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Abstract

Motivation: The identification and understanding of drug-target interactions (DTIs) play a pivotal role in the drug discovery and development
process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier
input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various compu-
tational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite
the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for
sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their excep-
tional context-capturing abilities along with neighborhood information to predict DTls. DTI-LM is specifically designed to rely solely on sequence
representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions.

Results: Large-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it
excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive
results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless,
a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models ex-

hibit contrasting capabilities in capturing similarities between drugs and proteins.

Availability and implementation: Source code is available at: https://github.com/compbiolabucf/DTI-LM.

1 Introduction

In the relentless pursuit of novel therapeutic agents, the intri-
cate interplay between drugs and their biological targets has
become the focal point of modern pharmaceutical research.
The concept of drug—target interaction (DTI) constitutes the
cornerstone of contemporary drug discovery and develop-
ment, providing a fundamental framework for understanding
the mechanistic foundations of pharmacological interven-
tions. Amid the ever-evolving challenges posed by drug resis-
tance and adverse drug reactions, the exploration of DTI not
only expedites the identification of novel drug candidates but
also augments our capacity to repurpose existing compounds
for diverse therapeutic applications. Experimental assays
have proven to be the gold standard for DTI identification
(Zheng et al. 2020). However, research indicates that the
expenses associated with the development of new drugs vary
between $314 million and $2.8 billion, while the duration of
clinical development typically spans between 8.2 and
10.0 years (Wouters et al. 2020, Brown et al. 2021). These
substantial investments in time and resources have made DTI
prediction an indispensable tool to aid the initial stages of
drug discovery by expediting the identification of potential
drug—target interactions, thereby streamlining the process of
lead compound selection and, consequently, experimen-
tal validation.

Numerous studies have demonstrated the utility of compu-
tational approaches, including machine learning algorithms,
network-based methods, and molecular docking simulations
for DTI prediction. In recent times, the advancement of DTI
prediction has been notably accelerated, primarily attributed
to the extensive accumulation and accessibility of biomedical
datasets. This surge is further propelled by the remarkable
progress of deep learning techniques, which have showcased
exceptional success across diverse realms of scientific re-
search and asserted themselves as the predominant method
for DTI prediction. Several advanced deep learning-based
frameworks for DTI prediction have emerged, utilizing di-
verse sets of data as input. These frameworks can be broadly
categorized into knowledge graph-based methods (Luo et al.
2017, Thafar et al. 2020, Ye et al. 2021, Zhang et al. 2023),
3D structure-based approaches (Wallach et al. 2015, Ragoza
et al. 2017, Stepniewska-Dziubinska et al. 2018,
Khodabandeh Yalabadi et al. 2024, Bian et al. 2024, Wang
et al. 2024), 2D pairwise distance map-based techniques
(Zheng et al. 2020, Li et al. 2022), and 1D sequence-based
methods (Wen ez al. 2017, Oztiirk er al. 2018, Chen et al.
2020, Huang et al. 2021). Heterogeneous knowledge graph
(KG)-based methods have demonstrated success in various
scenarios of DTI prediction, including warm start, cold start
for drugs, and cold start for proteins. Cold start predictions

Received: 1 January 2024; Revised: 5 August 2024; Editorial Decision: 26 August 2024; Accepted: 29 August 2024

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G20z AINf 62 U0 Jasn epLO| [B1USD JO ANSISAIUN A 099/ 1/ /SEGOI/6/0/I0IE/SOIBWLIOJUIOIG/WOD dNO™DIWSpEo.//:SA]Y WOL) POPEOjUMOQ


https://orcid.org/0000-0003-3605-9373
https://github.com/compbiolabucf/DTI-LM

involving unknown drugs or proteins are particularly chal-
lenging as limited or no information about that drug or pro-
tein is available during model training. Despite this challenge,
KG-based models leverage semantic relationships with other
entities (such as shared pathways, biological processes, or
functional annotations) and diverse data sources, enabling
them to achieve competitive performance in cold start predic-
tions. However, it’s crucial to note that KG-based methods
demand large amounts of heterogeneous datasets and sub-
stantial computational resources to achieve state-of-the-art
results. Their performance is also contingent on the complete-
ness of the knowledge graph. Structure and sequence-based
methods generally tend to perform worse for cold start pre-
dictions if the cold start protein or drug has no structural or
sequential homologs with known interactions in training.
Moreover, obtaining high-quality structural data for all pro-
teins of interest can be challenging and time-consuming and
requires significant computational resources. On the con-
trary, 1D sequences, such as amino acid sequences for pro-
teins and Simplified Molecular Input Line Entry System
(SMILES) for drugs, represent the most readily available
form of input data and require less computation due to their
simplified representation. Ensuring the quality of data is also
more straightforward compared to knowledge graphs and
structural information. Therefore, addressing the limitations
associated with cold start problems using 1D sequences holds
the potential to accurately predict interactions for a broader
spectrum of drugs and proteins compared to other methods.

