is defined
to be

fs(x, y) =
k∑

i=1

tr(ζsai)hi(x, y).

Note that

f ∈ Ll(βP∞) ⊆ Fqrl(X ) ⇒ fs ∈ L(βP∞) ⊆ Fqr (X ).

Furthermore, f(x, y) is fully determined by
{fs(x, y) : s ∈ [l]}, since

f(x, y) =
∑k

i=1 aihi(x, y)

=
∑k

i=1

[∑l
s=1 tr(ζsai)νs

]
hi(x, y)

=
∑l

s=1

[∑k
i=1 tr(ζsai)hi(x, y)

]
νs

=
∑l

s=1 fs(x, y)νs.

To set the stage for fractional decoding, fix a partition

A1∪̇ · · · ∪̇Am ⊆ {P1, . . . , Pn}

where m < l. For each t ∈ [m], consider an annihilator
polynomial pt(x, y) ∈ Fqr [x, y] of a minimal degree of the
set At, meaning

pt(a, b) = 0 ∀(a, b) ∈ At.

We use this partition and the associated annihilator poly-
nomials to define the virtual projection of functions in the
Riemann-Roch space over Fqrl , which are inspired by the
virtual projections of Reed-Solomon codes [16]–[18].

Definition 2. Given f ∈ Ll(βP∞), A1∪̇ · · · ∪̇Am ⊆
{P1, . . . , Pn}, and t ∈ [m], define

Tt(f)(x, y) = fl−m+t(x, y)(pt(x, y))
l−m

+
∑l−m

s=1 fs(x, y)(pt(x, y))
s−1 ∈ Fqr [x, y]

and the t-virtual projection of Cl(βP∞) to be

Vt(βP∞) = {(Tt(f)(P1), . . . , Tt(f)(Pn)) : f ∈ Ll(βP∞)} .

The next result demonstrates how the t-virtual projection is
a subcode of a one-point norm-trace code.

Proposition 3. The t-virtual projection Vt(βP∞) of Cl(βP∞)
is a subcode of Fn

qr :

Vt(βP∞) ⊆ C ((β − (l −m)vP∞ (pt)))P∞.

Proof. Notice that

Vt(βP∞) = ev(Tt(Ll(βP∞))) ⊆ Fn
qr .

For all f, h ∈ Ll(βP∞) and a, b ∈ Fqr ,

Tt ◦ af + Tt ◦ bh = Tt ◦ (af + bh)

and

a · ev (Tt(f)) + b · ev (Tt(h)) = ev (Tt(af + bh)) .
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For any function f ∈ Ll(βP∞) and t ∈ [m], vP∞(Tt(f)) is
bounded below by

min
{
vP∞

(
fip

i
t

)
, vP∞

(
fl−m+tp

l−m
t

)
: i ∈ [l −m]

}
≥ min

{
vP∞ (fi) + ivP∞ (pt) ,
vP∞ (fl−m+t) + (l −m)vP∞ (pt)

: i ∈ [l −m]

}

≥

{
−β if vP∞ (pt) ≥ 0

−β + (l −m)vP∞ (pt) if vP∞ (pt) < 0.

There are two natural sets of points to consider for a
partition that gives rise to a virtual projection.

Corollary 4. 1) Suppose A′
1∪̇ · · · ∪̇A′

m ⊆ Fqr , and let
Ai = {Pab ∈ X (Fqr ) : a ∈ A′

i} for i ∈ [m]. Then

Vt(βP∞) ⊆ C
(
(β + (l −m)|A′

i|qr−1
)
P∞).

2) Suppose A′
1∪̇ · · · ∪̇A′

m ⊆ F∗
qr . Let D be the sum of

all Fqr -rational points (a, b) of Xq,r with a ̸= 0, and
consider Ai = {Pab ∈ X (Fqr ) : b ∈ A′

i}, i ∈ [m].
Then the virtual projection of the code with evaluation
points in the support of D is

Vt(βP∞) ⊆ C ((β + (l −m)|A′
i|u)P∞) .

We will see that a key idea to achieving fractional decoding
of Cl(βP∞) is decoding Vt(βP∞), t ∈ [m].

