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Abstract
Motivation: The identification and understanding of drug–target interactions (DTIs) play a pivotal role in the drug discovery and development 
process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier 
input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various compu
tational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite 
the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for 
sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their excep
tional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence 
representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions.
Results: Large-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it 
excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive 
results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, 
a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models ex
hibit contrasting capabilities in capturing similarities between drugs and proteins.
Availability and implementation: Source code is available at: https://github.com/compbiolabucf/DTI-LM.

1 Introduction
In the relentless pursuit of novel therapeutic agents, the intri
cate interplay between drugs and their biological targets has 
become the focal point of modern pharmaceutical research. 
The concept of drug–target interaction (DTI) constitutes the 
cornerstone of contemporary drug discovery and develop
ment, providing a fundamental framework for understanding 
the mechanistic foundations of pharmacological interven
tions. Amid the ever-evolving challenges posed by drug resis
tance and adverse drug reactions, the exploration of DTI not 
only expedites the identification of novel drug candidates but 
also augments our capacity to repurpose existing compounds 
for diverse therapeutic applications. Experimental assays 
have proven to be the gold standard for DTI identification 
(Zheng et al. 2020). However, research indicates that the 
expenses associated with the development of new drugs vary 
between $314 million and $2.8 billion, while the duration of 
clinical development typically spans between 8.2 and 
10.0 years (Wouters et al. 2020, Brown et al. 2021). These 
substantial investments in time and resources have made DTI 
prediction an indispensable tool to aid the initial stages of 
drug discovery by expediting the identification of potential 
drug–target interactions, thereby streamlining the process of 
lead compound selection and, consequently, experimen
tal validation.

Numerous studies have demonstrated the utility of compu
tational approaches, including machine learning algorithms, 
network-based methods, and molecular docking simulations 
for DTI prediction. In recent times, the advancement of DTI 
prediction has been notably accelerated, primarily attributed 
to the extensive accumulation and accessibility of biomedical 
datasets. This surge is further propelled by the remarkable 
progress of deep learning techniques, which have showcased 
exceptional success across diverse realms of scientific re
search and asserted themselves as the predominant method 
for DTI prediction. Several advanced deep learning-based 
frameworks for DTI prediction have emerged, utilizing di
verse sets of data as input. These frameworks can be broadly 
categorized into knowledge graph-based methods (Luo et al. 
2017, Thafar et al. 2020, Ye et al. 2021, Zhang et al. 2023), 
3D structure-based approaches (Wallach et al. 2015, Ragoza 
et al. 2017, Stepniewska-Dziubinska et al. 2018, 
Khodabandeh Yalabadi et al. 2024, Bian et al. 2024, Wang 
et al. 2024), 2D pairwise distance map-based techniques 
(Zheng et al. 2020, Li et al. 2022), and 1D sequence-based 
methods (Wen et al. 2017, €Ozt€urk et al. 2018, Chen et al. 
2020, Huang et al. 2021). Heterogeneous knowledge graph 
(KG)-based methods have demonstrated success in various 
scenarios of DTI prediction, including warm start, cold start 
for drugs, and cold start for proteins. Cold start predictions 
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involving unknown drugs or proteins are particularly chal
lenging as limited or no information about that drug or pro
tein is available during model training. Despite this challenge, 
KG-based models leverage semantic relationships with other 
entities (such as shared pathways, biological processes, or 
functional annotations) and diverse data sources, enabling 
them to achieve competitive performance in cold start predic
tions. However, it’s crucial to note that KG-based methods 
demand large amounts of heterogeneous datasets and sub
stantial computational resources to achieve state-of-the-art 
results. Their performance is also contingent on the complete
ness of the knowledge graph. Structure and sequence-based 
methods generally tend to perform worse for cold start pre
dictions if the cold start protein or drug has no structural or 
sequential homologs with known interactions in training. 
Moreover, obtaining high-quality structural data for all pro
teins of interest can be challenging and time-consuming and 
requires significant computational resources. On the con
trary, 1D sequences, such as amino acid sequences for pro
teins and Simplified Molecular Input Line Entry System 
(SMILES) for drugs, represent the most readily available 
form of input data and require less computation due to their 
simplified representation. Ensuring the quality of data is also 
more straightforward compared to knowledge graphs and 
structural information. Therefore, addressing the limitations 
associated with cold start problems using 1D sequences holds 
the potential to accurately predict interactions for a broader 
spectrum of drugs and proteins compared to other methods.

