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From Flies to Robots:
Inverted Landing in Small Quadcopters with

Dynamic Perching
Bryan Habas1, Bo Cheng1, IEEE, Member

Abstract—Inverted landing is a routine behavior among a
number of animal fliers. However, mastering this feat poses a
considerable challenge for robotic fliers, especially to perform
dynamic perching with rapid body rotations (or flips) and landing
against gravity. Inverted landing in flies have suggested that
optical flow senses are closely linked to the precise triggering
and control of body flips that lead to a variety of successful
landing behaviors. Building upon this knowledge, we aimed
to replicate the flies’ landing behaviors in small quadcopters
by developing a control policy general to arbitrary ceiling-
approach conditions. First, we employed reinforcement learning
in simulation to optimize discrete sensory-motor pairs across
a broad spectrum of ceiling-approach velocities and directions.
Next, we converted the sensory-motor pairs to a two-stage control
policy in a continuous optical flow space augmented by ceiling
distance measurement. The control policy consists of a first-stage
Flip-Trigger Policy, which employs a one-class support vector
machine, and a second-stage Flip-Action Policy, implemented as
a feed-forward neural network. To transfer the inverted-landing
policy to physical systems, we utilized domain randomization
and system identification techniques for a zero-shot sim-to-
real transfer with emulated optical flow using external motion
tracking. As a result, we successfully achieved a range of robust
inverted-landing behaviors in small quadcopters, emulating those
observed in flies.

Index Terms—Aerial Systems: Mechanics and Control,
Biologically-Inspired Robots, Learning and Adaptive Systems,
Aerial Systems: Applications

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/MT0rrtnQ0ME

I. INTRODUCTION

PERCHING is a feat routinely performed by animal fliers
with robustness and accuracy, as seen in birds [1]–[3],

bees [4]–[9], flies [10]–[12], and bats [13], [14]. With the
ability to perch on surfaces that are arbitrarily oriented or
moving unpredictably, animal fliers can land in unstructured
environments to surveil territory, hitchhike on larger animals
for travel to new locations, pollinate plants, or rest.
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Bio-Inspired Inverted Landing

Bitcraze Crazyflie Fly

Fig. 1. Bio-inspired inverted landing. An illustration comparing an example
of inverted landing in a small quadcopter and a blue-bottle fly [10]. Both an
at-scale and a scaled-up version of the landing sequence of the blue-bottle fly
are shown.

Achieving similar perching abilities in flying robots is
crucial for enabling their fully autonomous operation in un-
structured environments [15], with the potential for enabling
or augmenting long-term inspections, surveillance, reconnais-
sance, and the rapid release and retrieval of robots for various
missions [16]–[20]. A major drawback of these robot systems
over recent years has been their limited battery life, which
typically only sustain maximum flight times on the scale of
tens of minutes [21]. For this reason, the ability to perch on
targeted objects can greatly expand the operational lifetime
of quadrotor robots. This capability could be particularly
applicable in urban environments, where flat surfaces like
walls and ceilings are abundant and many tasks such as camera
surveillance, sensor reading, and acting as a radio relay in
disaster zones do not require continuous flight [16], [17], [22].

A. Dynamic Perching and Challenges

Despite the impressive aerial agility and load-carrying capacity
exhibited by small aerial robots like quadrotors, they have yet
to achieve the perching capabilities observed in animal fliers.
Indeed, dynamic perching—characterized by rapid maneuvers
and subject to velocity constraints—still poses one of the most
significant challenges for aerial robots. This skill becomes
vital when landing on rapidly moving or inverted (ceiling-like)
surfaces, necessitating the flier to accelerate against gravity
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and rapidly alter its orientation. In such scenarios, fliers must
solve a complex distance-velocity-attitude sensing and control
problem under stringent time and motor constraints. This
requires the small flier to control its 3D linear velocity [5],
[23], accurately predict imminent impact [24], [25], and timely
adjust its body orientation and landing gear/legs relative to
the perching surface through rapid angular maneuvers. These
maneuvers must be executed within milliseconds to ensure a
touchdown process with proper body inversion and contact
force [10].

Challenges associated with perching extend beyond the
maneuver itself, involving the limited computational resources
available for sensing, control, and planning in small fliers
[25], [26]. Achieving accurate onboard sensory estimations
within the stringent time constraints of dynamic perching is
a formidable task (e.g., a delay of just a few milliseconds
could result in a crash), especially in unstructured envi-
ronments. Aerial robots are also commonly under-actuated,
which makes it difficult to execute aggressive maneuvers
demanding uncoupled linear and angular acceleration. More-
over, aggressive acrobatic flight necessitates high thrust and
extreme angular accelerations that can push the motor limits
of the robots, potentially leading to unmodeled behaviors.
Therefore, a successful perching strategy must consider these
limitations and rely on computationally efficient algorithms
in order to replicate the perching behaviors of animal fliers.
Importantly, physically-embodied intelligence [27], [28], seen
in the landing gear or legs, can help to mitigate computational
demands and bolster robustness.

Inverted landing (Figure 1) also presents a significantly
greater challenge than landing on horizontal or vertical sur-
faces due to the fact that gravity works against the robot as it
approaches the landing surface. Furthermore, to truly emulate
the behavior of flies, the robots must be capable of approaching
the surface from a variety of directions [10]. This introduces
stringent and variable constraints on both the linear veloc-
ity—essential to prevent downward falls and ensure sufficient
adhesion upon contact—and the body orientation, which must
be accurately controlled to ensure proper contact and avoid
collision.

B. Inverted Landing in Flies
Flies, for example, have successfully solved the dynamic
perching problem [29]. Their solution is a sequence of well-
coordinated maneuvers, completed in less than 100 ms, that
facilitate an inverted landing [10]. To initiate the process, they
engage in an upward acceleration, which is followed by a
rapid rotation of their body and an extension of their legs;
the sequence concludes with the flies executing a leg-assisted
body swing, using their fore-legs—now firmly attached to
the ceiling—as a pivot point. Moreover, it has been shown
that different ceiling-approach directions have led to diverse
landing behaviors in terms of axes of rotation and angular
rates of body maneuvers [10]. More importantly, the success
of these landings can be explained by the timely triggering and
proper control of body rotational maneuvers (or flips), which
are both strongly correlated with the extent of optical flow that
the flies’ visual systems can extract.

The landing process in flies involves a combination of both
computational and mechanical intelligence. Here, mechanical
intelligence refers to the inherent physical capabilities of a
system’s design that allow it to react passively and flexibly to
different situations without active control [30], [31]. During
landing, this intelligence is exemplified as flies rapidly and
precisely position their legs and tarsi prior to impact (Figure
1), utilizing these appendages to facilitate a robust touchdown
process, involving a pendulum-like body swing, dissipation of
impact forces and even recovey from failed landings. On the
other hand, computational intelligence involves the system’s
ability to adapt, learn, and make decisions based on sensory
feedback and computational processes [32]. In this context,
flies, known for their efficient visuomotor mapping, possess
direct connections between their visual systems and motor
neurons. These connections facilitate rapid motor program se-
lection and timing, enabling reactive aerobatic maneuvers [15].
In particular, the insect visual system is evolved for efficient
extraction of optical flow [33], which encodes translational
velocity, distance to a surface, and time-to-contact without the
need for arduous feature identification and tracking. Visual
cues like optical flow are widely used in nature and provide
a computationally efficient and effective way for animals
of various sizes to follow robust perception-based landing
trajectories [1], [4].

The results from inverted landing in flies informed us that
diverse landing behavior can emerge from different approach
conditions, potentially as the results of a universal policy only
based on two types of visual cues: Relative Retinal Expansion
Velocity (RREV) and translational optical flow. In addition,
it also underscores the importance of the triggering timing of
the landing maneuver and suggests that the inverted landing
process can be simplified as only the control of timing and
the magnitude of the maneuvers [34], [35].