Theorem 5. Suppose I ⊆ A1∪̇ · · · ∪̇Am ⊆ {P1, . . . , Pn},
for some information set I for the code Cl(βP∞). Then f ∈
Ll(βP∞) depends only on {Tt(f) : t ∈ [m]} and evaluation
of its elements at points in I .

Proof. Given A1∪̇ · · · ∪̇Am ⊆ {P1, . . . , Pn} and
{Tt(f)(x, y) : t ∈ [m]}, we aim to determine f . For
i ∈ [l −m] and t ∈ [m], let T (i)

t (f)(x, y) =

Tt(f)(x, y)−
∑i−1

s=1 fs(x, y)pt(x, y)
s−1

pt(x, y)i−1
.

First, we will determine f1. Notice that T (1)
t (f) = Tt(f) and

f1(P ) = Tt(f)(P )

for all P ∈ At. Since f1 =
∑k

j=1 a1jhj for some a1j ∈ Fqr

and I ⊆ A1 ∪ · · · ∪ Am, we may use the values hj(P ) for
j ∈ [k] and P ∈ I to set up a system of equations. Since I is
an information set, we can determine the a1j and hence f1.

Next, induct on i ∈ [m], assuming that fs, s ∈ [i − 1], is
known. Notice that T (i)

t (f) can be determined from Tt(f) and
{fs}i−1

s=1 . Since

T
(i)
t (f) = fl−m+t(pt)

l−m−i+1 +
l−m∑
s=i

fs(pt)
s−i,

substitution yields fi(P ) = T
(i)
t (P ) for all P ∈ At. Recall

that fi =
∑k

j=1 aijhj for some aij ∈ Fqr . Then using
the values hj(P ), P ∈ I gives a system of k equations

fi(P ) =
∑k

j=1 aijhj(P ) in k unknowns aij , j ∈ [k]. Since
I is an information set, the aij can be found, hence revealing
fi. In this way, {fs(x, y) : s ∈ [m]} may be determined, and
f(x, y) =

∑l
s=1 fs(x, y)νs.

IV. DECODING VIA VIRTUAL PROJECTIONS

In this section, we detail how virtual projections give rise
to fractional decoding algorithms for norm-trace codes over
extension fields.

Given a received word w = ev(f) + e ∈ Fn
qrl , for each

i ∈ [n] and t ∈ [m], download

wt
i := tr (ζl−m+twi) pt(Pi)

l−m +
l−m∑
s=1

tr (ζswi) pt(Pi)
s−1.

(1)
We aim to show that if e has relatively low weight, then ev(f)
can be recovered from

π(w) :=


w1

1 w1
2 · · · w1

n′

w2
1 w2

2 · · · w2
n′

...
...

...
wm

1 wm
2 · · · wm

n′

 ∈ Fm×n′

qr (2)

where n′ ≤ n and {1, . . . , n′} contains an information set.
Notice that if w = ev(f) where f ∈ Ll(G), then

wt
i = tr (ζl−m+tf(Pi)) pt(Pi)

l−m

+
∑l−m

s=1 tr (ζsf(Pi)) pt(Pi)
s−1

= fl−m+t(Pi)pt(Pi)
l−m +

∑l−m
s=1 fs(Pi)pt(Pi)

s−1

= Tt(f)(Pi).

Indeed, if f(x, y) =
∑k

j=1 ajhj(x, y) where hj ∈ Fqr [x], then

tr (ζsf(x, y)) =tr

ζs

k∑
j=1

ajhj(x, y)


=tr

ζs

k∑
j=1

aj

hj(x, y).

We have already seen in Theorem 5 that ev(f) can be
recovered from the array

T1(f)(P1) T1(f)(P2) · · · T1(f)(Pn′)
T2(f)(P1) T2(f)(P2) · · · T2(f)(Pn′)

...
...

...
Tm(f)(P1) Tm(f)(P2) · · · Tm(f)(Pn′)

 ∈ Fm×n′

qr .

The challenge now is to confirm that this is the case if w =
ev(f)+e where e ∈ Fn

qrl has a positive weight, meaning some
positions are in error.