The adoption of pretrained language models (LMs) has 
emerged as a transformative tool across a spectrum of research 
domains. BERT (Bidirectional Encoder Representations from 
Transformers) (Devlin et al. 2018) brought about a paradigm 
shift in natural language processing tasks, and its impact ex
tended to other domains such as ESM, ProtBert, and 
ProteinBERT (Elnaggar et al. 2021, Brandes et al. 2022, Lin 
et al. 2023) for protein feature extraction. Similarly, in drug- 
related contexts, models like ChemBERTa, ChemGPT, and 
MoLFormer (Chithrananda et al. 2020, Ross et al. 2022, Frey 
et al. 2023) have played a crucial role in extracting drug fea
tures. These pretrained models have found applications and val
idation in previous DTI prediction studies, wherein embeddings 
are generated utilizing LMs (Kalakoti et al. 2022, Kang et al. 
2022, Nguyen et al. 2022). These embeddings generated by 
LMs are independent, meaning no neighborhood information is 
considered during their generation. While such approaches have 
proven effective, recent studies, including those utilizing KG- 
based frameworks, have demonstrated the efficacy of 
neighborhood-based embedding generation for DTI prediction 
(Wan et al. 2019). Incorporating neighborhood information 
into language model-based embeddings has the potential to 
yield improved representations for both drugs and proteins. 
Moreover, previous language model-based DTI prediction stud
ies (Kalakoti et al. 2022, Nguyen et al. 2022) lack a comprehen
sive comparison with other methods, focusing only on the 
comparison among the language model variants.

In this study, we introduce a novel framework, DTI-LM, 
designed for predicting drug–target interactions by leveraging 
language models to generate encodings from protein amino 
acid and drug SMILES sequences. Going beyond traditional 
approaches, we enhance the encoding process by introducing 
graph attention networks (GAT). These networks enrich the 
representations of proteins and drugs with neighborhood 

information, thereby contributing to more nuanced and 
context-aware DTI predictions. Our experimental findings 
substantiate the effectiveness of the proposed DTI-LM frame
work, demonstrating superior performance compared to 
existing state-of-the-art DTI prediction models while utilizing 
fewer data and computational resources. Furthermore, we 
design our study to investigate the current limitations associ
ated with language model-based DTI prediction. We shed 
light on the difference in performance between cold start for 
proteins and drugs and probe into the bottleneck for cold 
start for drugs prediction. This exploration allows us to gain 
insights into the challenges and boundaries that currently ex
ist in protein and drug language models, providing a founda
tion for potential future enhancements and refinements in 
language model-based drug–target interaction prediction.

2 Materials and methods
In this section, we first introduce the mathematical notations 
used in this study, followed by the proposed framework, 
DTI-LM. The framework can take protein amino acid 
sequences and drug SMILES sequences as inputs in language 
models, followed by graph attention networks and a multi- 
layer perceptron (MLP) to predict DTIs. We then discuss the 
baselines used in this study to illustrate the improvements of
fered by our model.

2.1 Overview of the framework
In the context of language model-based DTI prediction 
frameworks, the protein embeddings produced by protein 
language models are inherently distinct for each protein se
quence, just as the drug embeddings generated by chemical 
language models remain independent for different drug 
sequences (Kalakoti et al. 2022). Although similar proteins or 
drugs should generate similar embeddings, enhancements to 
these embeddings can be achieved by explicitly defining a 
neighborhood based on similarities or interactions between 
drugs or proteins. Conversely, in GAT-based DTI prediction 
frameworks, various encoding methods such as integer 
encoding, Word2Vec, position-specific scoring matrix, or bi
ological property-based encoding are utilized to prepare the 
protein sequences. For drug sequences, encodings like molec
ular fingerprint, molecular graph, and Word2Vec are used as 
input for the GAT model (Wang et al. 2021, Zhang et al. 
2021, Jiang et al. 2022, Cheng et al. 2022, Wang et al. 2023). 
As a step toward an integrated approach, we propose com
bining both strategies by encoding the protein and drug 
sequences using language models and subsequently generat
ing the final representations through the GAT model.  
Figure 1 illustrates the overall workflow of DTI-LM.

The notations used to define the proposed model are sum
marized in Table 1. Let X ¼ ½x1;x2; . . . ;xm� represent the p-di
mensional encodings for m proteins generated by the protein 
language model from protein sequences represented by amino 
acids, where xi denotes the ith protein. Similarly, Y ¼
½y1;y2; . . . ;yn� represents the q-dimensional encodings for n 
drugs generated from drug SMILES sequences. Zx and Zy 
are GAT protein and drug embeddings, respectively, where k, 
l, and h represent the protein embedding size, drug 
embedding size, and the number of heads in the GAT. 
The proposed framework is designed for binary prediction of 
the drug–target interaction matrix, denoted by I. For the 

2                                                                                                                                                                                                                                   Ahmed et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/9/btae533/7747660 by U

niversity of C
entral Florida user on 29 July 2025



remainder of the manuscript, outputs from the LMs are des
ignated as encodings, and outputs from the GATs are desig
nated as embeddings to easily differentiate between them.