C. Goal and Contributions of the Current Work

Building upon our preliminary work [25] on the initial data
collection for inverted landing with limited experimental test-
ing, this work provides novel contributions and substantial
improvements in the following areas:

(1) Two-Stage General Framework: We introduce a compre-
hensive two-stage framework for developing a control policy,
applicable to continuous spectrum of flight conditions. The
previous work [25] focused solely on using the policy-gradient
reinforcement learning for our initial data collection, and it
only provides individual sensory-action pairs as a look up
table for discrete flight conditions. This paper develops a novel
two-stage Flip Trigger Policy and Flip Action Policy, general
to arbitrary flight conditions, therefore considerably advances
the capability for performing inverted landings in a variety of
flight conditions.

(2) Experimental Validation: Experimental testing in the
previous work [25] is limited to only a single vertical approach
condition. This work significantly expands the experimental
validation to a large array of flight conditions, which validates
the scalability and effectiveness of our the two-stage frame-
work.
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(3) System Identification for Sim to Real Transfer: We have
also improved system identification by precisely estimating the
robot’s rotational inertia using the bifilar pendulum method,
developing a battery behavior compensation model through
thrust tests, and incorporating motor speed dynamics into the
simulation.

(4) Simulation Fidelity and Landing Gear Evaluation: Based
on the improved system identification and modeling, we have
enhanced the fidelity of our simulation. This improvement has
facilitated a thorough reevaluation of different landing gear
designs and the development of a framework that examines
the key factors influencing landing success.

D. Organization of the Paper

In Section II, we explore the literature on robotic landing,
examining both computational and mechanical intelligence-
based methods. The proposed two-stage general control pol-
icy for inverted landing, and its training methodology, are
presented in detail in Section III. Section IV elaborates on
our simulation setup and the experimental testing process.
In Section V, we discuss the performance outcomes of our
work, the results achieved, and the potential benefits of varying
landing gear designs. The final section, Section VI, draws
conclusions from our study and suggests avenues for future
research. Additional details on system identifications and
relevant explanations are provided in Appendix A.

II. EXISTING WORK ON ROBOT LANDING

A. Computational Intelligence

In the literature of robot perching, a significant number of
methods are based on the generation and optimization of target
landing trajectories that the robots can follow. These meth-
ods offer advantages such as power efficiency, customizable
boundary conditions, and the ability to execute aggressive
maneuvers [22], [36]. However, they often rely heavily on the
provision of real-time external positioning data to the robot
or the use of an off-board computer for computing optimal
trajectories [22], [37], [38], rendering them less than ideal
for rapid dynamic perching and exploring the mechanical
intelligence for emergent landing behaviors.

Many robotic perching studies have explored using onboard
cameras to compute flight trajectories, such as through state
estimation algorithms, to land on vertical surfaces [36], [39]–
[41]. While these methods offer advantages over external posi-
tioning systems, they tend to experience tracking degradation
during aggressive maneuvers and require feature tracking of
a predefined landing target, making them less practical in
unstructured environments [36]. In contrast, featureless visual-
based landing strategies rely on calculating optical flow-based
sensor values from monocular cameras, without the need for
feature tracking, enabling them to be applied in a wider range
of outdoor settings [40], [42]–[44]. Despite their simplicity and
computational efficiency, there is still ongoing research into
how to optimize these methods for robustness and adaptability

to varying environmental conditions, especially in complex
terrains.

B. Mechanical Intelligence

Within the realm of robotic landing research, the design of
the physical system plays a pivotal role in enabling robots to
attach to a variety of landing surfaces and objects through their
mechanical intelligence. This has resulted in a broad range
of approaches, with many inspired by nature. These popular
methods frequently involve the use of grasping mechanisms
that allow the robot to hang or perch on branch-like objects
[38], [43], [45]–[51]. Other approaches include the utilization
of dry-adhesive materials that mimic gecko skin, enabling the
robot to attach to any orientation of exceptionally smooth
surfaces [22], [52], [53], as well as novel devices such as
suction cups [54], [55], barbed hooks [56], and magnets [57].
The variety of attachment devices offers unique advantages
and benefits, making them well-suited for different landing
scenarios.

Although there is a growing variety of landing devices in
robotics, research analyzing how the geometry of these devices
affects landing robustness and landing strategy is still limited.
Some authors have partially investigated these effects, such as
by using active skids to land on inclined surfaces [58] or by
modeling the material properties of landing gear [57], [59],
[60], but comprehensive research in this area is still required.
Our work contributes to this area by analyzing the effects of
varying geometries on highly dynamic landings and impacts
for inverted landing scenarios. While our analysis framework
and methodology are specifically tailored to this case, it
can be easily adapted to evaluate the effects of mechanical
intelligence from different landing gear designs on surfaces of
varying orientations, such as vertical, horizontal, or inclined.

Several remarkable successes have been recorded in the field
of robotic perching on inclined [22], [26] or moving surfaces
[61]–[64]. Such methods typically concentrate on the planning,
optimization, and tracking of dynamically-feasible trajectories
to bring a robot within some empirically constrained states
before touchdown [26], [61], [65]. Despite their successes,
these methods pose significant computational challenges when
applied to rapid dynamic perching in small robots and are
not ideally equipped to leverage mechanical intelligence dur-
ing the touchdown process. Another limitation lies in their
reliance on empirically-tuned constraints on terminal states
that are specific to a particular type of landing, as well
as on computationally-intensive state estimation of both the
robot and the perching target, often facilitated by external
motion tracking systems. Additionally, traditional optical-flow-
based methods like tau-theory [1], which rely on zero-velocity
contact, are inadequate for fostering diverse landing behaviors
on inverted surfaces. With these successes in mind, our ap-
proach to solving the particularly challenging inverted landing
problem enhances the understanding of dynamic landings,
addressing aspects of success that are often overlooked in
other works. Additionally, this work proposes a versatile
framework that can be adapted for landing on surfaces of
various orientations.
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Fig. 2. Block diagram illustrating the data collection process through simulation, the training of our two-stage policy using the collected data, and the
implementation of the policy in experimental tests.

III. METHOD: TWO-STAGE, GENERAL CONTROL POLICY
FOR INVERTED-LANDING

A. Overview

The training of our generalized control policy for inverted
landings begins with simulating various ceiling-approach con-
ditions; similar to those observed in flies (see Simulation and
Experimental Setup). Using model-free reinforcement learn-
ing, we collected discrete sensory-motor action pairs, specif-
ically triggering sensory states (sTrg) within the augmented
optical-flow space (OFa), and the corresponding motor action
for the rotational maneuver—a constant pitch torque (aRot).
The pitch axis was selected to complement the robot’s forward
motion as a roll maneuver would yield similar results with
sideways motion due to the robot’s symmetry. Flipping around
other axes, such as the diagonal, would also reduce the robot’s
maneuverability and negatively impact landing performance.
This approach led to optimized motor control, maximizing the
success rate of inverted landings under our ceiling-approach
conditions [25].

To transform the discrete sensory-motor pairs into a gen-
eralized policy, we developed a two-stage control policy. In
the first stage, we identified a cluster within OFa where the
discrete sensory states sTrg linked with successful landings
(exceeding a defined threshold of success rate). We used this
cluster to construct a continuous boundary function around
the region, distinguishing optimal triggering states from sub-
optimal or failed ones, giving rise to a Flip Trigger Policy
(πTrg). This policy allowed the robot agent to detect when
inside the optimal sensory region to initiate body angular
maneuvers (or flips). To model the πTrg (or the boundary
region of sTrg in OFa), we used a One-Class Support Vector
Machine (OC-SVM). In stage two, we utilized supervised
learning to train a simple neural network that forms the Flip
Action Policy πRot, a continuous sensory-motor map that
generalizes discrete sensory-motor pairs. πRot provides the
body-moment command, controlling the rotational maneuver
in a feedforward fashion. Thus, under this control policy, if the
robot identifies its location within the OFa region specified
by the optimized πTrg policy, it generates a body rotational
moment according to πRot to execute an inverted landing. An
overview of our two-stage policy can be seen in Figure 2.

Transverse
Optical Flow

Divergent
Optical Flow

(b)(a)

Fig. 3. (a) Diagram illustrating divergent optical flow: as the quadrotor
nears the ceiling, observed points radiate outward. (b) Diagram showcasing
transverse optical flow, where feature points move horizontally across the field
of view during the robot’s translation beneath the ceiling.