We consider an approach to fractional decoding with two
phases. We will write βt = β + (l − m)|A′

i|qr−1 or βt =
β + (l − m)|A′

i|u, depending on the partition in Corollary 4
used. Similar ideas apply to other partitions.

Given a received word w, download the π(w). Then:
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1) Apply a decoding algorithm for C(βtP∞) ⊆ Fn
qr to

obtain Tt(f) for all t ∈ [m].
2) Apply Theorem 5 to obtain ev(f) ∈ Fn

qrl .
In this way, the next result follows.

Theorem 6. Suppose I ⊆ A1∪̇ · · · ∪̇Am ⊆
{P1, . . . , Pn}, for some information set I for the
code Cl(βP∞). The code Cl(βP∞) can correct any⌊
1
2

(
n−

(
β − (l −m)

∑
t∈[m] vP∞(pt)

)
− 1

)⌋
errors from

mn entries of Fqr .

If m < l, then Theorem 6 offers an improvement in
the number of symbols needed for decoding. Also, with
knowledge of a subset of coordinates of size n′ < n containing
an information set, only mn′ < ln symbols need to be
downloaded. The performance will be dictated by the partition
of the evaluation set A1∪̇ · · · ∪̇Am ⊆ {P1, . . . , Pn} and the
associated choice of annihilator functions as well as the choice
of the decoding algorithm for Step (1).

Next, we consider how this approach applied is in various
settings. First, recall that an error-locator is a polynomial
Λ ∈ Fqr [x, y] such that Λ(Pi) = 0 for all i ∈ [n] with
ei ̸= 0. The syndrome polynomial is a tool useful in finding
an error-locator polynomial of minimal degree. The syndrome
polynomial is defined as

S(x, y) =
∑

ρ(φi,j)≤β⊥

si,jx
qr−q
q−1 −iyjβ−j ,

where si,j :=
∑n

l=1 elφi,j(Pl), jβ =
max

{
j : ρ(φi,j) ≤ β⊥}, and β⊥ = n + 2g − 2 − β. The

maximal possible order of S(x, y) is ρS = 2g−1+(jβ+1)u.
The decoding problem can be described by the following

theorem, which was proven in [9] for the Hermitian case. We
follow the general lines of the proof, extending the result to
norm-trace codes. The Clifford defect is used to describe the
number of errors correctable by the so-called key equation.
Recall that the Clifford defect of a set E of divisors on a
curve X is

s(E) = max

{
deg(E)

2
− ℓ(E) + 1 : E ∈ E

}
.

Theorem 7. Consider a norm-trace code C(βP∞) ⊆ Fqr ,
received word w = c + e with c ∈ C(βP∞) and e of weight
t ≤

⌊
d−1
2

⌋
− s. Then there exists a unique polynomial Λ(x, y)

and an auxiliary polynomial R(x, y) that fulfill

Λ(x, y)S(x, y) = R(x, y) mod yjβ+1, (3)
ρ(R)− ρ(Λ) ≤ ρS − β⊥ − 1 =: ℓ⋆, (4)

and ρ(Λ) is minimal among all pairs (Λ, R) satisfying (3) and
(4), where S(x, y) is the syndrome polynomial associated with
e. Moreover, Λ is an error-locator polynomial.

Before we prove Theorem 7, we provide an overview of
how it is used for decoding C(βP∞). Details are given in
Algorithm 1. Given a received word w = ev(f) + e ∈ Fn

qr

obtained from a codeword ev(f) ∈ C(βP∞), an error-locator
is Λ(x, y) ∈ Fqr [x, y] is found, along with a polynomial

R(x, y) ∈ Fqr [x, y] as in Equation 3. The error positions
i ∈ [n], meaning those with ei ̸= 0, are found by determining
the roots of Λ(x, y) among the Pi, i ∈ [n]. Then the nonzero
coordinates of the error vector are given by

ei =
R(x, y)

Λ(x, y)
.

Now, to prove Theorem 7, we start by proving that any
error-locator is a solution to the key equation (3). To simplify
the notation, we set ux := u and uy := qr−1 − 1. We will
need the following lemma, given in [10] for Hermitian codes
and whose proof adapts immediately to norm-trace codes.