2.1.1 Protein encoding
We use ESM-2 (Lin et al. 2023), a 33-layer, 650-million- 
parameters model with an output dimension of 1280 for 
encoding protein sequences. It is an advanced deep-learning 
model specifically designed to capture the complex evolution
ary patterns and structural features embedded within protein 
sequences. The model is trained on the UniRef50 dataset, 
which is part of the UniProt Knowledgebase (The UniProt 
Consortium 2022), a centralized repository for protein 
sequences and functional information. The dataset is con
structed through the clustering of UniRef90 seed sequences, 
ensuring that each cluster comprises sequences with a mini
mum of 50% sequence identity to, and 80% overlap with, 
the longest sequence in the cluster and consists of 11 862 245 
clusters (Suzek et al. 2015). By encoding protein sequences 
using ESM-2, we can harness the model’s capacity to capture 
long-range dependencies and subtle sequence motifs, thereby 
facilitating more accurate predictions of protein properties, 

(a)

(b)

Figure 1. (a) Overall framework of DTI-LM. In the framework, protein and drug sequences are fed into their respective language models. Next, the 
generated encoding and their similarity matrix are used in a graph attention network to generate protein and drug embeddings. The embeddings are then 
concatenated and passed into a multi-layer perceptron to predict DTI. (b) GAT embedding generation. It illustrates the process for protein embedding 
generation using a GAT from LLM encoding of proteins. Neighbors with high similarity are aggregated to update the target node embedding. We follow 
the same procedure for drug embedding generation.

Table 1. Notations used in DTI-LM.

Name Definition

p, q, m, n, k, l, h Protein encoding size, drug encoding size, number 
of proteins, number of drugs, protein GAT em
bedding size, drug GAT embedding size, number 
of heads respectively

X 2 Rp×m Protein sequence encoding generated by ESM-2
Y 2 Rq×n Drug SMILES encoding generated by ChemBERTa
Sx 2 Rm×m Protein–protein adjacency matrix
Sy 2 Rn×n Drug–drug adjacency matrix
Zx 2 Rkh×m Protein embeddings generated by GAT
Zy 2 Rlh×n Drug embeddings generated by GAT
I 2 Rm×n Drug–target interaction matrix
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functions, and interactions. ESM-2 was chosen over other 
protein language models such as AlphaFold2, RoseTTAFold, 
OmegaFold, ProtBert, etc. (Baek et al. 2021, Elnaggar et al. 
2021, Jumper et al. 2021, Wu et al. 2022) due to its faster 
runtime and high-quality embedding generation. The compu
tational cost of multiple sequence alignment (MSA) powered 
models (AlphaFold2, RoseTTAFold) can be one to two 
orders of magnitude higher than ESM-2 (Lin et al. 2023) 
while offering negligible advantage in DTI prediction accu
racy (Kalakoti et al. 2022).

2.1.2 Drug encoding
For drug SMILES sequence encoding, we choose a prominent 
chemical language model, ChemBERTa (Chithrananda et al. 
2020), a 6-attention layer, 84-million-parameters model with 
an output dimension of 768. It was trained on 10 million 
SMILES sequences from the PubChem database (Kim et al. 
2023). ChemBERTa integrates the powerful language under
standing capabilities of BERT with domain-specific knowl
edge from the chemical and pharmaceutical realms. By 
encoding drug SMILES sequences, ChemBERTa enables the 
extraction of rich semantic representations, capturing intri
cate molecular structures, functional groups, and chemical 
properties embedded within the SMILES notations. With its 
capacity to comprehend complex chemical structures and 
their relationships, ChemBERTa serves as a valuable tool for 
drug discovery. In this study, we implemented our model us
ing the Hugging Face library (HuggingFace 2023), a widely 
recognized and extensively utilized platform for natural lan
guage processing and deep learning research.

2.1.3 Drug–target interaction prediction
Protein and drug encodings, given by X and Y, respectively, 
are fed into two GATs to derive embeddings by integrating 
neighborhood information. To define the neighborhood of a 
protein, an m×m Pearson correlation matrix Sx is first calcu
lated. This correlation-based similarity matrix is then con
verted into a binary adjacency matrix using a threshold 
where high correlation scores above that threshold are 
assigned value of 1 while low scores below that threshold are 
assigned value of 0. The binarized adjacency matrix will be 
later used to mask the attention coefficients of the model. 
Whether to keep self-connections in the adjacency matrix and 
the thresholds used for binarization are set as hyperpara
meters in the framework and tuned for the best performance. 
All hyper parameters of the model and details of the adja
cency matrix calculation process are presented in the 
Supplementary Document. A similar process is applied to ob
tain the drug neighborhood Sy. The model can accommodate 
other neighborhood definitions such as the protein-protein 
interaction network (PPI) and drug-drug interaction network 
(DDI). Once we have the adjacency matrices, we can generate 
the embeddings for X and Y. For protein embedding, the at
tention directed to xi from its neighbor xj can be computed 
as follows: 