The adoption of pretrained language models (LMs) has
emerged as a transformative tool across a spectrum of research
domains. BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al. 2018) brought about a paradigm
shift in natural language processing tasks, and its impact ex-
tended to other domains such as ESM, ProtBert, and
ProteinBERT (Elnaggar et al. 2021, Brandes et al. 2022, Lin
et al. 2023) for protein feature extraction. Similarly, in drug-
related contexts, models like ChemBERTa, ChemGPT, and
MoLFormer (Chithrananda ef al. 2020, Ross et al. 2022, Frey
et al. 2023) have played a crucial role in extracting drug fea-
tures. These pretrained models have found applications and val-
idation in previous DTI prediction studies, wherein embeddings
are generated utilizing LMs (Kalakoti et al. 2022, Kang et al.
2022, Nguyen et al. 2022). These embeddings generated by
LMs are independent, meaning no neighborhood information is
considered during their generation. While such approaches have
proven effective, recent studies, including those utilizing KG-
based frameworks, have demonstrated the efficacy of
neighborhood-based embedding generation for DTI prediction
(Wan et al. 2019). Incorporating neighborhood information
into language model-based embeddings has the potential to
yield improved representations for both drugs and proteins.
Moreover, previous language model-based DTI prediction stud-
ies (Kalakoti ez al. 2022, Nguyen et al. 2022) lack a comprehen-
sive comparison with other methods, focusing only on the
comparison among the language model variants.

In this study, we introduce a novel framework, DTI-LM,
designed for predicting drug-target interactions by leveraging
language models to generate encodings from protein amino
acid and drug SMILES sequences. Going beyond traditional
approaches, we enhance the encoding process by introducing
graph attention networks (GAT). These networks enrich the
representations of proteins and drugs with neighborhood
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information, thereby contributing to more nuanced and
context-aware DTI predictions. Our experimental findings
substantiate the effectiveness of the proposed DTI-LM frame-
work, demonstrating superior performance compared to
existing state-of-the-art DTI prediction models while utilizing
fewer data and computational resources. Furthermore, we
design our study to investigate the current limitations associ-
ated with language model-based DTI prediction. We shed
light on the difference in performance between cold start for
proteins and drugs and probe into the bottleneck for cold
start for drugs prediction. This exploration allows us to gain
insights into the challenges and boundaries that currently ex-
ist in protein and drug language models, providing a founda-
tion for potential future enhancements and refinements in
language model-based drug—target interaction prediction.

2 Materials and methods

In this section, we first introduce the mathematical notations
used in this study, followed by the proposed framework,
DTI-LM. The framework can take protein amino acid
sequences and drug SMILES sequences as inputs in language
models, followed by graph attention networks and a multi-
layer perceptron (MLP) to predict DTIs. We then discuss the
baselines used in this study to illustrate the improvements of-
fered by our model.

2.1 Overview of the framework

In the context of language model-based DTI prediction
frameworks, the protein embeddings produced by protein
language models are inherently distinct for each protein se-
quence, just as the drug embeddings generated by chemical
language models remain independent for different drug
sequences (Kalakoti et al. 2022). Although similar proteins or
drugs should generate similar embeddings, enhancements to
these embeddings can be achieved by explicitly defining a
neighborhood based on similarities or interactions between
drugs or proteins. Conversely, in GAT-based DTI prediction
frameworks, various encoding methods such as integer
encoding, Word2Vec, position-specific scoring matrix, or bi-
ological property-based encoding are utilized to prepare the
protein sequences. For drug sequences, encodings like molec-
ular fingerprint, molecular graph, and Word2Vec are used as
input for the GAT model (Wang et al. 2021, Zhang et al.
2021, Jiang et al. 2022, Cheng et al. 2022, Wang et al. 2023).
As a step toward an integrated approach, we propose com-
bining both strategies by encoding the protein and drug
sequences using language models and subsequently generat-
ing the final representations through the GAT model.
Figure 1 illustrates the overall workflow of DTI-LM.

The notations used to define the proposed model are sum-
marized in Table 1. Let X = [x1,x2,...,%,,] represent the p-di-
mensional encodings for m proteins generated by the protein
language model from protein sequences represented by amino
acids, where x; denotes the ith protein. Similarly, Y =
[V1,¥s,---,,] represents the g-dimensional encodings for n
drugs generated from drug SMILES sequences. Z, and Z,
are GAT protein and drug embeddings, respectively, where k,
I, and b represent the protein embedding size, drug
embedding size, and the number of heads in the GAT.
The proposed framework is designed for binary prediction of
the drug-target interaction matrix, denoted by I. For the
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Figure 1. (a) Overall framework of DTI-LM. In the framework, protein and drug sequences are fed into their respective language models. Next, the
generated encoding and their similarity matrix are used in a graph attention network to generate protein and drug embeddings. The embeddings are then
concatenated and passed into a multi-layer perceptron to predict DTI. (b) GAT embedding generation. It illustrates the process for protein embedding
generation using a GAT from LLM encoding of proteins. Neighbors with high similarity are aggregated to update the target node embedding. We follow

the same procedure for drug embedding generation.