B. Augmented-Optical Flow Space

The sensory states sTrg ∈ OFa ⊆ R3 used as inputs for
our two-stage control policy, consist of two emulated visual
sensory cues: a divergent optical flow-related term, time-to-
contact (τ ), and a transverse optical flow term (ϑx). These are
augmented with a robot-to-surface distance metric (Dceil) to
prevent the sensory-space from being under-defined [25]. The
variable τ encodes the time until the robot reaches a surface,
assuming a constant velocity and heading. Studies show that
in flies and pigeons, τ provides predictive information about
when to initiate a rapid angular maneuver, converting a po-
tential collision into a successful perch [1], [10]. As a visual
cue, τ is the mathematical inverse of divergent optical flow,
or the Relative Retinal Expansion Velocity (RREV ), which
represents how rapidly objects expand within the camera’s
Field of View (FoV) as the robot approaches an object
(see Figure 3a). τ has been shown to directly encode the
environment’s affordance [66] (i.e., comprehending the robot’s
potential dynamic fit within the environment or perception-
action [23]). Furthermore, various works support the utilization
of this term in τ -theory, where the time derivative remains
constant within the animal system, and a single parameter
value determines the entire landing trajectory [1].

While τ can be derived directly from onboard visual inputs
without the need to measure the relative position or velocity
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between the robot and the landing target, in this study, it
was emulated using external motion tracking data as per the
following equation:

τ =
Dceil

Vz
. (1)

Where Dceil represents the distance to the ceiling, and Vz
denotes the vertical velocity of the system.

Moreover, the transverse optical flow term, denoted as
(ϑx), encodes the relative distance and horizontal velocity of
the robot with respect to the landing surface. This term is
determined by both the horizontal velocity of the robot (Vx)
and its distance relative to the landing surface (Dceil), refer
to Figure 3b [4], [35]. ϑx is anticipated to correlate directly
with the robustness of the robot’s landing and the resulting
body-moment required for the flip action. The value of ϑx
can be emulated using external motion tracking data through
the following equation:

ϑx =
Vx
Dceil

. (2)

Finally, the authors’ previous research indicated that the
reliance on purely the two aforementioned optical flow terms
was insufficient to fully define the policy-space [25]. Specifi-
cally, the sTrg regions corresponding to successful and failed
landings couldn’t be separated within the optical flow space
OF(τ, ϑx) ⊆ R2. To overcome this obstacle, it was necessary
to augment the optical flow space with an additional parameter
such as Dceil or the robot’s airspeed. Although insects can
sense their airspeed through their antennae, it is challenging
for small robotic fliers to achieve the same. Hence, we chose
Dceil as the augmentation parameter. This measurement can be
potentially derived using a laser distance sensor or estimated
by fusing the system’s onboard accelerometer measurements
with the time derivative of τ [67]. Consequently, the triggering
sensory state sTrg ∈ OFa (τ, ϑx, Dceil) ⊆ R3 forms the input
tuple for our generalized control policy.

Note that there is mathematical equivalence between Vx,
Vz , and Dceil and the augmented optical flow space variables
(τ, ϑx, Dceil) as outlined in Equations 1 and 2. Our preference
for the latter arises from the practical advantages of estimating
these variables directly from onboard sensors. Although our
experiments use a Vicon motion capture system to emulate
optical flow, direct estimation of time-to-contact and trans-
verse optical flow is feasible using onboard cameras. Several
methods enable efficient calculation of these variables using
simple monocular cameras and featureless-based optical flow
algorithms [67]–[69]. Additionally, optical flow space can be
augmented by variables other than Dceil, such as motor thrust
commands, which does not require additional onboard sensors.
In other words, augmented optical flow spaces can be designed
in various ways to achieve comparable landing performance
and to enhance the system’s adaptability. This adaptability
makes it well-suited for iterative development towards fully
autonomous landings with onboard feedback systems.

C. Reinforcement Learning-Based Optimization of Sensory-
Action Pairs for Variable Ceiling Approach Conditions

Instead of directly obtaining a control policy applicable to any
arbitrary ceiling-approach condition, we determined the opti-
mal sensory-motor action pairs (sTrg, aRot) individually for
each simulated ceiling-approach condition. For each learning
trial, characterized by a constant velocity magnitude ∥vceil∥
and flight angle relative to the horizon ∠vceil, we used
policy gradient Reinforcement Learning (RL) to optimize the
optimal trigger timing threshold, τcr, and a corresponding
body-rotation motor-action, aRot, that maximized the reward
function related to successful landings (as detailed in the
following section). This body-rotation action was applied by
adjusting the fore/aft motor thrusts to induce an angular
moment about the robot’s pitch axis. To fully cover the
space of desired velocity conditions, the learning process
was repeated three times for each ∥vceil∥ ∈ [1.5− 3.5]
m/s and ∠vceil ∈ [30◦ − 90◦], incremented by 0.1 m/s and
3.75◦, respectively. We recorded the complete set of optimized
(sTrg, aRot) pairs for all approach conditions, as well as the
corresponding landing success rates.

In this optimization process, our RL approach utilized
the EM-based Policy Hyper Parameter Exploration (EPHE)
algorithm [70]. We chose this algorithm for its fast conver-
gence and adaptive learning rate, which reduces the need
for extensive hyperparameter tuning. In our application, the
EPHE algorithm determines an optimal set of parameters by
generating a series of parameterized Gaussian distributions
O = [Oτcr , ORot] with O = N (µ, Iσ2), defined by the
vectors µ = [µτcr , µRot] and σ = [στcr , σRot]. These vectors
are then optimized through interaction with the environment
until the distributions approximate a deterministic value.

The detailed RL process is as follows: Each landing trial
began with the quadrotor in an initial hovering state, after
which it was programmed to follow a constant velocity
trajectory with a specified speed ∥vceil∥ and flight angle
∠vceil that leads to collision with the ceiling surface. This
velocity trajectory was maintained throughout the landing trial.
Following this, the agent performed several rollouts where, for
each rollout, a policy θ = [τcr, aRot] was sampled from the
current distribution O and used to execute a landing maneuver.
To do so, the quadrotor observed the current τ value until it
dropped below the τcr threshold set by the sampled policy, at
which point it executed the body flip motor-action, a constant
pitch torque (aRot), dictated by the same policy parameters.
The rollout terminated based on whether the landing was
successful or a timeout threshold was reached. At this juncture,
a reward for the rollout was calculated before the process was
repeated for a new rollout and sampled policy. After N rollouts
were performed, the best K rewards and policy parameters
were used to update the original policy distribution O; this
constituted a complete episode. This process was repeated
for 15 episodes or until there was convergence to a nearly
deterministic set of optimized parameters which maximized
the probability of a successful landing for a given set of
velocity conditions. In each learning trial, convergence to a
deterministic policy typically occurred within 100 rollouts.
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Fig. 4. The figure illustrates the convergence of τcr and aRot values
obtained through reinforcement learning in simulation. These values are used
to establish an optimal sensory-motor pair. The shaded regions indicate a
distribution range of µi ± 2σi for samples taken in each episode.

Figure 4 provides an example of such convergence, illustrating
the convergence behavior for a landing trial with a velocity
magnitude of 2.70 m/s and a flight angle of 70 degrees relative
to the horizon.

D. Design of Reward Function

In the area of reinforcement learning, constructing an ef-
fective reward function is crucial for successful learning,
swift convergence, and the integrity of the agent’s learned
policy. Applying the principles of curriculum learning to our
reward function design allowed for consistent and reliable
policy convergence. Here, each desirable behavioral trait for
successful inverted landing incrementally increases the total
reward, thereby guiding the system towards mastering more
complex behaviors.

These behavioral traits and their associated reward functions
were characterized to: minimize the quadrotor’s distance to
the ceiling as depicted in (3); initiate the flip maneuver prior
to surface contact as per (4); adjust the impact angle to
ensure initial contact is made by the fore-legs as depicted in
(5); and fine-tune the preceding conditions to guarantee the
achievement of reliable inverted landing as demonstrated in
(6) [71]. Illustrative understanding of the variables used in the
provided reward functions are shown in Figure 5.