cij ¼ a½WxijjWxj�; (1) 

where W 2 Rk×p and a 2 R1×2k represent the learnable 
weight parameters of a single head. Here, k denotes the em
bedding size of the GAT, and k denotes the concatenation op
eration. Subsequently, the calculated attention values 
undergo a LeakyReLU activation function. To incorporate 

the structural information of the network, the attention val
ues are modified by applying a mask using the adjacency ma
trix. Specifically, only the attention values corresponding to 
connected nodes in the adjacency matrix Sx are retained, 
while all other values are set to zero. The attention coefficient 
for a neighbor xj is then calculated using the Softmax func
tion as follows: 

αij ¼
expðLeakyReLUðcijÞÞ

P
r2N i

exp ðLeakyReLUðcirÞÞ
; (2) 

where N i represents the neighborhood of the ith protein. The 
embedding of xi is calculated as: 

x0i ¼ σð
X

j2N i

αijWxjÞ; (3) 

where σ is a nonlinear activation function. We use multi-head 
attention mechanism to capture complex relationships and 
enhance the expressiveness of the learned representations. 
For h number of heads, each with its separate attention mech
anism, the final embedding of the sample is obtained by 
concatenating the output of the heads. Therefore, the final 
embedding of the ith protein is given by: 

zi ¼ jj
h
h¼1σð

X

j2N i

αh
ijW

hxjÞ: (4) 

We obtain the embeddings for all m proteins as Zx 2

Rkh×m and follow the same procedure to obtain the embed
dings for n drugs as Zy 2 Rlh×n, where l is the embedding size 
for drugs from a single head. We design the GAT model to 
have the same embedding size as LM encoding, i.e. kh¼ p 
and lh¼ q. For simplicity, we show same number of heads h 
for drugs and proteins which can be different in implementa
tion of DTI-LM. The number of heads and number of layers 
in the networks used for generating protein and drug embed
dings are set as hyperparameters in the model.

Finally, the protein embedding Zx and the encoding from 
the language model X are added together to obtain the final 
protein representations. Similarly, the drug embedding Zy 
and the encoding from the language model Y are added to
gether to obtain the final drug representations. These repre
sentations are concatenated and fed into a multilayer 
perceptron (MLP) to predict the corresponding interactions, 
as given by: 

~I ¼MLPð½Zxþ βX�jj½Zyþ γY�Þ: (5) 

β and γ are hyperparameters that control the contribution of 
the residual connection. The model is trained with binary 
cross-entropy loss, calculated as: 

L ¼ −
1

mn

Xmn

i¼0

½Ii � log σð~IiÞþ ð1 − IiÞ � logðσð1 − ~IiÞÞ�; (6) 

where σ represents the Sigmoid function.

2.2 Baselines models
We use several baselines to compare the performance of our 
proposed model, DTI-LM. DeepDTA ( €Ozt€urk et al. 2018), 
DeepDTI (Wen et al. 2017), and TransDTI (Kalakoti et al. 
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2022) are end-to-end models that take protein and drug 
sequences as input, similar to DTI-LM. DeepDTA and 
DeepDTI use convolutional neural networks and deep belief 
networks, respectively, to process the protein and drug 
sequences. TransDTI, on the other hand, uses language mod
els for protein and drug sequences with an MLP on top of the 
outputs from the language models. MolTrans (Huang et al. 
2021) uses transformers with sequence data and 
FragXsiteDTI (Khodabandeh Yalabadi et al. 2024) uses 
GCN and transformers with 3D structures for DTI predic
tion. In addition, DTI-LM is compared against heterogeneous 
data-driven models such as DTiGEMSþ (Thafar et al. 2020), 
DTINet (Luo et al. 2017), KGE_NFM (Ye et al. 2021), and 
TriModel (Mohamed et al. 2021) that require more data mo
dalities to train than DTI-LM. Although DTI-LM uses 
protein-protein and drug-drug similarity matrices, we can 
generate these matrices from the language model encoding 
without any external information.

3 Experiments
3.1 Dataset
The proposed framework is evaluated on four datasets: 
DrugBank (Law et al. 2014), BindingDB (Liu et al. 2007), 
Yamanishi_08 (Yamanishi et al. 2008), and Luo’s dataset 
(Luo et al. 2017). The DrugBank and BindingDB datasets 
contain only protein and drug sequences; therefore, they were 
primarily utilized for comparing sequence-based methods. In 
contrast, the Yamanishi_08 and Luo’s datasets include het
erogeneous knowledge graphs (KG) alongside protein and 
drug sequences, making them suitable for comparing both 
sequence-based and heterogeneous data-driven methods. The 
Yamanish_08 network encompasses 25 487 nodes and 
95 579 edges, whereas Luo’s dataset network consists of 
12 015 nodes and 1 895 445 edges. Statistics of the datasets 
can be found in Table 2.