Table 1. Notations used in DTI-LM.

Name Definition

p,q,myn, k, I, h  Protein encoding size, drug encoding size, number
of proteins, number of drugs, protein GAT em-
bedding size, drug GAT embedding size, number

of heads respectively

X e RP*” Protein sequence encoding generated by ESM-2

Y e RI*” Drug SMILES encoding generated by ChemBERTa
S, e R"*™ Protein—protein adjacency matrix

Sy e RM*” Drug-drug adjacency matrix

Z, e Rk>m Protein embeddings generated by GAT

Zy € R/>n Drug embeddings generated by GAT

IeR™" Drug-target interaction matrix

remainder of the manuscript, outputs from the LMs are des-
ignated as encodings, and outputs from the GATs are desig-
nated as embeddings to easily differentiate between them.

2.1.1 Protein encoding

We use ESM-2 (Lin et al. 2023), a 33-layer, 650-million-
parameters model with an output dimension of 1280 for
encoding protein sequences. It is an advanced deep-learning
model specifically designed to capture the complex evolution-
ary patterns and structural features embedded within protein
sequences. The model is trained on the UniRef50 dataset,
which is part of the UniProt Knowledgebase (The UniProt
Consortium 2022), a centralized repository for protein
sequences and functional information. The dataset is con-
structed through the clustering of UniRef90 seed sequences,
ensuring that each cluster comprises sequences with a mini-
mum of 50% sequence identity to, and 80% overlap with,
the longest sequence in the cluster and consists of 11 862 245
clusters (Suzek er al. 2015). By encoding protein sequences
using ESM-2, we can harness the model’s capacity to capture
long-range dependencies and subtle sequence motifs, thereby
facilitating more accurate predictions of protein properties,
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functions, and interactions. ESM-2 was chosen over other
protein language models such as AlphaFold2, RoseTTAFold,
OmegaFold, ProtBert, etc. (Baek et al. 2021, Elnaggar et al.
2021, Jumper et al. 2021, Wu et al. 2022) due to its faster
runtime and high-quality embedding generation. The compu-
tational cost of multiple sequence alignment (MSA) powered
models (AlphaFold2, RoseTTAFold) can be one to two
orders of magnitude higher than ESM-2 (Lin et al. 2023)
while offering negligible advantage in DTI prediction accu-
racy (Kalakoti ez al. 2022).

2.1.2 Drug encoding

For drug SMILES sequence encoding, we choose a prominent
chemical language model, ChemBERTa (Chithrananda et al.
2020), a 6-attention layer, 84-million-parameters model with
an output dimension of 768. It was trained on 10 million
SMILES sequences from the PubChem database (Kim et al.
2023). ChemBERTa integrates the powerful language under-
standing capabilities of BERT with domain-specific knowl-
edge from the chemical and pharmaceutical realms. By
encoding drug SMILES sequences, ChemBERTa enables the
extraction of rich semantic representations, capturing intri-
cate molecular structures, functional groups, and chemical
properties embedded within the SMILES notations. With its
capacity to comprehend complex chemical structures and
their relationships, ChemBERTa serves as a valuable tool for
drug discovery. In this study, we implemented our model us-
ing the Hugging Face library (HuggingFace 2023), a widely
recognized and extensively utilized platform for natural lan-
guage processing and deep learning research.

2.1.3 Drug-target interaction prediction

Protein and drug encodings, given by X and Y, respectively,
are fed into two GATs to derive embeddings by integrating
neighborhood information. To define the neighborhood of a
protein, an m X m Pearson correlation matrix Sy is first calcu-
lated. This correlation-based similarity matrix is then con-
verted into a binary adjacency matrix using a threshold
where high correlation scores above that threshold are
assigned value of 1 while low scores below that threshold are
assigned value of 0. The binarized adjacency matrix will be
later used to mask the attention coefficients of the model.
Whether to keep self-connections in the adjacency matrix and
the thresholds used for binarization are set as hyperpara-
meters in the framework and tuned for the best performance.
All hyper parameters of the model and details of the adja-
cency matrix calculation process are presented in the
Supplementary Document. A similar process is applied to ob-
tain the drug neighborhood §,. The model can accommodate
other neighborhood definitions such as the protein-protein
interaction network (PPI) and drug-drug interaction network
(DDI). Once we have the adjacency matrices, we can generate
the embeddings for X and Y. For protein embedding, the at-
tention directed to x; from its neighbor x; can be computed
as follows:

cij = a[Wxi|[Wx;], (1)

where W eR**? and aeR'"™?* represent the learnable
weight parameters of a single head. Here, k denotes the em-
bedding size of the GAT, and || denotes the concatenation op-
eration. Subsequently, the calculated attention values
undergo a LeakyRel.U activation function. To incorporate
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the structural information of the network, the attention val-
ues are modified by applying a mask using the adjacency ma-
trix. Specifically, only the attention values corresponding to
connected nodes in the adjacency matrix S, are retained,
while all other values are set to zero. The attention coefficient
for a neighbor x; is then calculated using the Softmax func-
tion as follows:

exp(LeakyReLU(c;))
> ren, €xp (LeakyReLU(c;r))’

(2)

ajj =

where N; represents the neighborhood of the i protein. The
embedding of x; is calculated as:

xi=o()_ ayWx)), (3)

jEN

where ¢ is a nonlinear activation function. We use multi-head
attention mechanism to capture complex relationships and
enhance the expressiveness of the learned representations.
For b number of heads, each with its separate attention mech-
anism, the final embedding of the sample is obtained by
concatenating the output of the heads. Therefore, the final
embedding of the ith protein is given by:

2= l160> " a)Why)). (4)
jeN;

We obtain the embeddings for all m proteins as Z, €
R¥>™ and follow the same procedure to obtain the embed-
dings for n drugs as Z, € R"”*" where [ is the embedding size
for drugs from a single head. We design the GAT model to
have the same embedding size as LM encoding, i.e. kb =p
and Ih = q. For simplicity, we show same number of heads »
for drugs and proteins which can be different in implementa-
tion of DTI-LM. The number of heads and number of layers
in the networks used for generating protein and drug embed-
dings are set as hyperparameters in the model.

Finally, the protein embedding Z, and the encoding from
the language model X are added together to obtain the final
protein representations. Similarly, the drug embedding Z,
and the encoding from the language model Y are added to-
gether to obtain the final drug representations. These repre-
sentations are concatenated and fed into a multilayer
perceptron (MLP) to predict the corresponding interactions,
as given by:

I

MLP([Z+ X[ Zy +rY]). (5)

B and y are hyperparameters that control the contribution of
the residual connection. The model is trained with binary
cross-entropy loss, calculated as:

1 mn

L= o> M- loga(l) +(1-1) - log(e(1-L))],  (6)
i=0

where o represents the Sigmoid function.

2.2 Baselines models

We use several baselines to compare the performance of our
proposed model, DTI-LM. DeepDTA (Oztiirk et al. 2018),
DeepDTI (Wen et al. 2017), and TransDTI (Kalakoti ez al.
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2022) are end-to-end models that take protein and drug
sequences as input, similar to DTI-LM. DeepDTA and
DeepDTI use convolutional neural networks and deep belief
networks, respectively, to process the protein and drug
sequences. TransDTI, on the other hand, uses language mod-
els for protein and drug sequences with an MLP on top of the
outputs from the language models. MolTrans (Huang et al.
2021) uses transformers with sequence data and
FragXsiteDTI (Khodabandeh Yalabadi et al. 2024) uses
GCN and transformers with 3D structures for DTI predic-
tion. In addition, DTI-LM is compared against heterogeneous
data-driven models such as DTiGEMS+ (Thafar et al. 2020),
DTINet (Luo et al. 2017), KGE_NFM (Ye et al. 2021), and
TriModel (Mohamed et al. 2021) that require more data mo-
dalities to train than DTI-LM. Although DTI-LM uses
protein-protein and drug-drug similarity matrices, we can
generate these matrices from the language model encoding
without any external information.

3 Experiments
3.1 Dataset

The proposed framework is evaluated on four datasets:
DrugBank (Law et al. 2014), BindingDB (Liu et al. 2007),
Yamanishi_08 (Yamanishi et al. 2008), and Luo’s dataset
(Luo et al. 2017). The DrugBank and BindingDB datasets
contain only protein and drug sequences; therefore, they were
primarily utilized for comparing sequence-based methods. In
contrast, the Yamanishi_08 and Luo’s datasets include het-
erogeneous knowledge graphs (KG) alongside protein and
drug sequences, making them suitable for comparing both
sequence-based and heterogeneous data-driven methods. The
Yamanish_08 network encompasses 25 487 nodes and
95 579 edges, whereas Luo’s dataset network consists of
12 015 nodes and 1 895 445 edges. Statistics of the datasets
can be found in Table 2.