The constants (c0, c1), present in equations (3) and (4), serve
to normalize their corresponding reward functions and adjust
the breadth of their clipped zones. By tuning these elements,
the reward functions can direct the system to converge within a
practical array of values, avoiding an overly specific fixation
on a single value. This principle is notably applied in (4),
which advocates for the flip maneuver to fall within the typical
trigger interval found for this robotic system τcr ∈ [0.15, 0.25]
[s], without overly dictating the timing of the maneuver [25].
Notably, τcr values larger than this range typically failed to
achieve contact with the landing surface, while values below
this range did not allow sufficient time for the robot to rotate
into a suitable landing orientation.

A penalty factor of rlegs ← rlegs/3 modifies equation (6) in
instances of propeller or body contact. This adjustment serves
to deter any resulting policy that might induce structural harm

t Flig
ht
 [s]

t Rot
 [s]

tSwing
 [s]

t Impact
 [s]

tImpact [s]

a)

b)

Fig. 5. a) Depiction of the landing process, highlighting the variables used
in the reward function. b) Illustrative representation of the impact orientation
variable θimpact .

to the quadrotor. Consequently, to compute the total reward for
the entire episode, the individual rewards were proportionally
weighted and summed accordingly, r = 0.05 · rD + 0.1 · rτ +
0.2 · rθ + 0.65 · rlegs. By weighting the terms as such, the
system initially focuses on learning to trigger the maneuver
closer to the ceiling using the easier-to-achieve smaller weight
rewards. Subsequently, the larger weighted reward components
then guide the system to refine the impact conditions.

rD = clip

(
1

min(Dceil(t))
, 0, c0

)
· 1
c0
, (3)

rτ = clip

(
1

|τtrg − 0.2|
, 0, c1

)
· 1
c1
, (4)

rθ =

{
|θimpact|

120◦ 0◦ ≤ |θimpact| < 120◦

1.0 120◦ ≤ |θimpact| ≤ 180◦
, (5)

rlegs =


1.0 Nlegs = 3 || 4
0.5 Nlegs = 1 || 2
0 Nlegs = 0

. (6)

E. Develop Two-Stage, General Control Policy in Continuous
Domain

Next we transformed the optimized (sTrg, aRot) pairs to a
general control policy within a continuous domain, applicable
to a wider range of approach scenarios. This generalized policy
first identified the bounds of the triggering state region, i.e. the
region of sTrg ∈ OFa (τ, ϑx, Dceil) for which triggering the
flip maneuver can lead to a successful landing. Subsequently,
it generated the optimal rotation action based on the specific
triggering state sTrg . This two-stage approach leads to our
control policy consisting of the Flip Trigger Policy (πTrg) and
the Flip Action Policy (πRot). In crafting this policy, we em-
ployed a combination of unsupervised and supervised machine
learning methods. Notably, the current approach exemplifies a
grey-box approach, allows for direct identification of policy
region for triggering, emergent policy behaviors, and landing
success rate, therefore allowing us to examine the robustness
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Fig. 6. The decision boundary formed by the One-Class SVM, implemented
for the Flip Trigger Policy, is shown. This boundary distinguishes between
valid and invalid triggering states for inverted landings, consistent with the
policy πTrg(sTrg). A representative trajectory is also depicted, indicating
the exact timing of the rotational maneuver trigger upon intersecting with the
boundary region.

of landing. This trait is also essential for future work using
trajectory planning to fly the robots into this policy region for
successful landing. This stands in contrast to the conventional
black-box methods utilized in Deep RL algorithms, which
directly generate both the triggering and rotation actions for
inverted landing without insight to its inner workings [71].

1) Flip Trigger Policy (One-Class SVM): Since every
(sTrg, aRot) pair corresponds to a specific success rate, we
can identify this optimized cluster by setting a success rate
threshold of 80%. Consequently, the Flip Trigger Policy can
be articulated as a closed boundary function in the OFa space,
indicative of this specific cluster. We then define πTrg(sTrg)
to output a binary value when the current sensory-state lies
within this region, triggering the flip maneuver accordingly.

Owing to the highly nonlinear nature of this region, we
employed unsupervised machine learning, particularly outlier
detection algorithms, to shape this boundary function. These
algorithms are a subset of multi-class clustering techniques,
focusing on separating the data into a single class and evalu-
ating whether new data lies inside or outside the established
group. Noteworthy algorithms suitable for this application
include Isolation Forest [72], Local Outlier Factor [73], Robust
Principal Component Analysis [74], and One-Class Support
Vector Machines [75]–[77]. In this context, we opted for
utilizing a One-Class Support Vector Machine (OC-SVM)
due to its superior efficiency in decision-making calculations
following the initial training.

OC-SVMs bear similarities to standard Support Vector
Machines (SVMs) in that they project training data into a
higher dimensional space using a non-linear kernel function,
then use a hyper-plane to separate this high-dimensional data.
However, OC-SVMs deviate by focusing on a single class
and optimizing the hyper-plane to separate the training data

Triggering State Rotation Action

Input 

Input 

Input 

Output

Fig. 7. Depiction of feed-forward neural network used to determine body-
rotation action (aRot) from the set of triggering sensory states (sTrg).

from the origin in the hyper-space, thereby creating a non-
linear decision function around the data cluster in the lower-
dimensional training space. This leads to a binary output from
the trained model: a positive number if a data point falls within
the defined cluster, expressed by the equation:

πTrg(sTrg) = sgn

(
n∑

i=1

αiK(sTrg, si)

)
+ ρ (7)

or a negative number if the data point is outside the learned
cluster. In this equation, αi denotes the coefficients for the
support vectors generated during training, K signifies the
Radial Basis Function (RBF) kernel, sTrg refers to the sensory-
state vector under test, si indicates the learned support vectors,
and ρ is the bias value of the hyper-plane. The model also
incorporates two hand-tuned parameters: the γ value within
the RBF kernel, affecting the decision boundary’s smoothness,
and a ν term that establishes the confidence threshold for data
classification within the cluster. Visualization of the learned
triggering policy region (πTrg(sTrg) > 0), the collection
of discrete sensory states sTrg separated by a landing rate
threshold of 80%, and a generalized flight trajectory can be
seen in Figure 6.

2) Flip Action Policy (Feed-Forward Neural Network):
Upon triggering, a control action denoted as aRot is applied
to the robot, generating the rotational-maneuver through a
self-induced moment about its pitch-axis (by). This action,
aRot, is computed as a function of sTrg according to aRot =
πRot(sTrg) [25]. This function serves to generalize the discrete
(sTrg, aRot) pairs into the continuous sensory-space OFa.
To determine πRot, we utilized supervised machine learning
techniques, specifically training a feed-forward neural net-
work, using (sTrg, aRot) pairs achieving over an 80% landing
success rate as both inputs and outputs. The neural network
(Figure 7) features two hidden layers with ten nodes each,
optimized for computation speed and size, and utilized the
Elu activation function. Throughout the training process, the
input data was normalized to zero mean and unit variance, and
a Mean-Squared Error loss function was employed to quantify
the discrepancy between the training and predicted values.
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IV. SIMULATION AND EXPERIMENTAL SETUP

A. Simulation Setup

Our simulation environment, designed using the Robot
Operating System (ROS) and the Gazebo physics environment,
was implemented on the Ubuntu 20.04 platform. This environ-
ment hosted a quadrotor model based on the Bitcraze Crazyflie
2.1, preserving the physical dimensions and flight parameters
of the real-world quadrotor. It also included an implementation
of Lee et al.’s Geometric Tracking Controller [78], manually
tuned for our system to regulate flight, track trajectories, and
update sensory state estimates at 100 Hz.

The simulation incorporated a ceiling plane as the landing
surface, with custom plugins added to model the attachment
joint as a ball joint and to record the quadrotor’s impact angle
upon landing. We also mirrored the mechanical properties of
the quadrotor’s legs: the hip joint was simulated as a revolute
joint and the spring constant and the damping ratio were set
at K = 0.08N ·mm

rad and ζ = 0.25 respectively, to emulate the
underdamped nature of the physical legs.