3.2 Running DTI-LM
First, the DrugBank and BindingDB datasets are split into 
training, validation, and test sets, with ratios of 0.79, 0.01, 
and 0.20, respectively. This splitting process adheres to three 
specific conditions: warm start (the same drugs and proteins 
being allowed in both training and test sets), cold start for 
drugs (drugs in training and test sets are exclusive), and cold 
start for proteins (proteins in training and test sets are exclu
sive). The Yamanishi_08 and Luo’s datasets are obtained 
from the source mentioned in Ye et al. (2021), and the same 
training and test splits as utilized in that study are used to 
generate our results. While sequence-based models, including 
DTI-LM, are exclusively trained on the sequences, heteroge
neous data-driven models incorporate the use of KG as well. 
Therefore, heterogeneous data-driven models are not com
pared on DrugBank and BindingDB datasets. DrugBank, 
Yamanishi_08, and Luo’s datasets provide binary interaction 
details that were used in our classification framework to train 

a binary classifier to predict interaction or no interaction for 
a pair of drug and protein. In contrast, BindingDB provides 
binding affinity (Kd) data, which is converted into a binary 
format using a threshold to align with the classification 
framework. The threshold is chosen to maintain a compara
ble DTI density as other datasets. The hyperparameters of the 
framework are fine-tuned using Ray Tune (Liaw et al. 2018), 
and comprehensive information regarding the selection of 
hyperparameters can be found in the Supplementary 
Document (Supplementary Table S4). All predictions are run 
10 times with different splittings, with the mean area under 
the Receiver Operating Characteristic curve (AUROC) and 
the area under the Precision-Recall curve (AUPRC) reported 
in the respective tables. These experiments are repeated with 
two variations in the ratios of positive and negative samples 
in the datasets: balanced data has a 1:1 ratio, whereas unbal
anced data has a 1:10 ratio between positive and negative 
drug–target pairs or all samples if the ratio is less than 1:10.

DTI-LM is thoroughly evaluated through various experi
ments. Firstly, we compare the performance of DTI prediction 
with cutting-edge baselines, highlighting the improvements in
troduced by our model. Subsequently, we conduct an in-depth 
analysis of DTI-LM to examine its benefits and drawbacks, spe
cifically focusing on the use of the language model-based encod
ing for DTI prediction.

3.3 Prediction results
We designed two DTI prediction scenarios to illustrate the 
ability of DTI-LM. Firstly, we conducted a comparative 
analysis of our model against other sequence-based models 
using DrugBank and BindingDB datasets, demonstrating the 
enhanced predictive capabilities of our approach relying 
solely on sequence data. We repeated the experiments with 
all three types of splitting, each with balanced and unbal
anced datasets. Secondly, we pitted our model against hetero
geneous data-driven models using Yamanishi_08 and Luo’s 
datasets, highlighting our competitive performance despite 
utilizing only a fraction of the input data. Not only is protein 
and drug sequence data more readily available, but it can also 
significantly reduce the computational complexity of a model 
compared to heterogeneous data-driven models. In Tables 3– 
6, the first row associated with each splitting strategy repre
sents the AUROC, while the second row depicts the AUPRC.

The results presented in Tables 3 and 4 showcase the aver
age classification results of the sequence-based model applied 
to the DrugBank and BindingDB datasets, respectively. They 
highlight that our model outperformed the baseline models in 
the majority of cases. Notably, under the warm start sce
nario, our model consistently demonstrated superior perfor
mance compared to all the baselines across both datasets. 
The most substantial performance enhancement was ob
served in the case of cold start for protein splitting despite do
ing worse than DeepDTA in unbalanced BindingDB dataset. 
Across different splitting scenarios, our model exhibited an 
average improvement in AUROC of 3.57% and AUPRC of 
8.33% for warm start, 3.84% and 6.13% for cold start for 
drug, and 5.57% and 8.93% for cold start for protein predic
tions, respectively. AUROC scores are better in unbalanced 
splittings due to higher volume of training data. AUPRC 
scores are unsurprisingly lower for unbalanced splittings as 
there are far less positive interactions compared to negative 
interactions that makes positive interaction predictions more 
challenging. We also find that DeepDTA is more unstable 

Table 2. Data statistics.

Dataset Proteins Drugs KG Interactions

DrugBank 2203 1603 No 6041
BindingDB 879 9144 No 4040
Yamanishi_08 722 791 Yes 3448
Luo’s 1129 708 Yes 1526
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compared to other models with a large gap of performance 
between balanced and unbalanced splitting. It works better 
for balanced data in DrugBank while doing better for unbal
anced data in BindingDB.