3.2 Running DTI-LM

First, the DrugBank and BindingDB datasets are split into
training, validation, and test sets, with ratios of 0.79, 0.01,
and 0.20, respectively. This splitting process adheres to three
specific conditions: warm start (the same drugs and proteins
being allowed in both training and test sets), cold start for
drugs (drugs in training and test sets are exclusive), and cold
start for proteins (proteins in training and test sets are exclu-
sive). The Yamanishi_08 and Luo’s datasets are obtained
from the source mentioned in Ye et al. (2021), and the same
training and test splits as utilized in that study are used to
generate our results. While sequence-based models, including
DTI-LM, are exclusively trained on the sequences, heteroge-
neous data-driven models incorporate the use of KG as well.
Therefore, heterogeneous data-driven models are not com-
pared on DrugBank and BindingDB datasets. DrugBank,
Yamanishi_08, and Luo’s datasets provide binary interaction
details that were used in our classification framework to train

Table 2. Data statistics.

Dataset Proteins Drugs KG Interactions
DrugBank 2203 1603 No 6041
BindingDB 879 9144 No 4040
Yamanishi_08 722 791 Yes 3448
Luo’s 1129 708 Yes 1526

a binary classifier to predict interaction or no interaction for
a pair of drug and protein. In contrast, BindingDB provides
binding affinity (Kd) data, which is converted into a binary
format using a threshold to align with the classification
framework. The threshold is chosen to maintain a compara-
ble DTI density as other datasets. The hyperparameters of the
framework are fine-tuned using Ray Tune (Liaw et al. 2018),
and comprehensive information regarding the selection of
hyperparameters can be found in the Supplementary
Document (Supplementary Table S4). All predictions are run
10 times with different splittings, with the mean area under
the Receiver Operating Characteristic curve (AUROC) and
the area under the Precision-Recall curve (AUPRC) reported
in the respective tables. These experiments are repeated with
two variations in the ratios of positive and negative samples
in the datasets: balanced data has a 1:1 ratio, whereas unbal-
anced data has a 1:10 ratio between positive and negative
drug—target pairs or all samples if the ratio is less than 1:10.

DTI-LM is thoroughly evaluated through various experi-
ments. Firstly, we compare the performance of DTI prediction
with cutting-edge baselines, highlighting the improvements in-
troduced by our model. Subsequently, we conduct an in-depth
analysis of DTI-LM to examine its benefits and drawbacks, spe-
cifically focusing on the use of the language model-based encod-
ing for DTI prediction.

3.3 Prediction results

We designed two DTI prediction scenarios to illustrate the
ability of DTI-LM. Firstly, we conducted a comparative
analysis of our model against other sequence-based models
using DrugBank and BindingDB datasets, demonstrating the
enhanced predictive capabilities of our approach relying
solely on sequence data. We repeated the experiments with
all three types of splitting, each with balanced and unbal-
anced datasets. Secondly, we pitted our model against hetero-
geneous data-driven models using Yamanishi_08 and Luo’s
datasets, highlighting our competitive performance despite
utilizing only a fraction of the input data. Not only is protein
and drug sequence data more readily available, but it can also
significantly reduce the computational complexity of a model
compared to heterogeneous data-driven models. In Tables 3—
6, the first row associated with each splitting strategy repre-
sents the AUROC, while the second row depicts the AUPRC.

The results presented in Tables 3 and 4 showcase the aver-
age classification results of the sequence-based model applied
to the DrugBank and BindingDB datasets, respectively. They
highlight that our model outperformed the baseline models in
the majority of cases. Notably, under the warm start sce-
nario, our model consistently demonstrated superior perfor-
mance compared to all the baselines across both datasets.
The most substantial performance enhancement was ob-
served in the case of cold start for protein splitting despite do-
ing worse than DeepDTA in unbalanced BindingDB dataset.
Across different splitting scenarios, our model exhibited an
average improvement in AUROC of 3.57% and AUPRC of
8.33% for warm start, 3.84% and 6.13% for cold start for
drug, and 5.57% and 8.93% for cold start for protein predic-
tions, respectively. AUROC scores are better in unbalanced
splittings due to higher volume of training data. AUPRC
scores are unsurprisingly lower for unbalanced splittings as
there are far less positive interactions compared to negative
interactions that makes positive interaction predictions more
challenging. We also find that DeepDTA is more unstable

G20z AINF 6z U0 Jasn epuo|4 [enua) Jo AysieAlun Ad 099/ 7/ //SEGOEIN/6/01/3I01HE/SOIEULIOJUI0IN/ W09 dNO"dlWapEd.//:SdRy WOl PBPEOjUMOQ


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae533#supplementary-data

6 Ahmed et al.
Table 3. The classification performance on DrugBank dataset.®

DTI-LM TransDTI DeepDTA DeepDTI

Balanced Warm start 0.951 0.934 0.889 0.916

0.953 0.935 0.882 0.914

Cold start for drug 0.902 0.877 0.874 0.859

0.899 0.889 0.871 0.868

Cold start for protein 0.923 0.916 0.855 0.838

0.935 0.920 0.825 0.850

Unbalanced Warm start 0.960 0.952 0.907 0.947

0.863 0.858 0.623 0.773

Cold start for drug 0.890 0.876 0.765 0.860

0.674 0.651 0.441 0.582

Cold start for protein 0.938 0.916 0.737 0.871

0.821 0.789 0.441 0.614

? Average AUROC and AUPRC scores of drug-target prediction for warm start, cold start for drug, and cold start for protein data splitting. The most

significant results are bolded.