Lemma 8. [10] Given an error-locator polynomial Λ(x, y)
for a received word w = c + e with c ∈ C(βP∞), meaning
ei ̸= 0 =⇒ Λ(Pi) = 0, there exists a polynomial R(x, y) such
that the pair (Λ, R) is a solution to the key equation (3).

To guarantee that the solution in Lemma 8 is unique, we
will use the following result which appears throughout the
literature (see [20], for instance). We include it here (along
with a short proof) for easy reference.

Proposition 9. Let Q =
∑

i∈I Pi for some I ⊆ [n]. Let ν
be the smallest integer such that ℓ(νP∞ − Q) ̸= 0. Let s be
the Clifford defect of the curve, β ≥ 0 and d = n − β. If
| I |≤

⌊
d−1
2

⌋
− s, then

ℓ((2g − 2− β⊥ + µ)P∞ +Q) = 0

for any µ ≤ ν.

Proof. Since (2g − 2)P∞ is a canonical divisor, then Lµ :=
L((2g − 2− β⊥ + µ)P∞ +Q) is isomorphic to

Ω((β⊥ − µ)P∞ −Q).

The result for ν follows from Proposition 14 in [20]. Since
Lµ ⊆ Lν for any µ ≤ ν, we have the conclusion.

We are now ready to prove Theorem 7.

Proof. Let

S̃ =
∑

a≤ux,b≤jβ

sabx
ux−ayjβ−b,

ui =
Tr(y)− Tr(βi)

(x− αi)(y − βi)
=

N (x)−N (αi)

(x− αi)(y − βi)
,

and

U = −
n∑

i=1

β
jβ+1
i eiui

where Pαi,βi = Pi. We have that

(yjβ+1 − β
jβ+1
i )

N (x)−N (αi)

(x− αi)(y − βi)

=
∑

k≤ux,h≤jβ

αk
i β

h
i x

ux−kyjβ−h

=
∑

k≤ux,h≤jβ

φk,h(Pi)x
ux−kyjβ−h.
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Thus, U + yjβ+1
∑n

i=1 eiui = S̃. Let h = S̃−U

yjβ+1 .
Let (Λ, R) be a minimal solution of the key equation. Let

ν be the minimal order of an error-locator polynomial. Since
any error-locator polynomial is a solution, µ := ρ(Λ) ≤ ν.

Let R̃ = R + λ(S̃ − S). Observe that ρ(R̃) ≤ ρ(R). We
have R̃−ΛU = R−ΛS+yjβ+1Λh. Since (Λ, R) is a solution
to the key equation, we have R̃ − ΛU = yjβ+1(Λh + f) for
some polynomial f . We claim that

R̃− ΛU ∈ L((µ+ ℓ⋆)P∞ +Q− (jβ + 1)(ux + 1)P0)

where Q =
∑

{i : ei ̸=0} Pi. Observe that (h)∞ ≥ Q + tP∞
for some integer t. Thus,

R̃− ΛU ∈ L (t′P∞ +Q− (jβ + 1)(ux + 1)P0) .

We just need to compute a proper t′ ≥ ρ(R̃−ΛU). We have
ρ(R̃) ≤ µ+ ℓ⋆ by definition of the key equation. Observe that

ρ(U) ≤ ρ(Tr(y)− Tr(βi))− ρ(x− αi)− ρ(y − βi)

= (ux + 1)(uy + 1)− (uy + 1)− (ux + 1)

= uxuy − 1 = 2g − 1.

Thus, ρ(ΛU) ≤ µ+ 2g − 1. Remember that

ℓ⋆ = 2g + ux + jβ(ux + 1)− β⊥ − 1.

By definition of jβ , we have that (jβ+1)(ux+1) > β⊥. Then
ℓ⋆ > 2g − 2 and

ρ(R̃− ΛU) ≤ µ+ ℓ⋆

from where we have the proof of the claim.
Since (yjβ+1) = (jβ + 1)(ux + 1)(P0 − P∞), we have

ℓ((µ+ ℓ⋆)P∞ +Q− (jβ + 1)(ux + 1)P0)

=ℓ((µ+ ℓ⋆ − (jβ + 1)(ux + 1))P∞ +Q).