Next, Tables 5 and 6 report the average classification results 
for sequence-based, structure-based and heterogeneous data- 
driven models on Yamanishi_08 and Luo’s datasets. Using the 
same publicly available data splits as Ye et al. (2021) enables a 
direct comparison of our results with those reported in that pa
per. FragXsiteDTI suffers from a common shortcoming of 
structure-based methods, the unavailability of protein struc
tures. Therefore, we ran FragXsiteDTI twice, once with all pre
dicted protein structures (Predicted). Then we repeat the 
experiment with experimental protein structure if available, and 
predicted protein structure otherwise (Mixed). ESMFold (Lin 
et al. 2023) was used to predict the protein structures that uses 
similar underlying technique as ESM-2. As observed in the 
Tables, heterogeneous data-driven baselines DTiGEMSþ, 
DTINet, TriModel, and KGE_NFM consistently outperform 
sequence-based baselines DeepDTI, MolTrans, and 
MPNN_CNN and structure-based model FragXsiteDTI across 
various scenarios, with a notable performance gap for cold start 
for drug and cold start for protein splittings. Despite being a 
sequence-based model, DTI-LM not only outperforms other 
sequence-based baselines but also surpasses and heterogeneous 
data-driven models for warm start and cold start for protein 
prediction. For cold start for drug splitting, while we outper
form other sequence-based and structure-based baselines in 

most cases, except FragXsiteDTI on the Yamanishi_08 dataset 
and MPNN_CNN on Luo’s dataset, we still lag behind state-of- 
the-art heterogeneous data-driven models. This underscores the 
findings from Tables 3 and 4 that DTI-LM is more effective for 
cold start for protein splitting than cold start for drug splitting. 
To gain a deeper understanding of the factors contributing to 
the superior performance of our model in the context of cold 
start for protein as opposed to cold start for drug, we conducted 
an investigation detailed in Section 3.5.

3.4 Transition from cold start to warm start
Given the limitations in cold start for drug splitting, we inves
tigated the transition between a cold start and warm start 
prediction to determine the minimum information needed for 
the transition. For each drug in the test set, we sent a number 
of samples (drug–target pair) to the training set and tracked 
how the prediction performance changes with the inclusion 
of additional information. All predictions with leaked data 
are also computed 10 times similar to previous results.  
Figure 2 illustrates the results for the DrugBank dataset, 
where we leaked two, four, and six samples from each drug 
in the test set to the training set but kept at least one sample 
for those drugs in the test set. AUPRC has a larger gap be
tween warm start and cold start scenario compared to 
AUROC. The figure shows that, AUPRC jumps significantly 
with inclusion of just two samples on average for each test 
drug that is comparable to warm start predictions. Both 

Table 3. The classification performance on DrugBank dataset.a

DTI-LM TransDTI DeepDTA DeepDTI

Balanced Warm start 0.951 0.934 0.889 0.916
0.953 0.935 0.882 0.914

Cold start for drug 0.902 0.877 0.874 0.859
0.899 0.889 0.871 0.868

Cold start for protein 0.923 0.916 0.855 0.838
0.935 0.920 0.825 0.850

Unbalanced Warm start 0.960 0.952 0.907 0.947
0.863 0.858 0.623 0.773

Cold start for drug 0.890 0.876 0.765 0.860
0.674 0.651 0.441 0.582

Cold start for protein 0.938 0.916 0.737 0.871
0.821 0.789 0.441 0.614

a Average AUROC and AUPRC scores of drug–target prediction for warm start, cold start for drug, and cold start for protein data splitting. The most 
significant results are bolded.

Table 4. The classification performance on BindingDB dataset.a

DTI-LM TransDTI DeepDTA DeepDTI

Balanced Warm start 0.939 0.926 0.868 0.923
0.934 0.918 0.729 0.910

Cold start for drug 0.872 0.870 0.754 0.863
0.879 0.878 0.699 0.886

Cold start for protein 0.812 0.809 0.697 0.757
0.787 0.779 0.572 0.767

Unbalanced Warm start 0.945 0.941 0.820 0.935
0.839 0.834 0.577 0.813

Cold start for drug 0.895 0.872 0.851 0.896
0.744 0.708 0.637 0.743

Cold start for protein 0.831 0.818 0.869 0.761
0.463 0.456 0.568 0.366

a Average AUROC and AUPRC scores of drug–target prediction for warm start, cold start for drug, and cold start for protein data splitting. The most 
significant results are bolded.
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AUROC and AUPRC keep gradually increasing as we leak 
more samples.