Table 4. The classification performance on BindingDB dataset.?

DTI-LM TransDTI DeepDTA DeepDTI

Balanced Warm start 0.939 0.926 0.868 0.923
0.934 0.918 0.729 0.910

Cold start for drug 0.872 0.870 0.754 0.863

0.879 0.878 0.699 0.886

Cold start for protein 0.812 0.809 0.697 0.757

0.787 0.779 0.572 0.767

Unbalanced Warm start 0.945 0.941 0.820 0.935
0.839 0.834 0.577 0.813

Cold start for drug 0.895 0.872 0.851 0.896

0.744 0.708 0.637 0.743

Cold start for protein 0.831 0.818 0.869 0.761

0.463 0.456 0.568 0.366

? Average AUROC and AUPRC scores of drug-target prediction for warm start, cold start for drug, and cold start for protein data splitting. The most

significant results are bolded.

compared to other models with a large gap of performance
between balanced and unbalanced splitting. It works better
for balanced data in DrugBank while doing better for unbal-
anced data in BindingDB.

Next, Tables 5 and 6 report the average classification results
for sequence-based, structure-based and heterogeneous data-
driven models on Yamanishi_08 and Luo’s datasets. Using the
same publicly available data splits as Ye et al. (2021) enables a
direct comparison of our results with those reported in that pa-
per. FragXsiteDTI suffers from a common shortcoming of
structure-based methods, the unavailability of protein struc-
tures. Therefore, we ran FragXsiteDTI twice, once with all pre-
dicted protein structures (Predicted). Then we repeat the
experiment with experimental protein structure if available, and
predicted protein structure otherwise (Mixed). ESMFold (Lin
et al. 2023) was used to predict the protein structures that uses
similar underlying technique as ESM-2. As observed in the
Tables, heterogeneous data-driven baselines DTiGEMS+,
DTINet, TriModel, and KGE_NFM consistently outperform
sequence-based  baselines  DeepDTI, MolTrans, and
MPNN_CNN and structure-based model FragXsiteDTI across
various scenarios, with a notable performance gap for cold start
for drug and cold start for protein splittings. Despite being a
sequence-based model, DTI-LM not only outperforms other
sequence-based baselines but also surpasses and heterogeneous
data-driven models for warm start and cold start for protein
prediction. For cold start for drug splitting, while we outper-
form other sequence-based and structure-based baselines in

most cases, except FragXsiteDTI on the Yamanishi_08 dataset
and MPNN_CNN on Luo’s dataset, we still lag behind state-of-
the-art heterogeneous data-driven models. This underscores the
findings from Tables 3 and 4 that DTI-LM is more effective for
cold start for protein splitting than cold start for drug splitting.
To gain a deeper understanding of the factors contributing to
the superior performance of our model in the context of cold
start for protein as opposed to cold start for drug, we conducted
an investigation detailed in Section 3.5.

3.4 Transition from cold start to warm start

Given the limitations in cold start for drug splitting, we inves-
tigated the transition between a cold start and warm start
prediction to determine the minimum information needed for
the transition. For each drug in the test set, we sent a number
of samples (drug—target pair) to the training set and tracked
how the prediction performance changes with the inclusion
of additional information. All predictions with leaked data
are also computed 10 times similar to previous results.
Figure 2 illustrates the results for the DrugBank dataset,
where we leaked two, four, and six samples from each drug
in the test set to the training set but kept at least one sample
for those drugs in the test set. AUPRC has a larger gap be-
tween warm start and cold start scenario compared to
AUROC. The figure shows that, AUPRC jumps significantly
with inclusion of just two samples on average for each test
drug that is comparable to warm start predictions. Both
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Figure 2. Effect of leaked samples. AUROC and AUPRC scores after 2, 4,
and 6 samples leaked into training of cold start for drug prediction.

AUROC and AUPRC keep gradually increasing as we leak
more samples.