Furthermore, our simulation operated at a step size of
0.001 seconds to maintain precise control over the model’s
behavior. The precision and dependability of our simulation
were confirmed in tandem with the system identification steps
delineated in Appendix I.

B. Simulation to Real-World Transfer

Executing RL in physical systems, especially those charac-
terized by high-speed collisions, presents challenges due to
substantial time and monetary investments. Furthermore, the
considerable disparity between simulations and real-world out-
comes complicates sim-to-real policy transfers. To bridge this
gap, our approach consisted of robustly developing a policy in
simulation and transferring it to the real-world environment via
a zero-shot method. Essential to this was the accurate modeling
of the quadcopter in the simulation to enhance the congruence
between the simulated and physical models. This was achieved
through precise measurement of the quadcopter’s rotational
inertia, modeling the motor-speed dynamics as a first-order
system determined via system identification, and incorporating
a battery compensation algorithm in the physical to ensure
consistent thrust values throughout battery discharge.

In addition, to bolster policy transfer and resilience, we
employed domain randomization during data collection [79].
This involved modulating parameters during learning to en-
hance the policy’s adaptability to environment variations,
effectively harnessing diverse simulation data for improved
physical performance. Specifically, we randomized inertial
parameters, allowing the agent exposure to a spectrum of
model variations to avert overfitting. During reinforcement
learning data acquisition, both system mass (m) and body
inertia about the flip-axis (Iyy) were varied at the onset of
each rollout, drawing from Gaussian distributions centered on
their base values. With standard deviations set at σm = 0.5
[g] and σIyy = 1.5 · 10−6 [kg m2], this strategy enhanced
simulation diversity and fostered the creation of more robust
policies.

Hip-JointHip-Joint(b)(a)

Fig. 8. (a) Illustration of the quadrotor’s coordinate system relative to the
global frame. The body-rotation action (aRot), is realized as a moment
about the by axis, generated by the front motors. (b) Diagram depicting the
parameters for the leg angle (ψ) and leg length (L), along with the location
of the hinge joint.

C. Landing Gear Designs

Successful dynamic perching largely depends on achieving an
appropriate touchdown that brings the robot to a stable landing
posture relative to the landing surface. For small aerial robots
or animals, this touchdown process can be highly dynamic
and involve various forms of soft to hard collisions [27].
These landings generally require the robot or animal to have
at least one foot firmly planted on the substrate, which is then
followed by a rapid body swing or oscillation, culminating
in all feet perching on the substrate [10], [25], [80]. Unlike
the process of tracking a pre-planned or optimized trajectory,
this dynamic touchdown process emerges rapidly from the
immediate physical states and properties at the robot-surface
interface [81]. Therefore, the success of a touchdown process,
and consequently the landing, can be significantly influenced
by the configurations of the landing gear.

TABLE I
LEG DESIGN CONFIGURATIONS

Leg Design Angle ψ (deg) Length L (mm)
Narrow-Short 5◦ 50
Narrow-Long 5◦ 75
Semi Narrow-Short 30◦ 50
Semi Narrow-Long 30◦ 75
Wide-Short 60◦ 50
Wide-Long 60◦ 75

In this work, we explored the influence of various landing
gear configurations on inverted landing performance through
simulation. We then verified the most effective design via
experimental trials where our designs incorporated adhesive
feet, capable of fully adhering to the ceiling in a ball-joint
manner under minimal contact, and a hip joint with behavior
reminiscent of a torsional spring and damper system (Figure
8b). We tested this model experimentally using a VELCRO™

pad to establish a connection between the landing gear feet
and the ceiling and determined that there was clear alignment
with our simulation. The leg designs were parameterized by
their length (L) and the angle they formed with the body’s −bz
axis (ψ) (Figure 8b). Our design configurations are detailed in
Table I.
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D. Inverted Landing Sequence



a) Trajectory Tracking

b) Policy Trigger and 
  Rotational Maneuver

c) Impact and 
    Body Swing





Fig. 9. Visualization of our inverted landing sequence, where the quadrotor
follows an initial approach trajectory, initiates and executes the landing
maneuver, and then impacts and swings into a secure landing position.

The landing sequence in our inverted landing framework
consists of three stages: 1) Trajectory Tracking: Starting from a
hover, the quadcopter follows a pre-defined trajectory, tailored
to maintain a specific flight speed and angle according to the
desired ceiling-approach conditions. 2) Policy Trigger and Ro-
tational Maneuver: While progressing along this trajectory, the
quadrotor continuously monitors its state in OFa via emulated
sensor data from an external positioning system. Upon meeting
the triggering condition defined by πTrg(sTrg), it executes
a rotational maneuver action as dictated by πRot(sTrg). 3)
Impact and Body Swing: The robot’s fore-legs then make
first contact and adhere to the landing surface, leading to a
pendulum-like body swing. Landing success is then evaluated
based on the robots stabilized landing condition, if there was
body/propeller contact, and the number of legs secured to the
surface. Depiction of these stages are illustrated in Figure 9.

E. Physical Experiment Setup

In our experiments for physical inverted landing, we utilized
the Crazyflie 2.1 nano-sized quadrotor, augmented with four
upgraded 19,000 KV brushed DC motors. This compact
aerial platform was chosen for its superior maneuverability,
supported by an open-source framework, and its enhanced
collision resistance due to its small size and the simplicity
of part replacement. The quadrotor was equipped with 3D
printed legs, designed according to the Semi Narrow-Long
configuration (Table I). For communication, we employed the
Crazyswarm ROS package [82], establishing a connection
between various ROS nodes and the Crazyflie Real Time
Protocol embedded in the system’s firmware.

As well, we used a Vicon motion capture system to pro-
vide real-time position and orientation data, streamed to the
Crazyflie at a rate of 100 Hz. This data facilitated the creation
of flight trajectories and the simulation of optical flow sensor
data, in anticipation of incorporating on-board sensors in future
studies.

The experiments were conducted using a portable test cage
with dimensions of 1.5m width × 2.5 m length × 2.1m height.
Velcro pads were fitted onto the ceiling surface to enable the

Trajectory Focused 
Cameras

Landing Focused 
Cameras

Ceiling Approach
Trajectory

Fig. 10. Experimental setup showing an example flight trajectory, the
positions of motion capture cameras guiding the flight, and cameras ensuring
accurate estimation of triggering state values near the landing surface.

robot’s attachment. To capture the flight trajectory in the space
near the triggering state, we positioned four Vicon cameras at
the same height as the ceiling landing surface. An additional
twelve cameras were positioned above to secure accurate
tracking and positioning data throughout flight trajectory prior
to triggering (Figure 10).

During experimental testing, both πTrg and πRot, previously
trained in the simulation, were uploaded onto the Crazyflie.
The quadrotor would begin its flight trajectory outside the
test area, accelerating to achieve the predetermined flight
speed ∥vceil∥ and flight angle ∠vceil. This would set it on a
collision course with the test surface and prompt it to execute
the two-stage landing control policy according to πTrg and
πRot. We designed these flight trajectories to mirror those
used in the simulation, allowing us to test various ceiling-
approach conditions. The behaviors of each inverted landing
trial were recorded, with the process being repeated across a
range of feasible flight velocities and angles within our testing
environment.

V. VALIDATION OF THE TWO-STAGE INVERTED LANDING
POLICY IN SIMULATED ENVIRONMENTS

A. Training Generalized Inverted Landing Control Policy via
Optimized Sensory-Action Pairs

Utilizing the EPHE algorithm, we focused on collecting op-
timized sensory-action pairs (sTrg, aRot) for inverted landing
in a simulated environment. During this data collection stage,
the magnitude of the ceiling-approach velocity (∥vceil∥) was
incrementally varied from 1.5 to 3.5 m/s, in steps of 0.1
m/s, and the flight angle relative to the horizon (∠vceil)
was adjusted from 30◦ to 90◦ in increments of 3.75◦. To
enhance the robustness of our following sim-to-real transfer,
we also introduced domain randomization by varying the
robot’s inertial parameters at the beginning of each landing
attempt.