3.5 Language model encoding analysis
In this section, we examine the current strengths and weak
nesses of language model-based DTI prediction. As observed 
in the results reported above, DTI-LM performs better in 
warm start and cold start for protein predictions but lags be
hind in cold starts for drug predictions. In contrast, other 1D 
sequence-based methods struggle with both cold starts for 
protein and cold starts for drug predictions. For cold start 
predictions, performance depends on how much the model 
can learn about an unknown drug or protein from the known 
drugs or proteins in the training data. The results suggest that 
DTI-LM effectively learned representations for unknown 
proteins, given the high AUROC and AUPRC values in cold 
starts for protein prediction. However, it fails to replicate a 
similar level of learning for unknown drugs. If the representa
tions are significantly different in the training and test sets for 
a pair of drugs that share similar interactions, this difference 
can explain the poor performance in cold starts for drug pre
diction. Therefore, we compute the similarity of drugs and 
proteins using their respective SMILES and amino acid 
sequences, as well as the encoding generated by language 
models, to inspect the efficiency of the language models in 
finding similar drugs and proteins.

Table 7 shows the similarity of drugs and proteins in the 
benchmark datasets. For drug similarity using SMILES 
sequences, we utilize the RDKit library (RDKit 2023) to mea
sure Tanimoto similarity on Morgan fingerprints. Clustal 
Omega (Sievers et al. 2011) is used to determine amino acid 
sequence similarity for proteins. On the other hand, for lan
guage model encoding similarities, we calculate the Pearson 
correlation for each pair of drugs or proteins separately, 
based on the representations generated by the language mod
els. This process generates two m×m protein-protein similar
ity matrices and two n×n drug-drug similarity matrices. The 
mean similarity for all drug/protein pairs is reported in  
Table 7. As shown, neither drug nor protein sequences ex
hibit significant similarity. It’s important to note that 
sequence-level drug and protein similarity is not directly com
parable. However, both similarity metrics have a range of 0– 
1, with 1 indicating the highest similarity. The lack of 

significant similarity is evident. In contrast, the language 
model encodings are highly similar across all datasets, partic
ularly in the case of protein encoding. This underscores the 
greater ability of the protein language model (ESM-2) to cap
ture protein similarity even when amino acid sequences are 
not very similar. However, it remains a possibility that ESM- 
2 generates all protein encodings similarly, regardless of the 
actual similarity between them, which may impede DTI pre
diction. Therefore, we conduct another experiment to investi
gate whether similar drugs or proteins in the encoding 
domain also share similar interactions. We measure how 
many drug-protein interactions of a given drug (or protein) 
are supported by the majority of its neighboring drugs (or 
proteins). Neighbors are defined as the top N similar drugs 
(proteins) to a drug (protein) using raw sequence or 
encoding-based similarity matrices. In this experiment, we set 
N ¼ 5, and a protein (drug) interaction of a given drug (pro
tein) must be shared by at least three of its neighboring 
drugs (proteins).

Table 8 presents the average percentage of interactions 
supported by the majority (three or more) of neighbors for a 
drug or protein. We use both raw sequence-based similarities 
and encoding-based similarities to construct the neighbor
hood. From the table, we can see that drugs receive a higher 
percentage of support from neighbors compared to proteins 
when neighbors are selected based on raw sequence-based 
similarity. However, the average percentage of support for 
drugs decreases across all datasets when neighbors are se
lected based on language model encoding. This suggests that 
encoding similarity in drugs is less meaningful, as similar 
drugs may exhibit drastically different interactions.

Table 8 also illustrates the noteworthy increase in average 
percentage of support for proteins using similarity matrix 
generated from language model encoding compared to raw 
sequence. For example, 44% of all drug-protein interactions 
from proteins in Yamanishi_08 dataset are also shared by at 
least three of their respective neighbor proteins. The presence 
of a strong neighborhood led us to use GAT to incorporate 
this vital information in the DTI prediction and our imple
mentation of GAT successfully improves the prediction per
formance over TransDTI. In light of these findings, we can 
see why DTI-LM demonstrates substantial improvements in 
cold start for proteins predictions but faces challenges in the 
case of drugs. Existing chemical language models may strug
gle to capture the complex interwoven information in the 
SMILES sequences as efficiently as ESM-2 does for pro
tein sequence.

4 Discussion
In our comprehensive experiments, DTI-LM shows great pre
diction results, especially for warm start and cold start for 

Table 7. Sequence and encoding similarity.a

Raw sequences LM encoding

Dataset drug protein drug Protein

DrugBank 0.101 0.072 0.644 0.853
BindingDB 0.117 0.090 0.574 0.859
Yamansihi_08 0.104 0.089 0.554 0.853
Luo’s dataset 0.097 0.078 0.488 0.845

a Similarity is measured based on the raw sequences and language model 
encodings representing drugs and proteins.