Given µ+ℓ⋆−(jβ+1)(ux+1) = µ+2g−2−β⊥ and µ ≤ ν, by
Proposition 9, we have that R̃− ΛU = 0, which is R̃ = ΛU .
Since R̃ is a polynomial, then (Λ)0 ≥ (U)∞ − ρ(U)P∞ = Q
and we obtain that Λ is an error-locator polynomial of minimal
degree.

The main part of the division decoding algorithm proposed
by Kampf in [9] based on the polynomial division, proposed
a division decoding algorithm to locate all error patterns of
weight up to

⌊
d−1
2

⌋
− s. The basic idea is the construction

of two sequences of polynomials ∆i(x, y) and Ri(x, y), each
pair fulfilling

∆i(x, y)S(x, y) = Ri(x, y) mod yjβ+1 (5)

where ρ(∆i) = ρ(φi) and ρ(Ri) is minimal, given ρ(∆i); that
is, the method consists in obtain a candidate error-locator of
each possible order, so as soon as t ≤

⌊
d−1
2

⌋
− s we can find

a pair (∆i, Ri) that fulfills

ρ(Ri)− ρ(∆i) ≤ ℓ⋆, (6)

then we set Λ(x, y) = ∆i(x, y) and R(x, y) = Ri(x, y), which
is the wanted solution to the key equation (3). A pseudocode
for this method is given in Algorithm 1.

Algorithm 1 Solving the key equation for norm-trace codes
Input: Polynomial S ̸= 0, yjβ+1; constant ℓ⋆.
Output: Locator polynomial Λ, evaluator polynomial R.
Initialization: i = 0,∆0 = 1, R0 = S
repeat
i = i+ 1
if φi = xa then φi1 = xa−1, else φi1 = φi

y

θ = φi

φi1
Ri1 mod (N(x)− Tr(y), yjβ+1).

Divide θ by Ri−1, . . . , R0 : θ =
∑

j γi,jRj +Ri

γi,i1 = γi,i1 −
φi

φi1

∆i = −
∑

j γi,j∆j

until ρ(Ri)− ρ(∆i) ≤ ℓ⋆

Λ = ∆i, R = Ri.

Since we are only interested in the zeros of the locator
polynomial, Algorithm 1 always considers monic polyno-
mials. The polynomial ∆i(x, y) will therefore be of the
form ∆i(x, y) = φi(x, y) +

∑i−1
j=0 αjφj(x, y) with constants

αj ∈ Fqr .
To complete the decoding process, it is necessary to de-

termine the error positions and values so that the codeword
can be recovered. The error values are given by the residues
of R(x, y)/Λ(x, y), meaning the error word (and hence code-
word) can be recovered from the output of Algorithm 1. In
particular,

c = w −
∑

i∈[n]Λ(xi,yi)=0

R(xi, yi)

Λ(xi, yi)

provided wt(e) ≤
⌊
n−β
2 − s

⌋
.

Finally, we give a fractional decoding of the constant
extension norm-trace codes as in Algorithm 2, and we utilize
the key equation for norm-trace codes.

Algorithm 2 Fractional decoding of constant extension norm-
trace codes
Input: Received word w = ev(f) + e where f ∈ Ll(βP∞)
and I ⊆ A1∪̇ . . . ∪̇Am ⊆ {P1, . . . , Pn} for some information
set I of Cl(βP∞).
Output: ev(f) ∈ Cl(βP∞), provided wt(e) ≤

⌊
n−β
2 − s

⌋
for t = 1, . . . ,m
Download dti, i ∈ [n], as in Equation 1.
Apply Algorithm in 1 to recover Tt(f).
Apply Theorem 5 to recover ev(f).

V. CONCLUSION

In this paper, we provide a fractional decoding algorithm
for codes from the norm-trace curve, allowing one to perform
decoding using a fraction m

l < 1 of symbols of the base
field to represent a received word. While the error-correcting
capability is less than that of the original code, fewer symbols
are needed for recovering the original codeword. Furthermore,
these codes allow for longer constructions than those with
error correction from partial information in the literature.
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