The results of this data collection stage demonstrated a
range of outcomes in inverted landing success, which we
further categorized based on specific characteristics observed
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Optimal:
Four-Leg Landing

Sub-Optimal:
Four-Leg Landing 

with Propeller Contact

Sub-Optimal:
Two-Leg Landing

a) b)

c) d)

Failure:
No Leg Attachment
with Body Collision

Fig. 11. Classifications of Inverted Landing Performance. (a) Optimal:
Successful four-leg landing, no contact with body or propellers. (b) Sub-
Optimal: Four-leg landing, but with body or propellers making contact. (c)
Sub-Optimal: Incomplete two-leg landing, may include body contact. (d)
Failure: Body collision, no leg attachment achieved.

during the landings. Here, Optimal inverted landings were
identified by a distinct sequence: initially, the robot’s fore-
legs contacted the ceiling, followed by a successful swing that
led to the hind-legs touching down, resulting in all four legs
adhering to the surface without the body or propellers making
contact (see Fig. 11a).

A category of Sub-Optimal landings were also noted. These
landings were often similar to optimal ones, but involved
initial contact with either the body or the propellers before
stabilizing into a four-leg landing position (Fig. 11b). Another
sub-optimal scenario involved the robot failing to complete the
body swing maneuver, resulting in the hind-legs not contacting
the ceiling and only the two fore-legs adhering to the ceiling
surface (Fig. 11c). This subset included cases with and without
propeller or body contact. Finally, the most unsuccessful
attempts occurred when the robot collided with the ceiling
without any contact between the legs and the landing surface
(Fig. 11d). For a more comprehensive understanding, detailed
visualizations of these landing classifications are available in
the accompanying video.

Focusing on achieving purely optimal inverted landings
(four-leg adhesion with no body/propeller contact), we an-
alyzed the optimal-class landing success rate across vari-
ous ceiling-approach conditions. All subsequent data will be
presented based on this criteria. The collected data for the
Semi-Narrow Long configuration is presented in Velocity-
space (Vx, Vz , Dceil) as shown in Fig. 12a. In this data, we
observed that a higher velocity magnitude (∥vceil∥) generally
led to increased success rates and encouraged the triggering
of the rotational maneuver further away from the ceiling.
Additionally, landings with more angled approaches, indicated
by a higher Vx, yielded higher success rates compared to more
vertical approaches, which are characterized by a higher Vz .
For a clearer visualization, the same data is smoothed and
presented in Fig. 14a, which displays the landing success rates
using polar coordinates (∥vceil∥, ∠vceil).

Additionally, the raw dataset of collected sTrg values is
also depicted in the augmented optical flow space OFa,
alongside their corresponding landing success rates (Fig. 12b).
In this OFa space, a clear distinction between high and low
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Fig. 12. a) Visualization of sensory-action pairs in Velocity-space, highlight-
ing the correlation between higher horizontal velocities and increased inverted
landing success in the simulation. b) Visualization of sensory-action pairs in
OFa-space, demonstrating a distinct separation between states leading to high
and low landing success.

landing success rates is evident, allowing for the definition
of an enclosed boundary function through setting a success
rate threshold (the basis for πTrg). As well, the relationship
between sTrg and aRot is illustrated in a side-view via Figure
13, where the data in OFa is color-coded based on the
magnitude of aRot (the relation that is approximated by πRot).
This representation highlights a correlation where triggering at
lower time-to-contact values (τ) is generally associated with
higher magnitudes of aRot.

In our study, collecting the full dataset for a single
leg configuration involved approximately 115,000 simulation-
based landing attempts, yielding around 1,000 optimized
(sTrg, aRot) pairs. We established a success criterion for
purely optimal landings at an 80% success rate threshold,
leading to the identification of about 300 pairs. These pairs, in-
dicative of optimal four-leg landings without body or propeller
contact, formed a distinct cluster in the OFa space and were
crucial for training our generalized two-stage policy. The first
stage, the flip triggering policy (πTrg), generates a boundary
function around this subset of training pairs (illustrated by the
shaded area in Fig. 6), dictating the precise moment to initiate
the rotational maneuver. The second stage, the rotational
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maneuver policy (πRot), then calculates the necessary body
moment based on the triggering state.
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Fig. 13. Illustration of the full collection of state-action pairs, where an
increase in the rotational moment is observed as the triggering time-to-contact
(τTrg) decreases.

B. Validation of the Generalized Inverted Landing Policy in
Simulation

Upon completion of training our generalized two-stage in-
verted landing control policy, we conducted validation tests
in both simulated and experimental environments. In the sim-
ulation, the policy was tested under flight conditions similar to
those used for collecting the initial sensory-action pairs. The
results of which indicated that at lower ceiling-approach angles
(between 30◦ and 65◦), our generalized control policy (Fig.
14b) performed comparably to the optimal discrete sensory-
action pairs (Fig. 14a). However, in near-vertical approach
conditions (from 65◦ to 90◦), we observed moderate per-
formance degradation. This result was expected due to the
prevalence of successful sensory-action pairs at lower angles
compared to the more vertical approaches, as shown in Figure
14a. Consequently, this led to a training bias in the two-
stage control policy towards lower angle approaches, further
illustrated in background plot of Fig. 14b.

C. Impact of Leg Design and Flight Conditions on Quadrotor
Inverted Landing Efficacy

Additionally, we simulated various leg configurations and
investigated their impact on landing success across flight con-
ditions; the details of the configurations tested are presented
in Table I. Furthermore, for data collection we applied the
same parameter optimization approach previously described,
focusing on a range of flight velocity magnitudes (∥vceil∥) and
directions (∠vceil) consistent with our initial data collection
methodology shown in Section V.A.

Our study revealed significant variations in landing success
based on the leg configuration. Specifically, the Semi-Narrow
configurations demonstrated higher success at lower flight
angles (30 deg to 65 deg), as illustrated in Figure 15b,e.
However, their effectiveness declined markedly in near-vertical

Fig. 14. (a) Polar plot showcasing the overall inverted landing capabilities
derived from the simulated training dataset specific to the Narrow-Long leg
configuration. (b) A comparison of simulation-based results with experimental
outcomes for our formulated two-stage policy, showing the vertical velocity
limitation due to the experimental setup, indicated by a dashed line.

flight conditions (above 65 deg). In contrast, the Narrow
configurations excelled in more vertical flights (above 50 deg)
but were less successful at angles below 50 deg, as shown
in Figure 15a,d. The Wide configurations generally under-
performed in comparison, except at very low or extremely
vertical angles (Figure 15c,f). Across these configurations, we
also observed a trend where higher flight velocity magnitudes
correlated with increased inverted landing success. Addition-
ally, shorter leg lengths generally exhibited less success across
all flight conditions compared to their longer counterparts, as
depicted in Figure 15a-c.

The diversity in quadrotor inverted landing behaviors can
primarily be attributed to the balance of four key factors:
1) Swing Distance about Fore-leg Contact; 2) Gravitational
Contribution to the Swing; 3) Sufficiency of Momentum Trans-
fer; 4) Impact Window Size. These factors are significantly
influenced by the body angle at impact, the quadrotor’s leg
geometry, and the flight conditions when the landing policy is
triggered. This complex interaction leads to varying inverted
landing capabilities across different configurations.

Viewing through this framework lens, it can be seen that
minimizing the Swing Distance about Fore-leg Contact sig-
nificantly enhances inverted landing success. Here the impact
angle and the quadrotor’s leg geometry directly determine the
necessary swing distance for the hind legs to make contact
with the surface. Figure 16a illustrates this, where, for a given
body angle at impact, the Narrow-Long geometry necessitates
a smaller swing than the Wide-Long configuration to achieve
the desired landing state, thereby reducing the travel distance
and energy required.