Figure 2. Effect of leaked samples. AUROC and AUPRC scores after 2, 4, 
and 6 samples leaked into training of cold start for drug prediction.
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proteins scenarios. It successfully overcomes the traditional 
challenges faced by sequence-based models for cold start for 
protein prediction. However, it falls short of achieving a com
parable level of performance for cold start for drugs, despite 
improvements over the existing sequence-based models. We 
delved deeply into analyzing the reasons for the discrepancies 
between cold start for protein and drug predictions. This ex
ploration would help us understand whether the limitations 
in cold start for drug prediction stem from the constraints of 
current chemical language models or our proposed architec
ture. Our experiments, detailed in Section 3.5, show that the 
ESM-2 is very effective in finding similar proteins that also 
share similar drug interactions based solely on amino acid 
sequences. In contrast, ChemBERTa lacks the same level of 
proficiency for drugs. We also explored the performance of 
newer, larger models such as ChemGPT (Frey et al. 2023) 
and observed similar outcomes.

The experiment outlined in Section 3.5 is not conclusive; 
instead, it gives us a general idea about the performance of 
the protein and chemical language models. A few crucial 
aspects of the experiment are discussed below.

� In Table 7, we present the Pearson correlation, which 
ignores the nonlinear relationship that can be captured by 
the subsequent GAT and MLP we use for the prediction. 

� The average neighbor support, as shown in Table 8, 
paints an important but incomplete picture. The training 
process involves contributions from samples beyond the 
top five neighbors, impacting results irrespective of the 
quality of these neighbors. 

� Finding support for protein interaction and drug interac
tion may also pose varying levels of difficulty due to the 
different numbers of drugs and proteins in each dataset. 
For instance, datasets like DrugBank and Luo’s exhibit a 
lower number of proteins than drugs, i.e. proteins have 
fewer options to choose from to find an interaction than 
drugs. Therefore, the probability of proteins sharing simi
lar interactions will be higher than drugs sharing similar 
interactions. This circumstance can make it comparatively 
easier to find neighbor proteins with similar drug interac
tions than neighbor drugs with similar protein interac
tions. However, Yamanishi_08 has more drugs than 
proteins (as indicated in Table 2) while having the largest 
difference between support for proteins and drugs, as seen 
in Table 8. Therefore, the difference cannot be completely 
explained by the number of proteins or drugs. 

� It is possible that drugs with similar sequences inherently 
do not share similar interactions. This makes finding 
drugs with similar interactions based solely on sequences 
more challenging. However, we use the support for drug 
interactions based on raw sequences as a baseline 
(Table 8) and expect the language models to capture more 

complex similarities. We observe that ESM-2 aligns with 
this expectation, showing an improved percentage of sup
port in LM encoding compared to raw sequences. On the 
other hand, ChemBERTa fails to meet the expectation 
and demonstrates lower support for LM encoding com
pared to raw sequences. This could be interpreted as simi
lar drug LM encodings being further away from sharing 
similar interactions than similar SMILES sequences. 

The domain of pre-trained language models is improving 
at an unprecedented level, giving us hope for stronger and 
more advanced chemical language models in the future. This 
progress is expected to address cold start for drugs issues 
more effectively, as ESM-2 has done for cold start for protein 
predictions.

Based on the higher percentage of support for drugs using 
raw sequences in Table 8, we utilized a raw sequence-based 
similarity matrix in drug GAT for DTI prediction and found 
worse results (results are not shown in the manuscript). This 
can be attributed to the fact that similar SMILES sequences 
can have different LM encodings; thus, the raw sequence- 
based neighborhood will be less meaningful for LM encod
ing. These limitations might be prevalent in all language 
model-based DTI prediction frameworks that use drug se
quence data. In addition, to further investigate the quality of 
LM encodings, we conducted zero-shot DTI predictions rely
ing only on the neighborhood information. The experimental 
details are reported in the Supplementary Document 
(Supplementary Tables S1–S3). The results show that zero- 
shot prediction consistently outperforms sequence-based 
baselines and occasionally outperforms heterogeneous data- 
driven models, indicating the useful information contained 
within drug-drug or protein-protein similarity matrix based 
neighborhoods.

5 Conclusion
We propose DTI-LM, a language model-based DTI predic
tion framework that incorporates neighborhood information 
for predictions. Our goal is to achieve state-of-the-art results 
in various prediction scenarios and to test the limits of exist
ing protein and chemical language models for these tasks. 
DTI-LM outperformed the baselines for warm start and cold 
start for protein predictions. We also tracked back on the 
weak performance of DTI-LM for cold start for drug predic
tions and identified the chemical language model as a limiting 
factor. Recent notable advancements in natural language 
processing may pave the way for the development of im
proved protein and chemical language models to address the 
cold start problem more efficiently. Nevertheless, DTI-LM 
currently excels in cold start for protein predictions, a crucial 
aspect for personalized medicine where tailoring treatment to 
individual patients’ protein variants is essential.
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