3.5 Language model encoding analysis

In this section, we examine the current strengths and weak-
nesses of language model-based DTI prediction. As observed
in the results reported above, DTI-LM performs better in
warm start and cold start for protein predictions but lags be-
hind in cold starts for drug predictions. In contrast, other 1D
sequence-based methods struggle with both cold starts for
protein and cold starts for drug predictions. For cold start
predictions, performance depends on how much the model
can learn about an unknown drug or protein from the known
drugs or proteins in the training data. The results suggest that
DTI-LM effectively learned representations for unknown
proteins, given the high AUROC and AUPRC values in cold
starts for protein prediction. However, it fails to replicate a
similar level of learning for unknown drugs. If the representa-
tions are significantly different in the training and test sets for
a pair of drugs that share similar interactions, this difference
can explain the poor performance in cold starts for drug pre-
diction. Therefore, we compute the similarity of drugs and
proteins using their respective SMILES and amino acid
sequences, as well as the encoding generated by language
models, to inspect the efficiency of the language models in
finding similar drugs and proteins.

Table 7 shows the similarity of drugs and proteins in the
benchmark datasets. For drug similarity using SMILES
sequences, we utilize the RDKit library (RDKit 2023) to mea-
sure Tanimoto similarity on Morgan fingerprints. Clustal
Omega (Sievers et al. 2011) is used to determine amino acid
sequence similarity for proteins. On the other hand, for lan-
guage model encoding similarities, we calculate the Pearson
correlation for each pair of drugs or proteins separately,
based on the representations generated by the language mod-
els. This process generates two m X m protein-protein similar-
ity matrices and two 7z X n drug-drug similarity matrices. The
mean similarity for all drug/protein pairs is reported in
Table 7. As shown, neither drug nor protein sequences ex-
hibit significant similarity. It’s important to note that
sequence-level drug and protein similarity is not directly com-
parable. However, both similarity metrics have a range of 0-
1, with 1 indicating the highest similarity. The lack of

Ahmed et al.

Table 7. Sequence and encoding similarity.?
Raw sequences LM encoding

Dataset drug protein drug Protein
DrugBank 0.101 0.072 0.644 0.853
BindingDB 0.117 0.090 0.574 0.859
Yamansihi_08 0.104 0.089 0.554 0.853
Luo’s dataset 0.097 0.078 0.488 0.845

@ Similarity is measured based on the raw sequences and language model
encodings representing drugs and proteins.

significant similarity is evident. In contrast, the language
model encodings are highly similar across all datasets, partic-
ularly in the case of protein encoding. This underscores the
greater ability of the protein language model (ESM-2) to cap-
ture protein similarity even when amino acid sequences are
not very similar. However, it remains a possibility that ESM-
2 generates all protein encodings similarly, regardless of the
actual similarity between them, which may impede DTI pre-
diction. Therefore, we conduct another experiment to investi-
gate whether similar drugs or proteins in the encoding
domain also share similar interactions. We measure how
many drug-protein interactions of a given drug (or protein)
are supported by the majority of its neighboring drugs (or
proteins). Neighbors are defined as the top A similar drugs
(proteins) to a drug (protein) using raw sequence or
encoding-based similarity matrices. In this experiment, we set
N =35, and a protein (drug) interaction of a given drug (pro-
tein) must be shared by at least three of its neighboring
drugs (proteins).

Table 8 presents the average percentage of interactions
supported by the majority (three or more) of neighbors for a
drug or protein. We use both raw sequence-based similarities
and encoding-based similarities to construct the neighbor-
hood. From the table, we can see that drugs receive a higher
percentage of support from neighbors compared to proteins
when neighbors are selected based on raw sequence-based
similarity. However, the average percentage of support for
drugs decreases across all datasets when neighbors are se-
lected based on language model encoding. This suggests that
encoding similarity in drugs is less meaningful, as similar
drugs may exhibit drastically different interactions.

Table 8 also illustrates the noteworthy increase in average
percentage of support for proteins using similarity matrix
generated from language model encoding compared to raw
sequence. For example, 44% of all drug-protein interactions
from proteins in Yamanishi_08 dataset are also shared by at
least three of their respective neighbor proteins. The presence
of a strong neighborhood led us to use GAT to incorporate
this vital information in the DTI prediction and our imple-
mentation of GAT successfully improves the prediction per-
formance over TransDTI. In light of these findings, we can
see why DTI-LM demonstrates substantial improvements in
cold start for proteins predictions but faces challenges in the
case of drugs. Existing chemical language models may strug-
gle to capture the complex interwoven information in the
SMILES sequences as efficiently as ESM-2 does for pro-
tein sequence.

4 Discussion

In our comprehensive experiments, DTI-LM shows great pre-
diction results, especially for warm start and cold start for
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Table 8. Top five neighbor support.?