Furthermore, maximizing the Gravitational Contribution to
the Swing significantly enhances landing success. This effect is
influenced by the quadrotor’s impact angle and leg geometry,
which can result in the Center of Mass (CoM) being lower at
the final state than at the time of impact. Figure 16a illustrates
this for the Narrow-Long leg configuration, where gravity aids
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Fig. 15. Polar plots indicating the landing success rate found in simulation for various leg design configurations. The radial axis corresponds to the flight
velocity magnitude (∥vceil∥), while the angular axis represents the flight angle (∠vceil). Data was gathered for parameters where ∥vceil∥ ranges from 1.5
to 3.5 m/s and ∠vceil spans from 30◦ to 90◦.

Wide-LongNarrow Long Excessive Leg Flexure

a) b)

c)

Wide-Long Wide-Short

Swing Distance & Gravity Effects

Viable Impact Window Size

Body Overswing

Fig. 16. a) For the same body orientation at impact, quadrotors with narrower
leg designs require a shorter swing distance to make contact with the landing
surface. b) Leg joints with excessive flexure can lead to overswing and body
contact with the landing surface. c) Shorter-legged designs typically lead to
a narrower range of viable impact conditions compared to their longer leg
counterparts.

in achieving the desired state with minimal effort. Conversely,
configurations like the Wide-Long, also shown in Figure 16a,
may require the CoM to be higher in the final state than at
impact, necessitating additional energy for a successful body-
swing.

Balancing the Sufficiency of Momentum Transfer is crucial
for inverted landing success, even when other factors are
unfavorable. This aspect depends on the body angle at impact,
leg geometry, and the quadrotor’s flight conditions. Here,

properly aligning the impact angle to convert translational mo-
mentum into rotational momentum allows the robot to cover
the necessary swing distance and overcome any adverse grav-
itational effects. Failure to adequately coordinate this can lead
to a two-leg landing due to insufficient rotational momentum.
Additionally, some combinations of flight conditions and leg
geometry may not provide enough translational momentum for
a successful four-leg inverted landing. Our supplemental video
further illustrates the importance of momentum management,
swing distance, and gravitational effects for achieving inverted
landing success

Additionally, the leg configuration’s geometry directly af-
fects the Impact Window Size, determining the range of viable
impact angles that ensure only the legs, and not the body,
contact the ceiling, as shown in Figure 16c. Shorter-legged de-
signs (compared to their longer counterparts) typically offer a
narrower range of viable impact windows, increasing the need
for precision in impact conditions. In systems with significant
noise, like ours, this increased sensitivity can significantly
affect the robustness and success rate of inverted landings.

The direct effects of these concepts are evident in the results
presented and in Figure 15. For example, the Semi-Narrow
configurations (Figure 15b,e) are notably effective under lower
flight angles, and capable of striking a balance between
manageable swing distances, gravitational contributions, and
sufficient momentum transfer, unlike when under more vertical
flight conditions. On the other hand, the Narrow configurations
(Figure 15a,d) perform well across a wide range of vertical
flight conditions, benefiting from their design, which results
in smaller swing distances and gravitational assistance. Their
reduced success at lower flight angles, however, was attributed
to excessive leg flexure leading to an overswing behavior and
propeller contact, as depicted in Figure 16b. This issue, linked
to the stiffness of the leg joints, will be a focus of future
research, with the anticipation that stiffer joints could enhance
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Fig. 17. (a) Experimental inverted landing sequence for the flight condition (2.50 m/s, 37◦) resulting in a four-leg successful landing. The trajectory through
OFa space is depicted, with emphasis on the intersection point with the boundary region in both Cartesian and OFa spaces. (b) A corresponding depiction
for the flight condition (2.60 m/s, 70◦), leading to a two-leg landing.

performance at lower flight angles.
Moreover, the Wide configurations, with their significantly

larger swing distances due to leg geometry, and detrimental
gravitational effects, demand higher translational velocities
in flight for successful landings. While sufficient momentum
transfer can be achieved in very low or extremely vertical
flight angles, it becomes challenging in intermediate cases.
Identifying and modelling the specific aspects which determine
if a sufficient balance between swing distance, gravitational ef-
fects, and efficient momentum transfer factors can be achieved
will also be the topic of future research. Finally, across all
leg angles (i.e., Narrow, Semi-Narrow, Wide), the shorter leg
configurations have a smaller Impact Window Size, which led
to reduced performance across flight conditions (Figure 16a-c),
compared to their longer leg counterparts (Figure 16d-f).

VI. VALIDATION OF THE TWO-STAGE INVERTED LANDING
POLICY IN EXPERIMENTS

In transitioning from simulation to experimental application
and to validate the trained two-stage policy, we employed a
zero-shot sim-to-real transfer approach. This validation was
conducted using a Bitcraze Crazyflie 2.1 quadrotor, the same
model our simulation was based on. As well, the simulated
Semi-Narrow Long leg configuration yielded the overall best
landing performance in our range of experimentally viable test
conditions, therefore this leg configuration was used for our
validation work.

For experimental testing, we selected ceiling-approach con-
ditions with lower flight angles, primarily in the range of 30
to 65 degrees, which correlated with higher landing success
rates in simulation and where our control policy demonstrated
comparable performance to the collected sensory-action pairs.
It is important to note that due to limitations such as the
robot’s thrust capacity and the available space, achieving high
vertical velocity approaches were difficult in our experiments.

This limitation is quantitatively illustrated as a dashed-line in
Figure 14b., the region above which where the experimental
tests because piratically infeasible. Approach conditions in this
region typically resulted in lower success rates in simulation
and were not chosen for experimental validation. In addition,
we chose only to experimentally test the best-performing leg
design among those tested in the simulation (shown in Figure
15) because the fast and dynamic perching experiments can
be very costly, where a failed landing would result in the
quadcopter crashing into the ceiling and/or falling to the
ground, and therefore damaging the blades, frame or even
motors of the quadcopter.

The results of our testing revealed a mixture of both
optimal (i.e., characterized by four-leg touchdown and no
body/propeller contact) and sub-optimal (i.e., two-leg land-
ings or four-leg landings with body/propeller contact) landing
outcomes; as illustrated by the foreground icons in Figure
14b. With classification of these conditions accomplished
by observation through a high-speed camera. Notably, the
simulation-based data using in training our control policy
consisted primarily of optimal-class landings outcomes, so the
prevalence of sub-optimal landings indicate degradation of our
two-stage policy when transferring from our simulation-based
environment to our physical experiment environment.

To this end, optimal landings were predominantly observed
at flight angles between 30 and 45 degrees; an example of
such a landing is illustrated in Fig. 17a. Conversely, sub-
optimal landings were present across all tested conditions,
often overlapping with optimal landings without a distinct
separation. Figure 17b shows an example of such a sub-
optimal landing. Notably, all flight conditions intersecting the
triggering boundary function (πTrg) achieved some level of
success, resulting in either optimal or sub-optimal landings,
with no direct failures recorded. Flight conditions outside the
boundary function limits, represented in Fig. 14b as the dark
purple area inside the grey-dashed line, were not tested as they
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fell beyond the feasible range of our control policy, posing a
high risk of damage to the robot.

These experimental tests showed reduced performance com-
pared to our simulation results, likely due to several factors.
A major discrepancy stemmed from inaccuracies in the motor
model, affecting both flight dynamics and body-rotation char-
acteristics, and in the simulation of the landing gear/hinge
joint. Specifically, the current model fails to fully capture
the deformation behavior of the 3D printed landing gear.
To overcome these issues, future work should expand use
of domain randomization to encompass a wider range of
system variabilities. Additionally, improving model fidelity
and refining the reward function to emphasize robustness could
significantly increase the success rate of experimental inverted
landings.

VII. CONCLUSION AND FUTURE WORK

In this study, we aimed at achieving inverted landing in
robotic fliers and explored the concept of dynamic perching,
a skill mastered by many species birds, bees, and bats, yet a
significant challenge in robotics. Our methodology centers on
a biologically inspired, two-stage control policy that reflects
the adept sensory-motor mapping observed previously in flies
and utilizes augmented optical flow cues. It is formulated from
sensory-action pairings identified through parameter optimiza-
tion in simulation and further refined using various machine
learning techniques. The policy translates emulated augmented
optical-flow data into motor control actions in terms of ini-
tiating (in the first stage) and modulating (in the second
stage) the rotational maneuvers that are critical for successful
inverted landing. Our approach, distinct from traditional full-
state trajectory-based methods, promotes a range of emergent
behaviors through computationally-efficient reactive motor
control. The effectiveness of this comprehensive policy, proven
in both simulated and real-world environments, highlights its
potential in advancing dynamic robotic perching.