Raw sequences LM encoding
Dataset Drug Protein Drug Protein
DrugBank 25.1% 0.0% 14.3% 30.7%
Yamansihi_08 14.1% 21.5% 6.5% 44.0%
Luo’s dataset 30.9% 0.0% 24.5% 26.4%

?  Average percentage of interactions shared by majority of
the neighbors.

proteins scenarios. It successfully overcomes the traditional
challenges faced by sequence-based models for cold start for
protein prediction. However, it falls short of achieving a com-
parable level of performance for cold start for drugs, despite
improvements over the existing sequence-based models. We
delved deeply into analyzing the reasons for the discrepancies
between cold start for protein and drug predictions. This ex-
ploration would help us understand whether the limitations
in cold start for drug prediction stem from the constraints of
current chemical language models or our proposed architec-
ture. Our experiments, detailed in Section 3.5, show that the
ESM-2 is very effective in finding similar proteins that also
share similar drug interactions based solely on amino acid
sequences. In contrast, ChemBERTa lacks the same level of
proficiency for drugs. We also explored the performance of
newer, larger models such as ChemGPT (Frey et al. 2023)
and observed similar outcomes.

The experiment outlined in Section 3.5 is not conclusive;
instead, it gives us a general idea about the performance of
the protein and chemical language models. A few crucial
aspects of the experiment are discussed below.

* In Table 7, we present the Pearson correlation, which
ignores the nonlinear relationship that can be captured by
the subsequent GAT and MLP we use for the prediction.

* The average neighbor support, as shown in Table 8,
paints an important but incomplete picture. The training
process involves contributions from samples beyond the
top five neighbors, impacting results irrespective of the
quality of these neighbors.

* Finding support for protein interaction and drug interac-
tion may also pose varying levels of difficulty due to the
different numbers of drugs and proteins in each dataset.
For instance, datasets like DrugBank and Luo’s exhibit a
lower number of proteins than drugs, i.e. proteins have
fewer options to choose from to find an interaction than
drugs. Therefore, the probability of proteins sharing simi-
lar interactions will be higher than drugs sharing similar
interactions. This circumstance can make it comparatively
easier to find neighbor proteins with similar drug interac-
tions than neighbor drugs with similar protein interac-
tions. However, Yamanishi_08 has more drugs than
proteins (as indicated in Table 2) while having the largest
difference between support for proteins and drugs, as seen
in Table 8. Therefore, the difference cannot be completely
explained by the number of proteins or drugs.

It is possible that drugs with similar sequences inherently

do not share similar interactions. This makes finding

drugs with similar interactions based solely on sequences
more challenging. However, we use the support for drug
interactions based on raw sequences as a baseline

(Table 8) and expect the language models to capture more

complex similarities. We observe that ESM-2 aligns with
this expectation, showing an improved percentage of sup-
port in LM encoding compared to raw sequences. On the
other hand, ChemBERTa fails to meet the expectation
and demonstrates lower support for LM encoding com-
pared to raw sequences. This could be interpreted as simi-
lar drug LM encodings being further away from sharing
similar interactions than similar SMILES sequences.

The domain of pre-trained language models is improving
at an unprecedented level, giving us hope for stronger and
more advanced chemical language models in the future. This
progress is expected to address cold start for drugs issues
more effectively, as ESM-2 has done for cold start for protein
predictions.

Based on the higher percentage of support for drugs using
raw sequences in Table 8, we utilized a raw sequence-based
similarity matrix in drug GAT for DTI prediction and found
worse results (results are not shown in the manuscript). This
can be attributed to the fact that similar SMILES sequences
can have different LM encodings; thus, the raw sequence-
based neighborhood will be less meaningful for LM encod-
ing. These limitations might be prevalent in all language
model-based DTI prediction frameworks that use drug se-
quence data. In addition, to further investigate the quality of
LM encodings, we conducted zero-shot DTI predictions rely-
ing only on the neighborhood information. The experimental
details are reported in the Supplementary Document
(Supplementary Tables S1-S3). The results show that zero-
shot prediction consistently outperforms sequence-based
baselines and occasionally outperforms heterogeneous data-
driven models, indicating the useful information contained
within drug-drug or protein-protein similarity matrix based
neighborhoods.

5 Conclusion

We propose DTI-LM, a language model-based DTI predic-
tion framework that incorporates neighborhood information
for predictions. Our goal is to achieve state-of-the-art results
in various prediction scenarios and to test the limits of exist-
ing protein and chemical language models for these tasks.
DTI-LM outperformed the baselines for warm start and cold
start for protein predictions. We also tracked back on the
weak performance of DTI-LM for cold start for drug predic-
tions and identified the chemical language model as a limiting
factor. Recent notable advancements in natural language
processing may pave the way for the development of im-
proved protein and chemical language models to address the
cold start problem more efficiently. Nevertheless, DTI-LM
currently excels in cold start for protein predictions, a crucial
aspect for personalized medicine where tailoring treatment to
individual patients’ protein variants is essential.
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