Additionally, our study of varying leg geometries highlights
the complex relationship between design, control, and func-
tion, emphasizing the importance of mechanical intelligence.
Through testing various configurations, it is clear that leg
geometry significantly influences the success and robustness of
inverted landings. Factors like swing distance around fore-leg
contact, and efficiency of momentum transfer at impact, which
are crucial in determining inverted landing success, are directly
influenced by the parameters of leg design. In our results, we
found that narrower leg configurations lead to shorter swing
distances, enhancing inverted landing robustness, particularly
in vertical flight scenarios compared to more horizontal flight.
As well, achieving a sufficiently high velocity is essential to
bolster landing capabilities and ensure effective contact.

In conclusion, our research represents significant progress
in emulating the perching capabilities of nature’s most adept
fliers. The integration of computational and mechanical in-
telligence is crucial in this pursuit. As the field of aerial
robotics advances, emulating the perching expertise of birds
and insects is becoming more attainable. Future work will
focus on several key objectives: directly estimating sensory

inputs from the onboard cameras and the robot’s IMU; refining
our two-stage control methodology to enhance the synergy
between computational strategies and physical design; and
integrating the identification of landing targets through com-
puter vision methodologies with the generation of optimal
approach trajectories via onboard motion planning and trajec-
tory optimization. Together, these advancements will enable
fully autonomous quadrotor landings on inverted surfaces. By
deepening our understanding of these elements and unraveling
their interdependence, we will move closer to achieving the
autonomous robust perching capabilities in small aerial robots
that will enable them to perch and fly reliably and safely in
urban or natural environments. As well as performing further
applications like prolonged inspection under bridges or serving
as communication relays in cluttered disaster zones.
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APPENDIX A
SYSTEM IDENTIFICATION

A. Inertia Estimation

Given our reliance on a zero-shot sim-to-real transfer
method, the success of our two-stage control policy and
the execution of inverted landings are strongly tied to the
simulation’s accuracy, thus emphasizing the need for precise
rotational inertia estimation. To this end, we applied the bifillar
pendulum method [83], [84] to measure the rotational inertia
about the quadrotor’s three principal axes. The technique in-
volved suspending the quadrotor using two vertical strings and
introducing a minor rotational displacement, thereby inducing
oscillation about the vertical axis, as illustrated in Figure 18.
Using the onboard gyro sensor, we measured the oscillation
period and calculated the average time between peaks. The
moment of inertia was then estimated using the following
equation:

Iest =
mg (D Tavg)

2

L (4π)2
, (8)

where mg is the weight of the quadrotor in Newtons, D
is the distance between the strings, L is the string length,
and Tavg is the average oscillation period. We repeated this
procedure for each axis of the system. The results for the
standard Crazyflie, as well as our modified system with
attached legs, are presented in Table II.

1) Thrust-Battery Compensation: Maintaining the desired
thrust values from the quadrotor’s motors throughout the
entire flight is essential for the accuracy and consistency
of our experiments. This includes ensuring the thrusts used
in experimental settings align with those in our simulation.
To address this, we introduced a battery compensation algo-
rithm that guarantees consistent thrust values through PWM
modulation—irrespective of fluctuations in battery voltage.
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TABLE II
MEASURED BODY MOMENT OF INERTIA

Crazyflie 2.1 - Stock Crazyflie 2.1 - NL Legs

Mass [g] 30.0 38.1
Ixx [10−6 kg m2] 12.19 27.93
Iyy [10−6 kg m2] 14.55 30.46
Izz [10−6 kg m2] 23.55 47.12

Fig. 18. Bifillar pendulum setup used to estimate rotational inertia about the
quadrotor’s primary axes. D represents the distance between mounting points
and L represents the length of the string.

The battery compensation algorithm we developed, an en-
hancement of Bitcraze’s open-source framework, is specifi-
cally designed to provide stable thrust during flight, counter-
balancing the effects of battery depletion. Traditional brushed
DC motors, like the ones originally equipped on the Crazyflie,
generate thrust by applying a fraction of the available voltage
to the motors via a PWM signal. However, as the battery volt-
age decreases over time, a constant PWM signal can lead to
thrust inconsistency. To mitigate this, our algorithm modulates
the PWM signal, maintaining a consistent voltage applied to
the motors despite decreasing battery voltage, thereby ensuring
consistent thrust.

To address fluctuations in the Crazyflie’s battery voltage
affecting motor performance, we established a regression-
based approach to discern the voltage required for given thrust
commands. Using a predictive curve, we modeled the voltage-
thrust relationship, translating controller thrust values to the
appropriate motor voltage.

To derive this curve, the Crazyflie quadrotor was powered
by an external supply at a fixed voltage and to negate ground
effect interference, the quadrotor was suspended over an
airspace and anchored to a scale. We then systematically varied
PWM values, logging the consequent thrust, supply voltage,

Constant PWM Thrust 
Battery Compensated  Thrust 

a)

b)

Fig. 19. (a) Plot illustrating the relationship between desired motor thrust
and the necessary motor voltage (Vmotor) for both standard and upgraded
motors. (b) Plot depicting the efficacy of our upgraded motors using the battery
compensation algorithm in comparison to a constant PWM strategy.

and measured onboard voltage. The motor voltage, calculated
as Vmotor = Vonboard · PWMcmd

PWMMax
, was then plotted against

the measured thrusts. The resultant data was then fitted to a
logarithmic curve, described by the equation:

Vmotor = a · ln(fthrust − b) + c. (9)

For improved precision, especially at higher thrust values,
we bifurcated the curve into two regions (refer to Figure
19a). In practice, the resultant PWM command is computed
from the current battery voltage, desired voltage, and the
requested motor thrust. This computation ensures constant
thrust throughout the flight.

The efficacy of our algorithm is validated in Figure 19b.
Here, we contrast the thrust values generated by our battery
compensation and PWM modulation algorithm with those
resulting from a constant PWM value over the life of a
charged batttery. Both the standard Crazyflie 2.1 motors and
our upgraded BetaFPV 7x16mm 19,000 KV motors underwent
this procedure. The parameters identified through this process
are detailed in Table III.

2) Motor-Speed Dynamics: To further enhance the preci-
sion of our simulation, we incorporated rotor acceleration
dynamics by modeling the motor thrusts as a first-order
system. This is an improvement on previous work by the
authors which assumed an instantaneous motor response to
thrust [25], neglecting the decay behavior of rear motors that
relies solely on air drag forces for slowing down. The inclusion
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TABLE III
BATTERY COMPENSATION PARAMETERS

Vmotor = a · ln(b · fthrust) + c

Thrust ≤ 5g a b c

Stock Motors 0.618 1.394 0
Upgraded Motors 1.285 1.512 0

Thrust > 5g a b c

Stock Motors 2.097 -4.464 5.636
Upgraded Motors 3.230 -5.469 5.979

of this behavior in our model greatly improved the accuracy
between our simulation and physical experiments.

For a precise representation of motor behavior, we es-
tablished time-constants (τup/τdown) to model the first-order
system’s speed-up and slow-down dynamics. To do this we
built a custom tachometer, comprising an IR detection sensor
and an Arduino micro-controller, to record the motor’s time
profile for varying speed changes. Using the conversion term
from Forster et al. [85], we obtained the corresponding thrust
values from propeller speeds. Then, an exponential curve was
fitted to these profiles (Figure 20), yielding the speed-up and
slow-down time constants (τup = 0.05 and τdown = 0.16).

0 5 10 15 20
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15

Th
ru

st
 [g
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Recorded Thrust
Curve Fit
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(b)

(c)

Motor Thrust Decay

Fig. 20. Figure depicting the quadrotor motor’s acceleration and deceleration
characteristics, modeled as a first-order system. The curve fit time constants
are: (a) τup = 0.06s; (b) τup = 0.05s; (c) τdown = 0.16s .
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